The Personal Analytics of My Life

One day I’m sure everyone will routinely collect all sorts of data about themselves. But because I’ve been interested in data for a very long time, I started doing this long ago. I actually assumed lots of other people were doing it too, but apparently they were not. And so now I have what is probably one of the world’s largest collections of personal data.

Every day—in an effort at “self awareness”—I have automated systems send me a few emails about the day before. But even though I’ve been accumulating data for years—and always meant to analyze it—I’ve never actually gotten around to doing it. But with Mathematica and the automated data analysis capabilities we just released in Wolfram|Alpha Pro, I thought now would be a good time to finally try taking a look—and to use myself as an experimental subject for studying what one might call “personal analytics”.

Let’s start off talking about email. I have a complete archive of all my email going back to 1989—a year after Mathematica was released, and two years after I founded Wolfram Research. Here’s a plot with a dot showing the time of each of the third of a million emails I’ve sent since 1989:

Plot with a dot showing the time of each of the third of a million pieces of email

This essay is also in WIRED »

The first thing one sees from this plot is that, yes, I’ve been busy. And for more than 20 years, I’ve been sending emails throughout my waking day, albeit with a little dip around dinner time. The big gap each day comes from when I was asleep. And for the last decade, the plot shows I’ve been pretty consistent, going to sleep around 3am ET, and getting up around 11am (yes, I’m something of a night owl). (The stripe in summer 2009 is a trip to Europe.)

But what about the 1990s? Well, that was when I spent a decade as something of a hermit, working very hard on A New Kind of Science. And the plot makes it very clear why in the late 1990s when one of my children was asked for an example of “being nocturnal” they gave me. The rather dramatic discontinuity in 2002 is the moment when A New Kind of Science was finally finished, and I could start leading a different kind of life.

So what about other features of the plot? Some line up with identifiable events and trends in my life, sometimes reflected in my online scrapbook or timeline. Others at first I don’t understand at all—until a quick search of my email archive jogs my memory. It’s very convenient that I can always drill down and read a raw email. Because as with essentially any long-timescale data project, there are all kinds of glitches (here like misformatted email headers, unset computer clocks, and untagged automated mailings) that have to be found and systematically corrected for before one has consistent data to analyze. And before, in this case, I can trust that any dots in the middle of the night are actually times I woke up and sent email (which is nowadays very rare).

The plot above suggests that there’s been a progressive increase in my email volume over the years. One can see that more explicitly if one just plots the total number of emails I’ve sent as a function of time:

Daily outgoing emails and monthly outgoing emails

Again, there are some life trends visible. The gradual decrease in the early 1990s reflects me reducing my involvement in day-to-day management of our company to concentrate on basic science. The increase in the 2000s is me jumping back in, and driving more and more company projects. And the peak in early 2009 reflects with the final preparations for the launch of Wolfram|Alpha. (The individual spikes, including the all-time winner August 27, 2006, are mostly weekend or travel days specifically spent “grinding down” email backlogs.)

Distribution of emails per day

The plots above seem to support the idea that “life’s complicated”. But if one aggregates the data a bit, it’s easy to end up with plots that seem like they could just be the result of some simple physics experiment. Like here’s the distribution of the number of emails I’ve sent per day since 1989:

What is this distribution? Is there a simple model for it? I don’t know. Wolfram|Alpha Pro tells us that the best fit it finds is to a geometric distribution. But it officially rejects that fit. Still, at least the tail seems—as so often—to follow a power law. And perhaps that’s telling me something about myself, though I have to say I don’t know what.

Monthly distinct email recipients

The vast majority of these recipients are people or mailgroups within our company. And I suspect the overall growth is a reflection of both the increasing number of people at the company, and the increasing number of projects in which I and our company are involved. The peaks are often associated with intense early-stage projects, where I am directly interacting with lots of people, and there isn’t yet a well-organized management structure in place. I don’t quite understand the recent decrease, considering that the number of projects is at an all-time high. I’m just hoping it reflects better organization and management…

OK, so all of that is about email I’ve sent. What about email I’ve received? Here’s a plot comparing my incoming and outgoing email:

Average daily emails

The peaks in 1996 and 2009 are both associated with the later phases of big projects (Mathematica 3 and the launch of Wolfram|Alpha) where I was watching all sorts of details, often using email-based automated systems.

OK. So email is one kind of data I’ve systematically archived. And there’s a huge amount that can be learned from that. Another kind of data that I’ve been collecting is keystrokes. For many years, I’ve captured every keystroke I’ve typed—now more than 100 million of them:

Diurnal plot of keystrokes

Daily keystrokes, averaged by month

There are all kinds of detailed facts to extract: like that the average fraction of keys I type that are backspaces has consistently been about 7% (I had no idea it was so high!). Or how my habits in using different computers and applications have changed. And looking at the daily totals, I can see spikes of writing activity—typically associated with creating longer documents (including blog posts). But at least at an overall level things like the plots above look similar for keystrokes and email.

What about other measures of activity? My automated systems have been quietly archiving lots of them for years. And for example this shows the times of events that have appeared in my calendar:

Diurnal plot of calendar events

The changes over the years reflect quite directly things going on in my life. Before 2002 I was doing a lot of solitary work, particularly on A New Kind of Science, and having only a few scheduled meetings. But then as I initiated more and more new projects at our company, and took a more and more structured approach to managing them, one can see more and more meetings getting filled in. Though my “family dinner stripe” remains clearly visible.

Here’s a plot of the daily average total number of meetings (and other calendar events) that I’ve done over the years:

Average events per day

The trend is pretty clear. And it reflects the fact that in the past decade or so I’ve gradually learned to work better “in public”, efficiently figuring things out while interacting with groups of people—which I’ve discovered makes me much more effective both at using other people’s expertise and at delegating things that have to be done.

It often surprises people when I tell them this, but since 1991 I’ve been a remote CEO, interacting with my company almost exclusively just by email and phone (usually with screensharing). (No, I don’t find videoconferencing with the company very useful, and the telepresence robot I got recently has mostly been standing idle.)

So phone calls are another source of data for me. And here’s a plot of the times of calls I’ve made (the gray regions are missing data):

Diurnal plot of phone calls

Yes, I spend many hours on the phone each day:

Daily hours on the phone and monthly hours on the phone

And this shows how the probability to find me on the phone varies during the day:

On-phone probability

This is averaged over all days for the last several years, and in fact I’m guessing that the “peak weekday probability” would actually be even higher than 70% if the average excluded days when I’m away for one reason or another.

Here’s another way to look at the data—this shows the probability for calls to start at a given time:

Call start times

There’s a curious pattern of peaks—near hours and half-hours. And of course those occur because many phone calls are scheduled at those times. Which means that if one plots meeting start times and phone call start times one sees a strong correlation:

Calls and meetings

Differences between meeting and phone call start timesI was curious just how strong this correlation is: in effect just how scheduled all those calls are. And looking at the data I found that at least for my external phone meetings at least half of them do indeed start within 2 minutes of their appointed times. For internal meetings—which tend to involve more people, and which I normally have scheduled back-to-back—there’s a somewhat broader distribution, shown on the left.

Call durationsWhen one looks at the distribution of call durations one sees a kind of “physics-like” background shape, but on top of that there’s the “obviously human” peak at the 1-hour mark, associated with meetings that are scheduled to be an hour long.

So far everything we’ve talked about has measured intellectual activity. But I’ve also got data on physical activity. Like for the past couple of years I’ve been wearing a little digital pedometer that measures every step I take:

Diurnal plot of steps taken

Daily steps averaged by month

And once again, this shows quite a bit of consistency. I take about the same number of steps every day. And many of them are taken in a block early in my day (typically coinciding with the first couple of meetings I do). There’s no mystery to this: years ago I decided I should take some exercise each day, so I set up a computer and phone to use while walking on a treadmill. (Yes, with the correct ergonomic arrangement one can type and use a mouse just fine while walking on a treadmill, at least up to—for me—a speed of about 2.5 mph.)

OK, so let’s put all this together. Here are my “average daily rhythms” for the past decade (or in some cases, slightly less):

Graphs of incoming emails, outgoing emails, keystrokes, meetings and events, calls, and steps as a function of time

The overall pattern is fairly clear. It’s meetings and collaborative work during the day, a dinner-time break, more meetings and collaborative work, and then in the later evening more work on my own. I have to say that looking at all this data I am struck by how shockingly regular many aspects of it are. But in general I am happy to see it. For my consistent experience has been that the more routine I can make the basic practical aspects of my life, the more I am able to be energetic—and spontaneous—about intellectual and other things.

And for me one of the objectives is to have ideas, and hopefully good ones. So can personal analytics help me measure the rate at which that happens?

It might seem very difficult. But as a simple approximation, one can imagine seeing at what rate one starts using new concepts, by looking at when one starts using new words or other linguistic constructs. Inevitably there are tricky issues in identifying genuine new “words” etc. (though for example I have managed to determine that when it comes to ordinary English words, I’ve typed about 33,000 distinct ones in the past decade). If one restricts to a particular domain, things become a bit easier, and here for example is a plot showing when names of what are now Mathematica functions first appeared in my outgoing email:

First email appearance of Mathematica functions

The spike at the beginning is an artifact, reflecting pre-existing functions showing up in my archived email. And the drop at the end reflects the fact that one doesn’t yet know future Mathematica names.  But it’s interesting to see elsewhere in the plot little “bursts of creativity”, mostly but not always correlated with important moments in Mathematica history—as well as a general increase in density in recent times.

As a quite different measure of creative progress, here’s a plot of when I modified the text of chapters in A New Kind of Science:

Plot of when chapters were modified in A New Kind of Science

I don’t have data readily at hand from the beginning of the project. And in 1995 and 1996 I continued to do research, but stopped editing text, because I was pulled away to finish Mathematica 3 (and the book about it). But otherwise one sees inexorable progress, as I systematically worked out each chapter and each area of the science. One can see the time it took to write each chapter (Chapter 12 on the Principle of Computational Equivalence took longest, at almost 2 years), and which chapters led to changes in which others. And with enough effort, one could drill down to find out when each discovery was made (it’s easier with modern Mathematica automatic history recording). But in the end—over the course of a decade—from all those individual keystrokes and file modifications there gradually emerged the finished A New Kind of Science.

It’s amazing how much it’s possible to figure out by analyzing the various kinds of data I’ve kept. And in fact, there are many additional kinds of data I haven’t even touched on in this post. I’ve also got years of curated medical test data (as well as my not-yet-very-useful complete genome), GPS location tracks, room-by-room motion sensor data, endless corporate records—and much much more.

And as I think about it all, I suppose my greatest regret is that I did not start collecting more data earlier. I have some backups of my computer filesystems going back to 1980. And if I look at the 1.7 million files in my current filesystem, there’s a kind of archeology one can do, looking at files that haven’t been modified for a long time (the earliest is dated June 29, 1980).

Here’s a plot of the latest modification times of all my current files:

Modification dates of all current files

The colors represent different file types. In the early years, there’s a mixture of plain text files (blue dots) and C language files (green). But gradually there’s a transition to Mathematica files (red)—with a burst of page layout files (orange) from when I was finishing A New Kind of Science. And once again the whole plot is a kind of engram—now of more than 30 years of my computing activities.

So what about things that were never on a computer? It so happens that years ago I also started keeping paper documents, pretty much on the theory that it was easier just to keep everything than to worry about what specifically was worth keeping. And now I’ve got about 230,000 pages of my paper documents scanned, and when possible OCR’ed. And as just one example of the kind of analysis one can do, here’s a plot of the frequency with which different 4-digit “date-like sequences” occur in all these documents:

Occurrence of years in scanned documents

Of course, not all these 4-digit sequences refer to dates (especially for example “2000”)—but many of them do. And from the plot one can see the rather sudden turnaround in my use of paper in 1984—when I turned the corner to digital storage.

What is the future for personal analytics? There is so much that can be done. Some of it will focus on large-scale trends, some of it on identifying specific events or anomalies, and some of it on extracting “stories” from personal data.

And in time I’m looking forward to being able to ask Wolfram|Alpha all sorts of things about my life and times—and have it immediately generate reports about them. Not only being able to act as an adjunct to my personal memory, but also to be able to do automatic computational history—explaining how and why things happened—and then making projections and predictions.

As personal analytics develops, it’s going to give us a whole new dimension to experiencing our lives. At first it all may seem quite nerdy (and certainly as I glance back at this blog post there’s a risk of that). But it won’t be long before it’s clear how incredibly useful it all is—and everyone will be doing it, and wondering how they could have ever gotten by before. And wishing they had started sooner, and hadn’t “lost” their earlier years.


Comment added April 5:

Thanks for all the great comments and suggestions, both here and in separate messages!

I’d like to respond to a few common questions that have been asked:

How can I do the same kind of analysis you did?
Eventually I hope the answer will be very simple: just upload your data to Wolfram|Alpha Pro, and it’ll all be automatic. But for now, you can do it using Mathematica programs. We just posted a blog explaining part of the analysis, and linking to the source for the Mathematica programs that you’ll need. To use them, of course, you’ll still have to get your data into some kind of readable form.

What systems did you use to collect all the data?
Different ones at different times, and on different computer systems. For keystroke data, for example, I used several different keyloggers—mostly rather shadowy pieces of software marketed primarily for surreptitious uses. For the phone call data, all my landline phones have always been connected to our company phone system (originally a PBX, now a VoIP system), so I was able to use its built-in logging capabilities. For email, I had a script set up as part of our company email system back in 1989 that forks off a copy of all my messages, and sends them to an archive. This script has had to be updated quite a few times over the years when we’ve changed email systems.

How does your treadmill setup work?
It’s pretty straightforward. I have a keyboard mounted on a board that attaches to the two side rails of the treadmill. I’ve carefully adjusted the height of the keyboard, and I’ve put a gel strip in front of it, to rest my wrists on. I have the mouse on a little platform at the side of the treadmill. And I have two displays mounted in front of me. I’ve sometimes thought about developing some kind of kit to let other people “computerize” their treadmills… but it’s seemed too far from my usual business. (And when I first had the treadmill set up, I was still a bit embarrassed about my impending middle age, and need for exercise.)

With everything you have going on, do you find time for your family?
Happily, very much so. It’s helped a great deal that I’ve always worked at home, so when I’m not actively in the middle of working, I can spend time with my family. It’s also helped that I’ve been very consistent for a long time in taking an extended dinner break with my family (that’s the 2.5 hour gap visible in the early evening in most of my plots). In the blog, I concentrated on work-related personal analytics; I have quite a lot more that’s family oriented, but I didn’t include this in the blog.

Stephen Wolfram (2012), "The Personal Analytics of My Life," Stephen Wolfram Writings. writings.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life.
Text
Stephen Wolfram (2012), "The Personal Analytics of My Life," Stephen Wolfram Writings. writings.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life.
CMS
Wolfram, Stephen. "The Personal Analytics of My Life." Stephen Wolfram Writings. March 8, 2012. writings.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life.
APA
Wolfram, S. (2012, March 8). The personal analytics of my life. Stephen Wolfram Writings. writings.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life.

Posted in: Data Science, Life & Times, Personal Analytics

201 comments

  1. I love it!

  2. Here is one more idea for improving the future value and potential of individual behavior mapping. Imagine, if we could have this Internet of behaviors available for the analytics like this one from Stephen… I’m quite excited about its potential, and see huge possibilities for creativity; my blog on it is here: http://gotepoem.wordpress.com/2012/03/16/internet-of-behaviors-ib/

  3. Hi Stephen,
    One thing I noticed from your data is that you don’t seem to write very long emails. Is that correct?

    *333,333 emails sent since 1989 – for illustrative purposes I’ll estimate from your graphs that 2/3 of these have been sent since 2002. Looks roughly right, +/-.
    *~100,000,000 keystrokes since 2002.

    Not even factoring keystrokes involved in your book writing and redrafting, blog posts, business documents, coding, web searches, and so on, that leaves you with:
    100M ks / 222,222 em = 450 keystrokes per email since 2002.
    14% of these keystrokes were entry (7%) & backspace (7%), so that gives 387 ks per em after deletions.

    Let’s estimate an average of 5 letters per word, and with a keystroke allowance for a space between each word, that’s 6 letters per word content giving you just 64.5 words per email. Not much room to maneuver – that’s fewer words than this paragraph has. So, is the real secret to high productivity working more and spending less time answering emails that hit your inbox? 🙂

  4. Amazing!!
    Thinking about self-knowledge, this can revolutionize our lives!
    “Then you will know the truth, and the truth will set you free.”
    Congrats,

  5. I don’t mean to argue with Wolfram|Alpha Pro, but the distribution of emails per day looks very much like a Poisson distribution.

  6. Hi Stephen,

    I am really intrigued by this article and all the data that you have collected over the years. As a budding computer scientist (half-way through college), I would like to start collecting data on myself as well. However, I’m a little daunted by the task of tracking all this information, and I would really appreciate it if you would tell us/me how you were able to track such specific things like keystrokes. The number of steps is easy to my mind, but some of the other things that you have presented have me stumped.

    Basically, what mechanisms did you use to track all this data? Shell scripts in Linux? Customized key-tracking keyboard? Maybe I should ask directly and not at the end of this article…

  7. Have you studied, or do you have detailed enough keystroke data to study “keystroke dynamics”?

    http://en.wikipedia.org/wiki/Keystroke_dynamics

    There are active research on this, whose planned application is to enable passwordless computer user identification:

    http://www.nytimes.com/2012/03/18/business/seeking-ways-to-make-computer-passwords-unnecessary.html

  8. @some guy with a calculater – well said.
    fewer emails, shorter emails.

    but what i have realized is in the corporates, the higher you go, the shorter the emails get.
    i like writing long letters, today long emails.
    so what is one to do?

  9. This is perhaps one of the most bizarre and amazing things I’ve seen in ages.

  10. You, sir, are insane! I will join your insanity 😀

  11. What program do you use for counting your keystrokes? Is there a Mac version available?

  12. So very interesting that the process of retaining, collecting, aggregating and all of the associated tasks in having data with any reasonable measure of fidelity was background activity in your life!

    Your work and tools have served to effectively demonstrate the usefulness of having such data, merely in the ability to digest, process, correlate and visualize trends and simplify meaning for this important record of one’s life, activity, etc.

    I had always hope that our society would evolve toward a personal data archiving model that was seamlessly integrated into each of our lives and it appears the trend is real. Adding, audio, photo, video, bio-monitoring data only makes the data-set more robust and valuable.

    My own work has concentrated on the physical digitization and archiving of the (a) human person, over time, with hope that data gathered and subsequent processing and attribution of it would catch up to inform a simulacra based human life archiving model: (PersonaForm).

    Ray Kurzweil has been puzzling over this problem since his father passed away so long ago. His father kept everything and lit was stored leaving Ray with a rather large task to archive it all. He too envisions a simulation of his father that would indeed be informed by the data they have retained.

    Very pleased to see the pieces slowly coming together from different sources and people’s work. I applaud you for doing what seems completely obvious and natural to you, in that, you inspire us!

    Greg

  13. distribution of emails per day: Did you check it against the Poisson Distribution?

    @Jynto: he asked CIA, google and facebook about it :-/

  14. I have same question. How did you count your keystrokes?

    Anyway, love it!

  15. Es indudable que la automatización de la captura y el análisis de los datos personales nos permitiría ser conscientes de nuestros hábitos, además pueden servir para corregir aquellos que afectan la calidad de vida y el bienestar.

  16. Given this amazing amount of data, I’d like to see more data analysis and interesting conclusions. For example, how to improve personal productivity.

  17. Dear Sir,

    I am a Swedish technical analyst since 29 years.My job is to see where will the curve goes next. How will it behave from now and how long tome will it last. Some of your charts is very easy to read only using the wave theory. I made a chart 10 years ago on my daily weight while I was doing a 18 months of a program to go down 20 kilos. I was amazed that it looked exactly as the monthly chart of the DOW 1923 to 1974. In my opinion everything that can be measured and put on chart looks the same in certain patterns. I call it Cosmic law. On your charts at certain days, week or months it is very easy to tell what will happen next for different time periods. Thank you for the amazing job you have done which gives me further evidence of the Cosmic Law.

  18. Stephen,

    Fascinating stuff. I’m wondering what, if any, change this analysis has prompted in your professional life?

    Warm regards,
    David Peck
    Executive Coach
    The Recovering Leader

  19. Perhaps another discipline may have something to contribute. Applied behavior analysis looks at data in a smaller sample to arrive at hypothesis that can then be tested. Just a thought.

  20. Data has always been interesting but this makes personal data so very interesting… looking at the possibilities it has and kind of improvements we can make to our personal lives by analyzing the data. Infact systems around our personal data analysis can help trigger alerts when we tend to go wrong consistently….

  21. Why is there no alignment of time-of-day between outgoing email activity and keystrokes? Makes little sense, unless there is a systematic error somewhere.

  22. Have you ever been inclined to see if your employees or spouses email activity has any correlation with your email ? At this point can you extrapolate different frequencies ?

  23. Would be interesting to combine your work with that of We Feel Fine by Jonathan Harris.

  24. As a fellow home worker I salute your “family dinner stripe”. As a visualisation person … I love your charts and the stories they tell. Thank you for sharing.

  25. Can you show a graph of the keys you used the most?

  26. I have been thinking about doing this for a few years and I am gradually adding ways to collect data. This blog post gave me a lot of good ideas about new ways to collect data and inspired me to start tracking more ways.
    How do you focus on your writing and research while responding to all these phone calls and emails every day?

  27. Mein Gott.

    My first thought: What a Herculean data capture effort, extending beyond a decade as it does.

    My second: How sad that the sources (keystrokes, emails sent) were so relatively simple. Akin in a way to recording only whether a thermometer read above/below 20C at each sampling frequency (as opposed to an actual quantitative value). Sadly wasteful, at a certain level.

    My third: Well, who has more thoroughly documented the arising of complex behavior from simple origins than Herr Doktor Wolfram himself!

    I would love to see a plot of his brainwave shifts in and out of beta-state during seminal moments in the evolution of Stephen Wolfram Inc over the last quarter-century.

  28. [quote= Joaquin May 2, 2012 at 2:39 pm] Can you show a graph of the keys you used the most? [/quote]

    I would assume that it would follow the statistical occurrences of the letters of the English corpus pretty closely. So the most typed key is probably going to be E or SPACE. Thinking about syntax of C and Mathematica I would say braces, and curly braces would rank higher than normal but not that high… though the amount of Mathematica files is high on his drives, so I guess brackets would rank high.

    I think one of the most interesting things you could collect data over a long period of time of biometric, like heart-rate, blood pressure, adrenaline ect…

    Anyways, it was an interesting blog. Stumbled upon it while reading about your book Mr. Wolfram.

  29. stephen,
    when I was in 11th grade , Mr. Mchugh was my teacher ion advanced algebra . I told him I was interested in becoming a Therotical Physithist spelling was never my strong suit , LOL he told me that there were only about 100 of you guys . and you could pretty much only talk to each other . After seeing you on ted and more importantly understanding you on TED i realize your ability . i thank you sir … And if you ever just want to sit in the garden and watch the flowers grow , while having a glass of sweet white wine , I would enjoy your company , and anyone you choose to bring with you, your student , RUSSELL

  30. The “distribution of e-mails per day” seems like it would fit well to a curve shaped like the graph of y = x*e^(-x). If WolframAlpha cannot suggest anything better than an exponential decay curve then it needs improving.

  31. Very impressive! Yours will be the best-documented scientific history I’ve ever seen.

  32. Very interesting analysis. Does the fraction of backspaces vary with time ot day? Does it vary with the kind of typing you are doing (email, editing Mathematica code, blog posts, etc.)?

  33. I would hope that your biography, and others in the future, will contain all this wonderful data! It is simply a fascinating look into one’s life.

  34. One day, I just want to scan a bunch of documents, pictures, reciepts, tickets, prescriptions, and a ton of other data into my hdd and let Mathematica or W|A Scan it, and just tell me everything about…well…me. All the patterns about my life that I did knew existed (like buying habits). Then it charts it out nicely and then, recommend me ideas to improve (say, spend less during a certain month of the year) etc. That will be great to do, without having to be a software engineer or a hard-core coder…I am neither, so I seek simpler methods with which to analyze my life and optimize it. Imagine if you could figure out how to change your life 360 degrees by finding an unhealthy pattern in your life that you didn’t even knew existed?

  35. Hi, fascinating read and has much in common with some of my own thoughts about the trail of useful digital data we leave behind, either over a day or over a course of years. One useful aspect of this I have been thinking about is how to mine my email heap for useful data about trends, either in thinking patterns, idea creation or even in terms of relationships, this in turn would be a great way to measure other things relative to those trends.

    I will take a look at the latest Mathematica tools and see what might be done.

    Mike

  36. This god made machine(Stephen) is out performing than the man made computers. The key stoke count it self proves that. what a MTBF. 🙂 . May god bless you sir. Continue you god work.

    Thanks.

  37. humans change and grow from time to time , become better or may be worse 🙂 collecting such data will show such changes , habits change , routine changes . but what can such data be used for ???

  38. dats wonderful 🙂
    I wish i have my data stored as well as analysed. I love the science in this!
    Thanks!!

  39. I do believe that quite a few of your graphs could be modeled by Poisson Distributions, as a few other people have pointed out.

  40. Hi Stephen-

    Having crunched all this data on your life (no doubt, this comment is also destined to become a part of your data pile), have you found meaning in your life?

    Best wishes,

    Swaminathan

  41. I all the time used to study post in news papers but now as I am a user of web
    therefore from now I am using net for articles or reviews,
    thanks to web.

  42. Hi, very impressive! I see you wear a logging camera device in your appearances from last year, you seems to have stopped wear that device. What happened to them and why were you stopping using the logging cameras?

  43. Isn’t the number of emails per day pretty clearly a Poisson distribution?

  44. Very interesting. Thank you for sharing this.

    One small thing: how do you get away with sending only 300,000-odd emails in twenty years??

  45. Is it possible (for me, as an agerage person) to use “my” data from gmail and facebook?

    • Hello Vemund,

      We recommend trying out Wolfram Language’s ServiceConnect function with your own facebook account. While gmail isn’t supported by this function at this time, using Wolfram Language’s URLRead function and a little gmail API know how to get that data.

  46. This is perhaps one of the most bizarre and amazing things I’ve seen in ages.

  47. Excellent dedication to your own data and I wish I was as disciplined and dedicated as you are, I feel I would’ve easily been able to identify my life purpose many years prior had I been observing myself so objectively.

  48. Isn’t it very time consuming putting all this different data together in order to discover patterns of behaviour and extract conclusions? Wouldn’t it be more efficient to track all the data with an unified tool on a single computer system?

  49. “Your article on the personal analytics of your life is a fascinating exploration of self-reflection and data-driven insights. I appreciate how you’ve delved into the process of tracking and analyzing various aspects of your life, from productivity and health to habits and emotions. Your approach to personal analytics offers a unique perspective on understanding oneself and making informed decisions for personal growth. The way you utilize data to gain insights and identify patterns is both inspiring and thought-provoking. Thank you for sharing your journey with personal analytics and providing a valuable framework for others to embark on their own self-discovery!”