View All Release Announcements »

Launching Version 12.2 of Wolfram Language & Mathematica: 228 New Functions and Much More…

Yet Bigger than Ever Before

When we released Version 12.1 in March of this year, I was pleased to be able to say that with its 182 new functions it was the biggest .1 release we’d ever had. But just nine months later, we’ve got an even bigger .1 release! Version 12.2, launching today, has 228 completely new functions!

Launching Version 12.2 of Wolfram Language & Mathematica: 228 New Functions and Much More...

We always have a portfolio of development projects going on, with any given project taking anywhere from a few months to more than a decade to complete. And of course it’s a tribute to our whole Wolfram Language technology stack that we’re able to develop so much, so quickly. But Version 12.2 is perhaps all the more impressive for the fact that we didn’t concentrate on its final development until mid-June of this year. Because between March and June we were concentrating on 12.1.1, which was a “polishing release”. No new features, but more than a thousand outstanding bugs fixed:


More than a thousand bugs fixed in 12.2—click to enlarge

How did we design all those new functions and new features that are now in 12.2? It’s a lot of work! And it’s what I personally spend a lot of my time on (along with other “small items” like physics, etc.). But for the past couple of years we’ve done our language design in a very open way—livestreaming our internal design discussions, and getting all sorts of great feedback in real time. So far we’ve recorded about 550 hours—of which Version 12.2 occupied at least 150 hours.

Live CEOing

By the way, in addition to all of the fully integrated new functionality in 12.2, there’s also been significant activity in the Wolfram Function Repository—and even since 12.1 was released 534 new, curated functions for all sorts of specialized purposes have been added there.

Biomolecular Sequences: Symbolic DNA, Proteins, etc.

There are so many different things in so many areas in Version 12.2 that it’s hard to know where to start. But let’s talk about a completely new area: bio-sequence computation. Yes, we’ve had gene and protein data in the Wolfram Language for more than a decade. But what’s new in 12.2 is the beginning of the ability to do flexible, general computation with bio sequences. And to do it in a way that fits in with all the chemical computation capabilities we’ve been adding to the Wolfram Language over the past few years.

Here’s how we represent a DNA sequence (and, yes, this works with very long sequences too):

BioSequence
&#10005

BioSequence["DNA", "CTTTTCGAGATCTCGGCGTCA"]

This translates the sequence to a peptide (like a “symbolic ribosome”):

BioSequenceTranslate
&#10005

BioSequenceTranslate[%]

Now we can find out what the corresponding molecule is:

Molecule
&#10005

Molecule[%]

And visualize it in 3D (or compute lots of properties):

MoleculePlot3D
&#10005

MoleculePlot3D[%]

I have to say that I agonized a bit about the “non-universality” of putting the specifics of “our” biology into our core language… but it definitely swayed my thinking that, of course, all our users are (for now) definitively eukaryotes. Needless to say, though, we’re set up to deal with other branches of life too:

Entity
&#10005

Entity["GeneticTranslationTable", 
  "AscidianMitochondrial"]["StartCodons"]

You might think that handling genome sequences is “just string manipulation”—and indeed our string functions are now set up to work with bio sequences:

StringReverse
&#10005

StringReverse[BioSequence["DNA", "CTTTTCGAGATCTCGGCGTCA"]]

But there’s also a lot of biology-specific additional functionality. Like this finds a complementary base-pair sequence:

BioSequenceComplement
&#10005

BioSequenceComplement[BioSequence["DNA", "CTTTTCGAGATCTCGGCGTCA"]]

Actual, experimental sequences often have base pairs that are somehow uncertain—and there are standard conventions for representing this (e.g. “S” means C or G; “N” means any base). And now our string patterns also understand things like this for bio sequences:

StringMatchQ
&#10005

StringMatchQ[BioSequence["DNA", "CTTT"], "STTT"]

And there are new functions like BioSequenceInstances for resolving degenerate characters:

BioSequenceInstances
&#10005

BioSequenceInstances[BioSequence["DNA", "STTT"]]

BioSequence is also completely integrated with our built-in genome and protein data. Here’s a gene that we can ask for in natural language “Wolfram|Alpha style”:

BioSequence
&#10005

BioSequence[\!\(\*
NamespaceBox["LinguisticAssistant",
DynamicModuleBox[{Typeset`query$$ = "hba1 gene", Typeset`boxes$$ = 
     TemplateBox[{"\"hemoglobin, alpha 1\"", 
RowBox[{"Entity", "[", 
RowBox[{"\"Gene\"", ",", 
RowBox[{"{", 
RowBox[{"\"HBA1\"", ",", 
RowBox[{"{", 
RowBox[{"\"Species\"", "->", "\"HomoSapiens\""}], "}"}]}], "}"}]}], 
         "]"}], "\"Entity[\\\"Gene\\\", {\\\"HBA1\\\", {\\\"Species\\\
\" -> \\\"HomoSapiens\\\"}}]\"", "\"gene\""}, "Entity"], 
     Typeset`allassumptions$$ = {{
      "type" -> "SubCategory", "word" -> "hba1 gene", "template" -> 
       "Assuming ${desc1}. Use ${desc2} instead", "count" -> "5", 
       "Values" -> {{
         "name" -> "{HBA1, {Species -> HomoSapiens}}", "desc" -> 
          "HBA1 (human gene)", "input" -> 
          "*DPClash.GeneE.hba1+gene-_**HBA1.*Species_HomoSapiens---"},\
 {"name" -> "{HbaA1, {Species -> MusMusculus}}", "desc" -> 
          "Hba-a1 (mouse gene)", "input" -> 
          "*DPClash.GeneE.hba1+gene-_**HbaA1.*Species_MusMusculus---"}\
, {"name" -> "{HbaA2, {Species -> RattusNorvegicus}}", "desc" -> 
          "Hba-a2 (rat gene)", "input" -> 
          "*DPClash.GeneE.hba1+gene-_**HbaA2.*Species_\
RattusNorvegicus---"}, {
         "name" -> "{HBA1, {Species -> PanTroglodytes}}", "desc" -> 
          "HBA1 (chimpanzee gene)", "input" -> 
          "*DPClash.GeneE.hba1+gene-_**HBA1.*Species_PanTroglodytes---\
"}, {"name" -> "{HBA1, {Species -> GallusGallus}}", "desc" -> 
          "HBA1 (chicken gene)", "input" -> 
          "*DPClash.GeneE.hba1+gene-_**HBA1.*Species_GallusGallus---"}\
}}}, Typeset`assumptions$$ = {}, Typeset`open$$ = {1}, 
     Typeset`querystate$$ = {
     "Online" -> True, "Allowed" -> True, "mparse.jsp" -> 
      0.784118`6.345926417012904, "Messages" -> {}}}, 
DynamicBox[ToBoxes[
AlphaIntegration`LinguisticAssistantBoxes["", 4, Automatic, 
Dynamic[Typeset`query$$], 
Dynamic[Typeset`boxes$$], 
Dynamic[Typeset`allassumptions$$], 
Dynamic[Typeset`assumptions$$], 
Dynamic[Typeset`open$$], 
Dynamic[Typeset`querystate$$]], StandardForm],
ImageSizeCache->{96., {9.5, 14.5}},
TrackedSymbols:>{
       Typeset`query$$, Typeset`boxes$$, Typeset`allassumptions$$, 
        Typeset`assumptions$$, Typeset`open$$, Typeset`querystate$$}],
     
DynamicModuleValues:>{},
UndoTrackedVariables:>{Typeset`open$$}],
BaseStyle->{"Deploy"},
DeleteWithContents->True,
Editable->False,
SelectWithContents->True]\)]

Now we ask to do sequence alignment between these two genes (in this case, both human—which is, needless to say, the default):

BioSequence
&#10005


What’s in 12.2 is really just the beginning of what we’re planning for bio-sequence computation. But already you can do very flexible things with large datasets. And, for example, it’s now straightforward for me to read my genome in from FASTA files and start exploring it…

BioSequence
&#10005

BioSequence["DNA", 
 First[Import["Genome/Consensus/c1.fa.consensus.fa"]]]

 

Spatial Statistics & Modeling

Locations of birds’ nests, gold deposits, houses for sale, defects in a material, galaxies…. These are all examples of spatial point datasets. And in Version 12.2 we now have a broad collection of functions for handling such datasets.

Here’s the “spatial point data” for the locations of US state capitals:

SpatialPointData
&#10005

SpatialPointData[
 GeoPosition[EntityClass["City", "UnitedStatesCapitals"]]]

Since it’s geo data, it’s plotted on a map:

PointValuePlot
&#10005

PointValuePlot[%]

Let’s restrict our domain to the contiguous US:

capitals = SpatialPointData
&#10005

capitals = 
  SpatialPointData[
   GeoPosition[EntityClass["City", "UnitedStatesCapitals"]], 
   Entity["Country", "UnitedStates"]];

PointValuePlot
&#10005

PointValuePlot[%]

Now we can start computing spatial statistics. Like here’s the mean density of state capitals:

MeanPointDensity
&#10005

MeanPointDensity[capitals]

Assume you’re in a state capital. Here’s the probability to find the nearest other state capital a certain distance away:

NearestNeighborG
&#10005

NearestNeighborG[capitals]

Plot
&#10005

Plot[%[Quantity[r, "Miles"]], {r, 0, 400}]

This tests whether the state capitals are randomly distributed; needless to say, they’re not:

SpatialRandomnessTest
&#10005

SpatialRandomnessTest[capitals]

In addition to computing statistics from spatial data, Version 12.2 can also generate spatial data according to a wide range of models. Here’s a model that picks “center points” at random, then has other points clustered around them:

PointValuePlot
&#10005

PointValuePlot[
 RandomPointConfiguration[MaternPointProcess[.0001, 1, .1, 2], 
  Entity["Country", "UnitedStates"]]]

You can also go the other way around, and fit a spatial model to data:

EstimatedPointProcess
&#10005

EstimatedPointProcess[capitals, 
 MaternPointProcess[\[Mu], \[Lambda], r, 2], {\[Mu], \[Lambda], r}]

 

Convenient Real-World PDEs

In some ways we’ve been working towards it for 30 years. We first introduced NDSolve back in Version 2.0, and we’ve been steadily enhancing it ever since. But our long-term goal has always been convenient handling of real-world PDEs of the kind that appear throughout high-end engineering. And in Version 12.2 we’ve finally got all the pieces of underlying algorithmic technology to be able to create a truly streamlined PDE-solving experience.

OK, so how do you specify a PDE? In the past, it was always done explicitly in terms of particular derivatives, boundary conditions, etc. But most PDEs used for example in engineering consist of higher-level components that “package together” derivatives, boundary conditions, etc. to represent features of physics, materials, etc.

The lowest level of our new PDE framework consists of symbolic “terms”, corresponding to common mathematical constructs that appear in real-world PDEs. For example, here’s a 2D “Laplacian term”:

LaplacianPDETerm
&#10005

LaplacianPDETerm[{u[x, y], {x, y}}]

And now this is all it takes to find the first 5 eigenvalues of the Laplacian in a regular polygon:

NDEigenvalues
&#10005

NDEigenvalues[LaplacianPDETerm[{u[x, y], {x, y}}], 
 u[x, y], {x, y} \[Element] RegularPolygon[5], 5]

And the important thing is that you can put this kind of operation into a whole pipeline. Like here we’re getting the region from an image, solving for the 10th eigenmode, and then 3D plotting the result:

NDEigensystem
&#10005

NDEigensystem[{LaplacianPDETerm[{u[x, y], {x, y}}]}, u[x, y],
  {x, y} \[Element] ImageMesh[\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztmjsKwkAURTNWlm7BXdha2iouwGAUmwhREDuXbgSVfJwPmPfug9wDCuIw
5+BoEpzM8/P6MMmy7DKtn9a727KqdvfNrH6xLS+nY1nsV+W1OBbVIn8Ne7wf
hBBCCCFAHNrvwAUWArAF8ACugY2AkRfYCEAWOHSBcykJaaP+C/BNHx0wZEBX
EnhLMOAt0pB7A4IfCyIAa5f8iYL1SQGi/niArD4eIO2HB6D95gPE/QyAB0T8
DIAfhtDnIfyJWDQgxS9+JQQ8DnymRwV8Z0f7kQHNFu2A5tyIgPbUkIBujvp3
oNNjN0CpwXSAhj9U4B+vExAaqB4guDTxFRCUN2b/UdK3Dy1vCNo10RUZ2t+p
UbP3/qtXtvf3CpT1vi0zNb1vy05Ln4WOtQp6L1b8ID18C8mGH6an34Ifp6cf
7IffyUE//Ug//Gausfu9l8Zj8RNCCCGEEEKIHZ6YpBQS
"], {{0, 128}, {128, 0}}, {0, 1},
ColorFunction->GrayLevel],
BoxForm`ImageTag["Bit", ColorSpace -> Automatic, Interleaving -> None],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{54.41406249999983, Automatic},
ImageSizeRaw->{128, 128},
PlotRange->{{0, 128}, {0, 128}}]\)], 10][[2, -1]]

Plot3D
&#10005

Plot3D[%, {x, y} \[Element] ImageMesh[\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJztmjsKwkAURTNWlm7BXdha2iouwGAUmwhREDuXbgSVfJwPmPfug9wDCuIw
5+BoEpzM8/P6MMmy7DKtn9a727KqdvfNrH6xLS+nY1nsV+W1OBbVIn8Ne7wf
hBBCCCFAHNrvwAUWArAF8ACugY2AkRfYCEAWOHSBcykJaaP+C/BNHx0wZEBX
EnhLMOAt0pB7A4IfCyIAa5f8iYL1SQGi/niArD4eIO2HB6D95gPE/QyAB0T8
DIAfhtDnIfyJWDQgxS9+JQQ8DnymRwV8Z0f7kQHNFu2A5tyIgPbUkIBujvp3
oNNjN0CpwXSAhj9U4B+vExAaqB4guDTxFRCUN2b/UdK3Dy1vCNo10RUZ2t+p
UbP3/qtXtvf3CpT1vi0zNb1vy05Ln4WOtQp6L1b8ID18C8mGH6an34Ifp6cf
7IffyUE//Ug//Gausfu9l8Zj8RNCCCGEEEKIHZ6YpBQS
"], {{0, 128}, {128, 0}}, {0, 1},
ColorFunction->GrayLevel],
BoxForm`ImageTag["Bit", ColorSpace -> Automatic, Interleaving -> None],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{32.787499999999774`, Automatic},
ImageSizeRaw->{128, 128},
PlotRange->{{0, 128}, {0, 128}}]\)]]

In addition to LaplacianPDETerm, there are things like DiffusionPDETerm and ConvectionPDETerm that represent other terms that arise in real-world PDEs. Here’s a term for isotropic diffusion with unit diffusion coefficient:

DiffusionPDETerm
&#10005

DiffusionPDETerm[{\[Phi][x, y, z], {x, y, z}}]

Beyond individual terms, there are also “components” that combine multiple terms, usually with various parameters. Here’s a Helmholtz PDE component:

HelmholtzPDEComponent
&#10005

HelmholtzPDEComponent[{u[x, y], {x, y}}, <|"HelmholtzEigenvalue" -> k|>]

By the way, it’s worth pointing out that our “terms” and “components” are set up to represent the symbolic structure of PDEs in a form suitable for structural manipulation and for things like numerical analysis. And to ensure that they maintain their structure, they’re normally kept in an inactivated form. But you can always “activate” them if you want to do things like algebraic operations:

Activate
&#10005

Activate[%]

In real-world PDEs, one’s often dealing with actual, physical processes taking place in actual physical materials. And in Version 12.2 we’ve got immediate ways to deal not only with things like diffusion, but also with acoustics, heat transfer and mass transport—and to feed in properties of actual materials. Typically the structure is that there’s a PDE “component” that represents the bulk behavior of the material, together with a variety of PDE “values” or “conditions” that represent boundary conditions.

Here’s a typical PDE component, using material properties from the Wolfram Knowledgebase:

HeatTransferPDEComponent
&#10005

HeatTransferPDEComponent[{\[CapitalTheta][t, x, y], t, {x, y}}, <|
  "Material" -> Entity["Element", "Tungsten"]|>]

There’s quite a bit of diversity and complexity to the possible boundary conditions. For example, for heat transfer, there’s HeatFluxValue, HeatInsulationValue and five other symbolic boundary condition specification constructs. In each case, the basic idea is to say where (geometrically) the condition applies, then what it applies to, and what parameters relate to it.

So, for example, here’s a condition that specifies that there’s a fixed “surface temperature” θ0 everywhere outside the (circular) region defined by x2 + y2 = 1:

HeatTemperatureCondition
&#10005

HeatTemperatureCondition[
 x^2 + y^2 > 1, {\[CapitalTheta][t, x, y], t, {x, y}}, <|
  "SurfaceTemperature" -> Subscript[\[Theta], 0]|>]

What’s basically happening here is that our high-level “physics” description is being “compiled” into explicit “mathematical” PDE structures—like Dirichlet boundary conditions.

OK, so how does all this fit together in a real-life situation? Let me show an example. But first, let me tell a story. Back in 2009 I was having tea with our lead PDE developer. I picked up a teaspoon and asked “When will we be able to model the stresses in this?” Our lead developer explained that there was quite a bit to build to get to that point. Well, I’m excited to say that after 11 years of work, in Version 12.2 we’re there. And to prove it, our lead developer just gave me… a (computational) spoon!

spoon =
&#10005

spoon = \!\(\*
Graphics3DBox[
TagBox[
DynamicModuleBox[{Typeset`mesh = HoldComplete[
BoundaryMeshRegion[CompressedData["
1:eJxtnXWc18jPx8tii7tbscXdvbi7y0Fxd9crHO7ucMUdDjn8oCzu7rAUO3xx
t+ch7ymvpb+7f3iRG9KZJJN8ksnMN3WLrrVaB2iaNiyypoXX5D933Pu6zv//
aRzr8Grvj79/SJXlx9+d8Wa9H3+aTZOc/0G3tj7OJn//p6PQ7Tq7DpX48fc6
KTL/+LsVPUDoRv5J93+MNwc/zMC/PwJ9+UT3x3gjxpqcP/7uvjgndN0MeCH0
eeez/vi7lvWa0J2Z494KvcZE4WPt6gk9z2Tho29bl17+/YQoQreyV7ko8wzO
kE7GNdhcX75/Na5m/OCTJTiv0OttEbobb3iEH3Qr9V+5hF6muNDtCru//OBv
l3mVQ8btyA+fmPabEsL/z9wy7vJGoWsdgyP/4OOaKWX+TrNS8LlZKdwPul5p
RyYZ13ot4y93ifqD7oQMTiRyKV8G/g9WhZd59oCuR4NuL4kNvfDdNEJvsp75
f9gb5Qdd01PKeu35t0QOWquvH0UvZYcIH61GCPSc7geZf9bDqeV7E2Khx2E7
1v+Qm53sDxlvxoiJnG+1c37QtdHRdPnuqH7IuVOiB8Ln1Vmhm/oA7OT3Mo+E
ntfiuw0KNhb+lWfElnluPFBM1tugdSOZf4SrCWVd97WCQp8xv6F891G6eDK+
Y+QC8t3Af4VuL44WU/Q19o8iMo+PT4XuZpuQVOTcLbvoRY9eXejGwILC3y40
R/RrLN7WQPh8HBZX6KUnix2akW4IXa+bWeZptqudT8Yf+sL4JbFEX1ayCoXk
7xdn8N2B9VOIHg+ORo/N4gjdGr4gscx/7gj0uEyHvj+S0K0Yy9kXV1cJXQ9d
k/wH3bVyZRS5/TZNvmu06hVf5NNhGHpZtYD5bH0j8nEirA0S+r+pmX/FyjJ/
53ZX2RdakeRCd49vEbq9/nfhY8fPLnRrXhGRp11jXXbh86Ys343+W0Th814T
+VsHighds3qJHIwyw/II/Wth0a+2d7nwNy7cySXym/yAdS1NJfz1/mYOoUdc
CL1Mdpm/3btXkPx/p63Yg7P5oejLbdQ4o8hv7Vf5rlMhmXzXzvY5s4y/hr6c
v3LId916idPK90tuZ/7fRop+tRE55Ttm6hrYw5AS2FuJ8olkfcGhQteCZ4v9
OJ8nJhH9zMJvGOETit9wR4VLI/9/En5DezNS/IZTbI/wMfMXRZ7GAOTz55eU
8v+7l0NuZkuRp232k/WaAZuEjz7tgPgNq9zAAFlXB/TiPCmBnYdfFV2+Hy8N
eu9ahX3UbOQL2Zc98QNmqn3iB6xX4T7vlfVjJ/r1d+yj+dr1H3T9xGpZrxlz
k9ib1mT7BfGvhVJjn1ZU7NZJv/4HXRtPXDBVXNAe/4tfVH7eVH5e69bgqPgb
FRcMFResbw/FX3pxxFVxRAtcLfP1/Lbt+e2j1z7Jnz4/r13K8EziSU7ighFx
vMQFzdj7p8znHXHEeE0csQLrIO9WxB3t8STizrr1Ig+/H3Mj74gq6/H5Pata
SAzhW0v5z474T2fmjUgyPj7+2UoSR/yzvrZ9gKyzG/7f3FlZ/L9W/+pLme95
4ogxc7HIxchtJZN5NibuWDP2iHydSA/Yx3/0EflrD2Mllz8/Epf18J2E7m7+
kEL4qTir3T0udHvK4KTogbhsx7ssdD31zMTyHRXH7WGt4HO5biqhq7ip3d8v
dOufq8nk7yrOmnZq9FV9kPBxjo/Hj6XPQhy/nkn8i9XqrMRBO2pB5Ba+agL5
zpFV4m/1YU357rT8Ej+8uPP/H2S95V/Iek0VR4wke1nX0tVC9+KOEWAK3VkV
T/7uxSltfRLsYeSoJMInJ37P3JEMve8pK3Rr1iGJg9qES8xzzea48p0Yoxgf
eAN76D5N6G7VxCIf6/f+8Fn9VNZl/OtKXHYr9MHO86dNKP8/5VD4ZHkM/UIU
+OeJJfLRCwzju8sKCh+t4GZwwpGE+IfOkWPxvb8FtxjVbeZTqZTw0TbOlXhn
9J/EflwXLr78uw6PBLdoE7/x3fRR4gif2MvAOcqudGVXlrevfXbi7VPPrhxl
V9p39rXms0PPD9hx0Lv9R1lZl9VzJf4+C3ZiRU2LvhtVkH2qL8Ou9Dx9+a6W
YJ7sy3s+O1R+4H/s1vMbMRIht8HdY4o82t5J/YO/cRI5WN8OxIbPH+K3ranI
zerwbzyR4+rTsu/0jshZq5YOOVdpK/vUaYQejW2XRJ7apxQBMr4SenRyp0OP
WybKfrfHYCfa/ttCt/MPFf9gp1Z2lb2f8LdW9hW/7e7CPu0IpZOg1zuR5E+f
nf/0S2pfWGpfOMqPuSnaga/Sl3ov/rZ6TonL2vG+4Jb6nR6LHFskzfCD7tY5
JPHC/Lrlq9DL/Z1e5LYzK3Gz5qjvEj8WzMou9EGhxLU/y98W/g8WI8/DrcEb
9UNkPVbhZMTz/DfxbytCI8o8x/8h8dkZGZ94HaeO0K0Ca9KIPGfUIN6dyhpB
+M0eJXHfWjOGuBbznivzSX1N7MjNnITvds7+ReS4dafQnSpZGb+gpcxHM429
EkfaL4J/9Ec3hG6NtiVu3FnFPDeuEblbnxbDJ3A7cX9vbaFrVW7L94205YXu
5Hgu+rCOd38p89pWDNzevpbYoRV9Kn6saVP494nC+A6h0USe/y6Gf4a4UWQd
qQoLTrCmDMGeg/pFk39/epTgCi0O+FnbnkDsSTubFVz9LTNxvH3f8DKv8zkE
J2vbDqDfEzVkvLNhd34ZF6839pD33AdZz+6hgve06dWR28I6sl5nSmLBvebc
eMj5bvXI8r1BmQQnuyNuMP9BHaFP7yl+3pjaCjyzd5Qm3yvcRvyPNfgp87Hy
i7ycm1eE7sZlve7+0dHl36fpJDhTa4x87MjFxb41+4HM3/j+G+OfXhR5um8n
Co61X5RDL0WaiPydYq0kflmrtxGXr6SUeWqzZgTJv2tsY88FRj2Q+UR9KnFN
X5kFO+mQ8ZvYVeHBQjcCajcUvU2/UVzGjQuRuKzt7Cd0t2L4EvK9XkXEnzu3
DwjdXBzPkL8HTMgUdryVfZKM11ZoEpetTn/CP1wW+GSsIfN3Dn6EXqYEfOaB
842UhRv9oNtTrgjd6HDsl/FunzlCNwuWyhyWv/NXIaG7QzOK3KxwB+E/rWYJ
9LsBPx2aQfhrwc2NsHRjSzKhW/kawmf6IfxT553CR9teTvjYu/4hLu/vIuP1
+IElw/KxWjUXurnri/DRvzyW8c78FdAnRysVdrzz2xzoRz/D52ZGieNG3XFC
d9eOEbo1Ll7qsOPtHrN++e7P+cw9wfizlYLCzsfZ31ToTrAeFFY+5pzYQrcn
lskRdr1uxjXMP+Hb7GHlY6dKwPiTZzKHlaeRcQjz6RZT7MezK1PZlVV0t+Qf
np3Yyk6sNWXIz3x2pXW48qxEmPFaJexQG7n3ofg3pXdX6d1KeE/iu2cnWl/s
xLo9A3zqsytNrxm6N8x4U9mhFf677GOPv+nZ7fxPkjd4crOU3LRKdSS/8ctB
W/T+U4kwcnOU3LTxUaWe4clZz4SctXYJYxj/oUdtbaV/94bRo6v0qM168lD8
nM9OnOCu4lf8dqUNSip0v30aWlzxx347twIO46c9vat9YSxYEi2sfo12W+Hv
1+/sdyXD6svTr14pRqn/0q++/C/sVtmDJ3+tV0HGK/l7+tJP1ysVVl+efo3A
KqX+U7/zvzCfO9iDx98uPZ3vKvvx9Ku17/fLPvX0a02c+wvdk48ZaXSpsPLx
5Gm3a1MqrDx/6lef8gufn3q5MaRUWL14+rXPVCv1X/o1dPM/+bjnkyOHmdjJ
z/nMU/aj7M2bv55c+Q1ln379+uOCpy/Pz3v61ZR+/XHBswcvjvz020r+jvLb
fn15ft7Tr6n0648LmrIHL4747ceLO/71OsqPefKxlHw8v+eXp+c//Xrx/LM3
3lB69Pz/T/7KHrw44s3HUPajzSDuOJlqgZ8bppE8QcuylzpQtMfUt+cUFXxo
te0dKPTCO8mbqqfdKXZ/b43UgaxKq8ib0tYVnOykXpZK1mOWJE858/Wj8Nny
QfCtXukaedNfVwR3aU3nxRL+M6n3uhG+y/7RnywXXGdfzAwOfDH/ntDbniNP
qW2D957OlXqFudDNJPzzJwNf1f5rh+DzJhvTyXwyDmR8+DHU7avUyyrjG79B
DqmXCO41P72gznY4EFxUNvSp8HnYUujuzEnMp/LoC0J/vzeLjO9AXmNr7WVd
xqETMk+z/Uzkk9EROZih1YTuRt5GvahqXcmzjDWrkH+Uo+Qpu1LKPjTWvooj
479lR/5DDPCqPVTqb/oZ8iBt22HBw9bzhqIXs20dqTeaw25QV4k4L6+M7xyF
fKdGYanLaXvm5ZbxKRrLeOtjsNSlnVSZ8sv/3xwb/ByzDn5tbWPh45gxwM/R
qc84L5IKH21udOqECajTGSEVc8p395YS/vrVN6/FTq4ULCB8NrynzjYzneBJ
7fvEfPLv+kflux/2S33MeFdN6HqpusLHTbXkkthV3ADhozV7AQ4vtvyO8D/b
PI/w2R2e+dwZcF7m+U9SoZv184K3X2TbLXFi9RSZp9NAB29vjodf23WD+Z8t
CX8ri9TN9AIZpU7rxq8Azp+b7Zvksb2WiT04u8kfjYRvJR/UblcU+djRdyP/
R1/A+Z/Sizytb3/AZ1NqyTusNInlu8aYDXw33yvJN60v7yU/dQ6vp/6/uTf0
d0Ho9+w74W8VGRVOvn/6tsjN/Csn9tyiOvW7aOPEnp0Rh8D5zddLXqn/3Vnm
by2uRP0tRxWhm7ePy/4yMz5U+UsD4W/v/iZ5rj0yEvMsUlDyI2fZSCW3lnz3
sC5ysF9vQT6fz1MHPvjqjcx/R6DoxR6cFjs5FEfyCKezK3Zol7vKeidb72R8
5nyyLjvCcPxVr3nUqZS/svvcp+7RkfqSkxn/Zh+cxv4qtUfonv8xS7yjnla6
gtQ3PH+ltW3E/p0enXrIF1v8m5akAvtu9k3qEjWX4w8XBTK+bwYZ7+1TJ9Iy
+BebR/1E7WtD70J9Y/ID2b/mhar4hwOqjpq6uOT1ttVM9KW9pU7rtC4vetTj
rBL/ZtzYzHeHbZY6mFbysPCxS4S0ku+9y8z5X661+LGzbVrLuEeTJU9zqvZL
IfO/2FHo7sOC5GNRXMmj9dau8HHyPQiS+QTPpB7S/IiMdwaXJx4nusn5XrfT
QtfD3yb+FTsA/rl4Hv5ja0hdzwpKJHm9a3cRupHtbxnvNLomcrZe8V2rdm85
7zHDFZbzDrNrwjZC37Oc8Tluiv4dPZXQzQl5hb+RC7qRL5rQ7fG3wBnJ7oqd
2k8DhK7tq0a+sfeU1MeME+mEroebK/jDqAQfbVJsxvcrT/5ZbILUjcxGqRm/
z5Y8x0gdgj2ejM53D9egzpjgiNivMykO9DE9wQF9LgldixAEnzoHyIum8l0r
FfI0jrRifOwbIjcnxwWh2yHDmM+hE0K3W1xBX/O2ybrcGnNEbvoG7EHvtE/0
ZdpThG7f6yx8zLyvqJtXz6nL+JrtsJNBN0SebuL8Qjef38SunmUHJ4Uml3NJ
Owf6Mq49ChJ64alCd3diV86awuCzEpOlTqutxg6tCdM4t66Wn/rtKcUnS3/R
u/PhrvDRJ2In2i7WZT4+BZ+T2JWVsBbnygvLS13Fao3ctAR3sMOcKThPr4Hd
2okrYufTHdGPUwS5aV9PYlcL40s9Ry+AHIzaT7CrlG/ku/Y55KYt+0BeuusF
85+s9l3q46w3RWzh48RiPu7ezqJH/YRJnT8IPer7R4oetT+aCt0eh51ov/WW
8dqFryJX7RB2ZXypI/M2i2giP3ecss/cFYSPu/Zfxj/Azo1h1TnnaDZE6FYu
9oUVw2VfXNoldKfnYOQwqBlyaNtd6l3G5kjI+VMx9u/ljVJ3cj5mxX6SFGK/
vCggcjA72chhSCX6JNxU2Ekw8nSCp2C3H6Kzb1pOgU/MOdSnlgRTN4i1AfkY
UeTvetm06DFZRfS4ZAF8qsyR7+qtdsp3zQ5/opdxC/lu3W3oMdpk5P/9nuwv
/eRt9PhsOfNoc4d9t+ok9MvtoNeykOeSJchhXAPyiiTphW6v1ZBn+7icl/d0
hY9d4il8qtxmPWODZbxxhvHOoAv4h/NPhe42TyB0s2RM7CPWLfhk3M93N73B
HtpVlf/vzDgh63W/d5X1Wt2fs94OTRi/YTD28PtlkY/VcQh66bUCP7CzlNSx
rTiL8LenTmMnR5ZRX+2WDbnte4D9d+0k8cJoHRl9vduPnP+tJPV/8wTyd/6q
hT/ZvELihdUGfVkHOmDn/3yQ+GKXQL/WH4/xbx3vSrxwNyh7eNgWeoujnAPn
a488o2Ln1ul7gmfdmaxXG2Zihz3eSRyxLyAf61tpmY99qIr4PbcM8jTi3IX/
uyLiP7UQ9GIUPIFe2nUUP2/UR4/27XPQ9x6VOGJexx7MD/ng8/cNwWXaaezH
OFYTvbd/SnzJGgi+fZQJHD66p9SxzL9qCf4xDh6kH2ZySepk56JRf37RLeAH
3YmcqKjM4yh42yo9mDpUgcdS39YuxxL+9vxUQrcbJqP+FNAIfJWrGDj/96jk
2b+Rf5llPoLnZyagvr2kPDg5SRrBt9rb2eLHrPTkX4Y5nHPnWJuxt97gZONN
fMHJ2vTGUld3o5J/2XNPcT5+OVT42MnB23aczI8E1yVYLuty4oDPjTHtt8u6
sjYSut6L/Mu4osk5uGMswT9/ew7+DN/2ntCT55U6k1kF/O9kf3dW+Gx+Qr0w
AfmIO3nwWzmHOE6dwBxK3mT1r3xV5tmwH/l6CHmTs3BUsMgn+0zkmZH8xRk9
U+ZvJt5Gvc2XR9u9beoYKu82vbz7flfZv5rKizWVF+uv29NPpfJoTeXRZvkh
1P/Lknc7repL3u2eWCl+2MxLnq4Py0qe3rmDnHv6803nQ0f8ii9/1GfWY7zK
Nw2Vb1rDdKF7+amh8lOnYHH4tCX/NQZ2kvH292XiZ9zW5L961v0yfzewLfFx
h8qvm0cSORjtX8k5hV5d5ePv99CfkaKQ2KGbVuX1/T5IXm+EJpbx7h5VH6g3
W+oDbp5VxGWF/7VO4H9Pzv584ade4oLnnXb3BM+bJduz3hbgfy0kjsjNerSC
fh6VL+gqX/D04uUXtpdfKD3q3XOq87LL1EmvR2FdwQq3Bz4W3G4PW0r86kb+
pd//m/O+bKvBUS7431rfHfmbCUQO2lbyBXNoQ8kXtGEvhO6sIf9yV62S/Msa
slDtO/IOt12o6F2b1Aa5+fIUT7/+vMazByvGTvZFl1wyT+1kTOy/Rh/ZF/ay
8NQrBmeTfaeNeSvjjVkZIyC3J5yHnFpHnl5+r+TF5ogI8Lm9nrw4TwPy5aAT
4t/MlOTLdsEA4ePceSp+xlhwhXpCxoec0z0di/9ckUb2tZN0nPDRRraXfe0O
Iw91U60Fl8fjPMEtQj5rfq8oduusqCH+x9z/ADt8mIXzwTMV5bt6ZPJo7fue
SEIfMlTkbLZJZAq/AjsljhrLPib48adZ8Hkzme/HChKHrDjXpH/JyN5Dxusd
O5PvhcQVuj4IuvEkksRpZ2Uu6T+yi6xvhj7uSH6u/bmYvsKILWS8NfaCxF3t
y6a71HU+C10rfELyRi19E6Ebm77Bv8Qs6Q+zKk2Q+q1b4z18ehRJI/M7k5g8
d0oXvjueeoER8RXnTY2rwv9DPpmPUyCZ9CnoyesI3S52nvVOeI2dfraQQxZN
+Ggvj4q9mJNfyHiz6TvO1ytUFj72kTfIJ+9S5LCzL/vDqtBCxrecI/Nzb2+l
P2J8eaHrW6rSt/a4suhHj7eguejl7FrJk62hB7HfrvOErqd/TJ0x9HfhY1Qq
LXzcjvUkn9eqPaHuuAQ+xkFNxmvLm4k89d05ZbxVvbXo22g6gnntmyTj7d87
km+/fEI/Zva5QjcXfqC+0Jy+NntTEeFjzN0sfQNam3GiF/tVXCWfedhVlLHE
hZOdkU/cf0W/VmB62adOvS5Cd36rRd2nTi7iy5wHIn9tcXby6p4lyYP+eAX/
tEnSCJ9qm+Bz+BP2kGmg2ImbeAe4uPEH+NffLt91tFHgynLNoOfaJ3boTGom
dHfnSuxnxGnspPds8rBKWZHz/TQiNy3kC344YkGh2/Yg+hEfRQdfV5uJvl7u
FbkZv0UFD0ceh5yHBYmctTdf8VdrDeHjVM9B/+Kig/Jd/V/kr215KvmtcXM7
edtK7EHrulj0q4+JlVboOcthV+0LoddHaYVuNHrNeh/NEfvUSj2nDznpEFmv
XuKd9GfYXwMYv74W+yLrUZG/E++2jHcWZQWffxwg/spONZ58J7QOuDpSVnDC
l8X0mc970lL+TP+b1D+tRa/A17GuCd0pPEnqmdryUthJFPC/Vvo1+yeDLXm2
tSYyeUTsD4KjrBtrhW6kHwz/FDc4vxkYG3196yB0t2aX97Ifvl8gH7r0m9Ct
LzWlv8fNHYV+4z3LqD8cXhYo348/SOKw2ziIda26KThK212Luk3iFMhhdB7q
sSXPinzsoXOh//Wv9CfoXW4J3WozjfV+ainno9qUNPCpNr4lcu4vdNN9BJ8x
z0SPWpsR9DO1jol+q76Cfn4TfbPXntEP2PMu9FrHpG5oHR2M/RQ7jl19LUWd
6+US+s0iXcaeL1eTfWt+XUC+fji7zN9OkYu49jQC/LbekHlqwTmkHm4sm0z/
T8gz5PwpD31EMw8EyPht9ZBnzlDqxhe+0YebrrmMN3KmeyVy+PeD7CfnaGfk
sz0l/e3hXkeSdWf4Hf5DGyE3s81swcWVo6CXeGnFHrTEc6Qv1aj8O/Pvdhi/
Ofqd4GWnxjX83prNsl5r3nn697Oehv5+F31yHfbS333qPvsoaxT6dQ80PCf5
yv5Q6Pps+qW/9xc9m40mMM9wu2SeVt7rYkdmhnnM5/tp+lUutgIfvVD2M+2A
yNP8/gmc+3Lrb/LvHuaQvnHNHpgd+fYRuhGVfmUnQz/qIlcLNBX+AzpTF56e
gDz7S2XoC7JyftMjm+jXfpVf+Lj57ks+bBVIQJ/Mjlgy3j2wGL8fYUmQfG9C
BPEPTvrl8l1jyh9C17ImF7q9tTl9gXfzynfddJkZv3QRdjWKOon2+EsTodeP
RTy6WpX6Rvp/ZT76ki7i36y23dl3m18KXftYmjy84hH6PPXoQreWjKAOuy0Q
v7T7oczfSXtB/KrzZhJ8dr0QutmrhKxXj7pB+LgJJ4MHyg+Q+Vt59zKfBdDd
RCmpg+9bQV9K03DEnXQHRM5Oy9XMp+g3/Ge28sTf46uo9+acjv9cep66Z9lO
yG1PZPzw+ar0dZ8fIHRz51K+2yjtO4nTqe8ht/7gNKdEoPQHGNk18oV7scBF
V8tJPDYyUT8w3LnQLwWQv8/Mgp1kCkaeR6cRx50b1CWiNUDvIZVFztb5RlLH
cE6WRG7t84petMJJn8i8xlnCx/m8C30FjMKPPsgvcjCP98WunlfH3ywLQj7B
u4l3dToLH+1TNMZ//MR3i6cHF19JKN81kt7luyNLCf41LhZj/ul6YT8TV0n/
g5ZkDbhifLDoSyuTSL5rBNnggYw6+2hxqPSJG0YC5Nx9Ovpqd+SxzP9zCuwh
YWH6IOvep7/95Szoj5MT93vUlTqJOTYacp6+SfaLlikfeWTd8ND/mUX8Hf2W
/t9JU6F3vCbzsfdnlnzFnP5G1qv/HRW9FBwk483tsdin12ax3k6xpT/ObvcW
/9D5K/KpsFD647Qe4/BjOepyPj7wmsQ9fe4S/FXEcJz3veixTfxT7Tzg0g85
Dwv94ae/JP4kKQSeWdYHfz409XfR14ZdxJdqreV8TYtdUM7BtO5F+W758sfE
z75ZL99xFm8Bxz578Fn+/bChMt4qsBX8U32XxGstuSXnn26CYKE7L0eKPVkF
5nBfqulZ+M9ZTt/poVDOO96An91pN7mn9uIB+31EGeYfOZL4fb3RPvLCDSoO
xhkq+MStMoR6w/5t4OQWx6hTvVbnMl2Yp/HZZZ73NnIeviEd8++SUPIfzekJ
n5jQtbUtsL+BZ5hnzAyM33NexlsV2ot+zHKFob8dKnHO+nibeDcwG3Krr1Pv
y7zktuhx9ijkv2mT9MeYbc9xz25BXtb7dSB9ts82U1+ckAO5TcwkcjfmfwI3
/mZDz36BfD9JTPpMruxG/uMSSN3J7L+KOu6ljdD/2HpN9H2vPXV3C7qWaafE
RSN/pCCZx27sx+x4nnOjPY/lHMZuvoN8YW9HiXNOZdVPMiUjcgiXmfsVja9y
3tU0L/j54hLp6zUidiR+jU/LfKZkxC5bFxE+zo005Cm7cuMnJ0zHz5/ADq0U
k8XvGF+G0U84+Bjz+WulxGVn+jr8fAqVT9ld5X6OVWoE9+wKd5T4ZZ96Gknm
V3uknPM6vZoI3W29XfaFc2alnBdbU2cL3dhXHjwZ9ZucF1s5+sp+t8ZGkv5z
J2E36RNwjzbE71XKh73+U4I+hz1VGB+zpOjdKbBBztPNcCF8V7/AefqbPAVl
/La9xNnyHWWezocQ4W8FbsbPBwyjL/dPS8a7J2ZCj1MN+16QU+hOvQbIecVw
+vavxhI+xsAq6OtzCrkv4PQ/wTn4iQr4t7jtqC9lu8j4zXWhP5ol9xqMDKmE
vxm7BHy0kfBpnF/4OPcL45+fvxY+RuuszD8j+tWrReNezIxYIgd3Xjr4PxvM
+XWzw0K3U2WHXjka5+zRMwh//Z+c7K+ASdybeFKFvo4HWfC3fx4ibi6YBv/m
4cEbdc+LfRrNkqKXT4mJX/UOSV3DqLpT+LhxQ8EhiY5If7lV70l+5nkZPPbw
ptQPnSHIR3v7WfRl7a53RvZp8nrYQ9MRyD/THvZLkyzC3xrZh/lPaiX2Y0QN
xK4S90FuzaLS59PrltDN3GOIj6VnU9/Odod+lZYdkf+UvtzvuLEc+RRuj9zO
3qafL91c5tmPfPn/8TN2myhQ9Gh/bs48dzzgPlGMcOi9wiHi2uuMkeTfdWyG
XR17gd0m/CZ+xjkbGT6ps4GTbz+RPEefOE/6N5x1Kh+Zk4D7OUeHZJP1Hs/M
ucnLyfiXA82l78UIrkOeMj4PuHDGKvpbSjYSul6/B31p9/IK3Y1uknc0/Mj9
rPATpY/FrZMKfO6+BR8HX4T/ZPJBve2LIJlPkRP02xQvR175fj/3lrM+57u9
qjGfdGtkXdqRh0K3KjYjLi9KwXxGVKRvpEA94tTEavTVBdSmT6ZzW/x/9Tiy
X6ze3+irqTqA8fESix6dL3+L/3E+d4WuVQGPduhDP0/FU+SbhZm/Pv8YfS/T
npK/jEkpebV+sJ/IWX/yDX9+/iTzPzNd+mesPIlZ17kA+g7fIzf9bRb4nB8O
/U0Z5NA9PPla7UX0SxTcyD2UbNRV9BFr8MsRgmX+etHExLWjXZFP0PLc8Adv
6PWyoN9mU/CHtyrhz+NGFLpRNyH7JVIR9BLSjj7IPjvoK/sWD/v5NF7m4wb1
Fz1qTcOBM1fPl/3uFIvBOcv6jEK3A+fhH+JXpA688RP+ds/4s3KeMmYt51bl
LuFXZ+WSeG+8/khdN/SJ0LWxJcBXSYfDf34C6l3po4k/cQtSfzaK3xT++vm/
uXd0JAV9oC+eC92cu0/irD4/EvT8m+AfqTf3Kaya9Fc2P8h+LDA1koy7VIJ+
zBf1iZv9P4mfN2/T92pNZl/bB5OCY1asZ10R8QNamkf4n/tphI9ZQfn5WvGw
w5Y56A891gEcFTwOPxN5KPyntsMvFY8u8cgp+AT+r/9gfOhD8uFHwSIHe+Yo
/NvJN/RJLo1JP37M3synSUbqTj0mIM/ZvcEnc3twz6t+LuhTGhCX+x2Kwnz3
0/d9pB163P1R/J6+7zj1+QEV8Nv5Xwkfu2hP7mHEqo9+t7+jz+pqfvj/3hs5
R9oodCcP/bZ2tFlNmE9j4e82H8H4JDr45J9Psq/tzAZ6b5EDvbRPJ/fj7DjX
oW/PSl657ZT4W7dOIeTZIw3y37WPevfxCcw/f3H43EohfFy9KnYYkTirXVyM
3062g3sMJVQcP94IPjb3NsyXlYm/myOmlH/fYibf3TWDPDFGMZGP+Vdm+n//
2YM8c2UQ/KO3eMN6d1IP1Pefon6n9eZ8JPxJ6niTP3AP9v2iwvLnwwDqfqNj
CX41csWU8w6jEn5Gu58wSP7cdptznKBE8LnylPvz03Jwv6feV3Dvomz4pVmF
5bzGTY6fdyMkpM54ZT7nvKuUf8hxAvrXrkJ335Rl/sNC06GnUWI/+vzCzGf0
br47pDb0Fvglt1ZH6npBx7Cfm3Whj1d4tP0Dzpuy4d+M1iH4sUpj0HvzhPjD
xGmpJzbOzTnyq8z45/XH4R+aFv4piZtm6WTwCenKPbJg6rf6yuf487LfiqCn
ZvjtJoHgsWLpkNtfDZFn3b744UzHhe60IM465wvDP4Eh83HHEZf1njPpvxrd
nPPxgsQjq3QD4tHVvvjP9P2Ja3My4x9mJeL8OrQN8kmaln0RfTf2HNoUesa8
zOfjbfxDNuKsOf0f6qQhv7OvmxKv7XrfguS7+Wahx0b0Odhrrt6mLn2B+2h9
otDnkCy29FVYAamRj92hIXrJ8Y/gvdDhUq82m90Vul55i9RttJubqc88GMX5
45Locu5i/dace3ZZh/LeQvcmcp/fiZVRzuP+fyH0CQzOIvdDjMQB7MsC8YS/
NbYyfB5sYn8M7ch3Ny8nTy6Uk3Ol6KM4ZyxST+qtTpwA+tc6Ned8c+5lzn06
zqBuHDKIvt9cg6lHVf8kdu2u/Ab/+W8kD7WORhH5WaPuCN1tEon3KPQW8Bl/
ET6ZslAX1QpS50/RmH6SnlHJb/M15RxnaSVwYJGyXyXexSgv8jH/eUQfyNT4
/4oc0uXkPDreV+QZ6/sX5H+e/q5+XeiXmJhM+mudV+V51+VYTM5Vv+5ZJPFx
XTzwxvbo8AnsIPI0r07lvC54NHwiZeHdlaov6NtPPhE7ufNF+l7MhQPSCJ8D
6n2MuuQLlttY6qx6cGeh2xHGhAp+KPhd5K1frwvOXxWPeumM05zbLOpLX0d4
hzp48FHO095FwE6WlpL6u1GpsdTJTPM19P2n6UP6cpr5B9xgnm506ldX2wTI
v1tvCl1f91H0YiU5Kvo0x4TDHvbFpm4W8QJxNa8FPWVM5rH3oeAXvdYYWZdz
sbDk11qt8HelTnA1PuuNso6+mi1FD8j4rg9U/tuKOuGp0tKn47TvTf2q5Tju
wR4MT/0y0Shwztyk1LtOPZP8yb6APRi1Q6iPRU1Pv0y2Nshz9VDqh2UGiP71
vonI4z7GkPcxLD0bcrXykL8XW818vqcTP2TGww6NtgW5F1F/FPcbFg9HL21P
w//Ze+x830Lmc/I753ptMnDOEzWQew2NUvIOzJv49KcEPqHvPbfLOe/fh9mn
ZX7DPr/E5x2P4LGv5XyhwzbmczubnEM4dxLJ/3f6PcU+lx3gnHviJtGbPak9
8mzcnjp/aH38z25wo73tmNSrzfHPec+heDTOEf64zvskIefEj2mlqGOYT7JI
fdJMkJpz2Mt32I85Jsh89NPDOT/NZhHfv8bkXn1+4qe2gfFGjAGcm0S7Sh+O
uQb+3cvSJzd3gOxfo3k97PnmCfmudbIE9erByv4/NuQ85k548Utm0Dzk3C2/
yMXcmJ18cVA58FXr7aIv49EwiUvm24vkHbefgB9+Zx3a4prExz0H6TMvNEDO
je1ueemj29iXeSzNyr4f9Aac0Dke/eSVZ4ifsJtw3qc9+h0+yWqx3wOSM75n
dfKOD005t7/yO/2lbU/yfkS9h+DruPTrGj060b/68aycvzkli9J/+E9f6m7v
n1Dn7JKZvr7AWPRRl4rGvaUB04m/JfqQh1Z7xbnGmBHM58R34uMCcJn57Aby
GVeAPt12w7lvMeQZ+e/hFcSb7s/5bs/60JuFAz98GXpR/GWv1fA5WSBI6E0X
P5d41XMe530DuwludB69Ffm7V0LAS03ag2eqRMYfXK5LvO5u847Jgq34J5vz
PvN2Z/LiYxvFj+lGDb67VOG0BFPo13p/gfXmnEt/dZeI9EdlSIp8/twk83Qe
jpK4o0eeA94b0wlc6hbiXP7P18wn/BL0fikW59on8tAvHXCbc6/WaekLtmeD
ixZ35HzoW0r636Zxfq1fDGW94Vpwvz495+b62fPYSYN6vHNlcd7qxMkNzrzd
lP7YlJyrOklfiPzt9lOp3zZehR1+es268tygv7Ul+tXmq/sUn8cS393h8Dne
Hf6t7mMXAdiVPq0W9tYzPfWVfZ3YF5cWiH2aZzeAc58FUE/I2ELqb+6LIPpY
P+wBlza7Ql6QbxnnmJOzgdPe/y3j7ewhMl83I3JzEy2mvhf8jnv6MTmvd573
F/uzPql+/2iRoB8swP3P4qPor3BqKP4nycuOKftfWB47LD6QOmGGmODWCofA
839MlO+and6wHy/uxD6HvBa6Y86iX6J/Ouz/ayzqxSsLidyc1Lmxt1ufwaUp
4GMEfkY+8zZz77FFUfpMQqoz/5ffqUMWPwuenLYFORzYLvmaHvMIfQvBwdQ9
UqyOxPgSvFd0KSL8W3+UPFqr14j7iIujIIeERcl/U72V8wdnOzjfHpgNvF3r
Af0Rz+dQJwm8rO7Vl30u9YlpOZBDzmbcMyrdkvspr7cizyJxmP/qdcwnVW3G
OyoPzbRB8I4x8wvrapFE1qV9WCp9sm6x9Ozr+UN5XyDeLe4Pbd/FfEZPQ+/j
O/DextIKyC35MfLxk2O4VxQ4hfjyKbbU7Q1rJu+YZWtKnh6aXOonRpZTUv9x
AodSJ4lBf6xTcDP32lLfA4e8Sc65S6+jghutj/HIo7OfpL5xYDB8BuqczxYv
wDshc2JRf7sUkTrtb9TVNWcFdbP0jHerP1R9evGom9V4CH3T2ieCn5q43Ivp
Tn1br9iQ89fEJQWXut9Tcx7daaf0n+j5zki9zm5DX5yZI46cB+mzi0D//Qzn
C6kriZ7cNjWFv1FyJXKY/17qTva3R3L/1HqWk7p30sYS/9x1NaU/SBvUn/rY
owf0e327J/hT77cCuwpPPdAdt4i+v2b9oUcZzP6JEE/6rfRSO8kH3/SUuGC/
2sB91bK3yO/OnZH9Zc9bIfLX6kRH7/8sp++tcjKJp04x8nHjTnzqGz3zSp+X
nqkV/udcqNiJ+34v99HuTob+oAt9e1sb8U7diqPUsatUwK46t5T52NdWU0eK
2EPioj2oMfcFBvxLPSRbV94HHKnzPt4ljfx9/gHqySuK8G7P+t9Y76YOsn8s
pyDyy3CLOlvdDnIu6xyKy33AfpHJ93Pkl3uIRo8knCcXnA49UQ3OrVakFrzh
bt6Onbw5wP0rNzbvJu6tjh0u/0LeFG0658/Rj1D/cVeLfp3qg7gf3YRzAW1m
z1sSv0uPTyH0aWOpy9VbJfvLyZJO8JJZ6ArnAo1Gyfm6Xq+pyNmOnw89xrMj
yZ+H3tO/dlv124SGoz72agf9AnWLcM417Ap4cnYX3kdsGo76UrsV4OFVaXhv
7WNC+jMXVuF8P8kUcF+8HNRRz9Zm/D/LObe/sRfcW6Qm699O35zV+R3+4csu
+hrjHpZ1ObfSI58nkfBrvRdzX3s9dGvUB/qIjjxBbiXTMt6wyaM/9ufdpGXL
8HuLBwbJ/188VfJ9K9xN7PD3I/TbVdKoOxXehnyW3AQ/FB4vdTA3tA/7aG8/
4nXtmvRdf42N3ZYfJvVbZ/8H+oSzfMNfTbxAPCp9Rupd+oVw0HN/5R2H+9m5
l/HwDnXIyJrsR2Nbduo2Le6w3tVr8L/J48r83XHLsNsBY+RcTzvWXOZjZTkI
n6tjqfNcaUQdrxl9m87KddxjzZmbut8idQ4SCL7UYqSXfN+MPwE5DElKvHj3
SPhrWUrhB9bEpv7f5CH95MsDiRcNjsj89dgtqLcEjMOfrxkp/tAaGSzrtbdd
h778N94d67dc5mNX64efDJdG8LGzOSpyO0m910kdS+KN8zwe7+vE7Uz+lSX2
bc4Hm3E/pWIQ9rbt5B36KCz0vnQ/fNJ8lvsR2ptlsi6zzALs//Ni+jRa3hK5
6QuTs68bDeL8N2NbmaeZKiX2NjAd/XVXcwh/80Yy1Uf9grgfMkzm79RQ/S0Z
mxG/tG4yfyd6dvx/y7OCD+xogwSH6BFS099VYanUN4xwCamrjAikP/afsoIb
jFeluE+38jV9QQsaS33A+r0R+d3JjdST8w89IP4tcyX6ddOwLrv/bqmbGRvr
Q0+yDzuZFU7qEUbmueDeLqzXurv3sIzftYL7CI8Uff4lzusfPeddLPss/A90
JS/SQ4RutqZPzGi7QvpOjKY9yBe6bOJ8p5BO/965mtjPxwbYYc07nFPcHgvO
XDkJP99ottizdisD8nkXDnuuGlHwgBGvscjBnXqVfZphFeez+Uz6XdfTl2JF
z8h+2XuE97Le0L/hlOvPuXnMijIf7c/h7LtlfeG/rgb3LCK3Vn5gF/wnZeH+
aZuK+P89q3lHZtA7vhtH3Tu4GpN6xd8zJK7ZpZKR1wcfoc+tYWlwUch46ngJ
79B3F/4b/nVgVuoDw4PTyLj+k4k7C89Qr2jgit+3uzag73jTMeobeYYl53td
BZ+YdXTqVCdbURfrM4534f4pRP0kSXTqQjmb0G8SbzP0w8Xo6z49kTzg9Wnq
V7Fvix/X3A2zxe5yfmI+N5pS14szn3d0/0kCboz5GRwwP6K8q+HU7KrWNZf7
Dh3cK4KzKtWAz/BPQtffTwPnvupHvWX+Se41DI7G+yFLTjN+Wm/qdENKSXxw
m0fADxTLS796/rjy78zaHalfjXiM3PJU4L3cqH3xV8knEXe7XUHetZPhZ9KG
CH9zSz7uR69MyLrqrea93EpZiC/5UzKfdW8ljhpdF4u/sjMcgP/zeqIXY9QS
8T9mhuO8/zzgFPG7zij2y+SM1HmO/S3z0N73JH+JM5Y68LPT1OtORmdfX/xE
n2f3+OhlySDu7TaNx757tp/7FAe/ki+n7kZ9uHc/3gW+VYn6cIyW+NtEp2U+
zsJ44vec0j2p/0TYJXI0qnXnftOmY+hxcGvukU5fwr2hvZ2oL2Wbyj3SqmeD
5O9HkZvb8SX3QYq7nBc9PEl9tdc18EGWP8mnyxaE3igy9nkvNffC3yfDTwZc
Bcf/U4/vRtgKPkk3Qb7rNnK4R7B2O3545hr0vXAU+Xf2+/jV3ZbQzdfqHnzl
duCWAWOZ5y7krz/JQF/KkE/Y28Xy+IEFbfF7W5sLvrc/nCXP2zMQO8z4gD6A
bz3IZ8vT56llK857NKd2YOeNZqOvSQd5jyOYd8u18KewtyS7yBPevAanfN/E
fl+Rnfs4pVby3bjpyS9qDSBPMLnvZn+dihyenAZvLb/FO96JdjGfyIN432HX
X9wHnL2X/tKv67g/Upl7K+bTtPQhx3rDvu7cR71XkwvcuCo544tMpR78Zzfk
2XU58owbi3eBUjxhniOny7qcQJt36Fvs4Vw4dA/r3ZNX3jN2+u33+ja5V9JV
Z58lUfH96kvw8deT2FEU+o7scBORw7FZUh/Vkp/FDssf5N3MlYekX8btMg/+
J05zLyntZ/o9tw9h/oVeCt29Pk76wqy1JnXFPhc4j1sdzLlJ+evUf9I0An+m
Gsl+fLFXvaswR9WL0rKPxmym3rX2MPWgXbz3YOatD73WW+pH/fIRvx5TdzWW
twXH3jxJXE7P+wBOw/Dc08im+i0TfeS7aVfJ/rEb5giS/9/mq3rHowjvFAfc
oB7w7DHr+kj9yJh1irwz4WHo17nH4ow7S1wtuBX+nVaAGzNfpg42/aK613+X
vz9pzHsk9R5Qd61osN7hVzgv2P0HdbDMk6hDXh9CXd20mWci8Lz9kXcv7DM7
kPPIvNSRSn8Et4w6Tt2j7ArBq1qhN/i3zeWZT+xQ+hevT6QOOS8H6yrQGTz8
8RR1wp3oUetfh+/OHYKfu4/enQ1nqCseWyV2qI2+RD3z/z2s/PklptijOQI9
anmpKxrR+/KO0zr0bk84QL0vW4+AH3Q70GE+uWZRHw7uILjPfaDu19dJLuu1
7c6yv9yiOZHnwiapkNNz3vEOqgCfTg84B190B/zQmHvxpj0N+dRtmkbmH2c4
69LGYlfRInDuOlvJP+AAdempL+RcUV+t9JvytujX3h9Cv2QT7MF+vZS+siqX
6B/5hF1p1s0g4Xc1tdThjVTYpxtzJeccN8rxzu7Apdh5QHPqUIUagJd1Vdc9
M5x7H4mKUgcrSD3WKpqWd4lPdD4ouCJvOua5Tb2fPDYInHOU9zrMzYWo16Ub
KfdWzEi8g2Gl7U3f5ugb3AtJER0+GfIKbrRqzBe7tRd+x042rOL+bOal0v9i
9+NdArdzBMkfrUlbqJfWqoZecrZAjzXiSD5kFRuLHqMkk7zSnhkhkow7MQe5
1epFvhl6kO+ajRn/IgF6rFhT+u2tW38in6W1yEd2DeQ8p3gM9LKiP3XgLws5
t0xbC7v6fpzztg0WeCP6EuQzayb3lDNMpW+56kDs/N4M+mnHbSDOLuZ9GLd8
Tb77IhF4fkhavhtrFOd8U/NyblBa+cnh+dDXzAKcfzVFznbwBN7TfvOWen7f
hXy3TVfekY55kzzodiPkuSwN5yAjG0gcNyMgTzdZSuqfGQyxU/1LVeS2tz1+
4yb9g2Y69Gi/3kS9vXIO7L3BDOJChcScu53R6MeY0AK8MTCJ1Hm04kXpD+l0
gLjZ6Ax95m1eUjeImoY40mqF1E2s9i2413xhFnWDyJ1lP5hxeX/UqLCE/PRD
4b/lHP8e/VFalQ3kI9uu8P7exYzkmz0PUp/sc4J4+WAw9KK3yWuqrJH7X0ai
T+Tj/eNSd7qZXeozTvRk3Hdu/4T8biH3WKwMd8nr2x+hLjd822Xhk3AN+fu6
yuSJvRawT3LQd6R3SwifQ+G4B1S6DHx6r6LudOAa9zuebGI+bbOBr9a1Jw9q
/4r+jT050MvUzKJH5/B2wc/2Uuh6cFHqgSevyHijcyfqOc8nsU8HVKTeEqEN
9aIH96hz9q7GfOqmYb9X7Uy+2XgBdYZLWbDnV6HUc3aepk6Sojv1kCia7Bdr
/l/UHzZ3oz6fOAF+42N8foclz2LqilNDebdt0jb6rJKsh553lbzH6rTJSD9M
FeqQzqDK4heMRPHEfoxYI6n7PdxN3ftjYd4PznaP+bS8KX01zvG05MUr1X1M
Y9kl0df5mrzD0KIVdd2pq6TPQMtemzy3DecpenAZqefYe/aBbyemYD6r0kr9
1Kz8p8RTK95+6mwta0odz8membxei67qzFl4fzb2Z5Gns3U3fI6fkPqGNrid
0PU6W6FH63ld7HZxa5GnfvE99a6yqemLiJqIus2Ljsy/dXfeUY/FO1R6hjj4
q9M9pJ7mDChJXWIu9qn/dZ977juqUVdJz30lY8DDNDL/PiUYX3oDdZLch+hP
aNqb33npcRk7j3KUfK1GXta7YYPYrbtpBOfQn3R+r2fZ74zXfwenlhtNfe9N
AerA7UsQt5JlYl0hDdlf0V9RH6gcgfdVCtKXbqYvAv6euYTvjs3JvhiYRkff
sSWfcIu1xQ47nKbPqfh2qTNo8btwbpW8J7+DELGt1NWdnfBxAzLIPtK7cx5h
3p+D/ANyEKdnJ6Jvfwf3Zewyi7Hz/fvkvMZIsInxJ8bKuY8RqM6Dxs6kbvM1
PHW/p3N4z7DpffzSkMVy3q+bxegTHriR+s/1r3L/1C5vSh3DCFyGvW0pzDs7
K4uzrsfHkee1r9fEzt9Xh//anure68pI8p2phbiHfaoH9tPkNnGt63fysBL0
yTsVzvO7FO1Kcj87CeeS1u7K4h/0Cy75X6O5xIUEhYkLVzT6q6NnIs9acgk/
P7wZ5xS/HSdv7ZST+0pZz9MvvaAt+dS8ZsSRPby3qS0ugF3F3iD+UO93jryk
Mn3Ibo+E3LvM1ojzkb01sLdPd8UPu0WXyfmOeSIp5195ilM/T56O+fR4jp1n
riH7y0m0XOhG7kTUtRpvpW5fYQf8V3OuYY8ZLrjQuV+S87jly+DffIf072m9
12InF5iPmTAqednybtQVjt9g3wU8l7+bK+Omke9e3MI+3Rifuv/xOZJHGouT
qv7nmLJ/9fSNOW9qmgY7nNeR/rAeo4SP3nkg++XUSM51klI/s6/Gxi9t2S1+
SX9ZnHpGvmbEwTolkNu2EeSXqYphz9fHgKcrIn+3yxfi7+nVIjf7cx/O11KN
QP57jqOXceSX9ryd6D3CGvEPdtkM1C1u/osdds/AO1MxojPfW1+JX9FDBTeb
3wvibzaxr90+76WvUv86mr6aZNz71o+mEPt3ZiQU+ZlV6LPVFqfjfuOnHIx/
1sXz/1Kft40E1CezqHPDjfnlfMpNfpN3Gq467EfjlOAH27ov9u+WOcy+/nRO
/L+WtqOszzUm8e7Qlpu8C5q2WpD8ffEIfqcjtLT4E3toYs7rU83kfZ5MreSd
WH1rdPLLwlF5t7PzSxmvV6hJX0HiCLzDk2wj9w2/FiOPHPq5jowvOZbfWdiz
l/zpz3nM51pEeb9bvzySeF5iLt8tmoz69tn3nG+kjcV7Ph8GiZ9xc1Ev1R/F
YHz3mdz7G11Yxlu7utaW+U4+zr2AF9Op51zsInRjbkPOr6ttk35b/XJDmadW
clck9HCe34d52Ejo9u1sQnffTaLumq6T8NGvh+M+ZMoT5HNL68l4t2lL+o2y
P4berLmMt+PVIx+JekTk716ryPhL4fF7ycOJfOwaNZFbkSDeBw9eQb6+oi3r
esV9KDvDwHT/pUdtZVI539ZK/qp3Lf84wRd+vWg5y+0s8R96/H+ASR1d6d32
9L7iAfcvfXaiDX8Y7r/Wqx2aL/dT/fPXKp2iv0Kt11Tr1ZaW5HdgriMfW8lH
K3OdeydK/oaSv10hbeT/kr+WZlaksPp1DaXfxlW41+WzB2Ma9yc8u9KVXVnX
rxNXffbp3ABX6uHOVRD6+I3k6VemSl+zpV+CfnYL+c6nAtLnaS6dUlXk36oG
dna5k7y/5TjjhK4lr0Ddo9L6q9KvEveq8LEqa+ShQe3J66/OkPHG7IfcW4y6
QfRmD/27hvzZ7hb2+nAY94lXbxK64/B7UlrUQDlv1zauZ3zXIvCxDk6XdXe+
Lt81993inPTQcs4p8s9h/vuOkK9FXcJ3ms1mPttiw2frLPbHpWvCx32Xgd8/
+hABuR3eJt+1djlyb9HdsJB9mg+60yYQvxAlBvdvNharJXzjx2Ef7WxIv0PH
4kI3dh7ld68ez+HfDS0idDP1A/LHLtsjCX1fbsbXK0F9dmZxeU/DvV4A/ncq
U3/IN5k44NOv+/p36nl+fQ3uxn0vpV9T6dcodgJ/qOxBV/bglOPdif+Rf9Xp
Gf5LX/b6FMqvol9L6dd5W4z+T2UPmrIHo8I2+u/89jOoivhz/3qNe/gZTz66
ko/x7ntQWHkaSp7G6Sep/0svWrJrKf5Lj1a9nNQDfPagTUd+nv1oyn7MZuvx
/5cish+nHmcfFVB+rBdxQZu7Fj7K7+nvv+E39g9gPyq/pJf5A/pM6sCeH7Pb
jMH/r1kt8vL8nvl1Cn6y+Rb4ZMRPav0+Cl1/Eok+HxW/nMufhG7cvovfV/7B
aTxE6E6tB8hdxS93xu/Q01LHsz0/cyki/vPjGfpUVfzSdkcSutl3Hf2Cyl/Z
BUPwq/M3Uf/0/FuGm0K33lykXqzil9E5Cn7vRSnijfKfWsfb0GdUoP7p+c/c
8Yl3F2ZDP4A/d/KGMr6vTV1G+Wd9779C10JmiT1ZS5Q/fxyDdbWaEiT0isr/
+/RoKRzi17vt4RafXjxc4dejh0M8vZue3j3couzE8uxE4Rz/er147c3fUvN3
VPz1r9f04rVPPl5898vfww9++RsKP/yPfj184rMHD8/47UpXuMhV9qkr+/Tw
ldH4T9mP2shzvMOo/JtbZB70kqfp91X+yhxWTPapm3Ur79Aq/6a1KY3/r7lT
9bXjD7VKs/E/h/7gXQPlf8yqhdjv8XiH1vNXdpS++MMhdXmvWPk3y+0vdLPW
Ys4LlT80rg0WujGQd3R15T+15zPku05i3iP7Gb+e58M/f/vIelX8Mg7nJ66F
v0Tfs/I/zoiZwsdO+IJ3apS/0g/0ku/qF+/RF63il1W3N/75u8P7RMrvGckf
1ZQ/b22iv1r5Sbv5Q6Fr4y8hdy9+VXkidOsK77r/9LfR3whd3zMPe1L+2X4Z
Cr3fDPq6PX/u0692FXzi6cv09FVF4Q2lXz0b+tUugU+0or/ag/YRPOOX/0/8
oPRlK315eMOvX0PhE0vZg67swYkCntGV/djKfkyFf7z1mmq9mhevffLRphPf
PXnaSp62hweUXnSlFw9X+PXo4RDPHhxlDx6e8ezHVvbj4R+zTH9wYy3e57TK
PZbzGutSB/zbyxe8T7IwI3n/9Lv4saqpwcm7m/M7q31e4MfcQdKfYw0txvsx
4yqB/ysQl615KeXcRIvSGHrjhdQnk9+We0PW3kPg4ZcziSvBywJ+0O1+F/nu
6Er0uY0ZTT/skcLiZ9ybpYmziWpI35AzoSz+Z9lzcMuSMuSjZzPCP2cczncK
XpfxbuTk+KVOzRm/7yXrulUdv/p8D+cRZdPwXlq8fIyvco/5LJjFO8qlDeJs
4m+q76uq9IFrVRrih4tf5Dzi0xLJm51zyZD/w3z4zfLI3whcAP8d6r6nkqfx
eBX0mdFThpW/ZWTm9ywS10v6i77KJue7JRrSH/CF7+on3uO3zRZpfpnnpvT4
+Tb30oRdr/MlgHhU7rkedr168VjglpUbU4aVpxYhJ3yiVUkdVv5mpO3Iv/Hd
pGH1qMcsjD3ky4nelT0YK5fin2dMUL8HUUXO/c0PlfDzv/dh/za4Tv/a5dX4
gcFx8W81V8p9R/dkbfbv1i/cT+lRhe8+G81+/5t31bXhr7lP9G4Y9A+t2L+j
w8k9QmP9dnBylGD27/U93OOb1pb9lYP7GNbqb8h/wG/QXzZlfIpz6l2TjfiN
ij3xS4X687vcZWfy3TmLOce/3og6X+9JNZA7vyNlzSglcnCXRwXfnq7I+Mrd
sf828YRub1mA/DeOFDvRywSAn+PdA/8ky8V7S/M/4f9XN0IOpcbz7mv24cSd
Ww/0X+S85QTzH/QO+1F6saevAlf3clKElZu+cAnxcXADPaycnQYD0cuq5mnC
6sUYcYi8Zgb3YrRa6NHMlZX1DtlHnmgwT3NMOvD/2vXJw67LCUpOnpX3bqqw
8jESLkCeM98Qt5Q8rb17ySuPxBY5WAXRi7a2O3rsrO5tJUeP/7N/9TLYnW8/
Ot/OgEfU/rXV/jXbJ8J/+/a7dgd/7/ef7uCYxDffftFT7uWde5//NBer3zlR
+85R+06v8wxcoPynFoL/dF6HsJ98+9cYsUDo3n531X53f3vCvTe//8yRnbit
/Inp+ZNCV4ljPn9iPk4Df59fsi9coI/L58ec2FPBEb745cnfH488eXrxy61C
/PLk78U7TcU7T19+v+191+/nHW+eKl6YXrxQ6/Xiha3ihaXW68UjR8UjT57+
+OXJ34uD7ijioKdHL57aKp569mD69+mZHZx3+/a103sI99d8+869VoPfhfDt
UzPDO/rf1L421L629JvMU/kBW/kB68gQcKLPf+qDZ9K/5POf9t9pwCm+fadN
vUwc8O/T+GXJA5T/tJT/dNu8ZX/593vdDdiJzz+Y8R8if7//3JcZufn8jBlT
R27KL7mDlV/acI56iy9OeXLWfXHNPY1e/HHHVHLzxylTydkf1zy9+OOgo/To
+XnT8/NqnoYvLnjr8uKLruKLJx9/PPLk6cU1R8U1Ty//EweVHt2y8UvLnysO
k/cOnUreMDKO0K3YB/luqvX8nk/RhEI3lsclj67wCn+8JJGclzp3uKfpTFtE
fpEjgdDNkg+JI4snsU/3xoGe9V/1bhL7yDyVCP5XhpKHrltFXtYeuhNtOfZQ
+zV4c24SzvOPLcI+r68hP0oO3Yx9iPOJLbW5d/ipAedkqzPhR3qsZ3zSRkJ3
I1UDn7SLLN8x79xhfhM+I+dz6zm/7X6Xvxe+TB2h/Tr49PkN/sl2wcfQgmR8
ntvUC0a1k79rZWrz7x934LtdumKXE7pwP7TfNcZ3S847VL1y4wdah1CvyZgS
PTadzL6O25LfoX3UDT/bfmzmsHq0lR61SWkFB3p611aid83IumLvf+mlRyB4
QOnR8vR4r98Nwb1K767Su1a4Fr+3ouzEVHZipd8l5zNGKOvVurJerYPG74b7
5m/tuCU453/WWzWH4Bm/fKys8QWfePJ3lPy1NHf5/Q0lf9eTf6az1PGUfm2l
X6fxJ85VfPZgZJzPewjKrixlV+5sk3Mkn326sRw5N3Djtq36g48Zbgf93zfW
yb2rn/Q/uV+tDT7KuyCFqpf/8ad16S9+dyTKQ8E5bkFFL5iTfscOvFOix4OP
tTiE9wsCQ/cJHlN87Kt14WO8min1twSjDeGX+SL+PfHj0yKfFNA1fRz4ZmL5
APn3mdX4m2PIZ9NdiBP2u8aVGfRbq9+f9b5rxoqR87/obslU9Jk9LBs5rHzc
qCvh82VeJKHH4LvOnNLgqubwsWOpeX5ry/xT5aFPIaHN+bx2kPh3qg7vWgVC
dxfa+NM46ne3S0LX0+fGb+rXqFeEKvr2f8Efi2fL/QVnjKLHeMj4smnlHQ+/
fo184VmHJwelLzvxtpxh6Z5+zSGPsoaVg2cP5vXm9M365O/uqMI78359lS3J
Owp+/e7IkSGs/H/aQ/ilxH+lR1vZj5H3PXVHtV5Nrdca0JO45pOPVXhGjv+S
p9t1UdB/6cUIaZj6v/TozFmcOqwcPHvQBvOute6zHzdcCHy+xiBeuFHxV4H/
SN5nhESB/nWkzMOKu4x739kCiVN/0F/tHP6d963rxsDvLclKvbT0H/ilpRp+
cjs40nISyHizUUT2e9UM8HnVivd+ln2hD+j1V+J+lSHcyxwTQJ/U6krIYc0e
2b9m0DzxM2bfstyLCKzH73NtnQB93iV+Z3BNP/qJEhyVdZpjh5FXmEGJmE8w
8aRnfuJ9rLfQj1nCR++Tl300zaVvYvRp4tZxl/nU3Ml7J504DzCbtSSu3P1L
1mVG6s37NOu2Yg/7JjD/4Oe8b9cslPqnii9a5ddCdyatxD6jKL2Me4B8bkZF
vz2JL87bJ/TrLW6bM6z8tRQvGd+yFvyPoC+zw3v498iKncdDv1ab48yzQG3e
uVDxxay2j/gym/5Xx5t/BfCus593rCxvvUVXU7cukpG+cxVfzJF/817M5hcy
3lHyNLP+DZ8Yh5i/J88/d6GXJo9z/KKvhSuZz6JU7DulX2ffO/rjim0ELyo7
0UM/865hmvHYlbI3b7/o3y4iv5u/xhetQG6hO7v+pc9F7SO9yyre+doxXN2n
VvR8Vbn/4Isverqe3EddN4o+II9P48fcx3s1hj6gRexr/c0Q6dtz3rVP8ePv
9hboZkBx7rHkncn7JwcU/eBt+hR98cX5/TDvkjyblSbsd92txfk9pFj8jupP
/5YgCfMZWy51WDnYIYtY7814wsfuq+bZ6Dz3ZyosYV0ToNub14n92H9noA8q
/FL64y43xs8HTZV1OfWX0E83cSj2k3cw969XMd4NzIYdfj6Dfp1lvHvqTKJf
04svJaAbUZ4yfkuhhGH1ZX8/D39PX2pd1pEm3DPZjX7twsqvbmqHHSo5m1Wh
G04G9t179OLJzYo7jXUpPXryN68nQ85K70bXRfjzoOzZw87TibgY/59hbY6w
6zXWQHfKrMgZVm56CxXftY+5wsr5p//Xn9H3qfTlyUFr0CpPWP06Ac94Z/Fe
b+JaTnCsEf2J0N1WZ6B7+HPFbfbXsHvIoRB41Ul2j/1zfgx0hW/1AY/gczwx
8lf5iB0CXd8UiXukCu85f93i/nfMbNjVNZWPZHehP0mK/1G40Wp0E/+cpA9y
VvmIVfgG/uFJS+7JKPxpnltEnFtbEDtReNUtBd24VEnoXj5ihVwBD5vZsDeF
h82hS+CTIwB5eni4+nL8XrMV4FKFt63i55nngHN8V+Fzw+f/vTzR9unFyyud
sb/6fy/vM/zyV3mipy9D6cvLK3Wffn/mocr/a8r/e/mUVYr5a2r+Xn7kVvOt
V+VTbpFf/b+Xf3nytJU8f+Z3lk+eKr/z68vLH/369fLN/7ETlbf67c3Lf/3+
38OfP/2/WRdco/DkT/8/6wT+3MOfPv/veHjV88NN6Jv38OFPPzwtA3pTeNK+
pvBnyt3cj/Xw51nlf9I1h67wqt//azur/PJdPcNHcJMvj9Cbdiv4X3QrS1Pm
ExDyC5403/wLH4Un7dtqPg8i0C+u8gv3looLf/N7hx4uNWbz7rIx3yZ+KRzr
LIeundxEn7fKL4zO0N0oHVhXt0VBMl75f1P5/5/4Ob3ikzAWcVDh7Z9+T+nL
8vJBz082Q7/WIPJHT866krOl8jhT6cVRevHyvv/Ro67yRCV/V+ndyysN3zy9
POh/1ptK5VM+uXl52f/IOSV53M+4pvRlqHzwZxxU+rW9/LESONNVONN+nhjc
pPCh1hN8qL86By5ODp50FJ60buXDPyn8qSv86a4ZD+724X+3XFLsU+ExU+Ex
N+gG/Hz437K4D+XhOsPDdbMPkv9l9uH/XWvJ/3z4UG/VG7rCk5bCk3YVm/tf
Cv9bCv9bH8ALfrxqND0NPQt41VV4VasYEb9R3oeHnwWo33Hz4edVO3lf0Zd/
OZ78ffmUJ08tO/mXq/IvT/6mL18zlL78eYf3XX+e8nOevnzn53rHkO8YKt/5
uV6VT1kqn/opz02/5l+e/A1/Hufp0ZcPevbw0/94OK3zWeKJ5688XPe0H3Qf
7nKm86cfp1mFd/I+gA/XWdlzg1t9OFAr/jVXWP6uwtXOlrT5wvL3cLVbdtcv
39U93BV+YN6w69JSg9OctbfBLwpXGwpXm3UzgV98eM8a94R46MOHVtyixGcf
rtYu9YHuw5nO4XHoxYdL9Xetf6nDaCrf8eT803/mJz/y9OLPUzy5eXmNpvIa
T87+PMjTiydnTeVNrtKjH+d783RWki9oUcgXvHX58w5PProvT/Hk6c93PL3o
/vxI6VGbXqGmzOevu/z72Lw/4NH1uOATZ1zmXGHp1ubRfDdPGuof5bvVlvEJ
K+DnZ/H+g/Wwq9C1R4uwsyR/Uu/ZDl1vpYMHrmX6hb/+qATrVPHdozvJajHP
7impK1/iu8ZxLd8v41dA14bHxc6D1PhOS+oJn6AF+GM13pq8SOjWbH7HV3t8
nvi+Nl9d4V+bd3O0O/yugtYxP/TIp/KH5aNdWQD/D5fAcQ8nUbfOmVfGOxdi
c4/u/UvopWfLeHvDfPErdh3e5dDe5JLx5os74LGbX4kjm3LDJ1Nb+DxviJ9L
NVf4GLWCqG+NP541rNwMpUejQGXeAfPp3aodLO8t+PWidavAvSifHq3ee2S8
pfRuKL1rD0eeKBGGv2cn2o110H3rdRpl516dmr+p5m+V6sb5vm+91olVgnP+
Rz5DZlNnU/J3lfy1ydM2SL9Zjl/lrzkLHclrlH51T7/tl0cSOfnswa3QhT5Y
v13VLRsprJw9+9QylYGuxWko6wu/X+6vWodL8XsaUcJDn/+Nd8f255N1Weky
C926uAv6heTcJwgd10DWGyG33EfV1hSXe6jaxcFCd+c3g15vD30dXfsI3U6+
S+jWw578Tleqcg2RG+9//bTbHcWgh+zhu3NS8s7WsoXwX5y8aNjxxtLZQjcq
poK+7wO/z1N0T335bstOck/Sub6Ee7Fv9wnd3NSycFg+1vGtQrfGT+R9tJzP
L8m6Fq+BPq8E92w/fuH+e6MN8C91TsZb+75K34hfnu7TouwLn/z1i5c5H/PJ
x+hzAryn5Ol48iz/gHNjn/ytKZWDnP/Ql317DXhCzdNS8zSfhnJu4FuX9SVh
zrByMJUc7IAPQWHlaSl5GiNGcv7pk79bORf+artPj5dU35C3369GYp9uWcB7
2x796UH8dnV+X9fz507sP9gvTx/xPoznB57vJ748nPMLH2tyd/ajGz5tWLqT
axbx98vgNDJO+W0nf3Zw/huN8d7+qllH3acdyHjlt61+S9HL0pGp+R771Dh/
SuTpVg2kLqT2tVMmIfK/G074eH7b2RuKveUeAV35DWv/V+jTEvNuk/Lbdvyy
zHNyX+Sj/JJxaAT5xGLuEXp+zElWHH1lSpv0FznEtODv88NO+Rv4vc3oxfPD
VqIC2KfPD1vNphcJK3/PDzt3LxUOqy+Pv5s3BXhc6fenHz45gN+H8Plh609+
R8Sbv7devVj5YmHX6/lh7fC/0H1+2OmZGz5Knp4ftkdOLBpWnp4ftkL3Fwmr
L88PO7e6s6+Vfj07sStGZr8oO/lph88r856gsjfPD5txy/F7LUtfU3dVfsMp
2Uvofj/srErI+OPleYdT+QEt4A9538GZWYt31JXfsM8c5D2IRhlEDp6fMZeH
h88Dnx+ON5zx0VLwu7WeHy5zid//iNeMd/uVH9bK7+S9xcnrsTflB+y3+ZhP
n0voS/kNI2U49Ds1Cu/0Kz9srTf4nZiV79CL8j+OtpHxFYuzr5W/Mjp3hb/f
D6fJyPwPTJZzDc/fmhdnw38Zcv7pVyfUL/aLfJQ8XTtZ8bDy/OlXA9vyLoaS
v/ddc21IkbDf9eZvP1zI+25q/p4ctP1dsU8lh5/+M1Io8+yr5Kb8p1s+FetV
8v+5T7t9J+7UAi/9tLfOjfhdmSvgHM9/GiFx8MMuuMjbv2brrcSRXnt+4eMU
WMK6fLjXiDiFdzoUrviJexc3/jWOr/DwWEW+Ww984vlP7X5dI+x4z3/qMSrz
XklFcI7nP91bn/n9G4WLfvrPvrFK/PJdtd/1P7PCR+Euz39ah4KRs8Jdnj+x
rrYWuofrfvrPdh+xQ4UD/8d/jv81H/H04uUvnv80PP+p8gtP/oaSv5ePWD59
OSp/8evXy3f8/tNRuN0/f1fhcG+9plqvqXD7//hPhfP98rRVHuH5T0+ehsoj
PP+puejLy1MMv35VXuPZiansxMuP/Pam9VB0ta+tz3/x+1UejvL5Tw93efvX
KP1U6B4u8va7caYv/lDhKM9/6kdL4oc93KX8p6X8p4fTfvrP9UGci/pwrJYi
IfU/hX88/2m+XVMy7PifOLbOAubv4SjlN5ziAYxXuMvzn/rFmL/w+Ynf1rvo
S+E3v//8ifc8/1l/PXSFDw2fnLUj5AuGTz6Wh/M9XKrk6eUFnvxNJX8vj/if
7yr8/BOHq/l7ONwvBw/Paz65/cT/yn/qnvxVHuHHOVqW77l/oSt84tyvSr1B
7UfXwzNbqlB38eEfo+C3X/h4+NNa3zBfWLqp8ICxOyH5q/KfWgGFPws2YLwP
V5iNEjDejz9jz2M+Pnyi3W+s6mEKfyo842y4Qr3Fjz/rJ+W7Przk3llAHunV
DTy8NDIe/JU/0Tw8tvwYdTAffrNGm7/I5yf+V/L343lPnp4/dD38r+Tvzxc8
fflxr/fd/8HJap7eek2Ftx213p/40MPbar2WD8978jR8+N+Tvz+PsJQe/fmI
Zw+aD7eYrdU5tg+HaBtXUYfx45aWT4lHPpzjTL+NP/fhPVdrxvgdv+IN7Y8c
1AO9vLvcTvX7efvRrw+3OI0nIGc/zkkzl/qqD+/p7S4iZx9esmo8QO9e3urh
q+e7ODfw4WdPPoYP93rr/R+crOTjx9WePL3vOh6eVN/15ul6uFTN049vvfVq
fjzsyUf5JUPhapHz/wEkD2Z0
"], {
Polygon[CompressedData["
1:eJxN3Qm8jWW7x3F7r7X3zpRZxjJljoRMGTKTIVPmZKbMQ2RMkYoUUcZmU4aQ
BtFAaTBUokEkFJlFMqbO9X+f33XWfT7nf577fD/3da33vt/n2WutZ+21Fe4x
uPWg5HT2P1nSpYvZIcmi/z9G4liKJTXwZCzNckPgqVh6at1vwDJYMloykczY
jdF/hP/3jFgaPd2zYCnUuqdiWS3ZLNlJDiynJVfg2bA0errnwm6k1j0Lltty
kyUPyYulZ43uN2Fp9HS/ActJrXsuLJ8lv6UAKYjdbLkl8PxYIUvhwG/BilDr
XhgrailmuZUUx0pYSgZeDCtET/eS2M3Uut+CZWXfSpHSmPauTOA5sEL0dC+D
laDWvSSmc6Ws5TaSESvCGt3LYoXo6V4Yu5Fa9zJYOUt5y+2kAnaHpWLg5bFK
lsqBV8TupNa9MlbFUtVSjVTHaljuCrwqVome7ndhd1DrXhHLyr7VJLUw7V3t
wEtjlejpXhurQa37XZjOlTqWu0kx7E7W6F4Hq0RP98pYCWrda2N1LfUs9UkD
rKGlUeD1sMaWJoE3wppS694E07Wq6+4e0gzTtdc88LxYY3q6N8caUuveCMvK
vrUg2TDtXcvAa2GN6eneEstJrXtzTOfKvZZWpCrWlDW634s1pqd7E6wGte4t
sdaWNpa2pB12n6V94G2wDpaOgbfHOlHr3hHrbOli6Urux7pZHgi8C9aBnu4P
YPdR694e627pYelJemG9LX0C74F1oKd7H6wbte4PYH0t/Sz9yYNYJ9bo3g/r
QE/3jlhvat37YA9ZBlgGkkHYYMuQwAdgQy3DAh+CDafWfRg2wjLS8jAZhY22
PBL4SGwoPd0fwQZT6z4E686+jSFjMe3duMB7YUPp6T4OG02t+yOYzpXxlgmk
CzacNbqPx4bS030Y1o1a93HYRMujlknkMexxy+TAH8WmWJ4IfDI2lVr3J7An
LU9ZnibTsOmWZwJ/CptCT/dnsMepdZ+MdWffZpBnMe3dc4GPxabQ0/05bDq1
7s9gOldmWmaRkdhU1ug+E5tCT/cnsNHUuj+HPW+ZbZlDXsBetMwNfDY2zzI/
8LnYAmrd52O6VnXdLSSLMF17LwX+IDaPnu4vYS9S6z4X686+vUx6YNq7VwJ/
FptHT/dXsN7Uur+E6Vx51fIaeQpbwBrdX8Xm0dN9PjadWvdXsNctb1gWkyXY
UsuywN/AllveDHwZtoJa9zexlZZVltXkLWyNZW3gq7Dl9HRfiy2l1n0Zts7y
tmU9eQd71/Je4G9jy+np/h62hlr3tdj7lg2WD8hGbAVrdN+ALaen+5vYu9S6
v4dtsnxo+Yh8jH1i2Rz4h9gWy6eBb8Y+o9b9U2yr5XPLF+RL7CvLtsA/x7bQ
030b9gm17puxdezbdrID097tDPwdbAs93XdiX1Hrvg3TufK15RuyCvuMNbp/
jW2hp/un2Bpq3Xdi31p2Wb4ju7E9lu8D34X9YPkx8O+xn6h1/xHba/nZso/s
x36xHAj8Z+wHerofwPZQ6/49to59+5UcxLR3hwLfgf1AT/dD2C/Uuh/AdK4c
tvxGPsd+Yo3uh7Ef6On+I/YVte6HsN8tRyxHyR/YMcvxwI9gJywnAz+OnaLW
/SSma1XX3WlyBtO1dzbwjdgJerqfxY5R634cW8e+/UnexrR35wI/iJ2gp/s5
7F1q3c9iOlfOW/4iP2OnWKP7eewEPd1PYr9Q634O03stvW+6QP7G9F7iYuAN
sEuWy4FfxK5Q634Z03uVq5Zr5F7sH8v1wK9il+jpfh1rSq37Rexfy3+W/920
siQlRZZsx1hSwv/DLtHTPYbpsZOC+dexuI1TLKkkLSmyK6zRPQVTr1gw/zKW
TK275sh0r+EGO6Ynus8gy2DjjIFrjiyTJXPgGTHdC1Cte2bsRjtmsWQl2ZIi
y27JEXgWLBM93XNgGah1z4j9y77lJLkw7V3uwDVHlome7rnpn51a9xyYzhXd
97gpKcpVzh+tLXNSwqtjmejpnpn+/3COuefG9Fpfr9vzJEXJmxSZXsvmS0r4
Y1h+GxcIXHNkBal1L4DptfLNdryF6HWyrJCNCweuOYXolS/wwpgeW7Xu+TDt
tfatCCnK/mvvigWei/3MT0/3Ylghat0LYzpXbrUUJ1mwgqzR/VYsPz3dC2DZ
qXUvhum9bgk7liR6nysrZePSgWuOrIylbOClMb0XVa17WUzXqq6720i5pMh0
7ZUPPA0rQ0/38lgpat1LY9pr7dvt5D/+O9HeVQi8KPtZhp7uFbBkat3LYzpX
9L77jqQoN2NaW9mkhI/CytDTvSz9C1HrXgGraKlkqUzuxKpYqgZeCatmqR54
VawGte7VsbssNS21SG2sjuXuwGti1ejpfjdWhVr3qlhdSz1LfdIAa2hpFHg9
rBo93Rthdah1vxtrbGliaUruwWqwRvcmWDV6ulfHGlLr3ghrZmluaUFaYvda
WgXeHGttaRN4K6wtte5tsHaW+yztSQeso6VT4Pdhrenp3gm7l1r3Vlhd9q0z
6YJp77oG3gBrTU/3rlhHat07YTpX7rd0IzWxtqzR/X6sNT3d22B1qHXvij1g
6W7pQXpivSy9A++O9bH0Dbw31o9a975Yf8uDlofIAGygZVDgD2J96Ok+COtF
rXtvrC77NpgMwbR3QwPvgvWhp/tQbCC17oMwnSvDLMPJfVg/1ug+DOtDT/e+
WEdq3YdiIywjLQ+TUdhoyyOBj8TGWMYG/gg2jlr3sZiuVV1348kETNfexMDv
wcbQ030iNppa90ewuuzbo6Qepr2bFPgQbAw93SdhDal1n4jpXHnM8jh5EBvH
Gt0fw8bQ030sNpBa90mYPmvU54aTk6JMwfRZ2hNJCS+ITbXxk4Frjuwpat2f
xPRZ3dN2nEb0OZ1suo2fCVxzptPricCfwfTYqnV/Apthx2ctz5GZSZHNsjwf
+LPYVHq6P49Np9b9GWy2ZY7lBfIi9hRrdJ+DTaWn+5PYLGrdn8fsf9PNtf8z
jyTzFmS+/Z8FgWuObKFlUeALMH0Wrlr3RdhLdnzZ8gp5NSmy1yyvB/4ytpCe
7q9j86l1X4DNYN/eIIsx7d2SwGdiC+npvgR7jVr31zGdK/rcf2lSlKcxrW1R
UsIzYwvp6b6I/tOpdV+C6bMufW61LCnKckyf5byZlPB22Aobrwxcc2SrqHVf
iele82o7vkX0OZFsjY3XBq45a+j1ZuBrMT22at3fxGawb+vI2+y/9m594Iux
FfR0X4+todZ9LaZz5R3Lu+RlbBVrdH8HW0FP95XYa9S6r8d0r/89O75PdJ9f
tsHGHwSuObKNlk2Bf4DpXrxq3Te5JUXX3Yfko6TIdO19HPiL2EZ6un+MbaDW
/QNsBvv2CXkW095tDvxtbCM93Tdjs6h1/xjTuaLPHbYkRVmNaW2bkhK+CNtI
T/dN9F9Drftm7FPLZ5at5HPsC8uXgX+GfWXZFviX2HZq3bdhOyw7LV+Tb7Bv
LbsC34l9RU/3XdgX1Lp/iX1n2W3ZQ77HfrD8GPhu7Ct6uv+IfUut+y7sJ8te
y89kH7adNbrvxb6ip/s27Adq3X/E9lt+sRwgv2IHLYcC/wU7bPkt8EPY79S6
/4YdsRy1/EGOYcctJwI/ih2mp/sJ7CC17oew79i3k+QUpr07Hfj32GF6up/G
jlPrfgLTuXLGcpbsxH5nje5nsMP0dP8N+5Za99PYn5ZzlvPkL+yC5e/Az2EX
LZcC/xu7TK37JeyK5arlGvkHu275N/Cr2EV6uv+LXaDW/W/sO/btP6IXAd+x
d0nJCT+FXaSnu+Zc5LHTBfP/xXSuJJvHyFHsMmt015zL9E8K5l/C9NhHg/ma
I4vbMcWSStKSI7vBkj7wFCyDJWPg6bFM1LpnxHSt6rrLnBzlRkzXXpbkhO/D
MtDTPQv9b6DWPT32HfuWlezmvxPtXbbANec6/bMEno3+emzVumfBdK5kt3EO
chXLxBrds7PeDPR0z4hd5xxzz4bltGMuS25yU3JkeSx5A8+F5bPkDzwvVoBa
9/xYQcvNlltIIaywpUjgN2P56OleBMtDrXterKilmOVWUhwrYSkZeDEsHz3d
S2KFqXUvgpWylLaUIWWxAqzRvTSWj57u+bES1LqXxG6zlLOUJ7djFSx3BF4O
q2ipFPgdWGVq3Sthd1qqWKqSalh1S43Aq2AV6eleA6tArfsdWFH27S5SE9Pe
1Qq8OFaRnu61sOrUutfAdK7UttQhN2OVWaN7bawiPd0rYYWpda+F3W2pa6lH
6mMNLA0Dr4s1sjQOvCHWhFr3xlhTyz2WZqQ51sLSMvB7sEb0dG+JNaDWvSFW
lH27l7TCtHetA6+JNaKne2usBbXuLTGdK20sbUkVrAlrdG+DNaKne2OsOrXu
rbF2lvss7UkHrKOlU+D3YZ0tXQLvhHWl1r0LpmtV1939pBuma++BwMtinenp
/gDWkVr3TlhR9q07KYZp73oE3grrTE/3HlgJat0fwHSu9LT0IvdgXVmje0+s
Mz3du2AtqHXvgemzLn1u1Ts5Sh9Mn+X0TU645sj62bh/4Joje5Ba9/6YPit6
yI4DiD4nkg208aDANWcgvfoGPgjTY6vWvS822I5DLEPJsOTIhltGBD4E60dP
9xHYQGrdB2EjLQ9bRpHR2IOs0f1hrB893ftjw6l1H4Hps95H7DiG6HNe2Vgb
jwtcc2TjLRMCH4fps1jVuk/AJtrxUcsk8lhyZI9bJgf+KDaenu6TsbHUuo/D
BrNvU8gTmPZuauDDsPH0dJ+KPU6t+2RM54o+d34yOcpDmNY2ITnh2bDx9HSf
QP+B1LpPxfRZlz63eio5ytOYPsuZlpzwO7HpNn4mcM2RzaDW/RlM95qfteNz
RJ8TyWbaeFbgmjOTXtMCn4XpsVXrPg0bzL49T2az/9q7OYE/gU2np/scbCa1
7rMwnSsvWF4kj2IzWKP7C9h0ero/gz1OrfscTPf659pxHtF9ftl8Gy8IXHNk
Cy2LAl+A6V68at0XuSVH191L5OXkyHTtvRL4aGwhPd1fweZT674AG8y+vUqG
YNq71wKfjS2kp/tr2HBq3V/BdK7oc4fXk6M8i2lti5ITPgFbSE/3RfSfSa37
a5ju9eu+/RvJURZjupe9JDnhmiNbauNlgWuObDm17ssw3Wt7044riO6Ty1ba
eFXgmrOSXksCX4XpsVXrvgRbbce3LGvI2uTI1lneDvwtbCk93d/GVlLrvgpb
b3nH8i55D1vOGt3fwZbS030Zto5a97cx3et8344biO5zyj6w8cbANUe2yfJh
4Bsx3Yv83z1S/EPsIzt+bPmEbE6ObIvl08A/xjbR0/1T7ANq3Tdiq9m3z8hW
THv3eeBrsU30dP8c20Kt+6eYzhXdd/0iOcqbmNb2YXLCP8I20dP9Q/qvpNb9
c0yf9epz2y+To3yF6bPMbckJ74ltt/GOwDVHtpNa9x2YPiv92o7fEH1OKvvW
xrsC15xv6bUt8F2YHlu17tuw1ezbd2Q3+6+92xP4Vmw7Pd33YN9S674L07ny
veUH8jG2kzW6f49tp6f7DmwLte57MP2uw492/Ino9xxke238c+CaI9tn2R/4
z5h+F0G17vsxXau67n4hB5Ij07X3a+DvYfvo6f4rtpda95+x1ezbQfIWpr07
FPhubB893Q9h66h1/xXTuaLfuzicHOVrTGvbn5zwDtg+errvp/+31LofwvSz
Rt+b+C05yu+YvktwJDnhL2BHbfxH4JojO0at+x+Yvqtw3I4nyKvpIjtp41OB
a85Jeh0J/BSmx1at+xHstB3PWM6SP5MjO2c5H/gZ7Cg93c9jJ6l1P4X9Zblg
+ZtcxI6xRvcL2FF6uv+BnaPW/Tym91qX7HiZPMrvJF6x8dXANUd2zfJP4Fcx
fRdIte7/YNft+K/lP6IvZ8uS7JgcS/i/2DV6uidjV6h1v4qdZt9isSjxWGTa
u5RYwv/ErtHTPYX+SdS6a45M54q+95Qai3Kcc0pr0xrdp2HXeFz3f3jMk5xj
7poj07023TdLi0W5IRaZ7iWljyX8diyDjTMGrjmyTNS6Z8R0ryqzHW8kuk8l
y2LjrIFrThZ6pQ88K6bHVq17ekx7rX3LRrKz/9q7HIHH2c8M9HTPgWWh1j0r
pnMlpx1zEZ0nskys0T0n681AT/eMWBK17jkw3WvObcebiO4z/+/+s43zBq45
snyW/IHnxXQvWLXu+bG/uO4KxKIUjEWma+/mWMIvYvno6X6z96fWPS+mvda+
3ULO8N+J9q5Q4NnZz3z0dC+EneNnlPvNmM4V3fcuHIuSmXNKa8sfS3ghLB89
3fPTPwu1/z8f03st/d5UkViUoph+l6hYLOGjsFttXDxwzZGVoNa9OKbfVSpp
x1JEv6ckK23jMoFrTml6FQu8DKbHVq17MaysHW+zlCPlY5HdbqkQ+G3YrfR0
r4CVpta9DHaHpaKlEqmMlWCN7hWxW+npXhy7nVr3Cphea95pxypEv2coq2rj
aoFrjqy6pUbg1TD9LqBq3Wtgd9mxpqUWqR2LrI7l7sBrYtXp6X43VpVa92pY
WfatLqmHae/qB14eq05P9/pYHWrd78Z0ruj3HhvEopTEtLYasYQPwKrT070G
/UtT614f071m3TduGIvSCNO91MaxhHfAmti4aeCaI7uHWvemmO7VNrNjc6L7
tP+7/2/jloFrTgt6NQ68JabHVq17Y6ws+3YvacX+a+9aB14Pa0JP99ZYC2rd
W2I6V9pY2pKa2D2s0b0N1oSe7k2xOtS6t8b0WUs7O95H9DmLrL32PHDNkXW0
dAq8A6bPQlTr3gnTtarrrjPpEotM117XwCtjHenp3hVrT617B6ws+3Y/uQ3T
3nULvBXWkZ7u3bDbqXXviulc0ec+D8SiNMO0tk6xhDfHOtLTvRP9W1Dr3g3T
a03dt+8ei3KJ16S6l90jlnDNkfW0ca/ANUd2hdeo7r0w3WvrrXryMNbXxv0C
15y+9OoReD9Mj61a9x5Yfx0tD5EBscgGWgYF/iDWk57ug7C+1Lr3w67zuncw
GYJpbb0CT8d6e9LTvRf9B1LrPgjTc62eN4cS3eeU6blkWOCaIxuumsCHYboX
qVr3EZjO9ZHad6LnKdkoy+jAR2LD6ek+GitBrfswrD/79ggZg2nvxgY+ABtO
T/ex2Chq3UdjOld033VcLEpvTGsbEUv4y9hwerqPoH9fat3HYvpZo89tx8ei
tMP0WeaEWMLrYxNt/GjgmiNrT637o5g+K51kx8eIPieVPW7jyYFrzuP0mhD4
ZEyPrVr3CVh/9m0KeYL9195NDXwMNpGe7lOxx6l1n4zpXNHPvSfJSKw9a3Tv
gk2kp/uj2Chq3adieq+l901PkXK8J9N7iacD1xzZNMv0wJ/G9LsIqnWfjula
1XX3DNH7FJmuvRmBa85Aej0d+AwsE7XuT2P92bdnyYOY9u65wJ/AptHT/Tls
ILXuMzCdK/q9i5mxKJMwrW16LOHVsGn0dJ9O/8epdX8O02tN3becFYtyJ6Z7
ec/HEq45stk2nhO45siqUus+B9O9whfs+CLRfULZXBvPC1xz5tLr+cDnYXps
1bo/j8234wLLQrIoFtlLlpcDX4DNpqf7y9hcat3nYXqto9e9r5BXsaqs0b02
Npue7nOwl6h1fxnTvTbdN3stFkX3+WW6l/R6LOGaI3vDxosD1xyZ7sW/H/RZ
jOm97hIbLyUXsGU2Xh645iyj1+uBL8f02Kp1fx2bz769SVaw/9q7lYEvwt6g
p/tKbBm17ssxnSv63GFVLMoLmNa2OJbwzdgb9HRfTP+51LqvxHSvQb+3tjoW
JTem3+V6K5bwm7A1Nl4buObI8lDrvhbT75qss+PbRL8nJltv43cC15z19Hor
8HcwPbZq3d/C5rNv75L32H/t3fuBr8DW0NP9fWw9te7vYDpXdN9jA1mC5WGN
7gVZ7xp6uq/FllHr/j6m91p63/QB0e/5yPReYmPgmiPbZPkw8I2YfhdHte4f
YrpWdd19RPQ+RaZr7+PAX8U20dP9Y+weat03YvPZt0/IAkx7tznw97BN9HTf
jL1ErfvHmM4V/d7RlliUdZjW9mEs4d2wTfR0/5D+66l134zpd030dws/jUX5
DNPf8tsaS3gF7HMbfxG45si+pNb9C6yo1Xxlx22kTrrIttt4R+Cas51eWwPf
gemxVeu+Fdtpx68t35BvY5HtsnwX+NfY5/R0/w7bTq37Dmy3ZY/le/ID9iVr
dN+DfU5P9y+wXdS6f4fps/Yf7fgT0d/5lO218c+Ba45sn2V/4D9j+lucqnXf
j/1ixwOWX8nBWGSHLIcDP4Dto6f7YWwvte4/YzvZt9/I75j27kjg32L76Ol+
BDtErfthrGi66O+OHo1F+QrT2vbHEl4c20dP9/30306t+xFM37XQ9yb+iEU5
hum7BMdjCf8VO2Hjk4FrjuwUte4nMX1X4bQdz3iSIjtr4z8D15yz9Doe+J+Y
Hlu17sexnezbOXKe/dfe/RX479gJerr/hZ2l1v1PTOfKBcvf5AB2ijW6X8BO
0NP9JHaIWve/MH3X6KIdLxF9z0h22cZXAtcc2VXLtcCvYPoukGrdr2G6VnXd
/UOuxyLTtfdv4D9gV+np/i92mVr3K9hO9u0/8jWmvdMfRHY/j12lp7vmXOWx
vw78X0znir73lBSPchrT2rRG92+wq/R0v8Zj6rFPB/M1R6bP2vV3A5LjUWLx
yPRd+ng84S2xFBunBq45sjRq3VMxfVf/BjumJ/qeviyDjTMGrjkZ6BUPPCOm
x1atexzLZMfMlhtJlnhkWS3ZAs+MpdDTPRuWgVr3jFh2Sw5LTpILS2ON7jmw
FHq6p2JZqXXPhul3DXPb8Saiv7Mhy2PjvIFrjiyfJX/geTH9LQzVuufHCtix
oOVmcks8skKWwoEXxPLR070wloda97xYJvatCCmKae+KBZ4Fy0dP92JYIWrd
C2M6V/R3P26NR7kB09ryxxNeG8tHT/f89M9ArXsxTN810veGisejlMD0XZqS
8YSnYaVsXDpwzZGVoda9NKbv6pS1421E39ORlbNx+cA1pxy9SgZeHtNjq9a9
JJaJfbudVGD/tXd3BF4UK0VP9zuwctS6l8d0rlS0VCIFsTKs0b0iVoqe7qWx
QtS634Hpu3aV7Xgn0ffsZFVsXDVwzZFVs1QPvCqm78Kp1r06pmtV110Nclc8
Ml17NQPPhVWjp3tNrAq17lWxTOxbLZIZ097VDrwCVo2e7rWxrNS618R0ruh7
f3XiUcpiWlv1eML/warR0706/ctR614b02tN/d7m3fEoep0p0+8y1o0nXHNk
9WxcP3DNkem1oGrd62P6XasGNm5I9HuSskY2bhy45jSiV93AG2N6bNW618Wa
2LGp5R7SLB5Zc0uLwJti9ejp3gJrRK17Y0yvdfS6t2U8yr2Y1lY/nvCDWD16
utenf3Nq3Vtgeq7V82Yrot9zk+m5pHXgmiNrY2kbeGtMv4umWve2mM71dpb7
iJ6nZO0tHQJvh7Whp3sHLI1a99ZYE/atI+mEae86B94Ma0NP985Ye2rdO2A6
V/R7d13iURpgWlvbeMIPYG3o6d6W/o2ode+M6WeNvrfbNR6lMqbvst4fT/hf
WDcbPxC45siqUOv+AKbvyna3Yw+i78nKetq4V+Ca05Ne9wfeC9Njq9b9fqwJ
+9ab9GH/tXd9A++EdaOne1+sJ7XuvTCdK/q514+0w6qwRve7sG70dH8Aa0+t
e19M77X0vql/PIq+5y7Te4kH4wk/xvuLh2w8IHDNkem76Kp1H+AWi667geQC
71907Q0KXHOa0+vBwAdhp3iP4/4g1oR9G0yasv/auyGB98Eeoqf7EKw5te6D
MJ0r+t790HiU7pjWNiCe8GPYQ/R0H0D/ntS6D8H0WlPfWxkWj5Ib03c5hscT
rjmyETYeGbjmyPJQ6z4S03dFHrbjKKLvichG2/iRwDVnNL2GB/4IpsdWrftw
bIwdx1rGkfHxyCbosQMfi42gp/tEbDS17o9geq2j172PkklYHtbofgs2gp7u
I7EJ1LpPxHSvTffNHotH0fe8ZLqX9Hg84Zojm2zjKYFrjkzfxVKt+xRM73Wf
sPFUsof3v0/a+KnANedJej0e+FOYHlu17o9jY9i3p8k09l97Nz3w8dhkerpP
x56k1v0pTOeKvnf2TDzKw5jWNiWe8MewyfR0n0L/0dS6T8d0r0F/t2RGPMpF
7knob3k8G0/459hzNp4ZuObILnOPwn0mpr81MMvGzxP9nRDZbBvPCVxzZtPr
2cDnYHps1bo/i41h314gL7L/2ru5gU/DnqOn+1xsNrXuc7Dd3PeYF4/yBKa1
zYwn/Dr2HD3dZ9L/SWrd52J6r6X3TfOJ/s6DTO8lFgSuObKFlkWBL8D0txhU
674I07Wq6+4lovcpMl17Lwc+CVtIT/eXsTLUui/AxrBvr5CxmPbu1cBfxBbS
0/1VbAK17i9jOlf0dydei0eZhWlti+IJ1xzZQnq6L6L/bGrdX8WSoltB6V6P
R3kD079ltTie8Di2xAZLA9cc2TJq3Zdi+rd2ltvxTaJ/J0u2wsYrA9ecFfRa
HPhKTI+tWvfF2Co7rra8RdbEI1trWRf4amwJPd3XYSuodV+JvW1Zb3mHvIst
Y43u67El9HRfiq2l1n0dVld//8qO75N66SLbYOMPAtcc2UbLpsA/wPRvEanW
fRP2oR0/snxMPolHttmyJfCPsI30dN+CbaDW/QNsFfv2KfkM095tDXwNtpGe
7luxzdS6b8F0rujfXfo8HmU5prVtiie8GbaRnu6b6L+CWvet2BeWLy1fkW3Y
dsuOwL/Edlq+DnwH9g217l9j31p2Wb4ju7E9lu8D34XtpKf799h2at13YKvY
tx/Ij5j27qfAP8N20tP9J2wPte7fYzpX9lp+Jh9h37BG973YTnq6f41tptb9
J2yfZb/lF3IA+9VyMPD92CHL4cAPYr9R634Y07Wq6+53cgTTtXc08HexQ/R0
P4r9Sq37QWwV+/YHWY1p744F/iN2iJ7ux7C11LofxXSuHLecILuw31ij+3Hs
ED3dD2N7qHU/hulvbevfjToZj3IK07+ldDqe8EHYGRufDVxzZH9S634W07/V
dM6O54n+nSbZXza+ELjm/EWv04FfwPTYqnU/jf1tx4uWS+RyPLIrlquBX8TO
0NP9KvYXte4XsGuWfyzXyb/Yn6zR/R/sDD3dz2JXqHW/iulvTf5nx//98cqU
6N9ZkyXZODkl4Zoji1nigSdj+rfQVOsex1LsmGpJIzekRJbekiHwVCxGT/cM
WBK17snY3+xbxpQomTDtXeaUhF/GYvR0z0z/9NS6Z8B0rujffbsxJco5zimt
LZ6S8PuxGD3d4/T/i3PMPTOWxY5ZLdlI9pTIclhyBp4Vy2XJHXhO7CZq3XNj
eSx5LflIfqyApWDgebFc9HQviOWg1j0npr3Wvt1MbsG0d4UCz8R+5qKneyGs
ALXuBTGdK4UtRUgqdhNrdC+M5aKne24sPbXuhbCilmKWW0lxrISlZODFsFKW
0oGXxMpQ614au8Z1VzYlym2Yrr1yKQn/FytFT/dy9C9BrXtJTHutfStPLvLz
R3t3e+C3sJ+l6Ol+O3aFn1Hu5TCdKxUsdxCdJ3lYW+nAK2Cl6OleGitArfvt
mF5r6t9tqZgSRa8zZfq3TCqlJPxvrLKN7wxcc2R6Laha9zsx/VsLVWxclejf
SZFVs3H1wDWnGr0qBV4d02Or1r0SVsOOd1lqklopkdW21An8LqwyPd3rYNWo
da+O6bWOXvfenRKlLqa13ZmS8E+wyvR0v5P+tal1r4PpuVbPm/VSoujfuZDp
uaR+SsJP8fzSwMYNA9ccmf4tCtW6N8R0rjeycWPyD89fTWzcNHDNaUKv+oE3
xf7kOc69PlaDfbuHNGP/tXfNA6+FNaCne3OsCbXuTTGdK/p3N1qkRKmCaW0N
UxJeDmtAT/eG9K9GrXtzTD9rWlruJcWwVpbWgbfE2ljaBt4aK0Gte1usneU+
S3vSAeto6RT4fVgberp3wlpR694aq8G+dSZdMO1d18CbYW3o6d4V60iteydM
54p+7t1PGmElWKP7bay3DT3d22JNqHXvium9lt43dUuJ8gCm9xLdUxK+Deth
456Ba46sF7XuPTFdq7ruehO9T5Hp2usTuObUplf3wPtgemzVunfHarBvfcld
7L/2rl/gXbAe9HTvh9Wm1r0PpnOlv+VBch/WizW698d60NO9J9aRWvd+mF5r
6u+WP5QS5T9ek+pveQ9ISbjmyAbaeFDgmiNLotZ9EKa/FT7YjkOI/k64bKiN
hwWuOUPpNSDwYZgeW7XuA7DhdhxhGUkeTolslGV04COwgfR0H40NpdZ9GKbX
Onrd+wgZgyWxRvcbsIH0dB+EjaLWfTSme226bzY2JYr+zr9M95LGpSRcc2Tj
bTwhcM2R6W/xq9Z9Aqb3uhNt/CjRfSrZJBs/FrjmTKLXuMAfw/TYqnUfhw1n
3x4nk9l/7d2UwB/GxtPTfQo2iVr3xzCdK/p3B55IiTIY09ompCT8VWw8Pd0n
0H8ote5TMN1rmGrHJ4nuM8iesvHTgWuObJpleuBPY7oXoFr36dgzdpxheZY8
lxLZTMuswGdg0+jpPgt7ilr3p7Hh7NvzZDamvZsT+GRsGj3d52AzqXWfhelc
0X2PF1KiTMS0tukpCT+CTaOn+3T6T6LWfQ6m91p63/QimYvpvcS8wLNj8y0L
Ap+HLaTWfQGma1XX3SJSGNO191LgY7D59HR/CbuJWvd52HD27WUyAtPevRL4
bGw+Pd1fwUZR6/4SpnPlVctrZAa2kDW6v4rNp6f7Amwmte6vYDrXdd/s9ZQo
b2C6l7Q4JeEHsCU2Xhq45siWUeu+FNO9quV2fJPoPpVshY1XBq45K+i1OPCV
mB5bte6LsVV2XG15i6xJiWytZV3gq7El9HRfh62g1n0l9rZlveUd8i62jDW6
r8eW0NN9KbaWWvd1mF7rvGfH94nuM8s22PiDwDVHttGyKfAPMN0LVq37JuxD
O35k+Zh8khLZZsuWwD/CNtLTfQu2gVr3D7BV7Nun5DNMe7c18DXYRnq6b8U2
U+u+BdO5ovven6dEWY5pbZtSEr4b20hP9030X0Gt+1bsC+255SuyDdtu2RH4
l9hOy9eB78C+odb9a+xbyy7Ld2Q3tsfyfeC7sJ30dP8e206t+w5sFfv2A/kR
0979FPhn2E56uv+E7aHW/XtM58pey8/kI+wb1ui+F9tJT/evsc3Uuv+E7bPs
t/xCDmC/Wg4Gvh87ZDkc+EHsN2rdD2O6VnXd/U6OYLr2jgb+LnaInu5HsV+p
dT+IrWLf/iCrMe3dscB/xA7R0/0YtpZa96OYzpXjlhNkF/Yba3Q/jh2ip/th
bA+17scw/azR+6aT5D1M7yVOBa45stOWM4GfwjZQ634G03uVs5Y/SX/snOV8
4Gex0/R0P4/1otb9FPaX5YLlb3IRu2S5HPgF7DQ93S9j56h1P4/pXNfPvSvk
KraBNbp/gp2mp/sZ7BK17pcx3Wu4ZvmHtMSuW/4N/Br2X4r+GFrC/8VaUeuu
ObIkOyZbYiSeGlmKJTXwZOw/erqnYnrseDD/X+wv9i0tNcoNqZFp79KnJvwi
pl6pgaenfwq17qn859G5ovseGVKjnOX8acUa3Ttg//G47unof45zzF1zZBnt
mMmSmdyYGlkWS9bAM2HZLNkDz4rloNY9O5bTksuSm9yE5bHkDTwXlo2e7nmx
LNS6Z8W019q3fCQ/pr0rEPgN7Gc2eroXwPJQ654X07lS0HIzScZysEb3glg2
erpnx1KodS+A6blWz5u3pEYphOm5pHBqwrdhRWxcNHDNkRWj1r0o9iHX3a2p
UfZy/eraK56a8KtYEXq6F6e/Hntv0Kcwpr3WvpUgFzDtXcnA87OfRejpXhK7
xM8o9+KYzpVSltIkF+dPMdboXgorQk/3olgeat1LYvpZo89NyqRGucbPH32W
UDY14cWx22xcLnDNkV3nZ5R7OUyfVZS38e2kAlbBxncErjkV6FU28DswPbZq
3ctiFe1YyVKZ3JkaWRVL1cArYbfR070qVoFa9zswnev6uVeNVMe0tnKBx7Hb
6Olejv5VqHWvium9bg073kX0OaOspo1rBa45stqWOoHXwvRZoGrd62B327Gu
pR6pnxpZA0vDwOtitenp3hCrSa17Lawi+9aINMa0d00CvxOrTU/3JlgDat0b
YjpX9Lln09Qo5TGtrU5qwvNjtenpXof+Fah1b4LdY2lmaU5aYC0t9wbeDGtl
aR34vVgbat1bY20t7Sz3kfZYB0vHwNthrejp3hFrSa37vVhF9q0T6Yxp77oE
3hhrRU/3LlgHat07YjpXulruJ3WxNqzRvSvWip7urbEG1Lp3wfRcq+fNbuQB
TM8l3QO/Eeth6Rl4d6wXte49MV2ruu56k4KYrr0+gVfHetDTvQ+Wg1r37lhF
9q0vqYRp7/oF3hnrQU/3flgVat37YDpX+lseJO2wXqzRvT/Wg57uPbEO1Lr3
w/SzRvfNHkqNUgPTvaQBqQmfiw208aDANUdWk1r3QZjuVQ224xCi+1SyoTYe
FrjmDKXXgMCHYXps1boPwIbbcYRlJHk4NbJRltGBj8AG0tN9NDaUWvdhmM51
/dx7hIzBarJG9/rYQHq6D8JGUes+GtO9Nt03G5saRfeZZbqXNC414ZojG2/j
CYFrjkz3gqcGfSZgeq870caPkvXYJBs/FrjmTKLXuMAfw/TYqnUfhw1n3x4n
k9l/7d2UwB/GxtPTfQo2iVr3xzCdK7rv/URqlMGY1jYhNeHPYePp6T6B/kOp
dZ+C6V7DVDs+SXSfQfaUjZ8OXHNk0yzTA38a070A1bpPx56x4wzLs+S51Mhm
WmYFPgObRk/3WdhT1Lo/jQ1n354nszHt3ZzAJ2PT6Ok+B5tJrfssTOeK7nu8
kBplIqa1TU9N+BFsGj3dp9N/ErXuczA91+p580UyF9NzybzAW2DzLQsCn4ct
pNZ9AaZrVdfdItIV07X3UuBjsPn0dH8Ja0Ot+zxsOPv2MhmBae9eCXw2Np+e
7q9go6h1fwnTufKq5TUyA1vIGt1fxebT030BNpNa91cwneu6b/Z6apQ3MN1L
Wpya8APYEhsvDVxzZMuodV+K6V7Vcju+SXSfSrbCxisD15wV9Foc+EpMj61a
98XYKjuutrxF1qRGttayLvDV2BJ6uq/DVlDrvhJ727Le8g55F1vGGt3XY0vo
6b4UW0ut+zpM73Xfs+P7RPeZZRts/EHgmiPbaNkU+AeY7gWr1n0T9qEdP7J8
TD5JjWyzZUvgH2Eb6em+BdtArfsH2Cr27VPyGaa92xr4GmwjPd23Ypupdd+C
6VzRfe/PU6Msx7S2TakJ341tpKf7JvqvoNZ9K7Ypna3H8kVqlC+xz/R3q1IT
/jG2TfsauObIdlDrvh1bqb9RZcevPeki+0brCFxzvqHXV4F/i+mxVev+FbaK
fdtFvmP/tXe7A/8M20ZP993YN9S6f4vpXNlj+Z58hO1gje57sG30dN+ObabW
fTf2uq3hBzv+SN5IF9lPNt4buObIfrbsC3wvtjRdVOu+D9O1qutuP/klNTJd
ewcCfxf7mZ7uB7CfqHXfi61i334lqzHt3cHAv8N+pqf7QWwtte4HMJ0rb1kO
pUbZiWlt+1IT/hb2Mz3d99H/G2rdD2L6WaP7ZofJe5juJf0WuObIfrccCfw3
bAO17kcw3as6avmDlMKOWY4HfhT7nZ7ux7Fi1Lr/hp2wnLScIqexM5azgZ/E
fqen+1nsGLXuxzGd6/q59yc5h21gje6fYL/T0/0IdoZa97OY3uuet/xFMmEX
LH8Hfh67aLkU+N9YFmrdL2GXLVcsV8k17B/L9cCvYBfp6X4du0Ct+9/YCfbt
X/Ifpr1Ll5bw09hFerprzkUe+7/Ar2M6V3TfOyktylEsC2t0vwm7SE/3S5ge
+2gwX3Nk39pwtyU5LUosLbKf9P2CtITvxlJsnBq45sjSqHVPxbZazQ12TE8O
p4ssg40zBq45GegVDzwjpsdWrXscO8G+ZUqLkjktMu3djWkJ/w9Loaf7jfTP
QK17RkznShY7ZiVXOH/SWKN7FtabQk/3VOwfzjH3GzE91+p5M1talA/TRabn
kuxpCdccWQ4b5wxcc2SfpItq3XO6cd3lSouyh+tX117utISfw3LQ0z03/fXY
e4I+2THttfbtJnIS097lCTwz+5mDnu55MD22at1zYzpXvrTkTYtyA+eU1pYz
LeFfYjno6Z6T/hmodc+D6WeN7pvlS4tynp8/upeUPy3hD2AFbFwwcM2RXeBn
lHtBTPeqbrbxLaQ/VsjGhQPXnEL0yh94YUyPrVr3/FgROxa1FCO3pkVW3FIi
8KJYAXq6l8AKUeteGLvMz72SaVFKYVpbwbSEX8MK0NO9IP2LU+teAtN73dJ2
LEN0n1lW1sa3Ba45snKW8oHfhulesGrdy2O327GC5Q5SMS2ySpbKgVfAytHT
vTJWllr327Ai7NudpAqmvasa+K1YOXq6V8UqUeteGdO5ovve1dKi3IxpbeXT
Et4eK0dP9/L0L0Ste1Xsd7tm/rBUT4tSAztluSst4X9gNW1cK3DNkdWm1r0W
ttdq6tjxbnI+XWR1bVwvcM2pS6+7Aq+H6bFV634XVoR9q08asP/au4aBV8Fq
0tO9IVaXWvd6mM6VRpbGpAJWmzW6N8Jq0tO9FlaJWveGmJ5r9bzZhOxKF5me
S5oGrjmyeyzNAm+K7UkX1bo3w3St6rprTvQ8JdO11yJwzSlOr6aBt8DSqHVv
ihVh31qSopj27t7AG2D30NP9Xqw4te4tMJ0r+y2t0qLUwbS2ZmkJ34/dQ0/3
ZvSvS637vf6fJzW6b9Y6LUppTPeS2qQlfC7W1sbtAtccWVlq3dthuld1nx3b
E92nknWwccfANacDvdoE3hHTY6vWvQ3WyY6dLV1I17TI7rd0C7wz1pae7t2w
DtS6d8R0ruvn3gOkO1aWNbpXxNrS070ddj+17t0w3WvTfbMeaVF0n1mme0k9
0xKuObJeNu4duObIdC94atCnN6b3un1s3Jesx/rZuH/gmtOPXj0D74/psVXr
3hPrxL49SB5i/7V3AwLvivWip/sArB+17v0xnSu67z0wLcp9mNbWOy3hz2G9
6Onem/4dqHUfgOlewxLLoLQous8gW2EZnJbwJdgQGw8NXHNkuhegWveh2PtW
M8zGw8mGdJGNsPHIwDVnBL0GBz4S02Or1n0w1ol9e5iMYv+1d6MDfwgbQk/3
0dgIat1HYjpXdN/jkbQofTCtbWhawn/BhtDTfSj9+1HrPhrTc62eN8eQI+ki
03PJ2MA1RzbOMj7wsdixdFGt+3hM16quuwlEz1MyXXsTA++OjaOn+0SsNrXu
Y7FO7NujpDOmvZsU+ChsHD3dJ2H3U+s+EdO5csbyWFqUYZjWNj4t4WewcfR0
H0//EdS6T8L+D5xUQL0=
"]]}, Method -> {
          "EliminateUnusedCoordinates" -> True, 
           "DeleteDuplicateCoordinates" -> Automatic, 
           "DeleteDuplicateCells" -> Automatic, "VertexAlias" -> 
           Identity, "CheckOrientation" -> Automatic, 
           "CoplanarityTolerance" -> Automatic, "CheckIntersections" -> 
           Automatic, "BoundaryNesting" -> {{0, 0}}, 
           "SeparateBoundaries" -> False, "TJunction" -> Automatic, 
           "PropagateMarkers" -> True, "ZeroTest" -> Automatic, 
           "Hash" -> 3484284089288049788}]]}, 
TagBox[GraphicsComplex3DBox[CompressedData["
1:eJxtnXWc18jPx8tii7tbscXdvbi7y0Fxd9crHO7ucMUdDjn8oCzu7rAUO3xx
t+ch7ymvpb+7f3iRG9KZJJN8ksnMN3WLrrVaB2iaNiyypoXX5D933Pu6zv//
aRzr8Grvj79/SJXlx9+d8Wa9H3+aTZOc/0G3tj7OJn//p6PQ7Tq7DpX48fc6
KTL/+LsVPUDoRv5J93+MNwc/zMC/PwJ9+UT3x3gjxpqcP/7uvjgndN0MeCH0
eeez/vi7lvWa0J2Z494KvcZE4WPt6gk9z2Tho29bl17+/YQoQreyV7ko8wzO
kE7GNdhcX75/Na5m/OCTJTiv0OttEbobb3iEH3Qr9V+5hF6muNDtCru//OBv
l3mVQ8btyA+fmPabEsL/z9wy7vJGoWsdgyP/4OOaKWX+TrNS8LlZKdwPul5p
RyYZ13ot4y93ifqD7oQMTiRyKV8G/g9WhZd59oCuR4NuL4kNvfDdNEJvsp75
f9gb5Qdd01PKeu35t0QOWquvH0UvZYcIH61GCPSc7geZf9bDqeV7E2Khx2E7
1v+Qm53sDxlvxoiJnG+1c37QtdHRdPnuqH7IuVOiB8Ln1Vmhm/oA7OT3Mo+E
ntfiuw0KNhb+lWfElnluPFBM1tugdSOZf4SrCWVd97WCQp8xv6F891G6eDK+
Y+QC8t3Af4VuL44WU/Q19o8iMo+PT4XuZpuQVOTcLbvoRY9eXejGwILC3y40
R/RrLN7WQPh8HBZX6KUnix2akW4IXa+bWeZptqudT8Yf+sL4JbFEX1ayCoXk
7xdn8N2B9VOIHg+ORo/N4gjdGr4gscx/7gj0uEyHvj+S0K0Yy9kXV1cJXQ9d
k/wH3bVyZRS5/TZNvmu06hVf5NNhGHpZtYD5bH0j8nEirA0S+r+pmX/FyjJ/
53ZX2RdakeRCd49vEbq9/nfhY8fPLnRrXhGRp11jXXbh86Ys343+W0Th814T
+VsHighds3qJHIwyw/II/Wth0a+2d7nwNy7cySXym/yAdS1NJfz1/mYOoUdc
CL1Mdpm/3btXkPx/p63Yg7P5oejLbdQ4o8hv7Vf5rlMhmXzXzvY5s4y/hr6c
v3LId916idPK90tuZ/7fRop+tRE55Ttm6hrYw5AS2FuJ8olkfcGhQteCZ4v9
OJ8nJhH9zMJvGOETit9wR4VLI/9/En5DezNS/IZTbI/wMfMXRZ7GAOTz55eU
8v+7l0NuZkuRp232k/WaAZuEjz7tgPgNq9zAAFlXB/TiPCmBnYdfFV2+Hy8N
eu9ahX3UbOQL2Zc98QNmqn3iB6xX4T7vlfVjJ/r1d+yj+dr1H3T9xGpZrxlz
k9ib1mT7BfGvhVJjn1ZU7NZJv/4HXRtPXDBVXNAe/4tfVH7eVH5e69bgqPgb
FRcMFResbw/FX3pxxFVxRAtcLfP1/Lbt+e2j1z7Jnz4/r13K8EziSU7ighFx
vMQFzdj7p8znHXHEeE0csQLrIO9WxB3t8STizrr1Ig+/H3Mj74gq6/H5Pata
SAzhW0v5z474T2fmjUgyPj7+2UoSR/yzvrZ9gKyzG/7f3FlZ/L9W/+pLme95
4ogxc7HIxchtJZN5NibuWDP2iHydSA/Yx3/0EflrD2Mllz8/Epf18J2E7m7+
kEL4qTir3T0udHvK4KTogbhsx7ssdD31zMTyHRXH7WGt4HO5biqhq7ip3d8v
dOufq8nk7yrOmnZq9FV9kPBxjo/Hj6XPQhy/nkn8i9XqrMRBO2pB5Ba+agL5
zpFV4m/1YU357rT8Ej+8uPP/H2S95V/Iek0VR4wke1nX0tVC9+KOEWAK3VkV
T/7uxSltfRLsYeSoJMInJ37P3JEMve8pK3Rr1iGJg9qES8xzzea48p0Yoxgf
eAN76D5N6G7VxCIf6/f+8Fn9VNZl/OtKXHYr9MHO86dNKP8/5VD4ZHkM/UIU
+OeJJfLRCwzju8sKCh+t4GZwwpGE+IfOkWPxvb8FtxjVbeZTqZTw0TbOlXhn
9J/EflwXLr78uw6PBLdoE7/x3fRR4gif2MvAOcqudGVXlrevfXbi7VPPrhxl
V9p39rXms0PPD9hx0Lv9R1lZl9VzJf4+C3ZiRU2LvhtVkH2qL8Ou9Dx9+a6W
YJ7sy3s+O1R+4H/s1vMbMRIht8HdY4o82t5J/YO/cRI5WN8OxIbPH+K3ranI
zerwbzyR4+rTsu/0jshZq5YOOVdpK/vUaYQejW2XRJ7apxQBMr4SenRyp0OP
WybKfrfHYCfa/ttCt/MPFf9gp1Z2lb2f8LdW9hW/7e7CPu0IpZOg1zuR5E+f
nf/0S2pfWGpfOMqPuSnaga/Sl3ov/rZ6TonL2vG+4Jb6nR6LHFskzfCD7tY5
JPHC/Lrlq9DL/Z1e5LYzK3Gz5qjvEj8WzMou9EGhxLU/y98W/g8WI8/DrcEb
9UNkPVbhZMTz/DfxbytCI8o8x/8h8dkZGZ94HaeO0K0Ca9KIPGfUIN6dyhpB
+M0eJXHfWjOGuBbznivzSX1N7MjNnITvds7+ReS4dafQnSpZGb+gpcxHM429
EkfaL4J/9Ec3hG6NtiVu3FnFPDeuEblbnxbDJ3A7cX9vbaFrVW7L94205YXu
5Hgu+rCOd38p89pWDNzevpbYoRV9Kn6saVP494nC+A6h0USe/y6Gf4a4UWQd
qQoLTrCmDMGeg/pFk39/epTgCi0O+FnbnkDsSTubFVz9LTNxvH3f8DKv8zkE
J2vbDqDfEzVkvLNhd34ZF6839pD33AdZz+6hgve06dWR28I6sl5nSmLBvebc
eMj5bvXI8r1BmQQnuyNuMP9BHaFP7yl+3pjaCjyzd5Qm3yvcRvyPNfgp87Hy
i7ycm1eE7sZlve7+0dHl36fpJDhTa4x87MjFxb41+4HM3/j+G+OfXhR5um8n
Co61X5RDL0WaiPydYq0kflmrtxGXr6SUeWqzZgTJv2tsY88FRj2Q+UR9KnFN
X5kFO+mQ8ZvYVeHBQjcCajcUvU2/UVzGjQuRuKzt7Cd0t2L4EvK9XkXEnzu3
DwjdXBzPkL8HTMgUdryVfZKM11ZoEpetTn/CP1wW+GSsIfN3Dn6EXqYEfOaB
842UhRv9oNtTrgjd6HDsl/FunzlCNwuWyhyWv/NXIaG7QzOK3KxwB+E/rWYJ
9LsBPx2aQfhrwc2NsHRjSzKhW/kawmf6IfxT553CR9teTvjYu/4hLu/vIuP1
+IElw/KxWjUXurnri/DRvzyW8c78FdAnRysVdrzz2xzoRz/D52ZGieNG3XFC
d9eOEbo1Ll7qsOPtHrN++e7P+cw9wfizlYLCzsfZ31ToTrAeFFY+5pzYQrcn
lskRdr1uxjXMP+Hb7GHlY6dKwPiTZzKHlaeRcQjz6RZT7MezK1PZlVV0t+Qf
np3Yyk6sNWXIz3x2pXW48qxEmPFaJexQG7n3ofg3pXdX6d1KeE/iu2cnWl/s
xLo9A3zqsytNrxm6N8x4U9mhFf677GOPv+nZ7fxPkjd4crOU3LRKdSS/8ctB
W/T+U4kwcnOU3LTxUaWe4clZz4SctXYJYxj/oUdtbaV/94bRo6v0qM168lD8
nM9OnOCu4lf8dqUNSip0v30aWlzxx347twIO46c9vat9YSxYEi2sfo12W+Hv
1+/sdyXD6svTr14pRqn/0q++/C/sVtmDJ3+tV0HGK/l7+tJP1ysVVl+efo3A
KqX+U7/zvzCfO9iDx98uPZ3vKvvx9Ku17/fLPvX0a02c+wvdk48ZaXSpsPLx
5Gm3a1MqrDx/6lef8gufn3q5MaRUWL14+rXPVCv1X/o1dPM/+bjnkyOHmdjJ
z/nMU/aj7M2bv55c+Q1ln379+uOCpy/Pz3v61ZR+/XHBswcvjvz020r+jvLb
fn15ft7Tr6n0648LmrIHL4747ceLO/71OsqPefKxlHw8v+eXp+c//Xrx/LM3
3lB69Pz/T/7KHrw44s3HUPajzSDuOJlqgZ8bppE8QcuylzpQtMfUt+cUFXxo
te0dKPTCO8mbqqfdKXZ/b43UgaxKq8ib0tYVnOykXpZK1mOWJE858/Wj8Nny
QfCtXukaedNfVwR3aU3nxRL+M6n3uhG+y/7RnywXXGdfzAwOfDH/ntDbniNP
qW2D957OlXqFudDNJPzzJwNf1f5rh+DzJhvTyXwyDmR8+DHU7avUyyrjG79B
DqmXCO41P72gznY4EFxUNvSp8HnYUujuzEnMp/LoC0J/vzeLjO9AXmNr7WVd
xqETMk+z/Uzkk9EROZih1YTuRt5GvahqXcmzjDWrkH+Uo+Qpu1LKPjTWvooj
479lR/5DDPCqPVTqb/oZ8iBt22HBw9bzhqIXs20dqTeaw25QV4k4L6+M7xyF
fKdGYanLaXvm5ZbxKRrLeOtjsNSlnVSZ8sv/3xwb/ByzDn5tbWPh45gxwM/R
qc84L5IKH21udOqECajTGSEVc8p395YS/vrVN6/FTq4ULCB8NrynzjYzneBJ
7fvEfPLv+kflux/2S33MeFdN6HqpusLHTbXkkthV3ADhozV7AQ4vtvyO8D/b
PI/w2R2e+dwZcF7m+U9SoZv184K3X2TbLXFi9RSZp9NAB29vjodf23WD+Z8t
CX8ri9TN9AIZpU7rxq8Azp+b7Zvksb2WiT04u8kfjYRvJR/UblcU+djRdyP/
R1/A+Z/Sizytb3/AZ1NqyTusNInlu8aYDXw33yvJN60v7yU/dQ6vp/6/uTf0
d0Ho9+w74W8VGRVOvn/6tsjN/Csn9tyiOvW7aOPEnp0Rh8D5zddLXqn/3Vnm
by2uRP0tRxWhm7ePy/4yMz5U+UsD4W/v/iZ5rj0yEvMsUlDyI2fZSCW3lnz3
sC5ysF9vQT6fz1MHPvjqjcx/R6DoxR6cFjs5FEfyCKezK3Zol7vKeidb72R8
5nyyLjvCcPxVr3nUqZS/svvcp+7RkfqSkxn/Zh+cxv4qtUfonv8xS7yjnla6
gtQ3PH+ltW3E/p0enXrIF1v8m5akAvtu9k3qEjWX4w8XBTK+bwYZ7+1TJ9Iy
+BebR/1E7WtD70J9Y/ID2b/mhar4hwOqjpq6uOT1ttVM9KW9pU7rtC4vetTj
rBL/ZtzYzHeHbZY6mFbysPCxS4S0ku+9y8z5X661+LGzbVrLuEeTJU9zqvZL
IfO/2FHo7sOC5GNRXMmj9dau8HHyPQiS+QTPpB7S/IiMdwaXJx4nusn5XrfT
QtfD3yb+FTsA/rl4Hv5ja0hdzwpKJHm9a3cRupHtbxnvNLomcrZe8V2rdm85
7zHDFZbzDrNrwjZC37Oc8Tluiv4dPZXQzQl5hb+RC7qRL5rQ7fG3wBnJ7oqd
2k8DhK7tq0a+sfeU1MeME+mEroebK/jDqAQfbVJsxvcrT/5ZbILUjcxGqRm/
z5Y8x0gdgj2ejM53D9egzpjgiNivMykO9DE9wQF9LgldixAEnzoHyIum8l0r
FfI0jrRifOwbIjcnxwWh2yHDmM+hE0K3W1xBX/O2ybrcGnNEbvoG7EHvtE/0
ZdpThG7f6yx8zLyvqJtXz6nL+JrtsJNBN0SebuL8Qjef38SunmUHJ4Uml3NJ
Owf6Mq49ChJ64alCd3diV86awuCzEpOlTqutxg6tCdM4t66Wn/rtKcUnS3/R
u/PhrvDRJ2In2i7WZT4+BZ+T2JWVsBbnygvLS13Fao3ctAR3sMOcKThPr4Hd
2okrYufTHdGPUwS5aV9PYlcL40s9Ry+AHIzaT7CrlG/ku/Y55KYt+0BeuusF
85+s9l3q46w3RWzh48RiPu7ezqJH/YRJnT8IPer7R4oetT+aCt0eh51ov/WW
8dqFryJX7RB2ZXypI/M2i2giP3ecss/cFYSPu/Zfxj/Azo1h1TnnaDZE6FYu
9oUVw2VfXNoldKfnYOQwqBlyaNtd6l3G5kjI+VMx9u/ljVJ3cj5mxX6SFGK/
vCggcjA72chhSCX6JNxU2Ekw8nSCp2C3H6Kzb1pOgU/MOdSnlgRTN4i1AfkY
UeTvetm06DFZRfS4ZAF8qsyR7+qtdsp3zQ5/opdxC/lu3W3oMdpk5P/9nuwv
/eRt9PhsOfNoc4d9t+ok9MvtoNeykOeSJchhXAPyiiTphW6v1ZBn+7icl/d0
hY9d4il8qtxmPWODZbxxhvHOoAv4h/NPhe42TyB0s2RM7CPWLfhk3M93N73B
HtpVlf/vzDgh63W/d5X1Wt2fs94OTRi/YTD28PtlkY/VcQh66bUCP7CzlNSx
rTiL8LenTmMnR5ZRX+2WDbnte4D9d+0k8cJoHRl9vduPnP+tJPV/8wTyd/6q
hT/ZvELihdUGfVkHOmDn/3yQ+GKXQL/WH4/xbx3vSrxwNyh7eNgWeoujnAPn
a488o2Ln1ul7gmfdmaxXG2Zihz3eSRyxLyAf61tpmY99qIr4PbcM8jTi3IX/
uyLiP7UQ9GIUPIFe2nUUP2/UR4/27XPQ9x6VOGJexx7MD/ng8/cNwWXaaezH
OFYTvbd/SnzJGgi+fZQJHD66p9SxzL9qCf4xDh6kH2ZySepk56JRf37RLeAH
3YmcqKjM4yh42yo9mDpUgcdS39YuxxL+9vxUQrcbJqP+FNAIfJWrGDj/96jk
2b+Rf5llPoLnZyagvr2kPDg5SRrBt9rb2eLHrPTkX4Y5nHPnWJuxt97gZONN
fMHJ2vTGUld3o5J/2XNPcT5+OVT42MnB23aczI8E1yVYLuty4oDPjTHtt8u6
sjYSut6L/Mu4osk5uGMswT9/ew7+DN/2ntCT55U6k1kF/O9kf3dW+Gx+Qr0w
AfmIO3nwWzmHOE6dwBxK3mT1r3xV5tmwH/l6CHmTs3BUsMgn+0zkmZH8xRk9
U+ZvJt5Gvc2XR9u9beoYKu82vbz7flfZv5rKizWVF+uv29NPpfJoTeXRZvkh
1P/Lknc7repL3u2eWCl+2MxLnq4Py0qe3rmDnHv6803nQ0f8ii9/1GfWY7zK
Nw2Vb1rDdKF7+amh8lOnYHH4tCX/NQZ2kvH292XiZ9zW5L961v0yfzewLfFx
h8qvm0cSORjtX8k5hV5d5ePv99CfkaKQ2KGbVuX1/T5IXm+EJpbx7h5VH6g3
W+oDbp5VxGWF/7VO4H9Pzv584ade4oLnnXb3BM+bJduz3hbgfy0kjsjNerSC
fh6VL+gqX/D04uUXtpdfKD3q3XOq87LL1EmvR2FdwQq3Bz4W3G4PW0r86kb+
pd//m/O+bKvBUS7431rfHfmbCUQO2lbyBXNoQ8kXtGEvhO6sIf9yV62S/Msa
slDtO/IOt12o6F2b1Aa5+fIUT7/+vMazByvGTvZFl1wyT+1kTOy/Rh/ZF/ay
8NQrBmeTfaeNeSvjjVkZIyC3J5yHnFpHnl5+r+TF5ogI8Lm9nrw4TwPy5aAT
4t/MlOTLdsEA4ePceSp+xlhwhXpCxoec0z0di/9ckUb2tZN0nPDRRraXfe0O
Iw91U60Fl8fjPMEtQj5rfq8oduusqCH+x9z/ADt8mIXzwTMV5bt6ZPJo7fue
SEIfMlTkbLZJZAq/AjsljhrLPib48adZ8Hkzme/HChKHrDjXpH/JyN5Dxusd
O5PvhcQVuj4IuvEkksRpZ2Uu6T+yi6xvhj7uSH6u/bmYvsKILWS8NfaCxF3t
y6a71HU+C10rfELyRi19E6Ebm77Bv8Qs6Q+zKk2Q+q1b4z18ehRJI/M7k5g8
d0oXvjueeoER8RXnTY2rwv9DPpmPUyCZ9CnoyesI3S52nvVOeI2dfraQQxZN
+Ggvj4q9mJNfyHiz6TvO1ytUFj72kTfIJ+9S5LCzL/vDqtBCxrecI/Nzb2+l
P2J8eaHrW6rSt/a4suhHj7eguejl7FrJk62hB7HfrvOErqd/TJ0x9HfhY1Qq
LXzcjvUkn9eqPaHuuAQ+xkFNxmvLm4k89d05ZbxVvbXo22g6gnntmyTj7d87
km+/fEI/Zva5QjcXfqC+0Jy+NntTEeFjzN0sfQNam3GiF/tVXCWfedhVlLHE
hZOdkU/cf0W/VmB62adOvS5Cd36rRd2nTi7iy5wHIn9tcXby6p4lyYP+eAX/
tEnSCJ9qm+Bz+BP2kGmg2ImbeAe4uPEH+NffLt91tFHgynLNoOfaJ3boTGom
dHfnSuxnxGnspPds8rBKWZHz/TQiNy3kC344YkGh2/Yg+hEfRQdfV5uJvl7u
FbkZv0UFD0ceh5yHBYmctTdf8VdrDeHjVM9B/+Kig/Jd/V/kr215KvmtcXM7
edtK7EHrulj0q4+JlVboOcthV+0LoddHaYVuNHrNeh/NEfvUSj2nDznpEFmv
XuKd9GfYXwMYv74W+yLrUZG/E++2jHcWZQWffxwg/spONZ58J7QOuDpSVnDC
l8X0mc970lL+TP+b1D+tRa/A17GuCd0pPEnqmdryUthJFPC/Vvo1+yeDLXm2
tSYyeUTsD4KjrBtrhW6kHwz/FDc4vxkYG3196yB0t2aX97Ifvl8gH7r0m9Ct
LzWlv8fNHYV+4z3LqD8cXhYo348/SOKw2ziIda26KThK212Luk3iFMhhdB7q
sSXPinzsoXOh//Wv9CfoXW4J3WozjfV+ainno9qUNPCpNr4lcu4vdNN9BJ8x
z0SPWpsR9DO1jol+q76Cfn4TfbPXntEP2PMu9FrHpG5oHR2M/RQ7jl19LUWd
6+US+s0iXcaeL1eTfWt+XUC+fji7zN9OkYu49jQC/LbekHlqwTmkHm4sm0z/
T8gz5PwpD31EMw8EyPht9ZBnzlDqxhe+0YebrrmMN3KmeyVy+PeD7CfnaGfk
sz0l/e3hXkeSdWf4Hf5DGyE3s81swcWVo6CXeGnFHrTEc6Qv1aj8O/Pvdhi/
Ofqd4GWnxjX83prNsl5r3nn697Oehv5+F31yHfbS333qPvsoaxT6dQ80PCf5
yv5Q6Pps+qW/9xc9m40mMM9wu2SeVt7rYkdmhnnM5/tp+lUutgIfvVD2M+2A
yNP8/gmc+3Lrb/LvHuaQvnHNHpgd+fYRuhGVfmUnQz/qIlcLNBX+AzpTF56e
gDz7S2XoC7JyftMjm+jXfpVf+Lj57ks+bBVIQJ/Mjlgy3j2wGL8fYUmQfG9C
BPEPTvrl8l1jyh9C17ImF7q9tTl9gXfzynfddJkZv3QRdjWKOon2+EsTodeP
RTy6WpX6Rvp/ZT76ki7i36y23dl3m18KXftYmjy84hH6PPXoQreWjKAOuy0Q
v7T7oczfSXtB/KrzZhJ8dr0QutmrhKxXj7pB+LgJJ4MHyg+Q+Vt59zKfBdDd
RCmpg+9bQV9K03DEnXQHRM5Oy9XMp+g3/Ge28sTf46uo9+acjv9cep66Z9lO
yG1PZPzw+ar0dZ8fIHRz51K+2yjtO4nTqe8ht/7gNKdEoPQHGNk18oV7scBF
V8tJPDYyUT8w3LnQLwWQv8/Mgp1kCkaeR6cRx50b1CWiNUDvIZVFztb5RlLH
cE6WRG7t84petMJJn8i8xlnCx/m8C30FjMKPPsgvcjCP98WunlfH3ywLQj7B
u4l3dToLH+1TNMZ//MR3i6cHF19JKN81kt7luyNLCf41LhZj/ul6YT8TV0n/
g5ZkDbhifLDoSyuTSL5rBNnggYw6+2hxqPSJG0YC5Nx9Ovpqd+SxzP9zCuwh
YWH6IOvep7/95Szoj5MT93vUlTqJOTYacp6+SfaLlikfeWTd8ND/mUX8Hf2W
/t9JU6F3vCbzsfdnlnzFnP5G1qv/HRW9FBwk483tsdin12ax3k6xpT/ObvcW
/9D5K/KpsFD647Qe4/BjOepyPj7wmsQ9fe4S/FXEcJz3veixTfxT7Tzg0g85
Dwv94ae/JP4kKQSeWdYHfz409XfR14ZdxJdqreV8TYtdUM7BtO5F+W758sfE
z75ZL99xFm8Bxz578Fn+/bChMt4qsBX8U32XxGstuSXnn26CYKE7L0eKPVkF
5nBfqulZ+M9ZTt/poVDOO96An91pN7mn9uIB+31EGeYfOZL4fb3RPvLCDSoO
xhkq+MStMoR6w/5t4OQWx6hTvVbnMl2Yp/HZZZ73NnIeviEd8++SUPIfzekJ
n5jQtbUtsL+BZ5hnzAyM33NexlsV2ot+zHKFob8dKnHO+nibeDcwG3Krr1Pv
y7zktuhx9ijkv2mT9MeYbc9xz25BXtb7dSB9ts82U1+ckAO5TcwkcjfmfwI3
/mZDz36BfD9JTPpMruxG/uMSSN3J7L+KOu6ljdD/2HpN9H2vPXV3C7qWaafE
RSN/pCCZx27sx+x4nnOjPY/lHMZuvoN8YW9HiXNOZdVPMiUjcgiXmfsVja9y
3tU0L/j54hLp6zUidiR+jU/LfKZkxC5bFxE+zo005Cm7cuMnJ0zHz5/ADq0U
k8XvGF+G0U84+Bjz+WulxGVn+jr8fAqVT9ld5X6OVWoE9+wKd5T4ZZ96Gknm
V3uknPM6vZoI3W29XfaFc2alnBdbU2cL3dhXHjwZ9ZucF1s5+sp+t8ZGkv5z
J2E36RNwjzbE71XKh73+U4I+hz1VGB+zpOjdKbBBztPNcCF8V7/AefqbPAVl
/La9xNnyHWWezocQ4W8FbsbPBwyjL/dPS8a7J2ZCj1MN+16QU+hOvQbIecVw
+vavxhI+xsAq6OtzCrkv4PQ/wTn4iQr4t7jtqC9lu8j4zXWhP5ol9xqMDKmE
vxm7BHy0kfBpnF/4OPcL45+fvxY+RuuszD8j+tWrReNezIxYIgd3Xjr4PxvM
+XWzw0K3U2WHXjka5+zRMwh//Z+c7K+ASdybeFKFvo4HWfC3fx4ibi6YBv/m
4cEbdc+LfRrNkqKXT4mJX/UOSV3DqLpT+LhxQ8EhiY5If7lV70l+5nkZPPbw
ptQPnSHIR3v7WfRl7a53RvZp8nrYQ9MRyD/THvZLkyzC3xrZh/lPaiX2Y0QN
xK4S90FuzaLS59PrltDN3GOIj6VnU9/Odod+lZYdkf+UvtzvuLEc+RRuj9zO
3qafL91c5tmPfPn/8TN2myhQ9Gh/bs48dzzgPlGMcOi9wiHi2uuMkeTfdWyG
XR17gd0m/CZ+xjkbGT6ps4GTbz+RPEefOE/6N5x1Kh+Zk4D7OUeHZJP1Hs/M
ucnLyfiXA82l78UIrkOeMj4PuHDGKvpbSjYSul6/B31p9/IK3Y1uknc0/Mj9
rPATpY/FrZMKfO6+BR8HX4T/ZPJBve2LIJlPkRP02xQvR175fj/3lrM+57u9
qjGfdGtkXdqRh0K3KjYjLi9KwXxGVKRvpEA94tTEavTVBdSmT6ZzW/x/9Tiy
X6ze3+irqTqA8fESix6dL3+L/3E+d4WuVQGPduhDP0/FU+SbhZm/Pv8YfS/T
npK/jEkpebV+sJ/IWX/yDX9+/iTzPzNd+mesPIlZ17kA+g7fIzf9bRb4nB8O
/U0Z5NA9PPla7UX0SxTcyD2UbNRV9BFr8MsRgmX+etHExLWjXZFP0PLc8Adv
6PWyoN9mU/CHtyrhz+NGFLpRNyH7JVIR9BLSjj7IPjvoK/sWD/v5NF7m4wb1
Fz1qTcOBM1fPl/3uFIvBOcv6jEK3A+fhH+JXpA688RP+ds/4s3KeMmYt51bl
LuFXZ+WSeG+8/khdN/SJ0LWxJcBXSYfDf34C6l3po4k/cQtSfzaK3xT++vm/
uXd0JAV9oC+eC92cu0/irD4/EvT8m+AfqTf3Kaya9Fc2P8h+LDA1koy7VIJ+
zBf1iZv9P4mfN2/T92pNZl/bB5OCY1asZ10R8QNamkf4n/tphI9ZQfn5WvGw
w5Y56A891gEcFTwOPxN5KPyntsMvFY8u8cgp+AT+r/9gfOhD8uFHwSIHe+Yo
/NvJN/RJLo1JP37M3synSUbqTj0mIM/ZvcEnc3twz6t+LuhTGhCX+x2Kwnz3
0/d9pB163P1R/J6+7zj1+QEV8Nv5Xwkfu2hP7mHEqo9+t7+jz+pqfvj/3hs5
R9oodCcP/bZ2tFlNmE9j4e82H8H4JDr45J9Psq/tzAZ6b5EDvbRPJ/fj7DjX
oW/PSl657ZT4W7dOIeTZIw3y37WPevfxCcw/f3H43EohfFy9KnYYkTirXVyM
3062g3sMJVQcP94IPjb3NsyXlYm/myOmlH/fYibf3TWDPDFGMZGP+Vdm+n//
2YM8c2UQ/KO3eMN6d1IP1Pefon6n9eZ8JPxJ6niTP3AP9v2iwvLnwwDqfqNj
CX41csWU8w6jEn5Gu58wSP7cdptznKBE8LnylPvz03Jwv6feV3Dvomz4pVmF
5bzGTY6fdyMkpM54ZT7nvKuUf8hxAvrXrkJ335Rl/sNC06GnUWI/+vzCzGf0
br47pDb0Fvglt1ZH6npBx7Cfm3Whj1d4tP0Dzpuy4d+M1iH4sUpj0HvzhPjD
xGmpJzbOzTnyq8z45/XH4R+aFv4piZtm6WTwCenKPbJg6rf6yuf487LfiqCn
ZvjtJoHgsWLpkNtfDZFn3b744UzHhe60IM465wvDP4Eh83HHEZf1njPpvxrd
nPPxgsQjq3QD4tHVvvjP9P2Ja3My4x9mJeL8OrQN8kmaln0RfTf2HNoUesa8
zOfjbfxDNuKsOf0f6qQhv7OvmxKv7XrfguS7+Wahx0b0Odhrrt6mLn2B+2h9
otDnkCy29FVYAamRj92hIXrJ8Y/gvdDhUq82m90Vul55i9RttJubqc88GMX5
45Locu5i/dace3ZZh/LeQvcmcp/fiZVRzuP+fyH0CQzOIvdDjMQB7MsC8YS/
NbYyfB5sYn8M7ch3Ny8nTy6Uk3Ol6KM4ZyxST+qtTpwA+tc6Ned8c+5lzn06
zqBuHDKIvt9cg6lHVf8kdu2u/Ab/+W8kD7WORhH5WaPuCN1tEon3KPQW8Bl/
ET6ZslAX1QpS50/RmH6SnlHJb/M15RxnaSVwYJGyXyXexSgv8jH/eUQfyNT4
/4oc0uXkPDreV+QZ6/sX5H+e/q5+XeiXmJhM+mudV+V51+VYTM5Vv+5ZJPFx
XTzwxvbo8AnsIPI0r07lvC54NHwiZeHdlaov6NtPPhE7ufNF+l7MhQPSCJ8D
6n2MuuQLlttY6qx6cGeh2xHGhAp+KPhd5K1frwvOXxWPeumM05zbLOpLX0d4
hzp48FHO095FwE6WlpL6u1GpsdTJTPM19P2n6UP6cpr5B9xgnm506ldX2wTI
v1tvCl1f91H0YiU5Kvo0x4TDHvbFpm4W8QJxNa8FPWVM5rH3oeAXvdYYWZdz
sbDk11qt8HelTnA1PuuNso6+mi1FD8j4rg9U/tuKOuGp0tKn47TvTf2q5Tju
wR4MT/0y0Shwztyk1LtOPZP8yb6APRi1Q6iPRU1Pv0y2Nshz9VDqh2UGiP71
vonI4z7GkPcxLD0bcrXykL8XW818vqcTP2TGww6NtgW5F1F/FPcbFg9HL21P
w//Ze+x830Lmc/I753ptMnDOEzWQew2NUvIOzJv49KcEPqHvPbfLOe/fh9mn
ZX7DPr/E5x2P4LGv5XyhwzbmczubnEM4dxLJ/3f6PcU+lx3gnHviJtGbPak9
8mzcnjp/aH38z25wo73tmNSrzfHPec+heDTOEf64zvskIefEj2mlqGOYT7JI
fdJMkJpz2Mt32I85Jsh89NPDOT/NZhHfv8bkXn1+4qe2gfFGjAGcm0S7Sh+O
uQb+3cvSJzd3gOxfo3k97PnmCfmudbIE9erByv4/NuQ85k548Utm0Dzk3C2/
yMXcmJ18cVA58FXr7aIv49EwiUvm24vkHbefgB9+Zx3a4prExz0H6TMvNEDO
je1ueemj29iXeSzNyr4f9Aac0Dke/eSVZ4ifsJtw3qc9+h0+yWqx3wOSM75n
dfKOD005t7/yO/2lbU/yfkS9h+DruPTrGj060b/68aycvzkli9J/+E9f6m7v
n1Dn7JKZvr7AWPRRl4rGvaUB04m/JfqQh1Z7xbnGmBHM58R34uMCcJn57Aby
GVeAPt12w7lvMeQZ+e/hFcSb7s/5bs/60JuFAz98GXpR/GWv1fA5WSBI6E0X
P5d41XMe530DuwludB69Ffm7V0LAS03ag2eqRMYfXK5LvO5u847Jgq34J5vz
PvN2Z/LiYxvFj+lGDb67VOG0BFPo13p/gfXmnEt/dZeI9EdlSIp8/twk83Qe
jpK4o0eeA94b0wlc6hbiXP7P18wn/BL0fikW59on8tAvHXCbc6/WaekLtmeD
ixZ35HzoW0r636Zxfq1fDGW94Vpwvz495+b62fPYSYN6vHNlcd7qxMkNzrzd
lP7YlJyrOklfiPzt9lOp3zZehR1+es268tygv7Ul+tXmq/sUn8cS393h8Dne
Hf6t7mMXAdiVPq0W9tYzPfWVfZ3YF5cWiH2aZzeAc58FUE/I2ELqb+6LIPpY
P+wBlza7Ql6QbxnnmJOzgdPe/y3j7ewhMl83I3JzEy2mvhf8jnv6MTmvd573
F/uzPql+/2iRoB8swP3P4qPor3BqKP4nycuOKftfWB47LD6QOmGGmODWCofA
839MlO+and6wHy/uxD6HvBa6Y86iX6J/Ouz/ayzqxSsLidyc1Lmxt1ufwaUp
4GMEfkY+8zZz77FFUfpMQqoz/5ffqUMWPwuenLYFORzYLvmaHvMIfQvBwdQ9
UqyOxPgSvFd0KSL8W3+UPFqr14j7iIujIIeERcl/U72V8wdnOzjfHpgNvF3r
Af0Rz+dQJwm8rO7Vl30u9YlpOZBDzmbcMyrdkvspr7cizyJxmP/qdcwnVW3G
OyoPzbRB8I4x8wvrapFE1qV9WCp9sm6x9Ozr+UN5XyDeLe4Pbd/FfEZPQ+/j
O/DextIKyC35MfLxk2O4VxQ4hfjyKbbU7Q1rJu+YZWtKnh6aXOonRpZTUv9x
AodSJ4lBf6xTcDP32lLfA4e8Sc65S6+jghutj/HIo7OfpL5xYDB8BuqczxYv
wDshc2JRf7sUkTrtb9TVNWcFdbP0jHerP1R9evGom9V4CH3T2ieCn5q43Ivp
Tn1br9iQ89fEJQWXut9Tcx7daaf0n+j5zki9zm5DX5yZI46cB+mzi0D//Qzn
C6kriZ7cNjWFv1FyJXKY/17qTva3R3L/1HqWk7p30sYS/9x1NaU/SBvUn/rY
owf0e327J/hT77cCuwpPPdAdt4i+v2b9oUcZzP6JEE/6rfRSO8kH3/SUuGC/
2sB91bK3yO/OnZH9Zc9bIfLX6kRH7/8sp++tcjKJp04x8nHjTnzqGz3zSp+X
nqkV/udcqNiJ+34v99HuTob+oAt9e1sb8U7diqPUsatUwK46t5T52NdWU0eK
2EPioj2oMfcFBvxLPSRbV94HHKnzPt4ljfx9/gHqySuK8G7P+t9Y76YOsn8s
pyDyy3CLOlvdDnIu6xyKy33AfpHJ93Pkl3uIRo8knCcXnA49UQ3OrVakFrzh
bt6Onbw5wP0rNzbvJu6tjh0u/0LeFG0658/Rj1D/cVeLfp3qg7gf3YRzAW1m
z1sSv0uPTyH0aWOpy9VbJfvLyZJO8JJZ6ArnAo1Gyfm6Xq+pyNmOnw89xrMj
yZ+H3tO/dlv124SGoz72agf9AnWLcM417Ap4cnYX3kdsGo76UrsV4OFVaXhv
7WNC+jMXVuF8P8kUcF+8HNRRz9Zm/D/LObe/sRfcW6Qm699O35zV+R3+4csu
+hrjHpZ1ObfSI58nkfBrvRdzX3s9dGvUB/qIjjxBbiXTMt6wyaM/9ufdpGXL
8HuLBwbJ/188VfJ9K9xN7PD3I/TbVdKoOxXehnyW3AQ/FB4vdTA3tA/7aG8/
4nXtmvRdf42N3ZYfJvVbZ/8H+oSzfMNfTbxAPCp9Rupd+oVw0HN/5R2H+9m5
l/HwDnXIyJrsR2Nbduo2Le6w3tVr8L/J48r83XHLsNsBY+RcTzvWXOZjZTkI
n6tjqfNcaUQdrxl9m87KddxjzZmbut8idQ4SCL7UYqSXfN+MPwE5DElKvHj3
SPhrWUrhB9bEpv7f5CH95MsDiRcNjsj89dgtqLcEjMOfrxkp/tAaGSzrtbdd
h778N94d67dc5mNX64efDJdG8LGzOSpyO0m910kdS+KN8zwe7+vE7Uz+lSX2
bc4Hm3E/pWIQ9rbt5B36KCz0vnQ/fNJ8lvsR2ptlsi6zzALs//Ni+jRa3hK5
6QuTs68bDeL8N2NbmaeZKiX2NjAd/XVXcwh/80Yy1Uf9grgfMkzm79RQ/S0Z
mxG/tG4yfyd6dvx/y7OCD+xogwSH6BFS099VYanUN4xwCamrjAikP/afsoIb
jFeluE+38jV9QQsaS33A+r0R+d3JjdST8w89IP4tcyX6ddOwLrv/bqmbGRvr
Q0+yDzuZFU7qEUbmueDeLqzXurv3sIzftYL7CI8Uff4lzusfPeddLPss/A90
JS/SQ4RutqZPzGi7QvpOjKY9yBe6bOJ8p5BO/965mtjPxwbYYc07nFPcHgvO
XDkJP99ottizdisD8nkXDnuuGlHwgBGvscjBnXqVfZphFeez+Uz6XdfTl2JF
z8h+2XuE97Le0L/hlOvPuXnMijIf7c/h7LtlfeG/rgb3LCK3Vn5gF/wnZeH+
aZuK+P89q3lHZtA7vhtH3Tu4GpN6xd8zJK7ZpZKR1wcfoc+tYWlwUch46ngJ
79B3F/4b/nVgVuoDw4PTyLj+k4k7C89Qr2jgit+3uzag73jTMeobeYYl53td
BZ+YdXTqVCdbURfrM4534f4pRP0kSXTqQjmb0G8SbzP0w8Xo6z49kTzg9Wnq
V7Fvix/X3A2zxe5yfmI+N5pS14szn3d0/0kCboz5GRwwP6K8q+HU7KrWNZf7
Dh3cK4KzKtWAz/BPQtffTwPnvupHvWX+Se41DI7G+yFLTjN+Wm/qdENKSXxw
m0fADxTLS796/rjy78zaHalfjXiM3PJU4L3cqH3xV8knEXe7XUHetZPhZ9KG
CH9zSz7uR69MyLrqrea93EpZiC/5UzKfdW8ljhpdF4u/sjMcgP/zeqIXY9QS
8T9mhuO8/zzgFPG7zij2y+SM1HmO/S3z0N73JH+JM5Y68LPT1OtORmdfX/xE
n2f3+OhlySDu7TaNx757tp/7FAe/ki+n7kZ9uHc/3gW+VYn6cIyW+NtEp2U+
zsJ44vec0j2p/0TYJXI0qnXnftOmY+hxcGvukU5fwr2hvZ2oL2Wbyj3SqmeD
5O9HkZvb8SX3QYq7nBc9PEl9tdc18EGWP8mnyxaE3igy9nkvNffC3yfDTwZc
Bcf/U4/vRtgKPkk3Qb7rNnK4R7B2O3545hr0vXAU+Xf2+/jV3ZbQzdfqHnzl
duCWAWOZ5y7krz/JQF/KkE/Y28Xy+IEFbfF7W5sLvrc/nCXP2zMQO8z4gD6A
bz3IZ8vT56llK857NKd2YOeNZqOvSQd5jyOYd8u18KewtyS7yBPevAanfN/E
fl+Rnfs4pVby3bjpyS9qDSBPMLnvZn+dihyenAZvLb/FO96JdjGfyIN432HX
X9wHnL2X/tKv67g/Upl7K+bTtPQhx3rDvu7cR71XkwvcuCo544tMpR78Zzfk
2XU58owbi3eBUjxhniOny7qcQJt36Fvs4Vw4dA/r3ZNX3jN2+u33+ja5V9JV
Z58lUfH96kvw8deT2FEU+o7scBORw7FZUh/Vkp/FDssf5N3MlYekX8btMg/+
J05zLyntZ/o9tw9h/oVeCt29Pk76wqy1JnXFPhc4j1sdzLlJ+evUf9I0An+m
Gsl+fLFXvaswR9WL0rKPxmym3rX2MPWgXbz3YOatD73WW+pH/fIRvx5TdzWW
twXH3jxJXE7P+wBOw/Dc08im+i0TfeS7aVfJ/rEb5giS/9/mq3rHowjvFAfc
oB7w7DHr+kj9yJh1irwz4WHo17nH4ow7S1wtuBX+nVaAGzNfpg42/aK613+X
vz9pzHsk9R5Qd61osN7hVzgv2P0HdbDMk6hDXh9CXd20mWci8Lz9kXcv7DM7
kPPIvNSRSn8Et4w6Tt2j7ArBq1qhN/i3zeWZT+xQ+hevT6QOOS8H6yrQGTz8
8RR1wp3oUetfh+/OHYKfu4/enQ1nqCseWyV2qI2+RD3z/z2s/PklptijOQI9
anmpKxrR+/KO0zr0bk84QL0vW4+AH3Q70GE+uWZRHw7uILjPfaDu19dJLuu1
7c6yv9yiOZHnwiapkNNz3vEOqgCfTg84B190B/zQmHvxpj0N+dRtmkbmH2c4
69LGYlfRInDuOlvJP+AAdempL+RcUV+t9JvytujX3h9Cv2QT7MF+vZS+siqX
6B/5hF1p1s0g4Xc1tdThjVTYpxtzJeccN8rxzu7Apdh5QHPqUIUagJd1Vdc9
M5x7H4mKUgcrSD3WKpqWd4lPdD4ouCJvOua5Tb2fPDYInHOU9zrMzYWo16Ub
KfdWzEi8g2Gl7U3f5ugb3AtJER0+GfIKbrRqzBe7tRd+x042rOL+bOal0v9i
9+NdArdzBMkfrUlbqJfWqoZecrZAjzXiSD5kFRuLHqMkk7zSnhkhkow7MQe5
1epFvhl6kO+ajRn/IgF6rFhT+u2tW38in6W1yEd2DeQ8p3gM9LKiP3XgLws5
t0xbC7v6fpzztg0WeCP6EuQzayb3lDNMpW+56kDs/N4M+mnHbSDOLuZ9GLd8
Tb77IhF4fkhavhtrFOd8U/NyblBa+cnh+dDXzAKcfzVFznbwBN7TfvOWen7f
hXy3TVfekY55kzzodiPkuSwN5yAjG0gcNyMgTzdZSuqfGQyxU/1LVeS2tz1+
4yb9g2Y69Gi/3kS9vXIO7L3BDOJChcScu53R6MeY0AK8MTCJ1Hm04kXpD+l0
gLjZ6Ax95m1eUjeImoY40mqF1E2s9i2413xhFnWDyJ1lP5hxeX/UqLCE/PRD
4b/lHP8e/VFalQ3kI9uu8P7exYzkmz0PUp/sc4J4+WAw9KK3yWuqrJH7X0ai
T+Tj/eNSd7qZXeozTvRk3Hdu/4T8biH3WKwMd8nr2x+hLjd822Xhk3AN+fu6
yuSJvRawT3LQd6R3SwifQ+G4B1S6DHx6r6LudOAa9zuebGI+bbOBr9a1Jw9q
/4r+jT050MvUzKJH5/B2wc/2Uuh6cFHqgSevyHijcyfqOc8nsU8HVKTeEqEN
9aIH96hz9q7GfOqmYb9X7Uy+2XgBdYZLWbDnV6HUc3aepk6Sojv1kCia7Bdr
/l/UHzZ3oz6fOAF+42N8foclz2LqilNDebdt0jb6rJKsh553lbzH6rTJSD9M
FeqQzqDK4heMRPHEfoxYI6n7PdxN3ftjYd4PznaP+bS8KX01zvG05MUr1X1M
Y9kl0df5mrzD0KIVdd2pq6TPQMtemzy3DecpenAZqefYe/aBbyemYD6r0kr9
1Kz8p8RTK95+6mwta0odz8membxei67qzFl4fzb2Z5Gns3U3fI6fkPqGNrid
0PU6W6FH63ld7HZxa5GnfvE99a6yqemLiJqIus2Ljsy/dXfeUY/FO1R6hjj4
q9M9pJ7mDChJXWIu9qn/dZ977juqUVdJz30lY8DDNDL/PiUYX3oDdZLch+hP
aNqb33npcRk7j3KUfK1GXta7YYPYrbtpBOfQn3R+r2fZ74zXfwenlhtNfe9N
AerA7UsQt5JlYl0hDdlf0V9RH6gcgfdVCtKXbqYvAv6euYTvjs3JvhiYRkff
sSWfcIu1xQ47nKbPqfh2qTNo8btwbpW8J7+DELGt1NWdnfBxAzLIPtK7cx5h
3p+D/ANyEKdnJ6Jvfwf3Zewyi7Hz/fvkvMZIsInxJ8bKuY8RqM6Dxs6kbvM1
PHW/p3N4z7DpffzSkMVy3q+bxegTHriR+s/1r3L/1C5vSh3DCFyGvW0pzDs7
K4uzrsfHkee1r9fEzt9Xh//anure68pI8p2phbiHfaoH9tPkNnGt63fysBL0
yTsVzvO7FO1Kcj87CeeS1u7K4h/0Cy75X6O5xIUEhYkLVzT6q6NnIs9acgk/
P7wZ5xS/HSdv7ZST+0pZz9MvvaAt+dS8ZsSRPby3qS0ugF3F3iD+UO93jryk
Mn3Ibo+E3LvM1ojzkb01sLdPd8UPu0WXyfmOeSIp5195ilM/T56O+fR4jp1n
riH7y0m0XOhG7kTUtRpvpW5fYQf8V3OuYY8ZLrjQuV+S87jly+DffIf072m9
12InF5iPmTAqednybtQVjt9g3wU8l7+bK+Omke9e3MI+3Rifuv/xOZJHGouT
qv7nmLJ/9fSNOW9qmgY7nNeR/rAeo4SP3nkg++XUSM51klI/s6/Gxi9t2S1+
SX9ZnHpGvmbEwTolkNu2EeSXqYphz9fHgKcrIn+3yxfi7+nVIjf7cx/O11KN
QP57jqOXceSX9ryd6D3CGvEPdtkM1C1u/osdds/AO1MxojPfW1+JX9FDBTeb
3wvibzaxr90+76WvUv86mr6aZNz71o+mEPt3ZiQU+ZlV6LPVFqfjfuOnHIx/
1sXz/1Kft40E1CezqHPDjfnlfMpNfpN3Gq467EfjlOAH27ov9u+WOcy+/nRO
/L+WtqOszzUm8e7Qlpu8C5q2WpD8ffEIfqcjtLT4E3toYs7rU83kfZ5MreSd
WH1rdPLLwlF5t7PzSxmvV6hJX0HiCLzDk2wj9w2/FiOPHPq5jowvOZbfWdiz
l/zpz3nM51pEeb9bvzySeF5iLt8tmoz69tn3nG+kjcV7Ph8GiZ9xc1Ev1R/F
YHz3mdz7G11Yxlu7utaW+U4+zr2AF9Op51zsInRjbkPOr6ttk35b/XJDmadW
clck9HCe34d52Ejo9u1sQnffTaLumq6T8NGvh+M+ZMoT5HNL68l4t2lL+o2y
P4berLmMt+PVIx+JekTk716ryPhL4fF7ycOJfOwaNZFbkSDeBw9eQb6+oi3r
esV9KDvDwHT/pUdtZVI539ZK/qp3Lf84wRd+vWg5y+0s8R96/H+ASR1d6d32
9L7iAfcvfXaiDX8Y7r/Wqx2aL/dT/fPXKp2iv0Kt11Tr1ZaW5HdgriMfW8lH
K3OdeydK/oaSv10hbeT/kr+WZlaksPp1DaXfxlW41+WzB2Ma9yc8u9KVXVnX
rxNXffbp3ABX6uHOVRD6+I3k6VemSl+zpV+CfnYL+c6nAtLnaS6dUlXk36oG
dna5k7y/5TjjhK4lr0Ddo9L6q9KvEveq8LEqa+ShQe3J66/OkPHG7IfcW4y6
QfRmD/27hvzZ7hb2+nAY94lXbxK64/B7UlrUQDlv1zauZ3zXIvCxDk6XdXe+
Lt81993inPTQcs4p8s9h/vuOkK9FXcJ3ms1mPttiw2frLPbHpWvCx32Xgd8/
+hABuR3eJt+1djlyb9HdsJB9mg+60yYQvxAlBvdvNharJXzjx2Ef7WxIv0PH
4kI3dh7ld68ez+HfDS0idDP1A/LHLtsjCX1fbsbXK0F9dmZxeU/DvV4A/ncq
U3/IN5k44NOv+/p36nl+fQ3uxn0vpV9T6dcodgJ/qOxBV/bglOPdif+Rf9Xp
Gf5LX/b6FMqvol9L6dd5W4z+T2UPmrIHo8I2+u/89jOoivhz/3qNe/gZTz66
ko/x7ntQWHkaSp7G6Sep/0svWrJrKf5Lj1a9nNQDfPagTUd+nv1oyn7MZuvx
/5cish+nHmcfFVB+rBdxQZu7Fj7K7+nvv+E39g9gPyq/pJf5A/pM6sCeH7Pb
jMH/r1kt8vL8nvl1Cn6y+Rb4ZMRPav0+Cl1/Eok+HxW/nMufhG7cvovfV/7B
aTxE6E6tB8hdxS93xu/Q01LHsz0/cyki/vPjGfpUVfzSdkcSutl3Hf2Cyl/Z
BUPwq/M3Uf/0/FuGm0K33lykXqzil9E5Cn7vRSnijfKfWsfb0GdUoP7p+c/c
8Yl3F2ZDP4A/d/KGMr6vTV1G+Wd9779C10JmiT1ZS5Q/fxyDdbWaEiT0isr/
+/RoKRzi17vt4RafXjxc4dejh0M8vZue3j3couzE8uxE4Rz/er147c3fUvN3
VPz1r9f04rVPPl5898vfww9++RsKP/yPfj184rMHD8/47UpXuMhV9qkr+/Tw
ldH4T9mP2shzvMOo/JtbZB70kqfp91X+yhxWTPapm3Ur79Aq/6a1KY3/r7lT
9bXjD7VKs/E/h/7gXQPlf8yqhdjv8XiH1vNXdpS++MMhdXmvWPk3y+0vdLPW
Ys4LlT80rg0WujGQd3R15T+15zPku05i3iP7Gb+e58M/f/vIelX8Mg7nJ66F
v0Tfs/I/zoiZwsdO+IJ3apS/0g/0ku/qF+/RF63il1W3N/75u8P7RMrvGckf
1ZQ/b22iv1r5Sbv5Q6Fr4y8hdy9+VXkidOsK77r/9LfR3whd3zMPe1L+2X4Z
Cr3fDPq6PX/u0692FXzi6cv09FVF4Q2lXz0b+tUugU+0or/ag/YRPOOX/0/8
oPRlK315eMOvX0PhE0vZg67swYkCntGV/djKfkyFf7z1mmq9mhevffLRphPf
PXnaSp62hweUXnSlFw9X+PXo4RDPHhxlDx6e8ezHVvbj4R+zTH9wYy3e57TK
PZbzGutSB/zbyxe8T7IwI3n/9Lv4saqpwcm7m/M7q31e4MfcQdKfYw0txvsx
4yqB/ysQl615KeXcRIvSGHrjhdQnk9+We0PW3kPg4ZcziSvBywJ+0O1+F/nu
6Er0uY0ZTT/skcLiZ9ybpYmziWpI35AzoSz+Z9lzcMuSMuSjZzPCP2cczncK
XpfxbuTk+KVOzRm/7yXrulUdv/p8D+cRZdPwXlq8fIyvco/5LJjFO8qlDeJs
4m+q76uq9IFrVRrih4tf5Dzi0xLJm51zyZD/w3z4zfLI3whcAP8d6r6nkqfx
eBX0mdFThpW/ZWTm9ywS10v6i77KJue7JRrSH/CF7+on3uO3zRZpfpnnpvT4
+Tb30oRdr/MlgHhU7rkedr168VjglpUbU4aVpxYhJ3yiVUkdVv5mpO3Iv/Hd
pGH1qMcsjD3ky4nelT0YK5fin2dMUL8HUUXO/c0PlfDzv/dh/za4Tv/a5dX4
gcFx8W81V8p9R/dkbfbv1i/cT+lRhe8+G81+/5t31bXhr7lP9G4Y9A+t2L+j
w8k9QmP9dnBylGD27/U93OOb1pb9lYP7GNbqb8h/wG/QXzZlfIpz6l2TjfiN
ij3xS4X687vcZWfy3TmLOce/3og6X+9JNZA7vyNlzSglcnCXRwXfnq7I+Mrd
sf828YRub1mA/DeOFDvRywSAn+PdA/8ky8V7S/M/4f9XN0IOpcbz7mv24cSd
Ww/0X+S85QTzH/QO+1F6saevAlf3clKElZu+cAnxcXADPaycnQYD0cuq5mnC
6sUYcYi8Zgb3YrRa6NHMlZX1DtlHnmgwT3NMOvD/2vXJw67LCUpOnpX3bqqw
8jESLkCeM98Qt5Q8rb17ySuPxBY5WAXRi7a2O3rsrO5tJUeP/7N/9TLYnW8/
Ot/OgEfU/rXV/jXbJ8J/+/a7dgd/7/ef7uCYxDffftFT7uWde5//NBer3zlR
+85R+06v8wxcoPynFoL/dF6HsJ98+9cYsUDo3n531X53f3vCvTe//8yRnbit
/Inp+ZNCV4ljPn9iPk4Df59fsi9coI/L58ec2FPBEb745cnfH488eXrxy61C
/PLk78U7TcU7T19+v+191+/nHW+eKl6YXrxQ6/Xiha3ihaXW68UjR8UjT57+
+OXJ34uD7ijioKdHL57aKp569mD69+mZHZx3+/a103sI99d8+869VoPfhfDt
UzPDO/rf1L421L629JvMU/kBW/kB68gQcKLPf+qDZ9K/5POf9t9pwCm+fadN
vUwc8O/T+GXJA5T/tJT/dNu8ZX/593vdDdiJzz+Y8R8if7//3JcZufn8jBlT
R27KL7mDlV/acI56iy9OeXLWfXHNPY1e/HHHVHLzxylTydkf1zy9+OOgo/To
+XnT8/NqnoYvLnjr8uKLruKLJx9/PPLk6cU1R8U1Ty//EweVHt2y8UvLnysO
k/cOnUreMDKO0K3YB/luqvX8nk/RhEI3lsclj67wCn+8JJGclzp3uKfpTFtE
fpEjgdDNkg+JI4snsU/3xoGe9V/1bhL7yDyVCP5XhpKHrltFXtYeuhNtOfZQ
+zV4c24SzvOPLcI+r68hP0oO3Yx9iPOJLbW5d/ipAedkqzPhR3qsZ3zSRkJ3
I1UDn7SLLN8x79xhfhM+I+dz6zm/7X6Xvxe+TB2h/Tr49PkN/sl2wcfQgmR8
ntvUC0a1k79rZWrz7x934LtdumKXE7pwP7TfNcZ3S847VL1y4wdah1CvyZgS
PTadzL6O25LfoX3UDT/bfmzmsHq0lR61SWkFB3p611aid83IumLvf+mlRyB4
QOnR8vR4r98Nwb1K767Su1a4Fr+3ouzEVHZipd8l5zNGKOvVurJerYPG74b7
5m/tuCU453/WWzWH4Bm/fKys8QWfePJ3lPy1NHf5/Q0lf9eTf6az1PGUfm2l
X6fxJ85VfPZgZJzPewjKrixlV+5sk3Mkn326sRw5N3Djtq36g48Zbgf93zfW
yb2rn/Q/uV+tDT7KuyCFqpf/8ad16S9+dyTKQ8E5bkFFL5iTfscOvFOix4OP
tTiE9wsCQ/cJHlN87Kt14WO8min1twSjDeGX+SL+PfHj0yKfFNA1fRz4ZmL5
APn3mdX4m2PIZ9NdiBP2u8aVGfRbq9+f9b5rxoqR87/obslU9Jk9LBs5rHzc
qCvh82VeJKHH4LvOnNLgqubwsWOpeX5ry/xT5aFPIaHN+bx2kPh3qg7vWgVC
dxfa+NM46ne3S0LX0+fGb+rXqFeEKvr2f8Efi2fL/QVnjKLHeMj4smnlHQ+/
fo184VmHJwelLzvxtpxh6Z5+zSGPsoaVg2cP5vXm9M365O/uqMI78359lS3J
Owp+/e7IkSGs/H/aQ/ilxH+lR1vZj5H3PXVHtV5Nrdca0JO45pOPVXhGjv+S
p9t1UdB/6cUIaZj6v/TozFmcOqwcPHvQBvOute6zHzdcCHy+xiBeuFHxV4H/
SN5nhESB/nWkzMOKu4x739kCiVN/0F/tHP6d963rxsDvLclKvbT0H/ilpRp+
cjs40nISyHizUUT2e9UM8HnVivd+ln2hD+j1V+J+lSHcyxwTQJ/U6krIYc0e
2b9m0DzxM2bfstyLCKzH73NtnQB93iV+Z3BNP/qJEhyVdZpjh5FXmEGJmE8w
8aRnfuJ9rLfQj1nCR++Tl300zaVvYvRp4tZxl/nU3Ml7J504DzCbtSSu3P1L
1mVG6s37NOu2Yg/7JjD/4Oe8b9cslPqnii9a5ddCdyatxD6jKL2Me4B8bkZF
vz2JL87bJ/TrLW6bM6z8tRQvGd+yFvyPoC+zw3v498iKncdDv1ab48yzQG3e
uVDxxay2j/gym/5Xx5t/BfCus593rCxvvUVXU7cukpG+cxVfzJF/817M5hcy
3lHyNLP+DZ8Yh5i/J88/d6GXJo9z/KKvhSuZz6JU7DulX2ffO/rjim0ELyo7
0UM/865hmvHYlbI3b7/o3y4iv5u/xhetQG6hO7v+pc9F7SO9yyre+doxXN2n
VvR8Vbn/4Isverqe3EddN4o+II9P48fcx3s1hj6gRexr/c0Q6dtz3rVP8ePv
9hboZkBx7rHkncn7JwcU/eBt+hR98cX5/TDvkjyblSbsd92txfk9pFj8jupP
/5YgCfMZWy51WDnYIYtY7814wsfuq+bZ6Dz3ZyosYV0ToNub14n92H9noA8q
/FL64y43xs8HTZV1OfWX0E83cSj2k3cw969XMd4NzIYdfj6Dfp1lvHvqTKJf
04svJaAbUZ4yfkuhhGH1ZX8/D39PX2pd1pEm3DPZjX7twsqvbmqHHSo5m1Wh
G04G9t179OLJzYo7jXUpPXryN68nQ85K70bXRfjzoOzZw87TibgY/59hbY6w
6zXWQHfKrMgZVm56CxXftY+5wsr5p//Xn9H3qfTlyUFr0CpPWP06Ac94Z/Fe
b+JaTnCsEf2J0N1WZ6B7+HPFbfbXsHvIoRB41Ul2j/1zfgx0hW/1AY/gczwx
8lf5iB0CXd8UiXukCu85f93i/nfMbNjVNZWPZHehP0mK/1G40Wp0E/+cpA9y
VvmIVfgG/uFJS+7JKPxpnltEnFtbEDtReNUtBd24VEnoXj5ihVwBD5vZsDeF
h82hS+CTIwB5eni4+nL8XrMV4FKFt63i55nngHN8V+Fzw+f/vTzR9unFyyud
sb/6fy/vM/zyV3mipy9D6cvLK3Wffn/mocr/a8r/e/mUVYr5a2r+Xn7kVvOt
V+VTbpFf/b+Xf3nytJU8f+Z3lk+eKr/z68vLH/369fLN/7ETlbf67c3Lf/3+
38OfP/2/WRdco/DkT/8/6wT+3MOfPv/veHjV88NN6Jv38OFPPzwtA3pTeNK+
pvBnyt3cj/Xw51nlf9I1h67wqt//azur/PJdPcNHcJMvj9Cbdiv4X3QrS1Pm
ExDyC5403/wLH4Un7dtqPg8i0C+u8gv3looLf/N7hx4uNWbz7rIx3yZ+KRzr
LIeundxEn7fKL4zO0N0oHVhXt0VBMl75f1P5/5/4Ob3ikzAWcVDh7Z9+T+nL
8vJBz082Q7/WIPJHT866krOl8jhT6cVRevHyvv/Ro67yRCV/V+ndyysN3zy9
POh/1ptK5VM+uXl52f/IOSV53M+4pvRlqHzwZxxU+rW9/LESONNVONN+nhjc
pPCh1hN8qL86By5ODp50FJ60buXDPyn8qSv86a4ZD+724X+3XFLsU+ExU+Ex
N+gG/Hz437K4D+XhOsPDdbMPkv9l9uH/XWvJ/3z4UG/VG7rCk5bCk3YVm/tf
Cv9bCv9bH8ALfrxqND0NPQt41VV4VasYEb9R3oeHnwWo33Hz4edVO3lf0Zd/
OZ78ffmUJ08tO/mXq/IvT/6mL18zlL78eYf3XX+e8nOevnzn53rHkO8YKt/5
uV6VT1kqn/opz02/5l+e/A1/Hufp0ZcPevbw0/94OK3zWeKJ5688XPe0H3Qf
7nKm86cfp1mFd/I+gA/XWdlzg1t9OFAr/jVXWP6uwtXOlrT5wvL3cLVbdtcv
39U93BV+YN6w69JSg9OctbfBLwpXGwpXm3UzgV98eM8a94R46MOHVtyixGcf
rtYu9YHuw5nO4XHoxYdL9Xetf6nDaCrf8eT803/mJz/y9OLPUzy5eXmNpvIa
T87+PMjTiydnTeVNrtKjH+d783RWki9oUcgXvHX58w5PProvT/Hk6c93PL3o
/vxI6VGbXqGmzOevu/z72Lw/4NH1uOATZ1zmXGHp1ubRfDdPGuof5bvVlvEJ
K+DnZ/H+g/Wwq9C1R4uwsyR/Uu/ZDl1vpYMHrmX6hb/+qATrVPHdozvJajHP
7impK1/iu8ZxLd8v41dA14bHxc6D1PhOS+oJn6AF+GM13pq8SOjWbH7HV3t8
nvi+Nl9d4V+bd3O0O/yugtYxP/TIp/KH5aNdWQD/D5fAcQ8nUbfOmVfGOxdi
c4/u/UvopWfLeHvDfPErdh3e5dDe5JLx5os74LGbX4kjm3LDJ1Nb+DxviJ9L
NVf4GLWCqG+NP541rNwMpUejQGXeAfPp3aodLO8t+PWidavAvSifHq3ee2S8
pfRuKL1rD0eeKBGGv2cn2o110H3rdRpl516dmr+p5m+V6sb5vm+91olVgnP+
Rz5DZlNnU/J3lfy1ydM2SL9Zjl/lrzkLHclrlH51T7/tl0cSOfnswa3QhT5Y
v13VLRsprJw9+9QylYGuxWko6wu/X+6vWodL8XsaUcJDn/+Nd8f255N1Weky
C926uAv6heTcJwgd10DWGyG33EfV1hSXe6jaxcFCd+c3g15vD30dXfsI3U6+
S+jWw578Tleqcg2RG+9//bTbHcWgh+zhu3NS8s7WsoXwX5y8aNjxxtLZQjcq
poK+7wO/z1N0T335bstOck/Sub6Ee7Fv9wnd3NSycFg+1vGtQrfGT+R9tJzP
L8m6Fq+BPq8E92w/fuH+e6MN8C91TsZb+75K34hfnu7TouwLn/z1i5c5H/PJ
x+hzAryn5Ol48iz/gHNjn/ytKZWDnP/Ql317DXhCzdNS8zSfhnJu4FuX9SVh
zrByMJUc7IAPQWHlaSl5GiNGcv7pk79bORf+artPj5dU35C3369GYp9uWcB7
2x796UH8dnV+X9fz507sP9gvTx/xPoznB57vJ748nPMLH2tyd/ajGz5tWLqT
axbx98vgNDJO+W0nf3Zw/huN8d7+qllH3acdyHjlt61+S9HL0pGp+R771Dh/
SuTpVg2kLqT2tVMmIfK/G074eH7b2RuKveUeAV35DWv/V+jTEvNuk/Lbdvyy
zHNyX+Sj/JJxaAT5xGLuEXp+zElWHH1lSpv0FznEtODv88NO+Rv4vc3oxfPD
VqIC2KfPD1vNphcJK3/PDzt3LxUOqy+Pv5s3BXhc6fenHz45gN+H8Plh609+
R8Sbv7devVj5YmHX6/lh7fC/0H1+2OmZGz5Knp4ftkdOLBpWnp4ftkL3Fwmr
L88PO7e6s6+Vfj07sStGZr8oO/lph88r856gsjfPD5txy/F7LUtfU3dVfsMp
2Uvofj/srErI+OPleYdT+QEt4A9538GZWYt31JXfsM8c5D2IRhlEDp6fMZeH
h88Dnx+ON5zx0VLwu7WeHy5zid//iNeMd/uVH9bK7+S9xcnrsTflB+y3+ZhP
n0voS/kNI2U49Ds1Cu/0Kz9srTf4nZiV79CL8j+OtpHxFYuzr5W/Mjp3hb/f
D6fJyPwPTJZzDc/fmhdnw38Zcv7pVyfUL/aLfJQ8XTtZ8bDy/OlXA9vyLoaS
v/ddc21IkbDf9eZvP1zI+25q/p4ctP1dsU8lh5/+M1Io8+yr5Kb8p1s+FetV
8v+5T7t9J+7UAi/9tLfOjfhdmSvgHM9/GiFx8MMuuMjbv2brrcSRXnt+4eMU
WMK6fLjXiDiFdzoUrviJexc3/jWOr/DwWEW+Ww984vlP7X5dI+x4z3/qMSrz
XklFcI7nP91bn/n9G4WLfvrPvrFK/PJdtd/1P7PCR+Euz39ah4KRs8Jdnj+x
rrYWuofrfvrPdh+xQ4UD/8d/jv81H/H04uUvnv80PP+p8gtP/oaSv5ePWD59
OSp/8evXy3f8/tNRuN0/f1fhcG+9plqvqXD7//hPhfP98rRVHuH5T0+ehsoj
PP+puejLy1MMv35VXuPZiansxMuP/Pam9VB0ta+tz3/x+1UejvL5Tw93efvX
KP1U6B4u8va7caYv/lDhKM9/6kdL4oc93KX8p6X8p4fTfvrP9UGci/pwrJYi
IfU/hX88/2m+XVMy7PifOLbOAubv4SjlN5ziAYxXuMvzn/rFmL/w+Ynf1rvo
S+E3v//8ifc8/1l/PXSFDw2fnLUj5AuGTz6Wh/M9XKrk6eUFnvxNJX8vj/if
7yr8/BOHq/l7ONwvBw/Paz65/cT/yn/qnvxVHuHHOVqW77l/oSt84tyvSr1B
7UfXwzNbqlB38eEfo+C3X/h4+NNa3zBfWLqp8ICxOyH5q/KfWgGFPws2YLwP
V5iNEjDejz9jz2M+Pnyi3W+s6mEKfyo842y4Qr3Fjz/rJ+W7Przk3llAHunV
DTy8NDIe/JU/0Tw8tvwYdTAffrNGm7/I5yf+V/L343lPnp4/dD38r+Tvzxc8
fflxr/fd/8HJap7eek2Ftx213p/40MPbar2WD8978jR8+N+Tvz+PsJQe/fmI
Zw+aD7eYrdU5tg+HaBtXUYfx45aWT4lHPpzjTL+NP/fhPVdrxvgdv+IN7Y8c
1AO9vLvcTvX7efvRrw+3OI0nIGc/zkkzl/qqD+/p7S4iZx9esmo8QO9e3urh
q+e7ODfw4WdPPoYP93rr/R+crOTjx9WePL3vOh6eVN/15ul6uFTN049vvfVq
fjzsyUf5JUPhapHz/wEkD2Z0
"], 
{Hue[0.6, 0.3, 0.85], EdgeForm[Hue[0.6, 0.3, 0.75]], EdgeForm[None], 
          Specularity[
GrayLevel[0.2], 30], 
TagBox[Polygon3DBox[CompressedData["
1:eJxN3Qm8jWW7x3F7r7X3zpRZxjJljoRMGTKTIVPmZKbMQ2RMkYoUUcZmU4aQ
BtFAaTBUokEkFJlFMqbO9X+f33XWfT7nf577fD/3da33vt/n2WutZ+21Fe4x
uPWg5HT2P1nSpYvZIcmi/z9G4liKJTXwZCzNckPgqVh6at1vwDJYMloykczY
jdF/hP/3jFgaPd2zYCnUuqdiWS3ZLNlJDiynJVfg2bA0errnwm6k1j0Lltty
kyUPyYulZ43uN2Fp9HS/ActJrXsuLJ8lv6UAKYjdbLkl8PxYIUvhwG/BilDr
XhgrailmuZUUx0pYSgZeDCtET/eS2M3Uut+CZWXfSpHSmPauTOA5sEL0dC+D
laDWvSSmc6Ws5TaSESvCGt3LYoXo6V4Yu5Fa9zJYOUt5y+2kAnaHpWLg5bFK
lsqBV8TupNa9MlbFUtVSjVTHaljuCrwqVome7ndhd1DrXhHLyr7VJLUw7V3t
wEtjlejpXhurQa37XZjOlTqWu0kx7E7W6F4Hq0RP98pYCWrda2N1LfUs9UkD
rKGlUeD1sMaWJoE3wppS694E07Wq6+4e0gzTtdc88LxYY3q6N8caUuveCMvK
vrUg2TDtXcvAa2GN6eneEstJrXtzTOfKvZZWpCrWlDW634s1pqd7E6wGte4t
sdaWNpa2pB12n6V94G2wDpaOgbfHOlHr3hHrbOli6Urux7pZHgi8C9aBnu4P
YPdR694e627pYelJemG9LX0C74F1oKd7H6wbte4PYH0t/Sz9yYNYJ9bo3g/r
QE/3jlhvat37YA9ZBlgGkkHYYMuQwAdgQy3DAh+CDafWfRg2wjLS8jAZhY22
PBL4SGwoPd0fwQZT6z4E686+jSFjMe3duMB7YUPp6T4OG02t+yOYzpXxlgmk
CzacNbqPx4bS030Y1o1a93HYRMujlknkMexxy+TAH8WmWJ4IfDI2lVr3J7An
LU9ZnibTsOmWZwJ/CptCT/dnsMepdZ+MdWffZpBnMe3dc4GPxabQ0/05bDq1
7s9gOldmWmaRkdhU1ug+E5tCT/cnsNHUuj+HPW+ZbZlDXsBetMwNfDY2zzI/
8LnYAmrd52O6VnXdLSSLMF17LwX+IDaPnu4vYS9S6z4X686+vUx6YNq7VwJ/
FptHT/dXsN7Uur+E6Vx51fIaeQpbwBrdX8Xm0dN9PjadWvdXsNctb1gWkyXY
UsuywN/AllveDHwZtoJa9zexlZZVltXkLWyNZW3gq7Dl9HRfiy2l1n0Zts7y
tmU9eQd71/Je4G9jy+np/h62hlr3tdj7lg2WD8hGbAVrdN+ALaen+5vYu9S6
v4dtsnxo+Yh8jH1i2Rz4h9gWy6eBb8Y+o9b9U2yr5XPLF+RL7CvLtsA/x7bQ
030b9gm17puxdezbdrID097tDPwdbAs93XdiX1Hrvg3TufK15RuyCvuMNbp/
jW2hp/un2Bpq3Xdi31p2Wb4ju7E9lu8D34X9YPkx8O+xn6h1/xHba/nZso/s
x36xHAj8Z+wHerofwPZQ6/49to59+5UcxLR3hwLfgf1AT/dD2C/Uuh/AdK4c
tvxGPsd+Yo3uh7Ef6On+I/YVte6HsN8tRyxHyR/YMcvxwI9gJywnAz+OnaLW
/SSma1XX3WlyBtO1dzbwjdgJerqfxY5R634cW8e+/UnexrR35wI/iJ2gp/s5
7F1q3c9iOlfOW/4iP2OnWKP7eewEPd1PYr9Q634O03stvW+6QP7G9F7iYuAN
sEuWy4FfxK5Q634Z03uVq5Zr5F7sH8v1wK9il+jpfh1rSq37Rexfy3+W/920
siQlRZZsx1hSwv/DLtHTPYbpsZOC+dexuI1TLKkkLSmyK6zRPQVTr1gw/zKW
TK275sh0r+EGO6Ynus8gy2DjjIFrjiyTJXPgGTHdC1Cte2bsRjtmsWQl2ZIi
y27JEXgWLBM93XNgGah1z4j9y77lJLkw7V3uwDVHlome7rnpn51a9xyYzhXd
97gpKcpVzh+tLXNSwqtjmejpnpn+/3COuefG9Fpfr9vzJEXJmxSZXsvmS0r4
Y1h+GxcIXHNkBal1L4DptfLNdryF6HWyrJCNCweuOYXolS/wwpgeW7Xu+TDt
tfatCCnK/mvvigWei/3MT0/3Ylghat0LYzpXbrUUJ1mwgqzR/VYsPz3dC2DZ
qXUvhum9bgk7liR6nysrZePSgWuOrIylbOClMb0XVa17WUzXqq6720i5pMh0
7ZUPPA0rQ0/38lgpat1LY9pr7dvt5D/+O9HeVQi8KPtZhp7uFbBkat3LYzpX
9L77jqQoN2NaW9mkhI/CytDTvSz9C1HrXgGraKlkqUzuxKpYqgZeCatmqR54
VawGte7VsbssNS21SG2sjuXuwGti1ejpfjdWhVr3qlhdSz1LfdIAa2hpFHg9
rBo93Rthdah1vxtrbGliaUruwWqwRvcmWDV6ulfHGlLr3ghrZmluaUFaYvda
WgXeHGttaRN4K6wtte5tsHaW+yztSQeso6VT4Pdhrenp3gm7l1r3Vlhd9q0z
6YJp77oG3gBrTU/3rlhHat07YTpX7rd0IzWxtqzR/X6sNT3d22B1qHXvij1g
6W7pQXpivSy9A++O9bH0Dbw31o9a975Yf8uDlofIAGygZVDgD2J96Ok+COtF
rXtvrC77NpgMwbR3QwPvgvWhp/tQbCC17oMwnSvDLMPJfVg/1ug+DOtDT/e+
WEdq3YdiIywjLQ+TUdhoyyOBj8TGWMYG/gg2jlr3sZiuVV1348kETNfexMDv
wcbQ030iNppa90ewuuzbo6Qepr2bFPgQbAw93SdhDal1n4jpXHnM8jh5EBvH
Gt0fw8bQ030sNpBa90mYPmvU54aTk6JMwfRZ2hNJCS+ITbXxk4Frjuwpat2f
xPRZ3dN2nEb0OZ1suo2fCVxzptPricCfwfTYqnV/Apthx2ctz5GZSZHNsjwf
+LPYVHq6P49Np9b9GWy2ZY7lBfIi9hRrdJ+DTaWn+5PYLGrdn8fsf9PNtf8z
jyTzFmS+/Z8FgWuObKFlUeALMH0Wrlr3RdhLdnzZ8gp5NSmy1yyvB/4ytpCe
7q9j86l1X4DNYN/eIIsx7d2SwGdiC+npvgR7jVr31zGdK/rcf2lSlKcxrW1R
UsIzYwvp6b6I/tOpdV+C6bMufW61LCnKckyf5byZlPB22Aobrwxcc2SrqHVf
iele82o7vkX0OZFsjY3XBq45a+j1ZuBrMT22at3fxGawb+vI2+y/9m594Iux
FfR0X4+todZ9LaZz5R3Lu+RlbBVrdH8HW0FP95XYa9S6r8d0r/89O75PdJ9f
tsHGHwSuObKNlk2Bf4DpXrxq3Te5JUXX3Yfko6TIdO19HPiL2EZ6un+MbaDW
/QNsBvv2CXkW095tDvxtbCM93Tdjs6h1/xjTuaLPHbYkRVmNaW2bkhK+CNtI
T/dN9F9Drftm7FPLZ5at5HPsC8uXgX+GfWXZFviX2HZq3bdhOyw7LV+Tb7Bv
LbsC34l9RU/3XdgX1Lp/iX1n2W3ZQ77HfrD8GPhu7Ct6uv+IfUut+y7sJ8te
y89kH7adNbrvxb6ip/s27Adq3X/E9lt+sRwgv2IHLYcC/wU7bPkt8EPY79S6
/4YdsRy1/EGOYcctJwI/ih2mp/sJ7CC17oew79i3k+QUpr07Hfj32GF6up/G
jlPrfgLTuXLGcpbsxH5nje5nsMP0dP8N+5Za99PYn5ZzlvPkL+yC5e/Az2EX
LZcC/xu7TK37JeyK5arlGvkHu275N/Cr2EV6uv+LXaDW/W/sO/btP6IXAd+x
d0nJCT+FXaSnu+Zc5LHTBfP/xXSuJJvHyFHsMmt015zL9E8K5l/C9NhHg/ma
I4vbMcWSStKSI7vBkj7wFCyDJWPg6bFM1LpnxHSt6rrLnBzlRkzXXpbkhO/D
MtDTPQv9b6DWPT32HfuWlezmvxPtXbbANec6/bMEno3+emzVumfBdK5kt3EO
chXLxBrds7PeDPR0z4hd5xxzz4bltGMuS25yU3JkeSx5A8+F5bPkDzwvVoBa
9/xYQcvNlltIIaywpUjgN2P56OleBMtDrXterKilmOVWUhwrYSkZeDEsHz3d
S2KFqXUvgpWylLaUIWWxAqzRvTSWj57u+bES1LqXxG6zlLOUJ7djFSx3BF4O
q2ipFPgdWGVq3Sthd1qqWKqSalh1S43Aq2AV6eleA6tArfsdWFH27S5SE9Pe
1Qq8OFaRnu61sOrUutfAdK7UttQhN2OVWaN7bawiPd0rYYWpda+F3W2pa6lH
6mMNLA0Dr4s1sjQOvCHWhFr3xlhTyz2WZqQ51sLSMvB7sEb0dG+JNaDWvSFW
lH27l7TCtHetA6+JNaKne2usBbXuLTGdK20sbUkVrAlrdG+DNaKne2OsOrXu
rbF2lvss7UkHrKOlU+D3YZ0tXQLvhHWl1r0LpmtV1939pBuma++BwMtinenp
/gDWkVr3TlhR9q07KYZp73oE3grrTE/3HlgJat0fwHSu9LT0IvdgXVmje0+s
Mz3du2AtqHXvgemzLn1u1Ts5Sh9Mn+X0TU645sj62bh/4Joje5Ba9/6YPit6
yI4DiD4nkg208aDANWcgvfoGPgjTY6vWvS822I5DLEPJsOTIhltGBD4E60dP
9xHYQGrdB2EjLQ9bRpHR2IOs0f1hrB893ftjw6l1H4Hps95H7DiG6HNe2Vgb
jwtcc2TjLRMCH4fps1jVuk/AJtrxUcsk8lhyZI9bJgf+KDaenu6TsbHUuo/D
BrNvU8gTmPZuauDDsPH0dJ+KPU6t+2RM54o+d34yOcpDmNY2ITnh2bDx9HSf
QP+B1LpPxfRZlz63eio5ytOYPsuZlpzwO7HpNn4mcM2RzaDW/RlM95qfteNz
RJ8TyWbaeFbgmjOTXtMCn4XpsVXrPg0bzL49T2az/9q7OYE/gU2np/scbCa1
7rMwnSsvWF4kj2IzWKP7C9h0ero/gz1OrfscTPf659pxHtF9ftl8Gy8IXHNk
Cy2LAl+A6V68at0XuSVH191L5OXkyHTtvRL4aGwhPd1fweZT674AG8y+vUqG
YNq71wKfjS2kp/tr2HBq3V/BdK7oc4fXk6M8i2lti5ITPgFbSE/3RfSfSa37
a5ju9eu+/RvJURZjupe9JDnhmiNbauNlgWuObDm17ssw3Wt7044riO6Ty1ba
eFXgmrOSXksCX4XpsVXrvgRbbce3LGvI2uTI1lneDvwtbCk93d/GVlLrvgpb
b3nH8i55D1vOGt3fwZbS030Zto5a97cx3et8344biO5zyj6w8cbANUe2yfJh
4Bsx3Yv83z1S/EPsIzt+bPmEbE6ObIvl08A/xjbR0/1T7ANq3Tdiq9m3z8hW
THv3eeBrsU30dP8c20Kt+6eYzhXdd/0iOcqbmNb2YXLCP8I20dP9Q/qvpNb9
c0yf9epz2y+To3yF6bPMbckJ74ltt/GOwDVHtpNa9x2YPiv92o7fEH1OKvvW
xrsC15xv6bUt8F2YHlu17tuw1ezbd2Q3+6+92xP4Vmw7Pd33YN9S674L07ny
veUH8jG2kzW6f49tp6f7DmwLte57MP2uw492/Ino9xxke238c+CaI9tn2R/4
z5h+F0G17vsxXau67n4hB5Ij07X3a+DvYfvo6f4rtpda95+x1ezbQfIWpr07
FPhubB893Q9h66h1/xXTuaLfuzicHOVrTGvbn5zwDtg+errvp/+31LofwvSz
Rt+b+C05yu+YvktwJDnhL2BHbfxH4JojO0at+x+Yvqtw3I4nyKvpIjtp41OB
a85Jeh0J/BSmx1at+xHstB3PWM6SP5MjO2c5H/gZ7Cg93c9jJ6l1P4X9Zblg
+ZtcxI6xRvcL2FF6uv+BnaPW/Tym91qX7HiZPMrvJF6x8dXANUd2zfJP4Fcx
fRdIte7/YNft+K/lP6IvZ8uS7JgcS/i/2DV6uidjV6h1v4qdZt9isSjxWGTa
u5RYwv/ErtHTPYX+SdS6a45M54q+95Qai3Kcc0pr0xrdp2HXeFz3f3jMk5xj
7poj07023TdLi0W5IRaZ7iWljyX8diyDjTMGrjmyTNS6Z8R0ryqzHW8kuk8l
y2LjrIFrThZ6pQ88K6bHVq17ekx7rX3LRrKz/9q7HIHH2c8M9HTPgWWh1j0r
pnMlpx1zEZ0nskys0T0n681AT/eMWBK17jkw3WvObcebiO4z/+/+s43zBq45
snyW/IHnxXQvWLXu+bG/uO4KxKIUjEWma+/mWMIvYvno6X6z96fWPS+mvda+
3ULO8N+J9q5Q4NnZz3z0dC+EneNnlPvNmM4V3fcuHIuSmXNKa8sfS3ghLB89
3fPTPwu1/z8f03st/d5UkViUoph+l6hYLOGjsFttXDxwzZGVoNa9OKbfVSpp
x1JEv6ckK23jMoFrTml6FQu8DKbHVq17MaysHW+zlCPlY5HdbqkQ+G3YrfR0
r4CVpta9DHaHpaKlEqmMlWCN7hWxW+npXhy7nVr3Cphea95pxypEv2coq2rj
aoFrjqy6pUbg1TD9LqBq3Wtgd9mxpqUWqR2LrI7l7sBrYtXp6X43VpVa92pY
WfatLqmHae/qB14eq05P9/pYHWrd78Z0ruj3HhvEopTEtLYasYQPwKrT070G
/UtT614f071m3TduGIvSCNO91MaxhHfAmti4aeCaI7uHWvemmO7VNrNjc6L7
tP+7/2/jloFrTgt6NQ68JabHVq17Y6ws+3YvacX+a+9aB14Pa0JP99ZYC2rd
W2I6V9pY2pKa2D2s0b0N1oSe7k2xOtS6t8b0WUs7O95H9DmLrL32PHDNkXW0
dAq8A6bPQlTr3gnTtarrrjPpEotM117XwCtjHenp3hVrT617B6ws+3Y/uQ3T
3nULvBXWkZ7u3bDbqXXviulc0ec+D8SiNMO0tk6xhDfHOtLTvRP9W1Dr3g3T
a03dt+8ei3KJ16S6l90jlnDNkfW0ca/ANUd2hdeo7r0w3WvrrXryMNbXxv0C
15y+9OoReD9Mj61a9x5Yfx0tD5EBscgGWgYF/iDWk57ug7C+1Lr3w67zuncw
GYJpbb0CT8d6e9LTvRf9B1LrPgjTc62eN4cS3eeU6blkWOCaIxuumsCHYboX
qVr3EZjO9ZHad6LnKdkoy+jAR2LD6ek+GitBrfswrD/79ggZg2nvxgY+ABtO
T/ex2Chq3UdjOld033VcLEpvTGsbEUv4y9hwerqPoH9fat3HYvpZo89tx8ei
tMP0WeaEWMLrYxNt/GjgmiNrT637o5g+K51kx8eIPieVPW7jyYFrzuP0mhD4
ZEyPrVr3CVh/9m0KeYL9195NDXwMNpGe7lOxx6l1n4zpXNHPvSfJSKw9a3Tv
gk2kp/uj2Chq3adieq+l901PkXK8J9N7iacD1xzZNMv0wJ/G9LsIqnWfjula
1XX3DNH7FJmuvRmBa85Aej0d+AwsE7XuT2P92bdnyYOY9u65wJ/AptHT/Tls
ILXuMzCdK/q9i5mxKJMwrW16LOHVsGn0dJ9O/8epdX8O02tN3becFYtyJ6Z7
ec/HEq45stk2nhO45siqUus+B9O9whfs+CLRfULZXBvPC1xz5tLr+cDnYXps
1bo/j8234wLLQrIoFtlLlpcDX4DNpqf7y9hcat3nYXqto9e9r5BXsaqs0b02
Npue7nOwl6h1fxnTvTbdN3stFkX3+WW6l/R6LOGaI3vDxosD1xyZ7sW/H/RZ
jOm97hIbLyUXsGU2Xh645iyj1+uBL8f02Kp1fx2bz769SVaw/9q7lYEvwt6g
p/tKbBm17ssxnSv63GFVLMoLmNa2OJbwzdgb9HRfTP+51LqvxHSvQb+3tjoW
JTem3+V6K5bwm7A1Nl4buObI8lDrvhbT75qss+PbRL8nJltv43cC15z19Hor
8HcwPbZq3d/C5rNv75L32H/t3fuBr8DW0NP9fWw9te7vYDpXdN9jA1mC5WGN
7gVZ7xp6uq/FllHr/j6m91p63/QB0e/5yPReYmPgmiPbZPkw8I2YfhdHte4f
YrpWdd19RPQ+RaZr7+PAX8U20dP9Y+weat03YvPZt0/IAkx7tznw97BN9HTf
jL1ErfvHmM4V/d7RlliUdZjW9mEs4d2wTfR0/5D+66l134zpd030dws/jUX5
DNPf8tsaS3gF7HMbfxG45si+pNb9C6yo1Xxlx22kTrrIttt4R+Cas51eWwPf
gemxVeu+Fdtpx68t35BvY5HtsnwX+NfY5/R0/w7bTq37Dmy3ZY/le/ID9iVr
dN+DfU5P9y+wXdS6f4fps/Yf7fgT0d/5lO218c+Ba45sn2V/4D9j+lucqnXf
j/1ixwOWX8nBWGSHLIcDP4Dto6f7YWwvte4/YzvZt9/I75j27kjg32L76Ol+
BDtErfthrGi66O+OHo1F+QrT2vbHEl4c20dP9/30306t+xFM37XQ9yb+iEU5
hum7BMdjCf8VO2Hjk4FrjuwUte4nMX1X4bQdz3iSIjtr4z8D15yz9Doe+J+Y
Hlu17sexnezbOXKe/dfe/RX479gJerr/hZ2l1v1PTOfKBcvf5AB2ijW6X8BO
0NP9JHaIWve/MH3X6KIdLxF9z0h22cZXAtcc2VXLtcCvYPoukGrdr2G6VnXd
/UOuxyLTtfdv4D9gV+np/i92mVr3K9hO9u0/8jWmvdMfRHY/j12lp7vmXOWx
vw78X0znir73lBSPchrT2rRG92+wq/R0v8Zj6rFPB/M1R6bP2vV3A5LjUWLx
yPRd+ng84S2xFBunBq45sjRq3VMxfVf/BjumJ/qeviyDjTMGrjkZ6BUPPCOm
x1atexzLZMfMlhtJlnhkWS3ZAs+MpdDTPRuWgVr3jFh2Sw5LTpILS2ON7jmw
FHq6p2JZqXXPhul3DXPb8Saiv7Mhy2PjvIFrjiyfJX/geTH9LQzVuufHCtix
oOVmcks8skKWwoEXxPLR070wloda97xYJvatCCmKae+KBZ4Fy0dP92JYIWrd
C2M6V/R3P26NR7kB09ryxxNeG8tHT/f89M9ArXsxTN810veGisejlMD0XZqS
8YSnYaVsXDpwzZGVoda9NKbv6pS1421E39ORlbNx+cA1pxy9SgZeHtNjq9a9
JJaJfbudVGD/tXd3BF4UK0VP9zuwctS6l8d0rlS0VCIFsTKs0b0iVoqe7qWx
QtS634Hpu3aV7Xgn0ffsZFVsXDVwzZFVs1QPvCqm78Kp1r06pmtV110Nclc8
Ml17NQPPhVWjp3tNrAq17lWxTOxbLZIZ097VDrwCVo2e7rWxrNS618R0ruh7
f3XiUcpiWlv1eML/warR0706/ctR614b02tN/d7m3fEoep0p0+8y1o0nXHNk
9WxcP3DNkem1oGrd62P6XasGNm5I9HuSskY2bhy45jSiV93AG2N6bNW618Wa
2LGp5R7SLB5Zc0uLwJti9ejp3gJrRK17Y0yvdfS6t2U8yr2Y1lY/nvCDWD16
utenf3Nq3Vtgeq7V82Yrot9zk+m5pHXgmiNrY2kbeGtMv4umWve2mM71dpb7
iJ6nZO0tHQJvh7Whp3sHLI1a99ZYE/atI+mEae86B94Ma0NP985Ye2rdO2A6
V/R7d13iURpgWlvbeMIPYG3o6d6W/o2ode+M6WeNvrfbNR6lMqbvst4fT/hf
WDcbPxC45siqUOv+AKbvyna3Yw+i78nKetq4V+Ca05Ne9wfeC9Njq9b9fqwJ
+9ab9GH/tXd9A++EdaOne1+sJ7XuvTCdK/q514+0w6qwRve7sG70dH8Aa0+t
e19M77X0vql/PIq+5y7Te4kH4wk/xvuLh2w8IHDNkem76Kp1H+AWi667geQC
71907Q0KXHOa0+vBwAdhp3iP4/4g1oR9G0yasv/auyGB98Eeoqf7EKw5te6D
MJ0r+t790HiU7pjWNiCe8GPYQ/R0H0D/ntS6D8H0WlPfWxkWj5Ib03c5hscT
rjmyETYeGbjmyPJQ6z4S03dFHrbjKKLvichG2/iRwDVnNL2GB/4IpsdWrftw
bIwdx1rGkfHxyCbosQMfi42gp/tEbDS17o9geq2j172PkklYHtbofgs2gp7u
I7EJ1LpPxHSvTffNHotH0fe8ZLqX9Hg84Zojm2zjKYFrjkzfxVKt+xRM73Wf
sPFUsof3v0/a+KnANedJej0e+FOYHlu17o9jY9i3p8k09l97Nz3w8dhkerpP
x56k1v0pTOeKvnf2TDzKw5jWNiWe8MewyfR0n0L/0dS6T8d0r0F/t2RGPMpF
7knob3k8G0/459hzNp4ZuObILnOPwn0mpr81MMvGzxP9nRDZbBvPCVxzZtPr
2cDnYHps1bo/i41h314gL7L/2ru5gU/DnqOn+1xsNrXuc7Dd3PeYF4/yBKa1
zYwn/Dr2HD3dZ9L/SWrd52J6r6X3TfOJ/s6DTO8lFgSuObKFlkWBL8D0txhU
674I07Wq6+4lovcpMl17Lwc+CVtIT/eXsTLUui/AxrBvr5CxmPbu1cBfxBbS
0/1VbAK17i9jOlf0dydei0eZhWlti+IJ1xzZQnq6L6L/bGrdX8WSoltB6V6P
R3kD079ltTie8Di2xAZLA9cc2TJq3Zdi+rd2ltvxTaJ/J0u2wsYrA9ecFfRa
HPhKTI+tWvfF2Co7rra8RdbEI1trWRf4amwJPd3XYSuodV+JvW1Zb3mHvIst
Y43u67El9HRfiq2l1n0dVld//8qO75N66SLbYOMPAtcc2UbLpsA/wPRvEanW
fRP2oR0/snxMPolHttmyJfCPsI30dN+CbaDW/QNsFfv2KfkM095tDXwNtpGe
7luxzdS6b8F0rujfXfo8HmU5prVtiie8GbaRnu6b6L+CWvet2BeWLy1fkW3Y
dsuOwL/Edlq+DnwH9g217l9j31p2Wb4ju7E9lu8D34XtpKf799h2at13YKvY
tx/Ij5j27qfAP8N20tP9J2wPte7fYzpX9lp+Jh9h37BG973YTnq6f41tptb9
J2yfZb/lF3IA+9VyMPD92CHL4cAPYr9R634Y07Wq6+53cgTTtXc08HexQ/R0
P4r9Sq37QWwV+/YHWY1p744F/iN2iJ7ux7C11LofxXSuHLecILuw31ij+3Hs
ED3dD2N7qHU/hulvbevfjToZj3IK07+ldDqe8EHYGRufDVxzZH9S634W07/V
dM6O54n+nSbZXza+ELjm/EWv04FfwPTYqnU/jf1tx4uWS+RyPLIrlquBX8TO
0NP9KvYXte4XsGuWfyzXyb/Yn6zR/R/sDD3dz2JXqHW/iulvTf5nx//98cqU
6N9ZkyXZODkl4Zoji1nigSdj+rfQVOsex1LsmGpJIzekRJbekiHwVCxGT/cM
WBK17snY3+xbxpQomTDtXeaUhF/GYvR0z0z/9NS6Z8B0rujffbsxJco5zimt
LZ6S8PuxGD3d4/T/i3PMPTOWxY5ZLdlI9pTIclhyBp4Vy2XJHXhO7CZq3XNj
eSx5LflIfqyApWDgebFc9HQviOWg1j0npr3Wvt1MbsG0d4UCz8R+5qKneyGs
ALXuBTGdK4UtRUgqdhNrdC+M5aKne24sPbXuhbCilmKWW0lxrISlZODFsFKW
0oGXxMpQ614au8Z1VzYlym2Yrr1yKQn/FytFT/dy9C9BrXtJTHutfStPLvLz
R3t3e+C3sJ+l6Ol+O3aFn1Hu5TCdKxUsdxCdJ3lYW+nAK2Cl6OleGitArfvt
mF5r6t9tqZgSRa8zZfq3TCqlJPxvrLKN7wxcc2R6Laha9zsx/VsLVWxclejf
SZFVs3H1wDWnGr0qBV4d02Or1r0SVsOOd1lqklopkdW21An8LqwyPd3rYNWo
da+O6bWOXvfenRKlLqa13ZmS8E+wyvR0v5P+tal1r4PpuVbPm/VSoujfuZDp
uaR+SsJP8fzSwMYNA9ccmf4tCtW6N8R0rjeycWPyD89fTWzcNHDNaUKv+oE3
xf7kOc69PlaDfbuHNGP/tXfNA6+FNaCne3OsCbXuTTGdK/p3N1qkRKmCaW0N
UxJeDmtAT/eG9K9GrXtzTD9rWlruJcWwVpbWgbfE2ljaBt4aK0Gte1usneU+
S3vSAeto6RT4fVgberp3wlpR694aq8G+dSZdMO1d18CbYW3o6d4V60iteydM
54p+7t1PGmElWKP7bay3DT3d22JNqHXvium9lt43dUuJ8gCm9xLdUxK+Deth
456Ba46sF7XuPTFdq7ruehO9T5Hp2usTuObUplf3wPtgemzVunfHarBvfcld
7L/2rl/gXbAe9HTvh9Wm1r0PpnOlv+VBch/WizW698d60NO9J9aRWvd+mF5r
6u+WP5QS5T9ek+pveQ9ISbjmyAbaeFDgmiNLotZ9EKa/FT7YjkOI/k64bKiN
hwWuOUPpNSDwYZgeW7XuA7DhdhxhGUkeTolslGV04COwgfR0H40NpdZ9GKbX
Onrd+wgZgyWxRvcbsIH0dB+EjaLWfTSme226bzY2JYr+zr9M95LGpSRcc2Tj
bTwhcM2R6W/xq9Z9Aqb3uhNt/CjRfSrZJBs/FrjmTKLXuMAfw/TYqnUfhw1n
3x4nk9l/7d2UwB/GxtPTfQo2iVr3xzCdK/p3B55IiTIY09ompCT8VWw8Pd0n
0H8ote5TMN1rmGrHJ4nuM8iesvHTgWuObJpleuBPY7oXoFr36dgzdpxheZY8
lxLZTMuswGdg0+jpPgt7ilr3p7Hh7NvzZDamvZsT+GRsGj3d52AzqXWfhelc
0X2PF1KiTMS0tukpCT+CTaOn+3T6T6LWfQ6m91p63/QimYvpvcS8wLNj8y0L
Ap+HLaTWfQGma1XX3SJSGNO191LgY7D59HR/CbuJWvd52HD27WUyAtPevRL4
bGw+Pd1fwUZR6/4SpnPlVctrZAa2kDW6v4rNp6f7Amwmte6vYDrXdd/s9ZQo
b2C6l7Q4JeEHsCU2Xhq45siWUeu+FNO9quV2fJPoPpVshY1XBq45K+i1OPCV
mB5bte6LsVV2XG15i6xJiWytZV3gq7El9HRfh62g1n0l9rZlveUd8i62jDW6
r8eW0NN9KbaWWvd1mF7rvGfH94nuM8s22PiDwDVHttGyKfAPMN0LVq37JuxD
O35k+Zh8khLZZsuWwD/CNtLTfQu2gVr3D7BV7Nun5DNMe7c18DXYRnq6b8U2
U+u+BdO5ovven6dEWY5pbZtSEr4b20hP9030X0Gt+1bsC+255SuyDdtu2RH4
l9hOy9eB78C+odb9a+xbyy7Ld2Q3tsfyfeC7sJ30dP8e206t+w5sFfv2A/kR
0979FPhn2E56uv+E7aHW/XtM58pey8/kI+wb1ui+F9tJT/evsc3Uuv+E7bPs
t/xCDmC/Wg4Gvh87ZDkc+EHsN2rdD2O6VnXd/U6OYLr2jgb+LnaInu5HsV+p
dT+IrWLf/iCrMe3dscB/xA7R0/0YtpZa96OYzpXjlhNkF/Yba3Q/jh2ip/th
bA+17scw/azR+6aT5D1M7yVOBa45stOWM4GfwjZQ634G03uVs5Y/SX/snOV8
4Gex0/R0P4/1otb9FPaX5YLlb3IRu2S5HPgF7DQ93S9j56h1P4/pXNfPvSvk
KraBNbp/gp2mp/sZ7BK17pcx3Wu4ZvmHtMSuW/4N/Br2X4r+GFrC/8VaUeuu
ObIkOyZbYiSeGlmKJTXwZOw/erqnYnrseDD/X+wv9i0tNcoNqZFp79KnJvwi
pl6pgaenfwq17qn859G5ovseGVKjnOX8acUa3Ttg//G47unof45zzF1zZBnt
mMmSmdyYGlkWS9bAM2HZLNkDz4rloNY9O5bTksuSm9yE5bHkDTwXlo2e7nmx
LNS6Z8W019q3fCQ/pr0rEPgN7Gc2eroXwPJQ654X07lS0HIzScZysEb3glg2
erpnx1KodS+A6blWz5u3pEYphOm5pHBqwrdhRWxcNHDNkRWj1r0o9iHX3a2p
UfZy/eraK56a8KtYEXq6F6e/Hntv0Kcwpr3WvpUgFzDtXcnA87OfRejpXhK7
xM8o9+KYzpVSltIkF+dPMdboXgorQk/3olgeat1LYvpZo89NyqRGucbPH32W
UDY14cWx22xcLnDNkV3nZ5R7OUyfVZS38e2kAlbBxncErjkV6FU28DswPbZq
3ctiFe1YyVKZ3JkaWRVL1cArYbfR070qVoFa9zswnev6uVeNVMe0tnKBx7Hb
6Olejv5VqHWvium9bg073kX0OaOspo1rBa45stqWOoHXwvRZoGrd62B327Gu
pR6pnxpZA0vDwOtitenp3hCrSa17Lawi+9aINMa0d00CvxOrTU/3JlgDat0b
YjpX9Lln09Qo5TGtrU5qwvNjtenpXof+Fah1b4LdY2lmaU5aYC0t9wbeDGtl
aR34vVgbat1bY20t7Sz3kfZYB0vHwNthrejp3hFrSa37vVhF9q0T6Yxp77oE
3hhrRU/3LlgHat07YjpXulruJ3WxNqzRvSvWip7urbEG1Lp3wfRcq+fNbuQB
TM8l3QO/Eeth6Rl4d6wXte49MV2ruu56k4KYrr0+gVfHetDTvQ+Wg1r37lhF
9q0vqYRp7/oF3hnrQU/3flgVat37YDpX+lseJO2wXqzRvT/Wg57uPbEO1Lr3
w/SzRvfNHkqNUgPTvaQBqQmfiw208aDANUdWk1r3QZjuVQ224xCi+1SyoTYe
FrjmDKXXgMCHYXps1boPwIbbcYRlJHk4NbJRltGBj8AG0tN9NDaUWvdhmM51
/dx7hIzBarJG9/rYQHq6D8JGUes+GtO9Nt03G5saRfeZZbqXNC414ZojG2/j
CYFrjkz3gqcGfSZgeq870caPkvXYJBs/FrjmTKLXuMAfw/TYqnUfhw1n3x4n
k9l/7d2UwB/GxtPTfQo2iVr3xzCdK7rv/URqlMGY1jYhNeHPYePp6T6B/kOp
dZ+C6V7DVDs+SXSfQfaUjZ8OXHNk0yzTA38a070A1bpPx56x4wzLs+S51Mhm
WmYFPgObRk/3WdhT1Lo/jQ1n354nszHt3ZzAJ2PT6Ok+B5tJrfssTOeK7nu8
kBplIqa1TU9N+BFsGj3dp9N/ErXuczA91+p580UyF9NzybzAW2DzLQsCn4ct
pNZ9AaZrVdfdItIV07X3UuBjsPn0dH8Ja0Ot+zxsOPv2MhmBae9eCXw2Np+e
7q9go6h1fwnTufKq5TUyA1vIGt1fxebT030BNpNa91cwneu6b/Z6apQ3MN1L
Wpya8APYEhsvDVxzZMuodV+K6V7Vcju+SXSfSrbCxisD15wV9Foc+EpMj61a
98XYKjuutrxF1qRGttayLvDV2BJ6uq/DVlDrvhJ727Le8g55F1vGGt3XY0vo
6b4UW0ut+zpM73Xfs+P7RPeZZRts/EHgmiPbaNkU+AeY7gWr1n0T9qEdP7J8
TD5JjWyzZUvgH2Eb6em+BdtArfsH2Cr27VPyGaa92xr4GmwjPd23Ypupdd+C
6VzRfe/PU6Msx7S2TakJ341tpKf7JvqvoNZ9K7Ypna3H8kVqlC+xz/R3q1IT
/jG2TfsauObIdlDrvh1bqb9RZcevPeki+0brCFxzvqHXV4F/i+mxVev+FbaK
fdtFvmP/tXe7A/8M20ZP993YN9S6f4vpXNlj+Z58hO1gje57sG30dN+ObabW
fTf2uq3hBzv+SN5IF9lPNt4buObIfrbsC3wvtjRdVOu+D9O1qutuP/klNTJd
ewcCfxf7mZ7uB7CfqHXfi61i334lqzHt3cHAv8N+pqf7QWwtte4HMJ0rb1kO
pUbZiWlt+1IT/hb2Mz3d99H/G2rdD2L6WaP7ZofJe5juJf0WuObIfrccCfw3
bAO17kcw3as6avmDlMKOWY4HfhT7nZ7ux7Fi1Lr/hp2wnLScIqexM5azgZ/E
fqen+1nsGLXuxzGd6/q59yc5h21gje6fYL/T0/0IdoZa97OY3uuet/xFMmEX
LH8Hfh67aLkU+N9YFmrdL2GXLVcsV8k17B/L9cCvYBfp6X4du0Ct+9/YCfbt
X/Ifpr1Ll5bw09hFerprzkUe+7/Ar2M6V3TfOyktylEsC2t0vwm7SE/3S5ge
+2gwX3Nk39pwtyU5LUosLbKf9P2CtITvxlJsnBq45sjSqHVPxbZazQ12TE8O
p4ssg40zBq45GegVDzwjpsdWrXscO8G+ZUqLkjktMu3djWkJ/w9Loaf7jfTP
QK17RkznShY7ZiVXOH/SWKN7FtabQk/3VOwfzjH3GzE91+p5M1talA/TRabn
kuxpCdccWQ4b5wxcc2SfpItq3XO6cd3lSouyh+tX117utISfw3LQ0z03/fXY
e4I+2THttfbtJnIS097lCTwz+5mDnu55MD22at1zYzpXvrTkTYtyA+eU1pYz
LeFfYjno6Z6T/hmodc+D6WeN7pvlS4tynp8/upeUPy3hD2AFbFwwcM2RXeBn
lHtBTPeqbrbxLaQ/VsjGhQPXnEL0yh94YUyPrVr3/FgROxa1FCO3pkVW3FIi
8KJYAXq6l8AKUeteGLvMz72SaVFKYVpbwbSEX8MK0NO9IP2LU+teAtN73dJ2
LEN0n1lW1sa3Ba45snKW8oHfhulesGrdy2O327GC5Q5SMS2ySpbKgVfAytHT
vTJWllr327Ai7NudpAqmvasa+K1YOXq6V8UqUeteGdO5ovve1dKi3IxpbeXT
Et4eK0dP9/L0L0Ste1Xsd7tm/rBUT4tSAztluSst4X9gNW1cK3DNkdWm1r0W
ttdq6tjxbnI+XWR1bVwvcM2pS6+7Aq+H6bFV634XVoR9q08asP/au4aBV8Fq
0tO9IVaXWvd6mM6VRpbGpAJWmzW6N8Jq0tO9FlaJWveGmJ5r9bzZhOxKF5me
S5oGrjmyeyzNAm+K7UkX1bo3w3St6rprTvQ8JdO11yJwzSlOr6aBt8DSqHVv
ihVh31qSopj27t7AG2D30NP9Xqw4te4tMJ0r+y2t0qLUwbS2ZmkJ34/dQ0/3
ZvSvS637vf6fJzW6b9Y6LUppTPeS2qQlfC7W1sbtAtccWVlq3dthuld1nx3b
E92nknWwccfANacDvdoE3hHTY6vWvQ3WyY6dLV1I17TI7rd0C7wz1pae7t2w
DtS6d8R0ruvn3gOkO1aWNbpXxNrS070ddj+17t0w3WvTfbMeaVF0n1mme0k9
0xKuObJeNu4duObIdC94atCnN6b3un1s3Jesx/rZuH/gmtOPXj0D74/psVXr
3hPrxL49SB5i/7V3AwLvivWip/sArB+17v0xnSu67z0wLcp9mNbWOy3hz2G9
6Onem/4dqHUfgOlewxLLoLQous8gW2EZnJbwJdgQGw8NXHNkuhegWveh2PtW
M8zGw8mGdJGNsPHIwDVnBL0GBz4S02Or1n0w1ol9e5iMYv+1d6MDfwgbQk/3
0dgIat1HYjpXdN/jkbQofTCtbWhawn/BhtDTfSj9+1HrPhrTc62eN8eQI+ki
03PJ2MA1RzbOMj7wsdixdFGt+3hM16quuwlEz1MyXXsTA++OjaOn+0SsNrXu
Y7FO7NujpDOmvZsU+ChsHD3dJ2H3U+s+EdO5csbyWFqUYZjWNj4t4WewcfR0
H0//EdS6T8L+D5xUQL0=
"]],
Annotation[#, "Geometry"]& ]}],
MouseAppearanceTag["LinkHand"]],
AllowKernelInitialization->False],
"MeshGraphics3D",
AutoDelete->True,
Editable->False,
Selectable->False],
Boxed->False,
DefaultBaseStyle->{
      "MeshGraphics3D", FrontEnd`GraphicsHighlightColor -> 
       Hue[0.1, 1, 0.7]},
ImageSize->{146.89453125, 65.},
Lighting->{{"Ambient", 
GrayLevel[0.45]}, {"Directional", 
GrayLevel[0.3], 
ImageScaled[{2, 0, 2}]}, {"Directional", 
GrayLevel[0.33], 
ImageScaled[{2, 2, 2}]}, {"Directional", 
GrayLevel[0.3], 
ImageScaled[{0, 2, 2}]}},
Method->{"ShrinkWrap" -> True},
ViewPoint->{-0.8210990470283575, -1.5825192155271903`, \
-2.8760092641464716`},
ViewVertical->{-0.0560615742118108, -0.9954523220018678, \
-0.0770180142433145}]\);

The core of the computation is a 3D diffusion PDE term, with a “diffusion coefficient” given by a rank-4 tensor parametrized by Young’s modulus (here Y) and Poisson ratio (ν):

pdeterm = DiffusionPDETerm
&#10005

pdeterm = 
  DiffusionPDETerm[{{u[x, y, z], v[x, y, z], w[x, y, z]}, {x, y, z}}, 
   Y/(1 + \[Nu]) {
     {{
       {(1 - \[Nu])/(1 - 2 \[Nu]), 0, 0},
       {0, 1/2, 0},
       {0, 0, 1/2}
      }, {
       {0, \[Nu]/(1 - 2 \[Nu]), 0},
       {1/2, 0, 0},
       {0, 0, 0}
      }, {
       {0, 0, \[Nu]/(1 - 2 \[Nu])},
       {0, 0, 0},
       {1/2, 0, 0}
      }},
     {{
       {0, 1/2, 0},
       {\[Nu]/(1 - 2 \[Nu]), 0, 0},
       {0, 0, 0}
      }, {
       {1/2, 0, 0},
       {0, (1 - \[Nu])/(1 - 2 \[Nu]), 0},
       {0, 0, 1/2}
      }, {
       {0, 0, 0},
       {0, 0, \[Nu]/(1 - 2 \[Nu])},
       {0, 1/2, 0}
      }},
     {{
       {0, 0, 1/2},
       {0, 0, 0},
       {\[Nu]/(1 - 2 \[Nu]), 0, 0}
      }, {
       {0, 0, 0},
       {0, 0, 1/2},
       {0, \[Nu]/(1 - 2 \[Nu]), 0}
      }, {
       {1/2, 0, 0},
       {0, 1/2, 0},
       {0, 0, (1 - \[Nu])/(1 - 2 \[Nu])}
      }}
    }, <|Y -> 10^9, \[Nu] -> 33/100|>];

There are boundary conditions to specify how the spoon is being held, and pushed. Then solving the PDE (which takes just a few seconds) gives the displacement field for the spoon

dfield = NDSolveValue
&#10005

dfield = deformations = 
   NDSolveValue[{pdeterm == {0, NeumannValue[-1000, x <= -100], 0}, 
     DirichletCondition[{u[x, y, z] == 0., v[x, y, z] == 0., 
       w[x, y, z] == 0.}, x >= 100]}, {u, v, w}, {x, y, z} \[Element] 
     spoon];

which we can then use to find how the spoon would deform:

Show
&#10005

Show[MeshRegion[
  Table[Apply[if, m], {m, MeshCoordinates[spoon]}, {if, 
     deformations}] + MeshCoordinates[spoon], 
  MeshCells[spoon, MeshCells[spoon, {2, All}]]], 
 Graphics3D[Style[spoon, LightGray]]]

PDE modeling is a complicated area, and I consider it to be a major achievement that we’ve now managed to “package” it as cleanly as this. But in Version 12.2, in addition to the actual technology of PDE modeling, something else that’s important is a large collection of computational essays about PDE modeling—altogether about 400 pages of detailed explanation and application examples, currently in acoustics, heat transfer and mass transport, but with many other domains to come.

Just Type TEX

The Wolfram Language is all about expressing yourself in precise computational language. But in notebooks you can also express yourself with ordinary text in natural language. But what if you want to display math in there as well? For 25 years we’ve had the infrastructure to do the math display—through our box language. But the only convenient way to enter the math is through Wolfram Language math constructs—that in some sense have to have computational meaning.

But what about “math” that’s “for human eyes only”? That has a certain visual layout that you want to specify, but that doesn’t necessarily have any particular underlying computational meaning that’s been defined? Well, for many decades there’s been a good way to specify such math, thanks to my friend Don Knuth: just use TEX. And in Version 12.2 we’re now supporting direct entry of TEX math into Wolfram Notebooks, both on the desktop and in the cloud. Underneath, the TEX is being turned into our box representation, so it structurally interoperates with everything else. But you can just enter it—and edit it—as TEX.

The interface is very much like the += interface for Wolfram|Alpha-style natural language input. But for TEX (in a nod to standard TEX delimiters), it’s +$.

Type +$ and you get a TEX input box. When you’ve finished the TEX, just hit and it’ll be rendered:

TeX

Like with +=, if you click the rendered form, it’ll go back to text and you can edit again, just as TEX.

Entering TEX in text cells is the most common thing to want. But Version 12.2 also supports entering TEX in input cells:

TeX typing

What happens if you + evaluate? Your input will be treated as TraditionalForm, and at least an attempt will be made to interpret it. Though, of course, if you wrote “computationally meaningless math” that won’t work.

Just Draw Anything

Type Canvas[] and you’ll get a blank canvas to draw whatever you want:

Canvas[]
&#10005

Canvas[]

We’ve worked hard to make the drawing tools as ergonomic as possible.

Canvas[]
Canvas

Applying Normal gives you graphics that you can then use or manipulate:

Normal
&#10005

GraphicsGrid[
 Partition[
  Table[Rasterize[Rotate[Normal[%], \[Theta]], 
    ImageSize -> 50], {\[Theta], 0, 2 Pi, .4}], UpTo[8]], 
 ImageSize -> 500]

GraphicsGrid
&#10005

GraphicsGrid[
 Partition[
  Table[Rasterize[Rotate[Normal[%], \[Theta]], 
    ImageSize -> 50], {\[Theta], 0, 2 Pi, .4}], UpTo[8]], 
 ImageSize -> 500]

When you create a canvas, it can have any graphic as initial content—and it can have any background you want:

Canvas
&#10005

Canvas[Graphics[
  Style[Disk[], Opacity[.4, Red], EdgeForm[{Thick, Red}]]], 
 Background -> 
  GeoGraphics[
   Entity["MannedSpaceMission", "Apollo16"][
    EntityProperty["MannedSpaceMission", "LandingPosition"]]]]

On the subject of drawing anything, Version 12.2 has another new function: MoleculeDraw, for drawing (or editing) molecules. Start with the symbolic representation of a molecule:

Caffeine molecule
&#10005

Molecule[Entity["Chemical", "Caffeine"]]

Now use MoleculeDraw to bring up the interactive molecule drawing environment, make an edit, and return the result:

MoleculeDraw

It’s another molecule now:

New molecule

The Never-Ending Math Story

Math has been a core use case for the Wolfram Language (and Mathematica) since the beginning. And it’s been very satisfying over the past third of a century to see how much math we’ve been able to make computational. But the more we do, the more we realize is possible, and the further we can go. It’s become in a sense routine for us. There’ll be some area of math that people have been doing by hand or piecemeal forever. And we’ll figure out: yes, we can make an algorithm for that! We can use the giant tower of capabilities we’ve built over all these years to systematize and automate yet more mathematics; to make yet more math computationally accessible to anyone. And so it has been with Version 12.2. A whole collection of pieces of “math progress”.

Let’s start with something rather cut and dried: special functions. In a sense, every special function is an encapsulation of a certain nugget of mathematics: a way of defining computations and properties for a particular type of mathematical problem or system. Starting from Mathematica 1.0 we’ve achieved excellent coverage of special functions, steadily expanding to more and more complicated functions. And in Version 12.2 we’ve got another class of functions: the Lamé functions.

Lamé functions are part of the complicated world of handling ellipsoidal coordinates; they appear as solutions to the Laplace equation in an ellipsoid. And now we can evaluate them, expand them, transform them, and do all the other kinds of things that are involved in integrating a function into our language:

Plot
&#10005

Plot[Abs[LameS[3/2 + I, 3, z, 0.1 + 0.1 I]], {z, -8 EllipticK[1/3], 
  8 EllipticK[1/3]}]

Series
&#10005

Series[LameC[\[Nu], j, z, m], {z, 0, 3}]

Also in Version 12.2 we’ve done a lot on elliptic functions—dramatically speeding up their numerical evaluation and inventing algorithms doing this efficiently at arbitrary precision. We’ve also introduced some new elliptic functions, like JacobiEpsilon—which provides a generalization of EllipticE that avoids branch cuts and maintains the analytic structure of elliptic integrals:

ComplexPlot3D
&#10005

ComplexPlot3D[JacobiEpsilon[z, 1/2], {z, 6}]

We’ve been able to do many symbolic Laplace and inverse Laplace transforms for a couple of decades. But in Version 12.2 we’ve solved the subtle problem of using contour integration to do inverse Laplace transforms. It’s a story of knowing enough about the structure of functions in the complex plane to avoid branch cuts and other nasty singularities. A typical result effectively sums over an infinite number of poles:

InverseLaplaceTransform
&#10005

InverseLaplaceTransform[Coth[s \[Pi] /2 ]/(1 + s^2), s, t]

And between contour integration and other methods we’ve also added numerical inverse Laplace transforms. It all looks easy in the end, but there’s a lot of complicated algorithmic work needed to achieve this:

InverseLaplaceTransform
&#10005

InverseLaplaceTransform[1/(s + Sqrt[s] + 1), s, 1.5]

Another new algorithm made possible by finer “function understanding” has to do with asymptotic expansion of integrals. Here’s a complex function that becomes increasingly wiggly as λ increases:

Table
&#10005

Table[ReImPlot[(t^10 + 3) Exp[I  \[Lambda] (t^5 + t + 1)], {t, -2, 
   2}], {\[Lambda], 10, 30, 10}]

And here’s the asymptotic expansion for λ:

AsymptoticIntegrate
&#10005

AsymptoticIntegrate[(t^10 + 3) Exp[
   I  \[Lambda] (t^5 + t + 1)], {t, -2, 2}, {\[Lambda], Infinity, 2}]

 

Tell Me about That Function

It’s a very common calculus exercise to determine, for example, whether a particular function is injective. And it’s pretty straightforward to do this in easy cases. But a big step forward in Version 12.2 is that we can now systematically figure out these kinds of global properties of functions—not just in easy cases, but also in very hard cases. Often there are whole networks of theorems that depend on functions having such-and-such a property. Well, now we can automatically determine whether a particular function has that property, and so whether the theorems hold for it. And that means that we can create systematic algorithms that automatically use the theorems when they apply.

Here’s an example. Is Tan[x] injective? Not globally:

FunctionInjective
&#10005

FunctionInjective[Tan[x], x]

But over an interval, yes:

FunctionInjective
&#10005

FunctionInjective[{Tan[x], 0 < x < Pi/2}, x]

What about the singularities of Tan[x]? This gives a description of the set:

FunctionSingularities
&#10005

FunctionSingularities[Tan[x], x]

You can get explicit values with Reduce:

Reduce
&#10005

Reduce[%, x]

So far, fairly straightforward. But things quickly get more complicated:

FunctionSingularities
&#10005

FunctionSingularities[ArcTan[x^y], {x, y}, Complexes]

And there are more sophisticated properties you can ask about as well:

FunctionMeromorphic
&#10005

FunctionMeromorphic[Log[z], z]

FunctionMeromorphic
&#10005

FunctionMeromorphic[{Log[z], z > 0}, z]

We’ve internally used various kinds of function-testing properties for a long time. But with Version 12.2 function properties are much more complete and fully exposed for anyone to use. Want to know if you can interchange the order of two limits? Check FunctionSingularities. Want to know if you can do a multivariate change of variables in an integral? Check FunctionInjective.

And, yes, even in Plot3D we’re routinely using FunctionSingularities to figure out what’s going on:

Plot3D
&#10005

Plot3D[Re[ArcTan[x^y]], {x, -5, 5}, {y, -5, 5}]

 

Mainstreaming Video

In Version 12.1 we began the process of introducing video as a built-in feature of the Wolfram Language. Version 12.2 continues that process. In 12.1 we could only handle video in desktop notebooks; now it’s extended to cloud notebooks—so when you generate a video in Wolfram Language it’s immediately deployable to the cloud.

A major new video feature in 12.2 is VideoGenerator. Provide a function that makes images (and/or audio), and VideoGenerator will generate a video from them (here a 4-second video):

VideoGenerator
VideoGenerator
&#10005

VideoGenerator[Graphics3D[AugmentedPolyhedron[Icosahedron[], # - 2],
   ImageSize -> {200, 200}] &, 4]

To add a sound track, we can just use VideoCombine:

VideoCombine
&#10005

VideoCombine[{%, \!\(\*
TagBox[
DynamicModuleBox[{Audio`AudioObjects`audio$$ = HoldComplete[
Audio[CompressedData["
1:eJxc3XXcZUlxN/DtdRdYXAe3oAF25zkPcHEPEDxAGIKFYAESJMgeWGyxRYMF
GHRxJ7vzXOTiFjywOEOw4O7y1rfu/Cbzef/oe849p6W6urq7uurXfbbd5X63
uPv+++233wMPrZ9b7Hjw4gEP2PHQvz3Yn7vtuPeVrnhvL0eF5z1m7HfCeOF0
g8XLp1vNr5n+YX7z9IBxxvTw8a7pUYt3T48b75seO793Omn17ulf5l3TXcdb
phstXjFtLl40XWb17OmC49Tp3Ksndzhq8bjpyNVjp8MWJ08Hrubpt+Ph09fn
+02r+c7T1nzH6U3jth3ePN92esf4u+lj892mn46HTMfNT5guOj9juuJ43nTD
1cunv5lfNd129dq+Xn/1smmxeMl0sfHM6ZyrJ01/mR81fXt+wPSR+a7TS8fN
p6fM150eP19retDYPv3r2Jj+ab7y9I/zX09/O19yWswXnC41zlZpzzqdfxwz
/dV89srz4tPt5stMD52nTvv2+fbTj8eDp2Pmx08XWT19usL83Omq8wumv149
b7r04tnTRRfPmM6yesJ0yOIxXZ9fzQ+bvjn+efrOeOD03fmB09fG/bqO/z3f
a3r/uMv02vlW09Pn60+PmK82PWRMxb9rdXj5uMX04XHX6WfzQ7oOeHWexVOm
i8/PnC6xembzUlnnm586Hbd4wnTweMz0p/mRHVc5yn3rfLvpLeN20xvGbaZ7
j6tMrxm3mk4e15x+MT+0+fqYedH1u+A4ttIfMJ1rPnK69bj0dPdxpenB80bf
e3ed+ULNp3+eT2gePGCcWG1/qem84+jpe+OXG8vxtY3Pjx9svGN8eeOG4xUb
9x7v2Dh5vHfjc+P7G8eOQ6dzj6Omc8xHFK1HT9vmY6frzRcuublCl6Ed8P2S
8/HT2ebDp8uMs083G5eYHjY2pyeP63bAe89uOC463Xy+xHSD+SLTpeezTUfN
B08HzftPPx+/23A9yzis6b34vG4/9Cn7suMcJS9n6eeXm8/RcS4yzrL3eqX5
XNNfj3NP0zj/tH2cb7rauMB0/XGR6S7jCtM8X2P69HzP6QLz06brLV42PWp+
9/Qfi0+UPH2r+PyL6WeL306H7Dxg8y+Lv0z/u/hlP3/++K/pHxZvni63+Pfp
S+M+0z3mK5UM/Kx48YSNKm/jJeNm26sznV7XXXceb9r1pnHmrtuO1+26xrjg
iYeOAzfOPp60sf8YLXdvG7efDlo8err8eG7V/xXTPVdvrXY4fXrYalnyuzX9
8+L06Y6LN0zXXL2k5XHMJ7Xs4JEyqx9snDDOu/GNcf/t1xgvOfGkcY0zqpwz
9hsnnVHdeb8q/8S631682HjPuPPGNF608cLxiQ3ycNNx8emJ87WnD8x3mf4w
P6L700XGM1ruts2nThdePL34+5TprPMTpz+OR7Y8P3xcrWg9Z8n+HzeeOz7e
8vC98aCNa48LbZw6PlzlnLr91HH97YeOk7dXm25/z/jGiVX29nOOJ2+v+Nur
HZqOm45XbZwyPrDxlfHjjUPmA6bzzEdNG/P5ul3uNC433W2+4lR5Tp8a39sg
K/cdV+1+fPvxV/381+MPLZfyeMn41MbLx2c2il8bVxsv3qgxZKNo3Tht3HLj
U+OeXV7xZ+My4zn9/kXjkxvoJ19Xnc/T8nmb+dLTPcdfT48ei+kZ4wbTf8w3
7fHk9fOtp/fNO6Zd447Tf85/Nz11XK9lWt+5yjjPdNh84PSN8dONB41d1Q4v
7LZN2TceF9u4w7hst0/xYuN149ZN26XGs+v/aRt3GW/uOvx0/HZD/clo6NGH
/m7+q+6H+jC5JetHj0Om348/bXxr/LzK+WbX/17j7V128Xjj9HGHapcbFz3b
u3zyVm2wXdscOPYvHpx9487j8lXunTr+NcfOjaeOD218eHxrI2OEPqqNrzjO
1e1SeUzK++j49saTxwc3aj7odNJ/fNx9467jinV/5MaR4+CNksFu85PGe05v
GRwnnR4ZqLbY/oTx/paD6h/abftDxnJ7lb29+sj24sP2Sid9y6u+hHdkq8a3
jZLtfib+JcazthfflXNCjXW7qpxdld+uonWreL1V48rW/ccJW08Y1+77aof+
X2PwVrXN1g/Hv26VXPS1ZGOr8tiq9t8qGndVvt1/ige7qr12VVvt0perj+46
bXxuV8nOLvnJp+J3+OV42NZVxgu2ijdb1aZbVb/lH8eft2qcWpac7Q3VfstK
v1UyuPXosdr6yrjvVvFsV/Fxq+q69brx+a3qO1tV3la12S59WP2KJ2fUWNtl
Hj9O2Tp6PH6r5o+uQ8n0VvXzrfeO3Vtnjh9ufWb871bJxtbp4yt9X+26PGY+
ZLlrfHVrzPst3za+tFXz+Vb1263irfrvMnZU/t1/har3dmPHPcfbui+XzPh/
RuW/C3/rfdXxpOL1aVs1F2zJU52PH4cvq08sq08vPz6+s1VzRrXB+7fuPt66
VfP5Vo2RWy8cN92qsbvq+8IaHy/fvCUnxsdqw5KVU/H/hMqveY7f6NR2JdfN
n+3jPzrf6vdd15KJrZLPru8vx+/7Obq8+9L40VbNTUvvhWrDfi+4f+X47Fbp
NVs1lm6VnOHlrhrDduG7q7GbXJElZeP3w8Y7O9/SJ5ZXmM+5LFlZ1hy3rHlr
eaFx3PK4+dDmhTbHl+o/W98Zv+hQ82bT+bXxk63vj1+V/Hyv5O/M5mHVv2mq
fl31XW7VOLl13fGyaqeXdlD2Lcaru27VF1teyBta/jz+slXz77L0muUF5mOW
1YeWV58vsKz5fXmteduy2m1ZY0LTeolx/LLqtCQz6q2OJf8bzxof3TDfGttr
LN6ouE1fzeXLD45/WNb8s9x/zMsvz/dZ1ji5JN8XGk9H9xn1fOOD4396PDfG
VntuVFvuKh1i1+HjoKbl2fMNlzVGLR87X3OJ1huPV+L3GSUDNS69aaP6UM1P
N62yX75d/6v5ptu66Nmq+W6r9JCtonGrxp9q27tU/W+9VeVuoYE8kHntj+fk
Xvjh+HXzqWR568Dx6O433xoPKH7ffqvo6+fvGl/fOmI+aFlj+rLG325T/CG/
JYNbNcZtkYXqb9vNp5W/ea7HAXJdOkH3PX2e7Nf8vtS20lc/3qqxvoP6Vl/r
cNnx71s1J3U/qrG0+6O6oFH/Kp2vn59/PG3r1uO1XQY50dbyJj81LnT+tx+v
7/GHrOiTZEefIAel7yxLrpc11y9rbli+aPzN8mnz9ZYPnE9c3nZcZnndceFl
6U7LGn87jTLeML7QvHzN+O+tt4wv9jM8qvZt+a0xcq8s43fNx1vSk/fS85YX
no/rvlBzyLLmtaV+cuX53MvSz5Y1hi9rLlsaiw6Yx1J67VRy13WL/Aslly3v
xrc7jTd2W91/nN79Vb8V8F1epYN2n1O28kovbFnXnv6XHtj1JHc1ry3JpDZ3
NSZrMzKmjuhSH3Wpua3rUnPw8kbzRbsf4WetL5aPmq++LB1hWXPTsvST7u/6
Vs3ZyzvOl12W/C53zjdrXmuHWns0faXndqgxv/+TGWXjY82jHU8/rjG5+eOK
DnXEox+P32wZU8i5cYe8Curvuf6i/Yz7xj5lqIsxQt3MQ6UzLzfn8y9vMl9s
Wbp3txXaa/7vd9rKVR+v8br/o6308B7j8cs4p+3kSx7Slt7jBXrOOh/WQbvj
Y+nhPR7V+NLl+o+npY8uqz/1GIU3/muv0vk6nmf4L5Se1HJ1zbFtWbpwxy2d
qWXsxPm8zWvvjDlpd3XBP31CHckE3qBJXvqBvKUzDuCnd9Lhi5AxPX281iXN
E/elX/VYr220Ix7gvzTaEw3kET2l63Z5rtqgxsqmudYkzRdBfdBDftVDfHHQ
hO/kwNjsqm/qq8ZGc4g+q19oD22DZnXVJ+QhT30fb2uttqy1SF9rndyy++/z
jZa1Duy2JyvyMobq7/qHcUcZxqTSu3u8IXPGpBrvWzaN1cYJfevs44jmE36h
6RPju/1cHzM+Z1xHu7HH/KbP33f8Z+tJ+rzx0xjgnbFeeWiRl3FX3vgikHUy
R1a1uavxXBzy76pPaa/Sp7cEdJPhjGXqIm9juPFPuWhUV/QI6DUG4Ye02qLW
NHvnevd4Jy/98TnjYz12lc7edaMXGbuN27ccr+lx3pxvrv/r8fye184ynthz
Qa0teq4573jqVq3Teu4qPbjjJQ2elU7c+iW60C6gz9hOB3RPL9Ke4mhDtHnn
mSC9Z+KJ47946ktv0vbagB5kvjFW00PIo3rrD3hrnsITPHAlF3iCH2TDc20o
eK5N8ZhMaWvzPJ2H3lVr0J67zY94oL7KVnfzQq1juo7GUW1J5o1F+p8xnywL
3plj7jre0ryVjt5Ozt3TDYqvdNITzfP04Bp7W/ek55cc93vrhOpDRfONe+4V
6AryrHVzt9Ujx7u7nc33tfbud3QW+mzlTYbo9rtq7Kg8j299Xptqa2sDeVu3
3HJcqtc11ig1VpgPtuikNXZWe1+jdeNnjRt2PM/kXe1Hr28duvLYRZ8u2aBf
n1h51FrrGq7qWGu1/freWo0Ors41VvWaLTyQxjrB1dpeXtZg1nbieC4+3a10
5+3WE9YRyrPus2az3rPGs95ztQastuiQNSQbgTWfNbP1s7XsyeOa/d+6terZ
Ngdr+2qPDXpn6Ugdql/0+tratNpgj61lrjXjXTdePm7R62N5ybPm5o2is/Pw
3tq81lVtx3EtOdsomjsfeql8S2fbKH10o/plX0sG6aq9ni/druh9w0b1l9af
2SWqjrU+fkvbO0qX2aixrNfbNcZtlL7fNrRq+15z17zTNiG2j2qvtp89cly9
7YdseTUml179N20rZTcqPbntFKWDTKWfti2HXcLanX2k5L7X8OxebD3Fy7ax
sC2ws91nvkrnW2vKtiOyyb537Gjb5e/mh0/Ft7Y3/Xk8avrqfN+2E7GBsIuU
XLadle0OnWyb/zJvn/5t3pxqnTQ9c75B08NeIi66S8efqu2mV8y36DzUQV3Y
ldjgSt6nM8e926bGpsuO6rly3znfqe2l7DD+u75r/P300XG3thuz/7qWTHQd
3j3//fRf892n6svT/84Pmmqd3/WoPj0dunrMVP1wOtfiydOF56dP1cYdLjk/
q216V148f7rKah2uPD+//19p8bzp8qt/n6r9p4utntG2uG2LU6eSuem8q6dM
JW9Tydp0/OqJU8nPdNbFE6fDx2Ong1ePnmrsmg6bT95rC2c/Vj572/kWT50u
tDp1uuzqOdNVFy9oO9915pdOi/kl03VXL52utdg51fjX79jD0Xue+SltFz7H
4kmdxwUWT2ta2My9v9TqWW23Riu7oqv81Wdj/o+2qd9m8drpbxevnm69es30
94s3TjXWTjvmN033WLy1ryXH09/Nr59uv3pdxyvZLhl6VdvgSx+fas7qdzsW
6zR3m98y1fw83XF+w3SH1evbZnnn1Rs7b1dx7zG/dfqn+e3T/eb/bLvmvcc7
pn9cvK2vNUZO91v8Z8e53eJ1XX7Nh9PNVq9a0zq/errN/Nr2NXh2i9Vp07Xm
ndPNF6e13fZZq49Mj1+8b3rMYjXVWNV5iIvWB41d7bN49vzRks33T/+62tW+
iyctPlB96mPTyxafnl48f3J60eoT01NXHyy5ff/0xMX7p2cuPjK9dPWptsNW
P66++O5+X/235PsjU/Xlzput9tGr90xPX3x4et7i49Nr5/+eXjD/1/SU+YP9
rNbp/X/n4lPTq+bPTqetPmt9XH3ho00Te/NLx6erL39iet788ekZqw932lrX
TU9efaD6/4eb1ifNH+i8XP998bGm9+WrT0+vWX1uevXic3193eq/pxp/ptcv
Pj+9avHZ6mufqX73qa4fuzUaXrL6ZIfXLv57esXiM9MLFvV8/tT0ytVnptIh
O8hv1+orTe9q8Y0aG7461Rxd/e3b0xnzV6a3z1/q9PJ7/urj06mrD01PW3yo
adUWped0eaUrTG+ez5zevDhz2lp8dXrX6mtTzTHT++bd1Y+/2XnWnN35uv/4
6tvTh+b/qb787ba1f2L1nem/Ft+Z3r34eqevOa3GjS81jfiIb3ipnkLNI80D
4fXz55sn2qPG2+kNq893eOv8xc5DeM/q61231fyN6Z2Lr00fWHxz+sjiW9PH
Ft+eamyeSv+rceQ7NUZ9s/nwocX/7A3L1VebJkFa+ajX+xa7p/euvjF9dPWt
6ZOL705fnH84fXHxwxrPflLj6I+n761+MX1r9TP2+xrnfj79YP5V+xl+Mf9u
+tHi1zXGfnn6yfybGoP/WGPw2Dx42wGb++/eb7N0qel/5p9NX55/NH138Yvp
16vfs8NPP139ZvLu24uft49CftK7fn3xky73O6ufT99c/bTjKL90oL4vfWza
vfhpvxPH/9LfOm3p5VOtZZq2n69+O/1m8YfpD/Ofpj8s/jTt996/NH2/Xf1h
+s38h6bD89Ltp18tft/xhR+ufsV/sw71/3eLP05/mf/S6Q9cjc1DFgdsHrza
f/OAHWPTsz+v/tz5qNv3V79sWppHi19NP179up97j479V/tt/mnx55qj9tsc
i/020YGHaPjl6ncdHx9+sfgdm/l00M79Nw/dfcDmUYuDN4/dduhmrQk2a62w
WXrf5jE7D9k8YnFQv5dnrSc6D7xVB/wW8AiPPZO/8mp91fGVoSw86bapq+fo
++PqT11v9dtv236b2lU57tWnn4/9mgfKRTd+/Wz+7VRrkS7zf+df1tz4o6l0
5/7fcca6fGn33zY2D1rsv3ngtv03a33adTl8dWBfSw9uOaq1T9OCLul+v1q3
G/55d8iOdZyDdlSb7BydV62V+r/7Axaj38v38G0HbR69++DNo3YevHnk6qDN
0t02j9t5aAf8xNujdhzc/D58HNQBfcftKN5vO6zbQBvqH8aCr61+3PJeenvH
Odvi8L6SD2VLf9bFYZvn23H05jm3HdnlHrY4sHmGxsN2Htj0oEVb48nYsZaR
P81rufKM3HmvrqV7dRy8I8P6Bp6Ic/Du/TsemvHCf/VpuSm60Llv3Wut3zJ0
zOKQ9bPdJU/jwA7oPGbHIf3uLKtDN4/fdvjm2XYcvnnO1RGb51gcsXmu+ciu
0/Grw9ayuOOg5rGy0aB8gS9SWx66OmDzsB0HdpseNh+4Dnv+txzXe3HRcPTq
4KZV+cctSt63HbJ59t2HNy+P333YZq2VN8+6c31/7O5D1nXavW7bI+Z13dTB
NUHb4cHZV1WH3Udsnmdx1OYFdx/T4QI7j9k8/7Z1ONfOI7uO8lY+vhy67cDu
9+iLfEU+8emInQe1/KIBH9CPjtQDjWfdcVjX4eyj+DcfsXnu1ZGb55uP3ty2
OHbzvNuO3jz3tqM2z77tiG4r/CaLqWOtMzbPtePIzfPvPnrzQuO4zW07jm2a
L7R7fb3AjmM6j/PsPKrzl/e5x1GbtYbcvOjOs2xeatvZNi81zrZ5ycXxm7Vm
27zkzuM3rzyfu/+rP7m97O6zb553HL154Z3HbV58cda+XnjHcZsXXB2zeZ75
qL6/xOqsm5faffzmxVZn+T9eFS/Rjj735ERd8ZpcqE/zo/hC3vGwr/Oad2QG
37ShuqL7Aouq27aq585ju47qm3Y67+6j1uUtjmz+kA99c28/LnklB32v/bat
2wAN/qNHO8hDO3d7lDxHLvAe/WgyXpBT/bjHpNW63fVf44BxUj81Lhk/jefG
TL73HpOqH7SM7FjnoY5kPf1P3vhAnqTT33ssHn/oMdRYaTw1vnruKihHmcrX
73v8rLFBQGOPJe9d09FzXo0T5iX4APNugrnTnGXOdDVHGKMzT/d4tHNdT2OO
sce8bu7Tv5SX+pB3/FLPpmHHOi5ajNXy7Pm15mhzuTkcPd9Y/aRp+8r4cesa
/n9h8YMOZ44f1tru+63XfH71/emzi//te+HT8/daV6GL0Xk+Pr4zfXL+Lv97
P5PujMVXOvzn4sutM+4aX23d2RxIv/n04nu1Jvt661XPWX20dUw6GD2JTkQX
pN/SDemNdLV3z1+vtecXp7cvvrRXD5b21fPnOj69+uTVqvVg+vCzFx9tnfoJ
q/fVWvOd08PGOxuLRPcUnw54yvhA6/vWAo9dvLf1+BeOTzQ9L1yt9XL6vTjy
lq91gXu6PLzTg1ZrzNND5+X0iPldvb6xjoH7+Mf5bR2sVaxvrIGsn2ClPBPX
uuZui7f0u7+f1+msp8S3nvqbxas6XH+8vNcv15tf1vc3ml/RaxvrlhvML59u
Nk7rNY5n1j23WqzXRNZw1xgvaSyUtaJ1nXVi1qrWfFdYPLfXjPuuZa801//x
gg4nrF4wnbh4YQfvr7Z6Ud9fffHi9bM9cS43r9ePgjUybIh1LwyW/9adMCN/
Na/fWxt7B0tyofH0fmeNao1szWrdfY55vXa1Xu618Xhc40z8F+RvHX3E/NjG
WrFDHDI/psPvxyMac8U28PnxT425YrOw9v/kfI/pC/M/TZ+d/7F05X9uu4X3
3xsPmn40/2vbNWDM8j/2AfdwHjBB8FPCMYvHr7FXtYaHCYO7YptQ9u75/p3H
x8fda731t22bec64Ua2z/qYxI2wd7l8937LxWWwSaPvg+Ie2S7BXvHG+TeO0
xIHdEl8+bCRsO+wk7DueP3u+YWOznjZfr9ai12gMChwXew9sGzzQLcYlG0fl
2S3HpaZ7jSt3vAfOJ+6ND0MjwHvBjKnv38+X68AmJC+4E/Yi97cdl+l7mBT4
LPi5mjOrrQ6bYL/gsmq8aTwKHIsA21Tj0kaNd8bFxtrU+D3VHNxYkhqrG8sC
Kya/E+fzlixfsG1VsFz+w4vBnsB5sY/VmNpYodJ9N2p82njTOHOj1pdtX7v9
eH3b19jo2AAPHo/ZOHw8tq9nGU/kg95rG4ydkC2PjY9tr2Rv423j9htPHtdt
GyOMicAeCTNT42ZjU2LbhHG5/zh9e8nn9uqf2y8/ntv3a5zVqY1fqTF5O+xN
1X27vOBu2EDlwwYqvfelP/Q7WB12TziXYF+Kv43due14XWMwlCMNmygMz0PG
1PTC9sgPLXAa7K1wI5W+7b4Vh+33BDZcdMFDweCghU0ZbqbK3KVMvne2UZie
PViQthezz/LRs4myn7Lbwt7wgdf1DLbwasNd7OJ84meOe/MP7GI3r37f+bMd
swfjIYyYfGE/2KivPy7Sdu6iYQvmgH0bHoZdHFZEXuzYsBnie8ZeLp043sMw
wOfA27F933O8rePC8MCaoIPtXny2c/fFg118+2zqyscP/9n62drRw1ZfbbTX
Zl9t1f9jk2d3Z6fns+fDh6fg1ykZbD8FHw5fTcnZVsld43f49Pl0+DL4NeIv
gAeAkYFJ+u14OMxBY4GUqTw0CHjjGV8CTJD48pMvvMQNxyvab1687qv/8lY+
+uAKlC3wrfB5KI9/5fRxh63luFP7IvxHnzjqALPA78Lvw2/Fh3Lv8Y6uo7qK
Ix/+C/dowhN1du8Z+uTB54Veviw+LNdqp71lCPh4h/GG9o25CnxkcAHKRYN6
8U/xIfLrwUbx46BJGfx13vO98Vnxx/AbScun5x3/Kf+W8vhs+NGUKZ781Ue7
aCf080Xy40nD78o/yIfFhyY/5chDGfLg74uPtHSc9q0pE/6Gz6z0k86L707e
+Mon5T//G7wQvxVfFhwAXzKfMh82f7AA7+MdPANfFowFXyjfJ5wDvyv8kzL5
6tDPt/qgsav5hT8wW8riw5YP/xk/qXLlw6emDHnzo/Nn813zU99qvlRjCfiQ
ay5qHzbfNjwUX7i2kS9/Lx+he5gPfj8+2WAF+IrRz1+LflgNV770/Idn4M+G
WYAFiP/cvcB3z9eNT3ALaE0aAZ6Bz5cPmu+YbxItnqmnMuAq4AL43vnK1a3m
yeVt5kt3cF9zbfvOYQbgDuSLfj5neAcYDvgBV9gE7SUuvsgbXXzVrvAD+Kt8
AUYBdkvcGouW95ivtLzPfJVljQfLGvu7fPHkjfc75ss3JgW2CvYE/fH/i6Nc
fCE3eK28c81HNgZF/NIXugz1fMR8teUTxrWXjxvXatwF3kqrncX55/mE5aPH
YlnjZJcdGfBMGuEx86JphHGA98Azz2ALnjnfYFn6TP+v+aSfwZOpV81hnScc
CNxH6SNL+DOYpRoPly8dN1++dr7VcjXfefmB+S7LD83/sHznfKdl6VnL0pk6
zxrDl3ebr9htQx4jH3Am8sdH2JyHzlPnXfrQ8n7zVZvXrrAQntWc0EG9njRf
Z/n8cZMup/SFLgueCl3qoD7qhW9wQaeM6yyfPl9/+bz5xt1m4td4vXzBfJPG
YL1svnmnV3fx0aP9lIcPpU8unzqu1+/VuXTE5avmv228EUxR6Yb9XnvP8zWa
7uShXVzVz72gTV3V99/mza4PPqJB3u7PmO+wfPN82+Vbxu2ap/i7Nd+x36uH
uqK/9ISuH0xZ6U2dHx6gBf/hoYTHz9fqNDVHLUvX7Xzc40fptR3k9Ylxj2XN
N8vSUVu2yJg2xFPp8TTl6Auu6vqwsdn8IiP6ovTSqjf8CnrEFcSD25IvORC/
5tTGDpE3Y5Z+LninPykLJgku577jqp0e/2C9yGfwQsYIOCT9Ndgl6eRFDskT
2sgiWj2XjnynLP1Pm6EVD9VX+5IN9cB/VzzXv/CXXPrvihfal+yQXX3vTuNy
3QeUoX7wPsoKfo3cSJu2jOyiRR76Cewa3okv77S1uPCc2ocsCegN7/FJW0qH
d/LTNuE9+vBI2Le/aVc0pc31OUFfUmfp8Fl/zvhqTDMXCNoCpgx/Bfept6BO
2kLQrnihzniBf2hFp7Yxd8COGJdhDGFWYFjM2bAmcELmDZgTmDCYFzgnY3qw
wPIw7qPTvGuekKe+pnxjkzmZjmDOh6VRlnTmMvOt9/QF9+YFGC3taexWhnLl
bx7BE3O4+dYVXgfulO5HB6Vz0QHpGd6Zf+VPZ6F3wLEEa0U/QI8rvci9utIJ
zM8CvSQ4HrgedQzula4lLxid4F7pUzA96BD8h3mBnaFfwcjQtT437tU6o6v1
BJw93ZRuTu+F1aa3l94Dz7OrdKtd8DT0YuuN0n0bv239A+NubWKNII7rGuf9
4caXw8zQ9atdd8G4e1762q41zgc+/oKwv72OkScsjWfWL9ZZ8M/WQdZZFe9E
oWS112zWe9aQMC8lP73/wT1svTWWtZ21pWB9JB0sDVyN9RyMjStsznp9d2yt
907oPTUwNHAscC3WsPaY2OtijWa/BMyL/SjwMj8c/9r4mVqnNi7Gmrn0497L
YV+Q9/KqsanXo6XbwZD0f/s8rKetpeFeiof17Du9f8Ua3L4a+dgnBkMe7Av8
TNbfyrBPxrq9dM3Ge0sDOyNP+Bhref/lZz1fa5fecwIv87rx+Q7W/+wA7Av2
wpSe2nvFSo/bYIuwJ4cNwrvSs7usaoON0u27jJLJ3sNSa5jOW57VTxr3Lr38
5M1ewf5gb1nsFLAz7CvsJTWW9N4vNpLYXK47Ltz7eEoHbBrQZA8TmkvH7H1s
9vDYmxYsjj0+bDT2OcH7CPbxBVdj7xNbjr1Pyij9bCo9pW0+MENsM/a9sZ3Y
k8SO4uqd/VTsN2w77EP2OcEYZb9TyVPbgOyVhCOC12FvggkqHaNxO6VztA2L
rYpNiq3Knk1x/Gebqvmj7Vb287FTVR/Zi/WB1WH3KtlrrI/9nzXfT6W3dYDh
YUeDLYLzgQmSxr141f+nL873bvuefOCAlA9DhD6B7a3mx94bhz7YIuWws315
vk+ntdcy9j7/2QnZENnl2ATZ/OCDfjke1lgh+Cf37I32W8IXVb/uOtmz5709
oPZhKg/v1Fkc8dks2Q1hq2qsb5uhcmB/4IPYQM++OmU6evW4konHT+ean9xY
oLE4qTFCbI/spmym4ooj7hGLx05nW5zSWJ/tqxdON129sm21l56f3TZWe1ft
w2WHtXcVtsl921vHKVOt0/u9q/xd7fNjp62xeLri6rmdL1tyrcsbeyQfe3yn
1X+0vRpGiV2aHZrdmk2bDVxg5/afDfvm82klr6/sOLBMbNZXn1/cNmvPpLfP
GG7owYut6e8Wr2+7ObwQDI93ymErv85ijYeyT1Kd2cLtCxbv1uO1jTtSnnvl
t5284l57tbPTwjDBL8nTvmU2fNijtvWv3tm2fjb/h6y2GovEZi+efNWpxo69
2CY2fTgj9n3x2P7t3XTvGjwUe3/qgzfKhrmCZ0IPnBNck/fq7h7teCbwC7jy
A+Cn+tibfePVKzqvvTit8fo1hqvoue/qHdN9Fu/outU43f6Mhy6WXa95fk/7
OmCc+EXgiu61eltjm+CO4Iv4Wp6y+OD0T4u3dz3k3/vAV6c3j8TlJ3nk6l3T
Kav3t0+F34XPhj+IHwZ+yP8XLz7ZvheYIGVK+4jFu9pvg+d8K2h63Oq9TYt4
NT92GjgmAdYHnkne/EYwWTVmT29cfKF9R/xNcEGNKVp8s/FD8DqN7Vl8teOh
CV6KD4ifCV0vm/8POyQf8fmp+L74xuCO+Mb4xfjE4HlggIIFcoX7US78ksCP
Jp4AQwQnJB5fGTr5ueB7lMOv9qnVd6czVz+wh3SND1r8ePrcal02fBU6+avs
S37wvNU8xzMYNFgzPIFn4neDOYJVEmCn/EefsvHnHavi0+rL7b9D/4dX/4e9
qnl8etvqi91usGDwXNoFTo98kGuyRf7d33v19pqblh0Hjo1f702rLzQGCsYL
XgtfYMWU99bFFxuDJX9tgOd8fTBn7mHf1EWA3Wq8VoXGr1V8ODf8IAewZ9qK
X1Fbqy/fI0wVf+f/LH7W/k7+yw+uvjl9ZbXGzMAxBU8Gd/eW1ZmNN4P54D/9
zOp7zQfyF2we3sq/9IPOj9+ULHx58aNus2CM+D/VmfzhszrjB6wbWRJXgN+C
4YFvwyv4O/KNljfOX2g+qSvMHjlXf/g5dZev+mtD8toyVvnwzaojbBLfL/wT
HBK/N1yRK+wWP3eHxTrwIcMRoal5tPpx8w0eBxavMXHz11q2lIPHePuj+dcd
2pdeZfFn84/DP/Gzyxuv8RWOLL7wxpUtfrUXd0betZf+pk3wjkx2X6q6xU/9
pdUaP6cN0Vk6Zj8X4tv2Dp5OfUIXOhob9d51gHmCAYCjQoO+hnfylq//eMGf
jt5g1eBu+NzbVz+PTRgAPm/vPYNZ4NeHIeLT58s/dnXIXgxFrQ/6Cl8BCwF/
AucDO8HXDwvDvw+XhXZ5JzR+rPKGaYCZgG+AV2tsyrYjGp8hwBLBvtT6r3Eq
MCtwHMHMHL77wMYnwXfAY8EHkQ38aZzTvMYYKQvOAb4ORqExZLAWMB+7D+48
4UqC6wl+CeZFCFYG9gMW5KzzYU2neuMJ7E7jo3av8St4hbbgAGGD/G98yc41
TklZfV0c2Xk13mg+avMcO9ZlNJ5qtcaT4U3jl8bBjdfSHjBU6oKXwSwGF9LY
uz04OFc8IcfaVoBl1Jca+7hYYx/hyfAIr8gDzBpcnKu+4NqYsXmNlWu8GfzG
WMtH2lI7wHnAO7knC/A7wel1/pUvjGCHkmH18F5+2lA+rnAjgrqHv3gBQ+J9
8IYwI7Aq+pRxCCbE2KYv6W/Gwy/MP+i+BFsCt0Ku8RKdQtpHHT1vmZnX/V+/
0X/0MRgUY4m+rT837rfmPeOK+8bN1vhiDDdXoEEafVE+cJ/GKG1gzIVRlRee
Nc5z9bvG6vb8uvpKj1PqpW/LRxrYXzhoc4l5peft1e6Oa7w2N8rDOKQs6fDH
mK7PB7NpLDPmmy/fO3b3PI9eGJt3jC/3vPbc1cdap4KHbrxJjeHmEHiVx8/v
a8yK9+ZX2GW6jTkCRoZegBb4GnOQ/+YC+Rr74ZjNB3QY+ou5H76afkCHMWeY
S+G16Uh0L//l7Zn/0kc/k95VXPOP9D2P13M6GB2Qbjcv3tNYeXoAjD7dll4I
997YmNLl4OPpAq0711X8B85nTPeZ39G6A11B/H9bvLP1RlcBtgdGhz7qXCFl
OWOIXkivoPMoQ37yoa8rW950XLrtvyx2dYDpR8cDF2f0/gL6L72brnKn1XpP
grUC3dt6gv58u/l1vddBvtKijZ6s/Oi32gxt7unP6iF/5ffaoPRv+dHZrYns
Sbj2eGnjcuju1krKsgaht99y9erez4A2axF7Styrw2PmVQd1sadCwG800r/v
Pt7a+CLlZm1lHZQ9EPA79q8I1nAnzmtcj7UbPM81Vi+ebrJ4Za+lpIMvskfi
uuNlvQ6DH4L3acyPfOZ1Xpcaz25cT+N7Fuu9JXnvTKQ+FwkGaF6vH4Xso5GX
q3Uj+vBFOucb5SrACln/OjfKnhh7XM6/Wq9Lzzaf0s+tlcURrI+ti8WDR3KV
B9yRM5TwFQ5K3dHbfKh17Oa8XsNaL8NCeYdea+Tey1NrYbifA8eje/1u/c9e
AEPEdmD9DiskwAMJ1vXewRsJ3x//0u+t/Z2bIx97gQR7jw5fndy4pgMWc5/p
JMg/e53ggZ4/btL7p+B92F/YGOzPEoftgk2D3eL0cYe2l4gjDfuDNPaMwRA5
y4Ythl3GM3GcScUewR7DpsNmIg37E7sWmxT7kX1kzp6543zZtg/Z1yUeew9c
kjLZXJyZA18Ee8T+Bctz43Gx6crzuauvXLXjs41I6zwm9jE2L7gpWCr2EnVj
71J2zmlSLrsY2xVbmfOeao52pk3b15xVA0fkvAn2QHY150+IxxbGruUsq5wf
xA4GVwS/VDpYn91zwlhjj9jVlH31+QJNn3tlXmve1udFSVfzTp+jxYbHNug8
qpx9JU/3bITsbuxzbHLOsVJn+/vYEAX0oR8uCk6q5sK2Z9oPeNr4XJ+z5awd
9lXnbznnx3vnPak/myIMFfrl49wtNLH7KU+7Kad0wcZayafmlrZ3sn/au/jb
8fC2D8P62E/5lXHfxkyV/Dcmil328uO5vaeRDdb5Quy3bKg1zvcZUngtlK7d
uC9YLzZU9XAuEZur9Fccz9u7JzNnMLH9CjW2tg3WlW1YWTlXiC3aGSTsz9U+
beNGt/weOd69EdwZ3rDfnjo+vHHr8dq2abM5wyplbyebt3s2bPmrp7zEgYf6
3LhX7/90xQv28ePHKX2+lrxgx/ADX9iT2au9lwYuzR5P7ejcE+dQ2UNqf6oz
UEqe++rcovV+2pNOuMZ4yRnr/bP33168tb+2/QB8A+Jpm+pve8+wwg8B/9jF
tQU7OX6hlX2fbV+ADWO3hx2DCeNnqPV/+x4EZy8pB84MxgyGjL0/ODQB75XN
nwBn5myYGkdaXrSFMsSXHsZNnnwSe/YUn7HnvKJdziPznJ8DTTB28j1z3Lvk
+JHVfg/o+imHHKqzMsRTLj+GevNjeA+XZm8wHJs6rX0oxzYWje9l7YM5qX0x
e86gOoEvBQ32LNuX7N5e5PhZ7F1e7/U+6QR+HOfO7Ovjcc2ZUHvyFPf0PT6f
073jY3J2FKwZv1K1f9+7OptKHiVn3ebOh4OB0zbaPGcuoQ9Gz5lIcGl1beyU
M6pgy5x345woWDPn4sCDwaPxW8HD8YvxhwnwaZ7D39mjDivHTyY+f5f/4vB3
KcszefCpwdQpM+fkwI7BmMGE4fee/eInSAeLhqb1WVvv77OyXNHnXBvvqu22
4l9TBnpgxOQNF6Y+KcceeXWVvuSl97DD6sEors/52u8EOEr+NJhL/EUDvybc
GP8i3ya8Fj9icHbO90Ij3x4aYAPlq97KQbP64If3nsEHrvfZn9w+QfhBcuHq
TCPnB8H4wa3xrcKjwXi5wqjBoakLHKH9+fySylB/Z5LB9uGJ87D4MwW8cM6U
9skef+2hXdAvneCcIG0Ex6fefKf8tvynweJ5Lp5zBGAIyQ//ac4TCH6S3MhT
G0jHN+t8MOcwwJ7BtzkvAV4MJk4b8dnis3LF13ZwbrCGMHp4AP/mv/f4g0/S
w9zxCz9jfKRxcHzpsGawXXBfzoxwvgR/OPwizCBZCiaRP5i/mE+bzzp+Z2dO
8JvDlcGX8X2jG7YNto5vPWd48FvDRsDdwes5P0KbwdvJz1lc4jp/gizlLCZ+
bD5y9eLXdgaIMvjP4cjg5dABbwd3FUwArABfO76SEThDdYMl1G7uyS4e5swL
vPIMbfgFpycokz/eWRwwj2jFRxhE+D4YRG0Go8mHD1sJ56kfksVgSeFsa3xt
ucBfsoPXaODrhweUtzzDY+XhLwwA7Bx8GexenokXHGP6gXpoK1hINOEBbIB2
EFcZzllxLglsICxezg6Bx9OmMBdwFcFa4GfOLJGndiGPxhM8dZ82wjO4RlgN
8gUzB/8GqwfHAJtIHmA81EXQbtqSXObcGDSpr7rihTzVV7vivTrAQcA/kD3l
5TwaAdZOnuoDP+k/rKCgbHWXFt+df4Jn6iEYR9RNP8q5Mfom3uFB2gWmD73y
QhNMMVrJOGwNrAj5JFPmFrgK/Uo/ggPBb7Ijf3KujuJLB8MCf6IM9VQ//EO/
dPCOOU8LTgZt6XfkCfZV3t5J6z0a9UHYFm3s7B1tnP6bfq3dtIHzh5xJk3Ni
tK2xR5uTc+OCvgMfrJ8JOUvMuTbGFeXhnTzIKXnMeYzoE0+fJl+Rf/RJE7ws
nLLxDC5a/YybsMbaSj/SpyP7xg9jtTHY2K8PGs/NqfgvrT6vXdFrXESb8Udd
9F1pzQXmHufl0UGcz0IPoX+Yz4zl4hmrzEvGZlfjpTNizP1rTPwFG68Cf09/
oSvBtURfgXNZ63B37jLoTDkDUhrzLn1LGvO9OQ0evdZNXQYcjjmTPkSXQSud
h+4As+KenogG5cHumOfNva5wO3vm+g7B8NA7lAuPowzp5LXn/JkNui28jf0Z
dDt7DOBj6AvO7VNP+wHoEnvO8mv61udN7te6OL2Cfkn/pIPTeemc9mVkjwa9
mr5Ob8eX6CP0W2nR4hwbezLW+zxO3r7nTOATE9CMvv//XFzrBmfKOBvWOcvF
s15bWNeULPU6yvqNzp89LoK1CIyN/S7wP+t1yX0b02PtQ9e2lrF+sQa0FrSO
sTasuatxMjA21T82qg/0OsYaTlxrHfnKQ75wRvRxuruzdayliq+97rGOk876
EM7H2k7wLGfiOP8GRsi5tdaSzpJGS81VXV/5VB/YiyHyXFz19x9vxHOWjjyt
j63BrKXhgJwzLdg/ZP1rzWwdXX24abK+hvlx9o41tbNyBGtp2B/YHGvn7Fey
trXWFNcalw1A3nBBOVvaml+IvYA9oPSrtlHYv5Q9UDm715oZ3WjQBvYzwQmh
0b1ryVTLgLWtsuCCnK/DJnOj+aJdPlqt99ltYJA8r/mFD63XxXjCPsAW4Xxs
e7bkbY2O5+KQLXgoPI3dgY0Bz9gYnCPEruFcZvYkWB0YmJwTfoX5nM0v9h78
YFNh44Cd0h744z/eiMe2453/7CTyYetx5hFbEjuQM4PgiNiIYIucNWTfmz1r
bDn2qLE3wUSxD8FE2a/mqh3Yn7xXBlsO+4vz3p39jkZBOdKzj7FRsYmxRbGx
wSS5h0OCM2K7ChYLvdLBT+EJG5f9dM5CYmuC3WIP017q5J3z0J3RZO+d+Nrx
sfM1Oy6bnfJfNt9879lIOT/J+eTOVZJ3sGF5njOX0ORsJ7gumDDnubNjOSeb
bct/7afueAL7ZS8gWtkElY+/7HvOps95UnBt2oc9Dk+Vob3VGR5N2c61dyY4
nsgTHo4sOsOKLLK5KZ/Mxr5mvNE30OEMKu2LF7HX4ZmAHhg0eynRiS71xit7
J9lJ2S7ZIF8w36R5py7u2TvxCu/Rikfu0ShvsoXPzomyh5TNlh2WXdY+VNf9
VydNvx7/1rZcNmBnU31m/GPvNYVNy3lZ8Gieu2enZXe1jxP96kZ2gk+DoyNn
cHDOt7I/9efjoV0G27LyXNmG4c5+M/9b25HtNWX3JZPqjnZ5Rg7wJvyCh1NO
sHJwbuzSZBqN8sA78oa3bLnswq72rsLN6QNszOoMf8fOLD6+6Yf6HzyhNhW0
tfb0nOyw2/qeAF6TCbJJnvRz8uM9mdbuxhT8Esj2k+br9JUsai95GjMyvrBN
k2t5kh+yi7fGCjg833CATcR3NMA4skuziZI745MxCX7TeFPr7rals+PDCOK/
Nsl3JXLWWuqO1/qOMUo5bOjGCVhGNnH7e/HeHmT1IHvGYLTCONrPzHfhDC97
oeH97Cv2DQkYRP4B8iZv9OEbWo0pxirPtZ/6kiO+A2nJCpnlY+i91OOUxhrC
DcIr5lsV6gdDSMZd4Rg9097qzF8h8F2IT9YFvgkyiCd8B2iAw/ROvXIum//6
FdrIH9mTv/zQcdD86LUPZA8NfC2+b+GMNvXQFvLCT5hL9dMe6ub8NL6gYBfV
ke8HT+0NP2Ceu6/wy8hLOphOdeyz2Io39pUfNT+ufUj2mgePiWfHrh7f+En3
Qp+xNtb+Jn4oZWgv30tIOa7aC8/ka887fxl/Ez9TsJR9dtx4ZmM85Sm032rP
WXLtv1o9o7//IQ4/GB6pk3aBgeWPck4efvoWCHrwkBzxw/FpwYG6l8/FF89s
vx1/ICynMwDQw0fJL+l7KrCRfHPo5QdDE9rUH84UTXybfIR8hXyNMJP8r/yj
pau1D9d/Pt+7rN7U2Mg+92B+c2Md+T+dUcAP6Yw7WFLfmUEXGvkOleOMAc+n
8aLGiPJTJigfHfL4q8VzOvDdNTZ1flH7GtWDf0/+fRZC8cO3W/gt8VgZcK7+
K9P5eMqDq0RnYzn34Dmd9wBLikd8o/yJysNPfkP89Fzg64VtDS3a3fkL2kKZ
na7oRQ/61I+vGC+V7XwHOFb4T3hLWFCYUCF+a/7ixocWnc7GS/s5M6L0+vV5
gZUnvrnyN8OOig+7Ch8KZ6td+MP5ruUPR0oeQnef91CySo7JAf+qMw5hhtWF
nGhP7SFveaAPTe2THutzLZwjoX7oQosr+fFc2+CH/qBdyACZ1VZ9JsX8wjVv
qz0FMtr+87HGCuesDXLW+Nrx+n7Hp4+fyiHn/L7813zJ+rq+ZBwwFhkP9WNz
Llw1LLdxxHkU5gF9Tx+DvdW2/OV9VuRq/e0hvCG/ZFIgu854lI88jDX6Jr+v
sUGe5nu+YmOZcUx/FgfWu/3n/OElK3ihT4tjPNIWvsdCdo2fxgJzOZ3HOCc/
301yTd3QYpzkD+ePR7u21Ya1puuAx9pD3yHXF1w9rcfVLnfx+NZDlCcEf27M
NWahR17dbmM9vvG7a0+8MRYaV43Z+I4nxl5+fLQYa1M/Z2fmTE5jbsZleZgr
0GF+M56bp427xkA6Us4L6XpW/fTnrlvJTcYZ/VLfI3d4SB7kj+/O59TO2o0e
iJ/aybxlTjJ34KXxEJ3agrySK3w11ivbN4TUB5/MOeg0l5kP6Wz0L4E+Zx5U
N3WXN57SB8iV70ChzXP8bjqrbcUln9oXHwQ0mg/obPYZ0I3pf/QVuh35oKfS
R+gx9Hl1QxsZwT96qPnbnE5/NcfjAZ1U/dEr2BOBR9rhG+P+PTfTZekj0SPp
A85lpQeoO/qkde6KeVN+ZDf7P3IGrHykwadcc0+XtafDVf2yZqHfZX+K98E0
WJ/SveiudHv6Ch7Y10KHdZWevmydQEej29Gn5Ulnp1dbo7nmzBV6qbLVEy3R
Uej+yqFn06G0Rb4XRB8X5J01nTLlJV95KQ8tyV/wn16LBnofHZouS3/OuS50
56wt5EMftR6iw9Np6Yf0Rfk455cuKa21mfUrvTr5oIHMoFH51nT0a+tGNgx2
EXYQ+5h8K4gNxTqOzYKNgY2FXQQGA1bCWjtYBHo7nZvuTv6E2EvcW5uztdg7
5uxkGAh2GjYa9h32KDYLZTh3hg4vX+mtLbMfiq2BLULZ7AzsK7AG7FV85Www
4lvDshmw98BFsE/Jn93EGlmI3YdNTBx1ZmNiEyldp+1RbDfsUflukvUxvsrf
OpfNg80ILsG+Nnvh7JtTJ2XBa1ivawNrIXKhHbOmzjef2KZgC/BD2Wxm9rCh
wTMYDPmxF2kPbYN/6FMvNh42JzYs9h00sUOxR8GNSMvGwzYEy4LH3tm/pj21
jSubFb5obzYqvHGNPY89iZ1P+ymLDc5azblB2ghPrNvgatjIYHTICtuUeNZn
ZIZNSzvC27C3qZN6Ko+NCi/VnX1QXcVBf9JZ29n3RiZ8T0v+2gdehy1Ou6o/
Gtm5yIWyvIvNz3tYFrzT7uSfzc+VbOETXI98yaJyyaU64R/eiU/G7CVUBjqV
LU/5o1kcWCT5kBd8Fl9b6mvSXHg+rvkgnba2jhTXOputJd8HU1dx0WNPoPqj
UTkCuSZz2iNrd3xiJ8p31+Cg2M7SP8VlQ9Nm8leu+qEX3dpL/5UvGqyzyb81
KzqNW+xd1sDsO8YvZaTvkgnp9AO2qYxt0rKVie+59+gwhuC1uuCd+qEheeCJ
vmQ8M+YZbzPuwrDpn2hDJ7uWvKTXps6j0t/kmzYV8k02dAjoZ+vAQ2OksQQv
yXawc/neoDbAT2OuOUTfNo6jkb0y44QxxHfk7BE1xpDNY+b1PlHyqx3EV578
2NXkr/7o1l+l11f08YxVxkyyrb3UkV1a/eStTGMmeVdvfFAW3hr3ybL89WNj
g74hvrjyUTd04Cn7BDsLvuAVedCf2ZyVxb8QeZYXmQmf8FE89mxyyodgvDLu
s9GynbILsrfim3Y139NB6D7u2fb0b3U1TunXoVNZ6kWGyZOxlW1Qe5EDchgZ
0x7a3nylX5FD87ez4egV5lDjfHB88tfHXdl48Ef91Jks6FtkEp+MgWgwH6o3
/uJT/A76vjbQFwVxtbH5LDZzbQ3vaKzSfvhEZozJxha+AuM7WYgcGDM8x3/+
EGOTOOIba8wB6JYvGuQtXp6nTsojZ+TK+GS+Vr5x0nPvjQ3qo47BcaqHNghO
EU38D/w+mcfcm0f4n7wnJ6mnPOVtHgxO0pwNiyhtfEbmHvOR9pdG3zEmkwNt
RTbUHa/Ni74ZKY25Szp72fW78FMdg/dUNprwFY3SmufMee7lIaDLvBS/FN47
u84758zpS+gia8ZJMkhu0YTH5M84Z3zUB8kVWcnc6Upu4lvRX7QVedMO2oZe
9tLx6a4P+ugfroJ+iG66AV6SAfxSb/WMHJIzfR/f5E1OxDMPays+OD4/38Pg
A+RnDJaPX5Kvka/StzEEeEVYRWcO8EFqMzzBJzzCa3wPnjP6iX7sGf2Lbkiv
if5FD5KHuuJ75Il+AK8Jx8pvyVdKD+QvVFZ8eZElvlBpag3bWE+4UHXhP3V2
Aqwj/GO+F8IPqt78keoG46o+/vseqjqqP5wqrCm8pkAHhd/ENwGmlm8Vbfm2
iHv5CMk3PmCYV31Ee2pHOiG+6Ifqg0/6Od+tvuFbJHzJfMOwk/Ca/NP82f7z
5cKNBudLvyKrOdvRvfam45IduFqYXv+N0eRee+gXaCArxjjptCd/PHyoswLx
Uv3wBc/o5HC9fOz4rS31wdALL8unDluKZphR+F3ptIH6aVv8EMhmdDq84D/m
u873WH1H1NmG2k7++Ky90cK/rG3ULzJApsmAuNqGb51vnu99/c3dF7Y8o0Nb
ucdHbS5vZZNR4xJ+4Zv28IyskmFyGyy1tqSH63P6vX7On6vPGw8yJ5nHzOn6
ZOb34NG1mXnemGFuFd88RVc1jpIP+gEZ0db6k3bUtsYsY6J3xgRjivHSWC5f
OoIy/adHmKfyvVpjlXvPvDdukwl9F11opu9n7UWPMR/So8z97uOnFcfVfOy5
K39LfDzxlfJ50SvpdPRWaZSjrtELza3md2XQv8zl/FHxS7nSK/iU/edv4tex
DueTsk+CLYNtgB5rvWxtne8E0yPNb8ZKPMFv+rj1tP0OfLtop7OI7zm9Q7ny
yp4DOoKg7uZM9ZAvnohD5xPoxfRo9VZ/edGF6JV0LzqifOhl+J35Vx7qbn3J
JsDGI9Cb2E88Z2fABzoP3SM6nbzpzjlXQzr2Gv5H/JKOTpX6qD8a6Vj8eexP
4rOTxCbDviQf7akt8Ud9cv6JfNk/tAHdHR+9o+PhQ3zKfI78g/ghnbgCOwb7
B78c+5KgPLYp7cfXKR7e8WFrG3YedhQ2FPpe/GvsRdljI7Av+c/GE78XfyNb
FRsYe4y8IwP72mTyLWl2W7okPyEbWr5vxKakTGXLjz1LfLar2A751JSf81f4
utGtLLKGp+xbOXOFH1dZfNbsfGxU2TfE1iA+XmtjbUYeyYH1k7jo8Fyb6ot4
TidXZ22qHP1D2dLgLR55x8bnnn2OvLiix7NgHDzLOcfKsZayfjCmWAuSTT5E
/VBdyRSeals2t5zbQrbwmb1Lm6b/aVu0k39X75SjD0aerKfoY8Za9SP/nqFF
nfV34486awO2UTY/AW/VQVvgA96QSUE5ZCw2QPzQVuRav9FnlKds46jy8+1v
4430+MKuK2gLvCMPkbeMWcpVR33BmGZcRLd+FexIMB36qHk6fRxf5JH9XcbY
YEL46eVjzDY26HfGpdh0zFFoJTNkwDgqP2UYi3J2NJ01WCljJb3VvOUa+4c5
h+5p/DammsfoytYNxvPMNcrVPupjLaZOaDNvmves2Y2Bxn8BngmOyVyAbmtU
eSgj84U1gjVo6mcsj13BnGX+IC/qpo7W8QI+kXsySaY8yxifb9XHZoE2vPCM
bGVdq521n3vPyGTGfXxHT/BM5jrtnHTamSyxlUgTmwBdLBg4czK+4oH/1kTi
4VdsbuInrvWItjCPWw+Yw+Xluu96Q1zPlYd3dBR9B4/Vj2yjHQ/VX9rYVa1N
6T0CXY0+a91iXZJzuOh0WYt55kqvoPfQ4/2n/9I16ZziC9pb+j06aK+DrCnp
xXQeZdK/YN7oZXRYz63r6NbosS703j3djO6Eh2SSLJMlMqLe1inosH+NXgiP
CRNJt4bFzDcKnTcOa0c3pMvTA1MWuzAdkh4u0Enpjmwg9EI8Z9vTF/QX7WIt
S5/DG1dtQR9VB2e3yYP+rg+QOfYVur06W39Yq1gzaRP9gA6P32gKfpB+ae2L
59Za6oh/cIkC3dt/7Wc94CrgnTWP+tOLrWE8Z0tns6VruuKd+qANL9lJtRXd
GN/lqW7aR1prBLRJT1a8Izfe+Z91pPbwX1x2DzKRM9gE//FWoIPjmTaxHpSn
tQT917hgrc1+oZ/oG+SbTUb7Z8zRp/BQ0Df0NXJO9vCVHJJXbRk7mry0h7bU
N5QVO6Rxz3+8yTpf/Oj5ysgZ+uKQj9gQ0U+/z5l52hEN+rN1vH6rrwvBj+qf
7DTujTnGE2O/+YveadwxxrLrkEH0ZFyh57N1aIOczRf9Hw/VUVloV9d8MwAt
se/ISz0EPMRjdkh1JSdkPO2B32TFOk9d8Vhb4+2+tirl4A9dGO2CuVYdjFnq
oQz9KjZ7PEKr9s5Zf+ZI9Tc2Z640xuOLeW7ffc/RuZUZe40y5WPewVvzSfZV
uzfOR7fKNxfka16l1wvxLeX7DPjDd6IO5k68Uf/Yqsh48MrkkLxkDjUHxU+l
LHmi39yKbvSTbzw23pEN7WKOkL+xFp+0LznHO+/0gfi0cs6gOgps/3QE8xZ9
xHyab0+Yt9CALtfoGnhnPjZ/ZuxSLhq0VezWaMzeZ/1HwBdzG/nWvnjlv6t6
mZfie8iaC2/UVdvn+xP4pkzjErkm58Yg44RgHDHW6HfGX+nwUHubA4NRdK8u
gnFDuXiqDP3aGIaX1t90gZzzmLmQncyYR7bxyTyLfn1KXcmOttRn6bxklZxE
51I362D8iF0ge9z1B3w0VqoTe4Ur2UGbOpujjJPsF8YSvI+epAw8NRbKn+wE
a00u1Ev+0SXi53KPr8YA9TYemG9ik1a+8dwz84R8zEPo1O/NE5kD6AOxX3ie
dor+gNfaSp/wzjiljsZH8xr7n/mX/Sl2IXMku6WrOdt8ig/0BOXGl0cW0YYn
sc3oG9kTryxjmLnMfGneVFb2O7BL0key7x9/1Td7/NGPbmWqj/fkBf35Dop6
xJ5Df2CjMr+bg/1n42TjUk92KDqAuU+eeBq9St9Gt7Fc/uhi35IWT/ABzWxG
ysRr7UWOyQC50lf1OW3LBqtvyBtf9GFB/ug272o7cTzzn/2UvU0d8N45Acqk
q9Dh8D86XXze+kj2UMhH0FaRWzynu7A9sxuyUdsXw77HPujbJvkWNPsfWz17
JVkg8+zdAt7hJ7uturEnOjOArZA99dBxcut+7Lz4n7MOYhvW7njpv7zQoww6
ElnLvn5l0qHwP/ZBba6e7tWbPoUfeIY/8tO+ymHLRGfO5Y1tk31S/ehl9NTs
30Ev+6Y6+a/+7vMtbDyj22oP7eIZm7/9UbUe6jMB2FjtjbLPy54o9mb7qNia
nUtgH79y6cXOXVC+e3uJnPPgPALf22E3tpfKHirP2YKdC2B/lDLxGF1o0oae
sQujxZkBgrzs0bLHyndnsnesrmfYx+ZbPc4PWMe7fLef+umTfAhkRl+lE2oH
Ie2FL+REOjS4127ots/M3nHnH9h7xrat3mjGJ2Xa++/bQmjXbvLWNmTKM/Kv
zYOxID/klazyQygXX8gr2SODyiDHruz79pM5N1qbrL9DtD7rQv3ISHwngrLU
U//wjoywc5MB5zQ4j0EbaJvscWO7x2c04B15MHaiVT9Fu3lRPzWu8TkFI2Kt
k3FVP1dvNnZrI3JPnsXNusx6BJ/E0UbxL5FzfUV76ZvSGdOMs/imTP2f70S+
2i9jmX6YPiYOOo19xlrjVs6Ttp403qqP/KRRR+Xhpau6uEeP8THfekeXsd1a
Rl3Y2HNmSny08lee/1nvKs8z84lx2ZymfDqAugUPZYwzBhsPsj6yTo3/VH2M
u+an6MPG4Pis6WtC1v3mnIzl5gVyge/mcuMNPYKeJT2dM75h+lbOtgk2hi5k
LUEniE2N/sGOEVtX7N70BHqGOtNh6a94Qac1n1pryNO6mz2JbhVsCRsh+5Rn
8qcX04/oNNZt0Y/VW/3ki9f5PpkyzLPyz3k+9GR1pMvlPG16oSsdOXak6O/R
cenU6hfdNd9Ko3vIO3Yuz9GHTnHp/sFOWGvQ3dSJfct/dqesA5Sj7OBhlCPQ
4+iLaKNzxj4XvErscEJ0ZHTgaXz04sSelv11wW3RkenF2lV74JG0+JG9P/m+
nHbwLPRoY3ImTfR114RgioK/ITdkQplkLr6M2EfjA48uL130YDx2T4eht2t3
umYwBHRN9fYua2rjEznWZ/gB6OjaR//Rz9hUjBN0M/JCbowX+oaxw5ws32CR
6D/B2dCD0E821C17D7UJXusX6igu+dTn1V0fUU/9l75j3DSu6g/0aOWotzaJ
XUq+wVHFThpZVQ4epi2zzo6+7qofaAv3kVUyFgyfesQ2714byw+vghdAB/rT
NuomfXgRvBuajUd4GcxF8E/GXWNWvhMYvFf8jvINJhU/tDU+GfuMW8YRcqqd
1c0YlH25+jB68W1f7B05IQOuGb/2xZdJl7VxZBAfI6OCPNGmvuzPeJ9vBWS9
ph7GJWVobzqdOSJ6hnmZXEU/p+PhBVm1RpUWP5SrLLSh07oQ/cEFrXX7e/Uc
oi6xV8VemfPHrC+81z+k9wxf8UR5wUZlHIlf1jjnXexUytWeyss3DtyTp4wV
ZAT9gjL1Jf0werx5zLisHckFOoNJJTvyMI6Qc/+F2A7FETfYxNizYytVjvKM
DWQ0MkSmYmcL9tWYQA68RzN+kxly76ptyYAxEz3GnZzppt7msGCh5Ym+2F0y
P+FhfN/4aMwTF43W/OYpfMy6Cg3kJ/4hcogP0uGlPqMv6EvaUHp04KNxTFto
X7xAGz4Hx0Uf0W/oa8rGq4zHaNd+GR9in1UO2TU20UGMT/Qcegh9JfZAa0j/
0YYfeIRX+mZweepEnozv/pNV/Qn/BfwV8CL7+4OVMOdoU3ywnsh6Un/jXwxu
AK/VRXq8Mx6zbZorjWNkKfNFMOYCuWY3wAs8Ura6yEM683T2d8tT/0C78c9V
/zcme4dGachR9sTSX8iEttWewUGYT6XJ9z2CBZRenvSG7Hs3jxhj6ETsP3yc
bEh8g3xTwcIGW85+yW9EvzDPyw/d8pSfQK+JPVJ7eL/vmYjGNuOcMdE75fN5
KdP+AT5Ovk4+7+zjgKfIPhO+bvTwdfOd8t3ytbuHSeDnlYcgv/jUs59632v8
38FtSMvnnz0j/LZ8pnzmcAHK5P9Gm2foEvje0QZTal+WYL+L/Sv2ytgPY9+O
/WP2M9nTZQ8O/7N7z+1psmfSGaX5Bkfv/1s9u/cd2Ttkf5Q9Pvbz2BMlr5wD
6j+/Ozr4xe3F4m+2p8ge2exHtyfW3lzPusz5lL17huwhsiep9yUt1vuS7Kmy
z8weHvTagwaLAYNgPzgfOx+6PO1ntX9JXPuD7N2x/+rA1TrkHn/k9ZP5we2H
t9cHxkCwD4Z/XBn83v7b42x/lbjqipf2XtlbZq+dfV5HLR7XPMBPfEGDuNkL
jxZ7iOSD99rHnrfsS9JO2buNRz+Y12ex2nuHVld7/uSvDtLaQ6vtss8NT12V
b18YXvQe4tV6X7Sy0u7aRt3UOd+cVh7eKEsde99btZH9XtrAfyH7kpWBJve9
T2peP89eL0FZ5NAVP/DFe3un5en72fay2W9n73DL2mr9jRey4X14bR+WNnRV
D1flKTd7srMvTTr7F/FE+/jvufooGx329+Vb2crwHG3pI9LiB7nSRmTC/jP4
DX3ef5gUstp71ldPaP6oqzbEd3sN+1vjVS9yrh80z+pd9slpQ/XJOQmCdsm+
Nn2fDNo7iOfolg+6yDB5sP/Q/k57XrWX+mlT9JJN+/AE5WgPe+nQoc7o3rd/
uaovvvWYUTxvfu/5lrm4eEtG9O/m2Z528UwbkBG8kI92J/v6KHrT19SJvJN9
soIWe0/VRR2aN9UG+Y66dklf0I+kT5vIN3Kmn/qPR67kXn/CDzTY8559iPLx
XL3JvzTygdHP95f0D/yCmdHegnMCzAk5a8VePXKBJuOw/OSNL9l7jzfazz06
09+1s/TGG2Xk3AC045v6SNN9sNrePZ6Kg794g258xBvvsl844542I8vKcy4G
mrPn0ZxjXjH3mmftc8y5Iug1rqMLjeqOTvcwRcZhPHIV8t0r8TwXYMXyLSxt
JW905swQ/CfbruLhN/7mjIbg1NAqBFcGW2SezDe/zDswdOZnc6h5URyYN3TA
pEknb0HfkhYOSn/OHkLzsHkVj6RVL1f4NyHnp6ALjcogC57ji/jo1q4J4ioD
fkyg2+WeDuFqfocPg4ODL4TLgm3id8xZPXyRfLjwjXREekO+X0ZXolvsiyEL
poeOlTNAPE/6/BfoX3S76GlZO1sD0HnplfRf+lPwrsG60r2yP8t/76Wx9ond
zvok+/bo/ewW1ojxu8WfT0cNZij6GTwYPSq4UbTm/CX6njTB62TvHL0TzejI
OkTdtK81Jd2XHYRuTU9WDtmJHAQ3oA6ueCgE70p/t+6h38eOGCwIW6C1mXWM
dYO6BZOnHemxyvcMj61zrOmsDeTjal0YXHLWD/T9rMOz1sJX6w3vY7OzXoIF
id8yGIX4I+VrXRHfN/qyhtFeWV8qS3xrL+1mLYSW7OnBF+msGbJfVl7WI/iE
XuuD0BjbqHZHu4BfbCHWKf5nj6GgHHRrw7SjsuRp3WVNy04SnDleeueZ+Opo
DRbfevgQnJ62zb4xAc2x+ZJpNkXrIP89DzaM7LuyEeoP1j3Kj80Hz9FvHaZd
/M/aH8/VAe3yt5aCzbO+yfcUY0eFN9AH2FDFJS/qrQxl6XPKVyf2d+Wxd6hH
MOZkXohdx1hCxuHvrEPFV0dlsoNKo6ys8fEl2Gxl5Wx4PFd/az3x0Yhmcm1c
MfYYv8wpwZyEFrzFT2ljV7eWzjou2JTsc/OOnMZmlb1lsZGh1ZpP+wQDq43c
x+ZAPq0Dpcl4gf7ssYutVtzgYOSp7WOnt7ZVFn7hvbyC0SCr2V9KvrR17ML4
pp5oT38J/ZFjtKA52ARXMmoc0Afjmw+u0H/jhsDGQd7SpzNOuI+saLfsjRRi
7w2WUj2yLxPd+rp82bWUpV/GPmPs9j8Yv3xPIFg/ZSpb/uiIjTV1yfcAjJ3Z
E6afsPnI0zgVXxbbajAG/FHsM2xu5JQMaevst2KP5DdjS8EX4yC/Sc5h5J9j
A893WNmR5MmWyV7OVi1tfNnZX8Q+xDbpnn9MGfFFsv+imb0oPj0+RXgU/i9l
oN19ziuM7VR698FWyBcd4kgPu+AZX10wHvx0/J18uu75PRMH9pI/Em3yk4c0
/Hzi5tu1/Hx87PKXnn+Sb5o/ne/Utwf4vp1v755/NngBPln7ovh1+XD5iD3P
3jOBv1w62AJ+7uzZcu8d37l7ZXnHt2/PE39szgbl40cTv6ky7UnLdxD4XwX0
aiM+2WBfglXFI/gBfIMnyTcW1FsbqTNfMb7JS3r5oUHZ+bZCzvzn4xbUE02e
oYcfXd185yF4jHx3QIAj4Od/7rhxP8cXPm984vPm6+bfhz24w7js3m8ho8H5
rTCxnxrf2+4cV3lrF3n5zx/Pp+6/oHyYAz573yAQ8hwd+SZCvrFsbxkMhHI8
E5/fnJ9ckLfn3quLuM6Jzbmx1a8b7wA/gZaa59qHLyhLOnXK9xnkp77wC+LW
eNZn3zqb13mzzrKFffBdgWrDuv+w70f31X48AT4BFiHBd6qdRYt/sBP5RgGe
wS3kmwviuKJdnnAP4vhuhfNupXEGr7J8ZwEN+W614DsHcBKuzhf2zQPfXoDP
cO7wnu8LnLH+nkOfE3zi+tvXb+ogD+fpeu4s3Upz4jrNSSeuv8V9s/5ud40T
u4qmPue/5vM+0z/fPyiZ7bOGq8xdzkT2zLnA0nlXNPeZw84Jdl6yc5c9d0ax
fKX1jXDnEPtOuKuyihf9bQBn9/t+QJ4J0vr2uLORlSNP91XHPo9ZHWBV8i1x
ZyNXm+5yZjFahMq3z14+bXxOO/QZy85rd6Y0+vHJN0bwFi+V76x3Z747V9k3
KPBWvfDEuc3oRBeaUhf0+0a6gJ970vZ5yfk+hnOY1cG3EXxzwrcenGntmwZ4
42xovHV1VrMrvqrzmrcf7m9l+A6FOipbWfgrb3S5R4u0+WY7OuWLP9rG+dfh
n++N+E4HucCnPWdNb498OO+avOBzvrVOFvd806MDGVv3nWO7Tzn/ek+cljuy
jL/6mufOcJaX/74t4nsi4mkrV8/kQdYFZ2jnm+7aSnr9RVjn+Y3e96qP6YuC
/gVXlf4p6FvOoF6fd/2e7nvi6dv6JhnRJ31r3hiTc6nhgeB5BGONsRNOy/hr
jIKzMn4Zc4wzvg9j7IE7sgfaeGQM810bY585DQ7K2C0P471gz6687Ak31mfs
NyZ7Zvw2RpszjPnyNebAKSnLnGVONHcYX43HyjMHKM8cA4ul3OQPs2eeMhfB
MAnZmy6N/+bInJcN62ZeFz97gl2Dp8vea3OjOT+4TfMeHJMr/cY9XUfZ0gvm
UDSaf9TJ3GtupifALwnew/5lvg1GU5nwRGjIudrBK9FJlGdu9g5t0viPPldp
PUMr3YVuJA/+MZhBuIb47Kzd7UWhQ9G7xBOyvwMuDPaITpd8BP+zj8ZVWjhT
5fnPh+0/fRFN6oaufbGQ7tWbTkVfC2aKTude3sr3DPZJfqFF3dGHV8GW0Tnh
tOiYfI+wY9E3+Svpu3Rguqv3fJ54kW9k0S3di+95Ap1UXP5493Cm2X/gv/zg
u4IVswb3HIaKvzRnlaNbH1E3smvdYg3CjpAzz/FDuyuLvYD+jSbt7B3+qke+
t0UvplcrAx/EtbbB35yLEbwsmr1Hi/LwjK3A2sO6Df10eunkiUdsDHzFgv/a
gc83+7H4gqWhm+O/9UPOOPcuvAj+Oucq4Sv+ZE+Q9sFjNCnHc/zI+fTacd/4
4gb/pr2Ci7OOyPqEf1pcceQpr6xDyIn4nqENjeovXTDF6JSf9dS+9ch5YPIN
Bt1z94I85YVWfJGH/zkbwfrTuhAPtS97jqv1mnfZ7+ZeOdIH34KH2duGH+od
nKJrcE7aTRp5WFdlTe05OqSP/cg15yd4FzwBOly9C27Os5xpH7zCGnv4gL1+
/mDfrFOly54sfSPnxQmw8ZGZYG+sv3MOFzqyPyg4nWAYcu4B2Q12J5gSdjJl
q7v6oDf5ioPPnofvwfygPVgg6/h98WnZt5W9SvvSIT9p5Rdbonys4XM+gDzQ
kL2TypR3sA1C8E2CstnerPmlT1y2AXgM6/1g+bKnS52VEdyNtbm2Y0d1FdCc
fRbBWwraJefAiBMsXXgkPpuDequvq/9kJ7KSMym0gedkTBvrh9mjl71h+QYC
udV/IlPBEMWemXNp5KkMshSMv3z1u+ybIEv6r3IFeWSvUOhVD/fBfWqP7FfJ
eVfKyvl4aX82JXbEnENm/DRPkWntxl4Hr8n2Jx+0knm81Z45s0t7xWYif+3M
xsN2FXsnG513OYuQ7YvdS9nsNOxp4rCBxa6tTp7Jjz1HH5QuZwqxj7ItSm/e
iR2PXZA9jh0u9klleY7mnNMPZ8K2ad+Wuu57lkbwuPwL7pXFPi9f/IAzyTcC
+F4Etkz+B5hLPjO+Ez4aedvbnP3o9vTnTMqcc8934Tn8R86LYIeVB78Nn4+r
dPAhfDtwJXxb/EN8VXxEfML8SXxYfF/8VZ6LZ3+9tPEtCfLwXzrX4EbkwTfF
fxV/pjz5vuJrcyaC8xu849/iR/OMz45fla8zOAnxBH5Zvla+UO/4RvkG+QBz
9gHfIh8mLAJftrjSySc+aL5YflA+W/Hin+YT5suUJ18efApa+Lj51eMf5W8U
Dw6DPxRegD9YPnzQnjfWYXFy+5v5rD0TRzn89AI/as5p946vOs/bx1rP80z5
ylI/fnIYA/gD/lv+8pzXLsAewN3ADyi/Q8VRjz5LeM9Z7wK/Ol9+n+e7OqXT
ei+u84lhZTyHo8l5xP4LOWsYfsc75wjD+uAbrIVzssWD2xHgCMQX17tzzE/q
eM5HFi/fAOi0FZQFr9PfQK4ypBHk75n7fA/Zf/k4s7npKTpcnVHc5VRc9QmO
o8+Z3sMPfJI2eAbfWVYufIV7ofPZQ496hB/4LMBhoB8P0ADvlDidZnFqp+sz
pec1P9DsP554Jj465SM+zIrz5z278Pz0xmJ03hXQJB2+ha/iohE/5JdzlNGO
T3BXMDHeq7c+ARMBV+FMdOdWi0NegmchD87CzvevlesduUFv0zWe1WeXK185
fZb1WNPsGRyMvuC/s+adde5sbDzo7wss1nLkrG/n4TuXWnt4lzbxPQD1hHuR
Z3+DoPiubfFYPfFcnvlGgWtkEs/QK03kKG2FZvzwzFWdkwceKl//wcecdU62
tI+69jnglU6dtSn+qqe28F4bdX/cU4bnaNKH1V055DFlBbvU/Rg/x/pZ+jVa
8q2Hzmuxll1pxO++We899wyOqXFKY31utvTaRAheSECrviGOMaa/A7FYf/9F
aMzWYv2djL04qLoaw4LZggtpDFblm7PEG982r7GC8D/BtsHleCYfYyS68m1w
cTzLueCekSFxyaV0jVsrWQzGSiDT5i75i6vNyA1+iG/MD4ZGHLSjzTNzj7HW
O30CJsa8Yg4IVq6/YV7P4WKCjQkeT4CHgfmBXYNF8c6cAXMTfIo4/ge7l2+k
K8e85L95LsE8FmwPPIu5z1wjvvkrOCjvcl67OHCMsC/Bvzj3CH8yh8LgeA6H
A8tinpROgBfyzhlFsCfSep8zq8zVrsHlmDPFC+Yo3wHy39wdbCk9AL4G9gbG
xblOdAzBc7oDnI13zpiCeYk+4l0wqzm/PN8X8p6ek+9j0X/oQfQe+A7P6FN0
LTpZvhWU80/d08H4sV3pcuLyd9PTcmZSzh2j59F/6XJ0QnpdvsslP+lyBpFA
V5ROnnzXwSWjE33888p0L2+6HV0Onej2LDTC9uIpHdJZVdYR9Fu6KgwQPQsG
CR/puHRbOi6fPB2OHpjvh9Fj+cbVRd7qgH6YHVgVdNHT1VNeaBSHLooOtOEP
fTlnBWQ/mOf5/pW81AEv6KXKgkvg/xbo8PhFn845EK7BKISP2it4BnTC76AB
L9XJ85xr5T1eK881WCX3eCmNKx4LOSM5V3WFhZKfdP7nfLTkpf3gopKfZ+qR
MnLWsv/wEfIil+J5jkb051x6z+UtT/EiI9paHv6r477Yde/Ece+Z+5yHFLnx
LDQrz3u0iI+vytMHYfacLZaznOQhTc7Awu+cGaYN5Umecnae+/QDebrP9wPk
gx/hMfkWrF30afHICjm1flAWHKG+Li/1DK4FDWgiz+LpWzkvO2dQ5Ry48CJ9
U/mRE7zAS/nLJ/i2tLM8BG3hfc4B817e+oF6hw/6hD6ILs8zHrlXhnVUMHjq
riz1F/ItBO+9c35czuyWjzLQ4B25DO5fudKiM99PiPykzdI/0Oyd+5y1Hx6l
/+BVxkF1zbjjmu/sZY2bcdFVnHyzzniXPZCucBX6c/ZSZO+q9W3OQtfXjRfZ
wyFtzk4RVxzP5SeOcSNjhfGDvYEMeG+tLb+MI9J7hg7Psp/U/+SrLPnC9+Tb
fsYtaT3Lnhb4oXzrLZgdmCPjn6vn6JGG7cF/4y+7SL4FkXM4lJdvqQV3FhsP
2wj7hHEarbA77FrZpxosWTCV+QYm+wka2cfYaozJ+lTqIq132ROcvW1kUTnG
e/ZKNiHluQ8uC+bIfMIuo5ycbZ0zcthf0IAW75TFDhfcj3mKfU7ZsU9mb1z2
q+VdzkuSLld5Ze929p+yz8XGxm6mHcyJscOxrbnmHFf2NvFjC853D3Kuc75R
ICgr50KzkQres2OxieXMcfm7lyZ75+MXcS9+7N45l4p9zn+2r9jcc0ZW7OXi
sfezzbuyrwls6mz2fFh8RfwEOXss53yxhXvPR8E+lzNePI8fi8/Ls3wDlU+G
/8vznCWtHPfyydnS0vNpeeadsvkm+bDkFbs+nsiXj0cafjs+GOnYK+XHv8I3
5x5N/Fji8G/F5wZPlfPVlMH/KA6bo2d8gDmXQny+yuCf3IvPVyi+dMpLwL98
R0Tc+N/kiTZ+Tb4mPidYH3mquzylceXTi++O39OVHzO+SFf55OwY+Qji5Wya
nA8ueMZ/K4jHJ+tsCHnmDBNpg7/ynO/Uc2nF9Z/fON8qDmYq53R4nrM0YJbc
wynxS/PRxjcNqwRb5B7uxz3MEH91vn/Mf81P7p5fHN4HJgjeh/8aLgdmhr/d
OdjB9MD6wOs4RwMmyXvP/ReHv13IeSjB3cD18I/D1XgGd+Mqb759vnxp4IL4
/+GE+PjRgiY+fGWJ557/ns89GCP+dfGkUR9XPmv+a20pPjwAHMse/M12/ONT
Fw82Sv6wR/AI4uMrHz4sAVrhivK9axgBecMcrOt9Wp/HAucAr4B+vNYuMF4w
YvBYAv7BK8Fn4Cc+KQNPlAs/4b+2CZ4MH/Abr/BXXZJfzplJO2hz/NDG8hAH
jzyXH+wY+t2jEdZBICPqC5OgbrBieCCfnFVD7shkMHDkUt3wgU/YO9gA957v
K89kVf75HnewdPKEa4DpCzZQWu+Sv7S+QSSO9PLzzr0yYB+UKSRf/UQbJ2//
5SFod3nCUXjnzH3v3ec8m5y54r9+6j5YB2OwsWlfHIGxJ+MaP7f74DCMP8Ys
Y6txkV/XWO8+35Ew/mW8zfcYzAPupTdum2eMw8pGo7T5BkHOIpBO2cZVWAfz
R3AB3nmO5pzDYm4yR8mXz1pwb14wlxj7ped3jg86vumc64I2c1jOsERTzswU
PMve6nw3PN9U4SM2b+aM9+ynd29+zjxtXjZX5yzM+HvpDdLI1zs8Eld5fODi
Zd+3eT9zfL4t5d4cn/P3pZOXfHI2g+c5HzL32YNu/hZynmuuwV1kj3poE9zn
uyau+W4O/gQPoN3xPN8J8FybaDf54qGQM+E8z3c71AetOT9Ue2m7+PbzDQl8
QXvwA+qKdtfgI9CmPEH58s6Za/lWj6s84ruMLkQPUJeUSy+Tt3yUn3Nzg40W
h8yqK6yPPqffmJP59eiV9M3oVfqi8V2d830feh4Z1wf1H/HomkLOtPOO7Lon
Q+lf6I3+SW9UF/H0F/0i5wHQs71TN/Sa1+mCObMI3/SLYIki9/JWN/Sqn7yD
7SDz+2J+pAmWJN+ryHfKpMs3SDxPXfHKs2B2lIE+VzLkmf/q6l65dCf30qJX
Psa15EWvw0/jFR7IW52MQcY8acTzHm3Se26sUVbk17NgrITokvLK2BeMlrJD
gyBd8gqWK3Gkg6MK5kpe4ntnHPTOGOweZk1dvEdr8GDBwUmLH+KgLWcFey+N
e+nkrf5ooCfKX/l4oW7BwQX35F6ewd7DMtJl0/bkwZySM8GUk/OUg5tDD12W
vilOdHTv0SCNctCmTjl7UDw0BPcnTeKnzjkTLOeDqW94kLrLWxz3nudsucwn
+CF95rKcXZjvy4TH2TuBzzmX0X9xo9PjQ/ie9UHOf0xaz8VHk3kZLcEZJk54
L51y1A2N/nuHLvkqD6+Dq3ReG7xj9hbAPdIbcsYgnYJekv0HwWXSIzyzDhDP
NboGPYUuSDfxLt9pgUGlY9Hz6GR0tuhodFO6knTwqLCudEH6FlwpXdc9fY8O
H2w/PVA8urJ49DvlKJPOlz0KntO5QoMy3EdPtHYQXxx6obUFfU0d1Ss6GV7R
tfLNGjxLWynTGiB6d846iezYg5H9CeiRH1nSpvRFeF26vTpmz4Xn+KSe+I8v
0uEn/dN4rH2DMZVXzgOEK6Yrqx8dMjpqsK7qQN/LOi34V0H5ZENb00E90054
4pn29l4gE+QhZ1mSs6w5910bqr+rd8HNRi7JbOT2/+8j7nPmpr5G3vVDY2PW
3NmjhM8ZN91La9zN3iPtIY3xVVnGcOnlp78bq41rxr6M5/mmp/k1Z8/nubLM
YTlXRzl0SfmYy8xH3tMbzGl0FO+DgTUnR6/NGdnisv/ku5T57qX7fA/M+5zF
Zy7OnrWcr5Rz09iWxMkZ8dIGsyVftj52MfatnIXEPggPJw49hT3Tu3wTjz0t
54OxB8qHvY59i20QrTkzHA6ObS175LLP1XO2OPqFq/Jz/pi4bInZn5uzqXKu
U74fIZ4yc/Zc9uXCS8FTiWu/IVsfeydbYvY65hsP2Y+YM6bZTfNtP/G9c89G
ue95eZ6ze+abQPm+hTixv+asnuzXZDNl7xQX7irniLPv5ozBBG3AJiqtwJaa
PefKcJU237f0LGljf933O5T77l3Hm5z5x66b72DmW4uxXavXvn4w9fJ+3/MQ
2WXFz/dYUlfPg0XL3l555nx0dZaerV5gn2evz/dC2Lj3/Z4HW7zn4SH7P99A
8G3q67285cvWrmz5qLM0+f4lHw968Ved4CfVgWzwUfPRCHyL8iNn4vFX8H3w
aSiXDOKhfNHDxxF/Fv8BWtHNr6FMcdVbfflK8j0fdUcn+vkr+Etg3/ia+IDY
2VMP/JCOb0VZ4uf8OjTxDWU/sv/xK/O55HtU/CHi8OnEf4IGNLryzSRdvvvE
n5O65ds1fE38N/FTawc+GD4acb3jQ5AvfvCbaBO88l6Qf76fHT9q/GLqwu8T
GpSDl3gSPKM44ubcqfgP48/2zjN+LHHEj4/M//j9hPip3OeqneJXjl/LeRXi
koP4zPJNqfirvBNPgEFUvjTKdO/sBb64PJc33xm54+cUnH3lPx8mX2O+3y4d
OfTfOzTwOUoD/wjPgPfGcHgGGARngcBPwDhKB58gDT9mvnEFCxHsJL8nrGEw
kuLBQcA+8OPz8zsnhC8/Z3fBUDorJN9c920rmAt5yF8a72A3YDjgJHP2FMxG
zreC//DMe1gNz9AITxmcCTwjrEjOBYJ7hIGBocz5Kt7Bh4gHfwLL4jmsjbhw
L9LBqbjCrcDKeA5DE9xMAsyMd3kuDkyMMuFqct6Q5/A0nuVsLs9yvhKcpjrB
yqiTsp3BA9ODzpy7pB5o91450nsXbCi8jHfqI66xC19yxs//Y+rL42NI3v91
IgiCRhB3u+Med5h6WiOIe9xhg17XZq214w5raXcQjDvuRhD3uCPz1Gw7NwjG
nXXtIGzsWoa1Np91/Koqu7/X94/n1d3TZ1U99Tzv91NP1fDnceHP5u/lv/Hr
/qu7/9YI4r/xOuftwvWEtxFvM577yq/j38jr6L91h3gd/LeOGP8W/v7/m4fz
37v/71pEPL+Hv4N/439rBvH24Ft+jj+DP5vX7X9rLvGcJ17m/9YM4zlbYk0o
Y67I6eK5YXzNKZ6TynO0eJ/j+s5zBfg1PHeP55/xnDb+HVyHuF7y9/McMH4P
Lwv/Dq5n/Jr/1lH7L3eM1x2vE14WXj+8vLzt+Hf9lyfG38W/neslrzP+Dbyv
8DbkdcTPceFl5XXBn8XfIdaVMmb//xxdXj//yX/5vnyf9yn+Tv5sfsz7Fa9n
/l283/A65e3L65B/73/rTvEtLx/P1/1v/SGuP7z8fJ+XlZeD55Tx/sCP+Vbk
vf27XhgXfv9/eag8j5HnOvK8S74WGF83j+dA8t94viXP0+Q5hvw3nsPIcxH5
vljvzFghclf5+boWE2n1/8+5bKltYLhuA8Nv65lfXSdyPvnvTbVksd/USBb7
/L1NrHVC+D6/np/jx1HGRubDt9g7WKa9vWEyPLJTSF8r1d5P2yNySeOMA/YR
lpv5I7c9XjvK/MRxO+PSzJccZzjjBPMX6fy/re2J2ln7Euuc2GfYn9nY88xf
nrOv1S4J2aBl2jdamfbths9+wLptT9ce2E9bv9jPW4/tP1lP7D7tV/tNK4fp
9kvWdjlCrlu/8rlb9sfWa9a+b+zZ2huxfWIEOIa3vzVy7ZKejwS0v+3PrDdC
KphhJEQPIhF6URKuFyal9FBSwipISpmhJFwrTCpoYYThaVLdlEkVrThhGJpU
tMJIVas4Ybia1LFKkUizNKlrlSb1rXDS2CpLmlkRhGFkAlZl0lapShjOIzF6
DdLTrE0ceh3CMArpr9QjA/31SD+tLonV65M4vSEZbtqEjNabklFWEzJGb06+
9bcgzO+TyUobMtXfhiRodjLdJGSmppJ5ZjshC8z2ZIHenizWo0mS3pEstToS
hl8I85dkjdWFrDW7Eua7yEarO9muO8g2xUF2W33Ifq0/OewfSI6YseSEOZic
UuIImkOIpQ8jZ/06uWSOJJnmKOLTvyK3zK/JXWsMuaOPIcxeCWH9kTyUxpGH
yjjyi8VE+Y4we0ee+p3kV2UiydEmkpfaZML6CfnLmkaY/pPP+kwS7DRIiDab
hLhnk4LOOUJC9bmksG0eKWLkSdEA2+rzCOvDpIjGjqX5pKjFtvJ8UsSdtxXH
fia2+SRMn0+KyQsIs1kkzD2fFHcuICUDC0lJJZGU9ieScGMRYX2MlPMtZm29
hJRXkkh5KYm1ZxKpKC0lFVxs62diW0oq+5aSKq5lRNGWE8VkYiwnrI+RmvoK
Utu5ktS1rSYNXGtIY9s6wvoGaepIJs1s60kzXzJp4VtPWigbSIvAetJczxOx
72Risn15A2nl30DaaJuYfmwmbQNbSHu3STpb20lXVwrp5k8hPR27SC9rF+nt
3036KntIX3kP6WfsYXqzlzBuL/b7K2xrsnMSE9se0sedSvr79pCByj4S69hH
WD8kQ50HyWDHfjIi4CZj3cfJdAPJdCeSyYFTTI88YjvVn05mOCmZ47LIQusM
maedJj9IXjJZTidTZQ9JcHrI9xaKa2boVOwzHk9mGJTMtn4ki5RzZLHrHEky
zxOX8yeSrF8mm1xXyDabj2x3+Mg22Ue22q4xvfORHX4f2avdIvvdt8ke302y
3ZV3bpP7irhuh3yd7A7cIKnmTbLXvEX2+W8Rt3aXHHFkkVP++4QGHpIzmp+c
0x+TC+YTcsnIJpeVZ+Sa7znxuX4lPuNXctV8Tq46n5MrvmfksvyMXHJnk0uu
7LxrA9kk082uDzwnN5UX5K70O7mnvSSP9FdC/MZr4ne8Jr/4X5HHtgBhdoT4
NXYsv867xv1KHD9xBUi24w35XfqL/Cr/SX4z3pHfrXfkD99fTNffk1cuJuZ7
cfyH9Rf53ca20nvyWvmbvJFzyVs9l/zt/4f8o38kn3yfSJCVD4LjJcgfFQQh
ZhAUsJjYgqGgFgwFcthvriAIdkkQJEsQ7GSiM0lk19uCxPlCUn4oooVAmFYA
ijsKQvH4glAii4mPSYAdpxWEYrZ/RSoIYfEFIMxRAIoG2D2xbD+BiZvdq7Nr
3QVBji8EJTMKQamEUCidEQrhMYUh3FUYSkcUzttPZpLAjkOZRBaGUjGhwDge
yLH/3ucMhVLuUHEuPK0wlE0tAhGxRaG8EgbMfkKF1DCo6GdbV95+hbT/s68x
SQyD8oGiEOFmksbuyy0KFeLZPbZiUFkpDhWVYlAxqhjUyJKhZkJJqJNRCmon
loKa7pJ54ioJNWxMJLavMXGw/VwZqmtMYvLuqe0uBZExpaFuRDjUc4ZDfVsZ
aBhZFmyJ5aBpTAQ0jY8Q2yahbOtmksBEZ+Jgv+WyazS2nxwBzXKYyOWheUJ5
aGGVh5YJFaBVgImtIrS2mPgqQpSRt20dWgnaJFYCu1UJSExlII7KAJFVoG1E
VdASmKQxcVWF9gkKtAtVoL3BxMnEZOJiv/nYeWdVaOvLu6dtThVQXWw/69+t
jZ1PrQrtcvKe1S4y774OlgLRsdWgY4CJUh06xTAxmDirQ8eo6hDtrgbRjmrQ
IYNdn8zeoyigxbLnS1UBbFWAuCqDPaoyMJ8GrSOY+FlZFLa1sbJIrAwR7N0K
e6fJvj2Wvc//7/tC2Tviq4t3dsxg79CqQfs09nxJgba5VcR94tkR/4qVVzfM
bwL4KoOqVwEthj3XYGXJYJLFJOrfb5TZNvXfumH11V7P++52VtW8c7zcuUxs
1fK2Etv68u7ldcrrhn+HqHNe93pe3XeIYN+dUw06yzWgq6MmdIusBT1Ca0Mv
pQ443HWgd2gkOFx1oFdWbegh14ZuWTWhi68GxBg1oFMiK6/G6jO1GnSKrS4k
JrkGdItgz8itBb0kdn9EJPSLrwv9EutC/wy2TagLfaPqQp+YSOht1RHX9Ipg
7zLqQN+sSOieUAt6JtSGaGc16JpQE7rH1ILeuXWgXyy7JzkS+rgjxbcwbAGO
WHaPFQkDc+rBwND6MCCxHvSX60E/F3tXVl1xPCCeHSeze52R0DO2NnR31oLu
qbWgaywrR1RNiEmsAV2kmtDVycqeUxN6xrBnp9UWddDdrAXdFFaWrFrgiGFl
sUVCXx8Tf6T4fl4v4toodq2LXRtaC2Jia4j27xD6r34xnW7nz9PPtlae7gp9
VvJ0W5xLrprXjhl5uszbtr2DScy/7RbB2s39r/4nVxG6Yo9k+uliOhnJ+phW
SfS5qBgmjn9FrwitJLZ1Mklk+pvDJIpdF1sR7IF/+2Qq0zuFPTOBSSITM29f
9IHYykLvW0VUhOaO8tAsI6//N8kqB7Z4Jlo5aGLl2Y4mcp7daGKLEHaiiRIh
ztkc5aBhbhmoH1oG6iWHQ2RyaagTyUQqDbUNZsMSSkGtKLZ1MkkuBXVymY3S
2fkIdj6VncvKs2XVE2So5isBilYCqvqKQxWjOFTOKQZVYtl+cnGomsUkip3L
ZccmOxdVHCqlMZuZk2djyyYXgfDYwlAyq5DwE9z2F7OY/U9gtt9kNlxm9ttg
9juLbZOZuJh9dxeCYhEFobAtBELcQfBJ+Uz+9OWSly7mAwNvybPAG/Kr9Zb8
Lv9F3gT+JrnuDySfnE/4K+7PQmPyQ8GYYAhOkOCD9In8z/pA3mn/I6/978lv
7neEYXXywPxDyCPtFXlqBYRP5T4zYP7rN7Vc8sb3N3nryBV+Nsf1J3nqC4h7
brleCL9+2Z9NfvI9Iee0x8Ry/UJO2/wMyzLM4GCYwfWE/CQ/JRf0f88bvxCP
7SE5JT0gR5xZ5IB8h6S6b5Kdvutkh5WHR3babpC9DoZZXLfJQfMOcTvvErfr
LjkUuEMYL2E4+gYxHdfIet9lskq5SJY5LjAczjCRk4nGxGTYSD9PlrkvkBXW
T2SFlEFWOy+SVbaLZIXvJ7Lcd4Eskc6ThYEzxHD/KHBWgu4h4wMnyTfWMRKv
HyUjXYfJCJ+bDJMOkWHWQRLnPkBi3fvIAOdegRF7+HYyfrGDdLS2Ec3cStr6
thDi3kxUxxaBLzXnVoEx+fmO/m2knWySdtZWAoHNhOibSZRjI2npYpjV/y9m
NdYTxgUJ43ykiZxMbE629a0Tx4wTkgaONSTStYowfkpqu5k4VpJagRVCaroZ
RnatFOcjHatIXf8qgZkZLyVV5eWkgjOJ8axFpJi0gDB+T/Kdnin4gV//jtz0
x5MMfQSh0lByXBpMjuixxK0zfmLEEtSHkExtlOAdjMuT59oE8rsymbzwTyTP
rPGE8XFyS/+a4byRxNKGkZPKF+SYPoi4jYEMQw4UPOeAMoDsk/qTnUofslXq
RdZIXUmS0ZHh2LZkqmIn46Uowbe+tVqQCUYUw7qMZ5kqmau0E5xqhRJDVkld
BLfiv3EeNk5vSUbqTcgQpRFhdpMw+0GaKeVJDb9Mqvrz+CKzG6SlUYHh/gqs
zkqROv5SpIYli21zrTyxK5VJS60CYXaA8ZgCJJ+Uj+RqH3iOsZ31A8Fxb1sv
+H9T2i9oTwT/vWg9FbJOumyfY1iCYzP9sEdr2wSfr6etFvMAeSwg2thmdxon
7WuNS4JHH7Wy7JuMK/al1nn7NMtjH2+dtMcbR+29pVTB83nMhcc+eAyc59Xz
2DwfO+LjYHxc7r//FON5OTwfm48//TfHncdneSyZx+D/W++Tj3nxfBk+1shz
U/kYMM9rzFuTrfOp76RW6YyDpTPekc6enc7KmX5f+oOvG5a+UDqb3kRKTt8o
9UhnPlz8pxxfN4rnT/4oDeNrnfE1oE6xdk33SA/Texq1PZelUZ5G2loPe59n
o5XpOWzd9XiNR54Txj3Pds3nYTzI00VK8UQYSzweaYhnntHO09Wo6elu1PKM
NVp4mO55GI/0OIzdng1GpueGkeNhGB2L+QtgaX8oFjcLIsPg+FgKeBg/8Rja
j54e0i5PHWulh3FGTzVruaeBscbDOJ3nW+u4Z5N2xcNsjSeg/c2eWwAr6cWw
jlUK6yrhyHQAa5ulsLK/GEYYRZHVp3hPca0glvAXFNc29pfFGLMGxmr1caTZ
BJnOYYJmR8Noi4lmByHzlfa4UOqAsyUNF+jt0aV1xs1ST9xv9sd0LQ4vmMPx
jjYGGS/H1/4p+N6cju/16fhamYrP/OPxtv9rPKPreMwYhHvNfphi9MYUrTfu
sfoi6zfoUYbgFWk0flJmIut3+D9lBkrGLAx1zEXZsRAZb8Zqigtr+VZgTecK
VJzLsZJrKZaTl2C4cxGWsBZgIWUufjZnYq7xPf4pTcN32jR8Y01F1v/xtTQV
X5qT8aU2GQPaVHynT8N80ixkuogl5IVYQUvCOvIqbGSuxShjI6raFtQcW9Ee
2ITNtfUYaa7CCnoSFtHn4QfpB/GNzDaI5/2pTMMCvtlYypWI1XzLsamejMxO
YjfbTuwbSEXGq3GAYy86XLuxs7wDWyubsJ5zNVZUlmJxfQEWkOdgkGxgUGAW
FnTPwWKB+VjOvxgV13KMdK5CZjORODeLZ2qurQjyFmxmWy++t6y+GEPcs/Gt
mYB3rTGYoY3Ai8pIvG19Lb4tyGZgKT0Rq2jLsI4tr3xN/OvQpq3DhtYarCWv
xCr6MizjW4TFXQuwsDQPC0hzML88W5SpmG0BljUWMx1aiS3kDRhtbkOHYzcO
cO3FWGMf9g/swV6BXcjsArZxbkKbax3WUlYyfVuKZWyLsbSViOHuRVjeWiLq
pp5jNTZ3rUfmH7CrliKeM9R9EJkPwjHmMfwucAInGGk42X8Kp2jpOMk4hRPc
afidfBLHasdxuNONzC9hjLYD7b5N2Ni3Fpn9x8rWUizrZu/zJ2IpdyKWsy3B
6rpLfA9vR94OI7XDOMVIx3nO07hc+gnXSJdwtXkRlwcu4ByXheP9J3Go6yB2
VnZgC996rO5yiTIwX4JFjHlY3LEAy0tJyPwTqvoW7ONIxa+Uo5hgenC+/zQm
amdxvnQGZwd+xKmSB78NHBfl+sJ2APu4UtGhs/a3tmMng4lrO/YxU3GUfER8
03QNcaJ0StzzdeAojpAPo24ewuG6G4cE2P3uVOykbcdW/g3IfCY2dSZjS30D
gj9PL6L1bUK3uHTXdmIPZRfGuHaIskc5N6LNWId1A6uwhrICa0h5fai+vEbo
FvPf2M1ibWHuxYHWXuxn7BHv49Lftwf7yntE/XU3dmJXPUVc29dKFe0Wbx7F
ibZTOMNBcb58BpeZF3CdfBk32q7gNtmHW9xXcYMjE1c6MjBRP4vMBotyjnYd
YfZmH3Z378SOtu3YTjKxnX8rdlC2YUd5u3hHL2sX9rLtFvrWU9sl6o7hDVEe
Xgf1zNVY21iJtfwr8uyCi20ttnWvEPpaX1qD9X2rhY4IvZeSsZWyEe3WJvGu
Ts7tokx9DNZH9b0Y5ziAQ2wHcZh8CIcoB3Gwc7/Qb4e5G7ubO7GbPwW7WDvE
d3D9Y5hI6HBPYxc63LtFffVzsP7gY3Xv2IFt5a2izzTQ1yCz2VjWtVjYqQKB
2cL2fPDPwA/KDxjsNrCoPF/YD4ZfsKpvmSgL768M3zAbvhIVx3IsZzFd9M/H
ggazF4oh+mhRZT6WkRdjdbdL6ATX3YHyPhxhufEb/zH81n8cv7KO4BfKAezt
2y36Ka8/8U3+5VhZXoaVpWVYw+fC+rY12Nq/UZSRl/0b6Th+byEucJ5Bl5P1
l8BFXCFn4GLHOZzp9OK38gkcbO7Hdoop9IjbK9lciL9Y45BhLWHrU42+uMvo
gwxnIVWG4h1jDL7VE8R3c7vTJLAO2xsm9nTtwr5Knt71dOzCTuZ2JNpm0X7l
pCXCL1zVRuNupa/wQaP8TVi7RTIdqY261hh/8IPwJ7e0rzHYMLCCKwkbW2ux
rX+LsMO8//Hn9zR3IcOoGGVuFPVbRlqMkmMW3pe+xTTjC1zu74TjzJbYR4tE
u78SRhqlsbohY6RWGoleGQfrDYQvtPRh+NmYiYqxHBkWxn7uPfiN71ievXKl
4SjrMPaQd2FD/xos4pqHF/ThONvfltV/NaxkFhM+OMIsyvRewXlaO2Gvy2qL
kWFoHGecwGXGBdwhXce97luY4rqOa+RL+L2N4mBjP7aSNmIZa5HwY2c0Hfcb
/XGv1g9P6IORYVjM0SdiiGO2sLvVnS7RDxheEG3Odama5BJ1X8m5VPi08nKS
2K9uuLCBtgZbBNZjG2MTEmMzq4NN2ELZIO6v4EgSuvuz9Y2o68lWa+wr1cUO
loIMbyHDWbjb3wffagkYqa/CQbb9DDOcxX3KbTwt+THD/RQZTsH9jtvCTvI6
q6wsE35rpqYyO1YVGdfESloxZHxatEO6GSf8czvfVnRqJzHZeZm10328bGWj
T/8Vz0qPca9+C+faTuNgx37R17kPu6ePRYbJxXcesPrjT8oI/NOfgLK+ECPd
q5A4NmNP9y7s79+DA7S9wpZ3daSgpm8V9oFxFrTbNgt7xK/jdn6ahMLGr3Vf
QsazRD8YaRwWOtXIsRZLORPxZ2ksbvR3xzF6c+wh1cbBWgNcoLUXust9CbfV
48wTuM53CY9pPyPjjXjG8ON+921cqJzF/tYerOhPwnQjDr/wN0COCxkW9gzV
DnoM40dPjvanp7tZi907CGXnQuzgM/Fb5QQulS/gTv91THPfR9Qf4nHlHu60
rmOSdh4nKqfwS/8hZFxO2C1RRmUzNneuF+1dQ14h/GdJKRGL+uZhiHM25vcZ
AnuVkBYKv839Iccw001E07yGGfpT/FX+Ez+6P2GQJNF/3B+RcWWk0iNkfBR7
W7sx3FjE2l3Hr/xNsakWIfoR0SrjFL2N0PcathUYrx3FvcYtfGZ7y9othJaL
KEqrxBanVSNL0HKRRWkRI4S+NP9itoM91zwv/D/XyyrmMizinCdsJ+9f3Ga2
ljZhH535ef0wTnKdwh8CVPh67neSnOdFe80PnGb97TQyPoxJjvO4wpaB65TL
okypxk3c57+Fe/w30XRdw9XaRTTMH4X95LrR2LYOIxxLsIg2D/P7Wf1oc7Fc
YDEyLoAMy+N0HXGPcgvvOV5iUFY+KqcVouXlMFrBFUZLmaG0gC+IPvO9weO2
ezhXOY39lb3IuK/opxyHcvzKMaHm3orfBI7hJvcVvKRl42v5bwxOlWghW35a
yAqmwTESfW37G33uX3GPdEtgj9HGEeym7GT9ZiM2VtYh42jCp3J9GqMdwzma
hYyf4Q7LhzuVG8Ivc+yzwH0GpztQ6AjX7+FuNw51HMRByn4cIh3EMa5jAt9w
fLTMcUH4AP6clXoGLpTPivrhdf1V4Ii4p6+P4Rxtt/CH/eW9OMi3D4fZDuEY
J3uO7hH93qX/hGsdl3Bd4BKulzNxvXVZbNealwROWKpcwCXSeVzpzMD1Sibj
GVdxm+TDFMd13KXfENttgWu4yXkFk43LuMZ2CVfZLuIa/0WBNXYGruMxF+tb
2mO8Kb/AR45X+DjwGh/6/8Bbrhd4OZCNP1qP8LCchbucN3CbzYe7HDfwkHyX
cZkHyDgw3pV+x98D7/Cj/gmDYyUaFCXRT9JnfOvMxWztDV4LPMdT8gNx32r3
RaHzieZZXOw+hyuUDNF2+6Tb6HU9whtaDvodrzHH+Se+0t4z7vCX6Dt3ld8Z
b3qCx/SfcYdyHVfrF0Wd/uCjmOD04BRXHi6cpfwo9NWl/YQbzEzcHbiBR/Qs
ZhsfIJUfIToe4qnAfUxz3MeTyn1hVw4F7gjfwb8vRb+O210+3Gy7KmwXb8cF
jjPCh/8ge3G2bOE84zQu8p3FpYHzuNp1ETf7rghdPuG6h+h6iNT/ENMdD9Dt
uou7rRu4QcvEZfoF5tN+xMlKutDXUYHDOEI5LPrL18oxHKedwIm+NOG35kqn
cbHrHC71n8dlrguYZJzHBSb7BpdXXBOvH8WhxkHsb9sr+EQ3aSd2d+wU+hTn
OiDsxAQ9DWc42bN8Fi60sT7tOo/L5Z9EnXG+8KWP2TgpVWDU9i5T+DDOk5qa
yYIrtHeY2N25E4e73EJnuQ6mGNfxqPIzHvczsX4WOsH1Z33gsrD14/QT2NO5
S/Alzgc4ZuD+sUdgp/hmrv9rrIvCZvD6/0l+ihnGU6TWQ0wz7+Ne5y2hv4mu
szhV9uAYg9WT/7C4l3F3nO5CXG4x2227gWk6u195ijccOZjl+h2zjN/xsvIM
090PmB+7Lmx8gubBEQG34E295N3Y1ZUi8OYQ3wH8zjqBC31ncKOViQe1O5jm
vI8e64EoGz/ebvjEt863TuMEMw2Ha26Mde4TuIjXG6/3Hv6d2MXPcK0zD9cO
VPahrh/Cr23HcKqfcScH407+C7hZuSr87nHfzwx33BM2jevxcfkenrTllXur
Lc+GJrrP4kyHFxNcHlHm4YYb47QDAltzDtTHmSo4HW/nr6SjOMk8hXN0C5fa
LuDGQKawy0fMLDzqz8JDvjsCD611XsJE51nBPXSNtbucKnCdXdoseBFv91by
RnHc1pbHNbmv575hoj9N6PxKjfVT/Ypou2OOn9HjeyC+/aDrjrAz/N28r/yg
eAUm+1JxC2zN64vzn0HWPhzqzOMLo80j+K3vuMB+U8x0nGZ5GD5ifM52gvm/
I/il5Bb3j3YcwXj3UfxGPo7fSidEO3C7OMOgoj/O1Lw42ZYueBW3p5z3tHea
2NKxQeAWjtUrBpKwmuzChra1SMzNov54uXgf4PcutM7gXPm0eB7Ho5xD8ufw
+uD3ye6FwocVCszBMOd8LGsuFjyDuDYL//ll4JDA/uOcJ3Csg/EH21GMMw7k
1bG0HVvbNmED5xqsqa3Aqv48/sBxHH92XYnxe3O9wBgdle0Cx3f0bRMck+Mq
3i613SsxwrlE+O/80myU9Fki1sNxR6g5F8PceVyI4+HS0iIsKs0XMZ3b0him
y4OY7enO7Ek7xpvbMN9kZ/69A/MD3QRW/EX6DoMdhog7VLYtw9r6SqynrRa4
t5KxVMRWPvl/EM9K1fviTFNlHKYB48y1GK+rzriMwjBSDexn1mWYqTGOl6KY
79RwmdYJN2k9BL495B+AHn8c8xPDBd7+SRqBp6Q43K47cLbVlvWZ+lhLKYW/
Ge88a7VLHsZzPU21ZA+rJxHDY/zcM9FK8xywbntYH/cUNINZPRZHm1mOYfuK
jONXwEZGWYbJirGyF2Bleu3Zq93yMN7siTI2ehhO8/wqTfSw93pOSl94GMfy
HJIGei5KIz0FtTkeZqs8rD97mH55plrpIh45SjriYTzX08hY6wnRZnv2Sf09
X0o2j8Oo44k16nvmGJpns9TTc8EY7vmfNMPDMLSniDHP80ZKENcybO+pK4Wz
/dvpLaQN6cw+pzNcmn5Fep6uGCU8UyW7h9WpiE920rZ7vraOehhG9hy1sjxX
rGeeO8ZvHr/x2nNZesa++b5niXXOw3TSE6bN96yTunnKGkV4PFU8l92X3lgq
5zlnfCninMyGsO/I9dSRSjMf0QgnS20YPuiI30vAMBfBKVobwT1GKE0YV6/D
bHU5LGKGYLbxxnNLe+F5ogU8+ZUgDDMKML0IxapKCWxqRAiOx9t/j9QPM41R
+FQZj++N6VjQOUfoD+8nnO/wOOYTw4nXra8Ej+DY/Kg0CHdpfRgOisHFRjQu
UToyvtYbj1qxmKmPEpwmS/8GHxnj8KnlxPfadMyn5MUbg6xZgs9+1meK4yLu
eRiuLcKKviTRtyv7lmJVi3Fyv0vw/qqBZRihL8FSZqLoC5I5S8Qfb+jxzNeM
YDjnS4bHR+B1KR6fWeMxyDdLfH8t20ps7duIndzbRf/nGJX71Q7yNhGD432W
x/ruKt/gfq0/zlY0HKu1wFizPvbT6gr+MUZrzuyfiiv8nRl2dDCb34/5kgHM
HseKuC2P3260uuNCf3scY+ZxnsZWWSygBCNqD5leWaKd61qrPG+NBM9OqY+H
8XcRB482qnkKSMFcT9OHSY3Teaydz1Pic4D53BOec87zjvnahGBtFrl/zMeJ
PL5dxg2Re1fRH0Y6StXJVKsNOWYMIvnkWWJcqLt7J/lGOU6YHyHrpMuE+Xkx
/rZPvk0YfiRb/VfFmNo6+TJhPpGsdlwkDHuKLc8xYliJMP9GfrT9Qh45X5F8
jz+T4qkFoUpMcaifFQ4toioAcVcG1agixm0bJJeBihHFgPEVyHV9IE+lN+Sm
9IKc9z0mDDsRr/6IXHJkk7u+30TezzP/G/K7/x35059L3un/I5+Nz6SgKxiK
JIRAichCUMZfGMpFFYWKUl4uSoRWVPzGc2/yRwTBc/0tYbhPjO/F6vtEDhlr
fxJvNiNM98kULV2suchzvHkeKc+t5PmQ/xgf+fwRkqh1EDl4v2mTyB/SFPJA
+1aMXw2zGvFxU5FXyv+3paq03BNq5Gf8t5nQkRtmPD71O/GJ7hTx/qv6aGH/
WDvhXf8Y/EX5Dp+bE/C5NkHY4kvmSDwsxeJiM1qMKwyxGuIQf0N0mq1wg95d
6HARxzwRn+T+1NB+xK3yNUxzMSzke4LXrOd4zf8cz5mP2ftvi7gIj7NEu7Zh
tcBy0Rd4vzxlfcEw1xDxTR+1H0T8ub1u4kjzsOB8W5VreNhi+N71QOAst3ZX
4LyN8hVcbVwUOJLHhDn/4Jxjh3wdD9ju4NFAFh5zMvzkvoOp7pu4zX8NN7gy
xT0rXRmCx5vaNTyo38Gzlh9/Vl4iqz8smBhMZWchWs5WlFZUitEK7jBazl+E
llAK0RBXEA24/8bbtt8EtuM8fa3OcLnzAuf6AhuvUS4J7M4xCS8/0xl8ZbzH
XMcH/F/gA/7l+x/mOP7EG84cgTvXWZcE7uCxWx4H5DF/biN4TGiB0V74pOq6
jM+kt55l2gVPK2mjJ8XozWz+1XTWxml5/yHWXKzXy7COyH8taxYhXZSaIgf0
kj5S5FHW9bG+pe8k421phPE1wvq4GEtnHAnCEwuLXAOec9NHjwRmO2C2rMGm
2B5wXB4MN4x4yI4fD/84ZsDn+JlQ0D0HisTMA+aToXjCAgibNx+KmPMgNHYu
hB6bC2HH5kOZqMVQvZ8LbEnroG3UVnCk7AbdfQjG+0/C7EgLVpz7CTb6M4Fx
ONjxwAfbcq/BJscVWJmWAYuyzwLDncB4A4y45Ybet3ZD23dbgPlAqOReCkVm
zIO3zgS45fwaLPcwYNgCDsuxcCx2EKA+BC4kDIfLUaPgSmAU/JQxHE7mDIZk
dzf4JqM5NHCWAZ4HwMecz0qPeW6157kxQXDBYhEFqapXof1cdWkvuQ5tGVOB
Fk8uSI/KPwssauq98Jzx2LPF6OkJNwp70Bji8Rm/enisKsbcgbd9L7BFRnk6
M1Gl3tSh9I01lRaMm0OLxM2j+XMN+lQaT/en9qdjYprTaopMT1n3xTgA9z2N
9LLML93wMDzpWWH95Lkv/eEpr4SJOKOuN2aYsyXDqk2Fn1S0EhxbewLGVA//
3yY+94vnVBeTCpKBVj2yyN+B7PH3JQzbkDOaTlg/J6wNRc5tMWUBaaysIwyz
k+W2n8hp6xeRZxGSEARhqQVYmxaAQhnBEND/JowLEYaHSUN5rbBRDFvxXEqR
Q87n+vD5jXzuIx/P5XNWeN4/4wdCD/mYMx9v5rn0fO0F5h/SGS4UNmmp0klg
yFjHPsGP/rD+wrKOIrRJVjnaMbQ67Z9Rlw7VG9FRkU3pGHdzOs7Rkn6XxSSn
JXXGt6LfRbaiTlcrOj4yik5yt6bTnYTOslQ6N0ejC20d6LL4TnStuyvd4upJ
U1J701RHX5rq7kt3OfrQrbZeNNnRjbpSO9N5ae3oxEAU/SK0IWX9hTaPL0+r
O2Qq64VovuufBffn8QY+JvK9TPEL+YAYG+DjZDxWed8ay/h/b3TqrbC9qWAZ
qzDDI8/E+PLP0lgPH6Pm6+bweVt9tFQ7zy/n+d4MkxJWLyLPuZpvOSGOzWSA
tpeM0Y+RGSYljFeKPBPGaQh7nshl+ej6RBimFL6lZnxJkTvEc/F6arVhkNwA
hsfaID6tGYyLbwmTXK1hWoYdfvADGGZbmOdsB4sCHcAV3xnW2LpCckw3WO9n
Eugm+kWy1g1WO7sAwwqwIpdd4+8CW/SecDB2AJzN0OFewlh4nzodwqLnQ9Vz
y6BJ1jqIHrkNmN2HcWNPwOycH2F5xE+w/txlYD4AtvfzwZZ+V2FFSAZ8fwvh
i4gD0KLSBgjrPh/OJOvwXUZLUBwl4IRxj/RWUkkdeZXIN5mpe8lt5TdSPqco
dEqrDhOcUbAiMga2+nrCarMLTNJbQ3RyNSgaUQDWy5mkhH8B+cv6n32ndCOd
+6ZmynoR45Dc+WgNn0xbOivQNu5KtJFZVtjzd+7/CW4/x2mJ2DGPEzdyrxVx
Bj4WwLmP6tqCUe6NWM9YLfxUJX2pwFt8rKqNuQkHu/eLeIvX8Qh/l//CkLQg
GpZQgBYO5Kef9c8ibrXWdQk723bgc30CRmkVOR/y8PW8NmlX7PF6M/KHMoXU
t1aTftoeMl5OI4YjL79npHaY2OXNIued5+TXUEoSPl+Cz83kc8D5/+Lxecx8
LW+Gv0TOfjXJRb5TThJP4AH57PxMmK+CmqkloZavpMjpKhAVDDyfOdlxmQzy
7yOhjrkCazA+z9dJbpNkdGS4zvL8ar31MOzGylmS+fRy2NKowPhXOJaXwkRu
A8P5yHRO2KKtUi9kZRBjqmDbgqNsR3Cd/xKel5/gO/N/KCcWovXiw2knvTod
nmqjhrst3ZjbnR7OGEh/VIbRixkj6GVplJAL8cPpydAv6M6M3nS5vxOdbhD6
VVZTOjC3Hu0h16adQ2vQzpE1aNfEmrRvbiQdFmhEnQmtqBHTlrr0znSD0Z2m
JPemu2L60J2+3nSz1YMujepEp8p2OjihAY3SK9IyUhGarb8RmIGPXfIx7R/9
Q3GI1Ijh+CAeV/bUsFweKg0VvIrZNMGPhkgH0z3SkHT+H3R8zQE+p5vPx5qu
ofCx0/x28sY/lTQw15DvbCeJ23GXvHXlkghnUWjhKw89U2vDcIeN+bxW8L0M
MCdegwV6e1gkR0OiuwMkpubJIl8HWOyMBmYXgPESYPgKtqc54EDUAMC0IXA1
bTQ8MZ3wd+j3UChkLoTHLYJq55ZD4wdrAR5shu7xOyEu5gCMTTwO31ei7Jln
YXXKRdgSexVSNl2H1P03YXeDm7CVXIMVL3+Cmfu9MHb/cfjC2g+dJm2HRiPX
Qpl3i0ByzoIXEZPA7/4OHjnHwcOIcfBLxHfwMPdbuJIzClJj+sLXkc2hslQc
lis/kTTtC8LnUTLb5uF5KMNNG+ZqHxinvZv+vYX2bVYvoZ/MZoo8L2ZT+HwJ
O8NgHj7+y+OxnTOq05WpMfSGI54GRRq0VFoireBIouHORTRk7Gx6WxlDVwVi
KHs+/dPKFWNP6/xd+b2eetpqz0Brr4fnyvxmTMJ44yj6zddYJb44jYqvSEls
ZcrwPS2lh9IH+h8iFsvHTfb5+2E5qwiPs3vKSUU9nL/w/wZpo22yF/WHkEVK
NAl2GwTkLWSicoqkum6SO47fyD/uj6RwRIjIny+dEwpltSJQ2hcq8uuD/PmA
5/P/7PudXDCekMO+u2Sz/4rI71sqXyDr/ZdFXmCG8ZT87ntHeG5+2YQiUDVQ
HKqGlhA8oXBkCOQ4/xQ5hSMst5ijwmwe+V6ifD2i1s219Z6megRa5jAx7jtM
OSRioZbrF/xFfo1v3bn4KfAJJT0flVz5aP6ARAvbQmh4QmFaK7SUqI9YV306
LddOGYah55xf0hfKJFrg3GxaypVIK6UspTUyXbRO2CrK6pbWfbCK1rm1klYL
d9EKsUm0ZM1EGho9l36OnUn/sE2hv2SNozfi4+kFYziloUNFPz4aOogeDo2l
hyIH0gPyALrX2Y/u9LN+mdODrvLHUKbv9HsfoUyPaH9fXUpSK1PG6ynDEpTH
qydpp0Qs6rSiYwOjDI8Befj/Hor/ALECfC472Wv2I3/4J5OSvoWkuuESOYk8
l7GXfxf5IrCfjNNPkIXKWbLPdps89P9BiuaGiDx+7isnpEUJf0czhggd/yD/
AIUDc6FkYCGUsS2GcqFLoFz2YghPWQQlQxOhuHsBFDs3X2DdEs0XQvi8RYwv
LoWaCSugYWANtMrdAO1Xm9ArdDcMyzgI462TMD/zNGwYmwlHNmXB5Y/Z8Iy8
BWlkPrVYRgG13I0iapWhxdVqwbKqdC+hRgwuqhZMCVbvuH+DZXgByP7NcDlj
JFSVSsBnbSbP+YsaoNdD1tdEvKSileRRjS127kNWahmkaGQBYLoOnW01oHNu
dVDdVaBFaAWoE1oaQhPzQ4p+Xcyt4mtKPFTGYcnIUHrCOZjWi11Nx6WeoKb7
Gj2VeZ+eyrhPd768TuckWExH9tEGm9bQoAYGPWn7giak2ml7XaFhMQXoIf8d
kcu0y+yDH6yPnrbSVk+0ts1T0iqEjI+K+G7d3NJ0rq0dvWqMpvmUWbTwg7k0
ONmg98yxdG1iV9ouUJVelp+J/Id91i3evvZlZifi0HeTLPfvpGFUWfjW1wJS
Y/vC7cgx8N45HYITDMgXNQuep00A1IbAvNR20DW+JjD8Cxe0J2S6G0k3ZafI
We0s7xB5sgddd1jZP5OGUlkYHm+D5NRucNU1GvJdnwnhqYuglrUCGmlroWHO
Gqi+3wVFkufBDWe8sNXlMorAANdewucFsus8PB9tvnIGGVbGMhmFaU1HSVpL
KkUrxRSjjPczfC/R9+5/8IX8Dp8GAvhUeoMvlHf4IfARi8kFaaRemnY3atHv
swg9GjGI/mWbTqs+WEajE7fRr8KP0vnkDN0y8io9lHOHngrcp56PD+iJ5Ht0
v+M23ZxxhS5OOUcnk3Q6NOkg7dhgO2WYnJYJXUzz/TyT/mwbSz3yELpH6ke3
Ox10V1ofeix1kPCvz2Mn0KDMWbSYvICWNRbTiJQlNHzkIsq4O30jJ9CzkV/S
JHdH2kOpTQvn5KdzDEvEARiO4ji2DeOeJNgwCPPxhOO1V873efEOLUTMP/pD
fk8umdkk1XlT2DmOZRYYZ8S8LR5HKRFRCLT4qjBNIuDxxcGHwAyoHLIM7M03
w8DQffBt9nGYkUBFn5nf/IzAklObe2DspuOgJxyC/rl7oFvNndB+vwkMm4E2
divERO+AAf32QnzSUTD2/wibX14BdD6EBzF/wD/4kc9hUiv0DFNrJ5dSbWvL
qa3CKqr2B5VUe4PKaqu3FdT6b8PVMlcLqy+y/oTk/ZehbfOtkGGMEPOSmM4S
/n+3POZYwQxDhrU8PJe1llKKvLAmkihjI3E4dpPG1lryozSMfJA+iTUIGH8W
62zydYU4RmP99xT3i1esUXjKdx91szH9yzeNRqdtowvmnaGM+9O7/t9o9v43
9Cl5Q+8Yv1Gv+YhubX6NzkildMD+vbSBYw19p02js+S2NH9oEC2nLOH5SDxG
bO+tRBLNrEp4Pi7POeW5dy3TKtA9vr70Y+oPDPMspmW7L6ZB/ln0mDaIdvPX
pHxcca6lIV83iPEWMtVKJ3wuWVd3TVga0QkynaMgOMmACs4kaDAjz7a1jtoE
zZqvhzo1V0HZsYsheJIBDyPHAbMLsEbqCtNTCcSnNoO4hIbQL60u9NPqCj7C
MCYYelvYZPYAhvngefwEKOSbAxX6JUHd7FVgc68DW/Q60QdL1FwITzQnrJBi
xLyJZcYFEm80Y1ihpOcX/zgRu6kYCKODYxrQRZHR9EBuf8o4Lc3Sv6GPA99R
ho3og9RvBYY449bpkeRYujujD90h9aZ7An2ppQ+jv0oTaYmsBdSWsI4OcOyl
M6O9NGX/dZqx+il9FvWW/pP2kea/J3kL3AryBo+VvH9n/kMfNw/QC8lP6G75
Jp1f8wwdkeum7fuZtLrbRQs659DHkU5qacOEjzNjetHNvh50l7sPPeqPpecc
X7L2HUOf6E76W+ok+ih1HL2V9jWl8lBqOnrRiVJr2k5RaIHcIDrT8IrcnDjj
gIfPfd/o7050xyHy0vyLNMkpByNTm8BiLRq2hvaC3aF9gfFY2GT0AFdsZ5id
1RbG6S0hXmsm2mFqThtYltwJDroHwF35GwgiBlT2L4U20ZsgdtI+mHguDZbI
52HzuytwoNIdSI97AGejHsPFStlw5d0zuJr8HK6dY1LzV7ie/SvcwhdwL/kl
ZKe9gcDqvyEfyaeGrs6vlkoOVausLq7Wfx6utnRVUNsGqqjRqdXUjk2rq1qn
qmrjsHJqeGxh9ZfcV7Ao8yw0OLYGtjh6wn3fS7LYjCb//v9eGv+PnrV6VzJY
209uaS9IsawCUDK3ENz2vSCtpI38d772jRjzi9RK07FGC7rV6kkvxAynzzLG
0+A4g5aMTKS1IlfSNriJ9rDtYnz+AP0y8xDVYw/RuJQDdHD0fhrX7wAdaR6m
kxyn6KJbZ+nWyGvUnXKX9Y2f6fY0H50RS2l0yjYa0n224CtBGfkoH6fraFVD
NB56qlrFRZx+YGCviG+WyCpI60SWpnWzSlM5oRC9oD/BLrYUkWO2TXJ4vrKO
2HnsbaJ0igTZJOgWVQuS07rBs8B4KJO9CJq9TIZugRQYVHM/DN10ENg3Q5/Y
VOjk3A5tum+ChqFroVpzFzCOBeGuRVAqLhFk90KQJy2EEmFMAgugRDg71hZC
yfBECDcWQbnIJVAxIwkqZidB2ZTFArf8kzgDrthGw6rILtArqg7k90sw3HSL
+Qt8nfVLRrbnnTFN5Cz8Zr7jnI/GpTakrrTO9II2nH6KmkkrRCfRpgnJtJNr
Ox2waS/jdG46Eg9TVkb6VSYT5Sgds+kYnaCn0R8+Uros6QLdnuqjacn36bWc
5/Sp7Q19P+8fGkQkb8Hhwd5Cr4K9BWzB3qAikvevW/+jfnxNWZ0y23WTJm46
S7+KOkqZjaf1jq2mpRITKcNB9Emik16PjGe4gfFG2yh6LWs0veYfTTO1UfRM
mk4PWwPpaq0L/Ta3BVVjqtDC/vyU55s0ltaJ+HWoNtfD14vRtKpifvhEXxr5
WXpJeIy+S6AGTHK2FjGRk9IXcC2H8a1YJ7yJSoB8L2ZCAXkOhM2YD+HuRQyv
L4P6gdXQutIm6BKRAl+82w/j5p2AOU6L2cNLkJp8Ezy3HsCVsOfwOOs1MEwO
Qdmsz2zIrzJfqJa7xPDf2uJqnXvMN+0tp9pvVVI7Vqiu9jxSWx2wsp4apzdU
9faNVd3VWI0b3FB1YB0V3lVWq7eXVWlZPvVk1j0YvfoIMJ4ECxLbA8PN0EPe
RVj5SJ3ASrLOd4lw7DJUbwRLcqLB5eoMXwWaivm8kj6L8DkPn+TP6LHiaGTi
KhpnHqCMq9GF4Wfpwgdn6Aw3pePcJyjjH/SLzP00duQ+Okhi/cfF+lTOIToq
7Aj9Jvw4nYLpdHHSOca9r9OzL/30se81/TvqA5XS8nn/MT/SR2Nf0UPyXcrs
DW0UvZZek76ivfy1KcN3Ij+6pbEBGV4XuRFX/M8wV/+AH5RPIn+H54jwvHZZ
L4RifUh/MxEfYtiT8HEWPr90bHIL2GHrzer4O5DHLoTGkeugW2YKDMs9KLDD
pOhTMLlmOrB2hrF4HEaPPQLD49zAdBdGJx2BbyKPw/jckzBp/ymYEpMOkyPT
Rbz5m6jjMDLhMAzK2Qddu6dAVNxGqO5wQXHXAnjnmgaXHCNhna0bDHU3ghoB
GfjcsU6O7WSt1pX0knbztdc8rZSKIj+X52rJRiHaP6suZfaa/i5PplUjl9Mu
JIVOtNLoWuMSdcffpeczH9Nr8q/0duYLetOfQ6/lPqeXMJtezs6m161f6cNK
r+irke+pdDCft+irEG9418LeiuHFvIpZwltDLumtkS17q34u7o0YXdRbfHBB
b/AEyftb/DvK6pUeaH6HMg5Kv4s6SfvhHgqRWyjTX1rJuZTKqxfSgpPm0A+5
MyjDNvR26BiKaUPolrSedGpWG9opoTplXJfymFp9ZQ2OsGx4w4j38DWHOijV
SJA1iwz07yXMP5K/rX8In3/I575Oleyww3LAlYxR8GfoNCj6cR5USGV+P3Q1
tIzbAB3CtkHv8FTQkw7BhLFpMC/+NKxNvgR7Mm5CesIDuJj1FO4k/QZPcwIQ
mPE3fMr8BCHJQWrRMyFqqSmhagUMU2sULylwXJNH5dSW0RXUNscqqdrwqmrH
ItXVbo9qqg53HXXA3nrqkDsN1RGfbepX/zRVR6c0VYfIjdSuMTXVBnPKqAVe
Ban7+92GdrlbITW+L6D7IWG2nq/vi+V9S3CS+xTuNW/hlcAzfOV6j4WjQmjt
+FK0Z0xt1mcIZdhG+Hsev/g6ojklemVaxVWc1W0x2i63KnWZnWnBhDm0j5lK
txs++uLcn7QEKeSt8VL2Nixb1tukUYS3iRLhbZRW1lvPDPfWuVDKW+Oq7K18
r5i3ZPNQ74fwT9Tq9wudFHeKVolbRhfr0fSiLVvM8WG861RXI8Xe0dpm5+s9
8hhjF6Um/m5NEvMceJ48z/8NM+bjFrMnFvIH8/xqD1+XMkW7zte5IYuss6Re
YjjjiL2BcQLhizZFX4FbSS8g3+nPELa4gFpSClVLhBdSQ8fmVz+EfoIn/QKQ
Ef0U9u+/DatCL8L3DxBGZLuZf9sJLSdtgGq+5czWzId38dPgXupYuC7Hw8+h
Y+GlMVlgEcZDgGFTKOdfDCUzFzLbOItjbkg0OwDHOjyuO00hHP95KmlLsaAR
zPAw0FfxU2iD2DV0qOsgXTbpAj1V8wF9+O4Pmjv2Aw3ZEOQNHZ7fW6hmfm/+
d5L3n3kf6e+V/qKP4l/Rm/ILek35lfmOHMpwDH3x8U/64dxHyjiMt8Sdgt6y
cUW8Fd+Feav6inur+Up4q5WVvcroEt5Kk4p5y1Qp4g1LLODNp+bzPv74muKM
h3T1pIt0TOox2i7SpBWSkujLhMliTGdyTmvaMaI6rRhZjL623oscPp6D2cRa
h39aCbhIisa6VmlcbJzzDJMae/j6onxMgI/p8jVR+lqpBF0PSZncwmI+ucvZ
GZi/g8K+uRCprYKOynZgmEbE01cmZ0CqzvxM9gPInPEMHnT/A168/BP+yv4f
fDY/Q3CypIasDlILqMFqoSfBaqgzv1qkfYgatr+AKqcWUsvcK6xWvBGmVnfL
agNXGbV1hUoq0x11yLmG6gQjSk1M6qBu/qeH6u4zUKVXh6inPw5T00Z+oW4Z
01Od2LK1aq9eWf3TlwsjlMOwU+kDfH0Tzpd4TmT7BIWOS2tJv48EOi3LTp2p
rejXOc3o6OSm9Jvc5nRiVGuaEGOnY8zmtFNsdVoqPpTyvLv1tkw84b6HZeQi
dHZOWxo2b77AF+fSHtNigQJe24Zy3m5WTe/glAbeL6vYvMOn2Lx6v8beIWca
emNT6nv7jIz0dnlbw9umeyVvtVKyN1/xfN6dzW/QDrkmPRo1iHLfslTqhHyN
2RAtiFTXZMLXGuLrBeeTZnn4PIHtpkOMkfNxnf16f2R2DNtrCtZQSuJz463I
weFr2sYYNcg8/TTpHRkp7Fuf1amwN+kW/O/WB6ikF1ObjolQ1YQqars7VVVi
VlabRkeoNc7JasmPhdSP5ie4mZEDe2NvwezMH2FQ8/2i35QJWwwB51SwHMNg
W6AXrHV3hRRHbzjtHwYv/BMh1DVX8LLaMSuhrrUKlGOsn22aD/ecY2F2blsI
Ty0MbRyb+JxY/l9vIv7A6/+T7wfa1r+FzsrwUtQf0ncj/8fwcqi35rKS3iZR
Ed6olIre1m8repuPLe+tfzXcW/VJcW+ptaHeQo+CvZ8iPtM3Ubn0pfMv+nLS
X/Q1+Zv+fesfmu/nzzTEGeQtnJXfW3xKQW94XGFvhdGsD30s7q3xQPbW1Et6
qztkb6WuzI5lFfIGvcrnvW+9pPuibtOEWA9tr5m0qDSfHjQG0J7xtSnPzR1q
HsTz/i+R216eE8X5M19Tla95x/+Xka9NxdeT2mBk2guawWSw3oD4zK9IS8cG
sl7KJKGp+aGnszazH93hd9tkqOpfBjGuHeCMOQlrci/CyUr34W72b/Cu+/+g
YFKwWrJUqMo4pVojQ1YjT5RWGzjKqMwmqw30MmrkltJqjZCSapUpxdUKRpga
4Syqlv9cVMTtamMptfmR8mrMshrql781Vn+4B+qGTd3VkwW/UBk/ULPbj1df
5ExUH3Uap57OHaauXB2j9ltcVy2shqjMB8NqvQtwvlNHWYUMd9J0LY7hpu9p
6LG5tDCZR/NLs+nf1nT6q38CvZc2lma6R1G3MZC1n0o7WAoNSytAee4wz4cI
cQTRYVYj+tKcTHtl7KKHsu7QglOCvY3mlPV2T6vl/fJ9Y+/YtS28TqOV1xnb
yvttlZbeMUObe7+61dQ7okoTb1xcQ2/3CbW8za5GeOXBhbyXbc/ot81P0GIv
59ORMU3oEuW8yPuvKBVL52O7W4yrdtQe2g9qd+zLpZ/sC60z9iTtvH2ScUqs
IcbXhB0mHUrnOWQ8Jt/WX4XnrvL8M3tx9wI+xxmyU8fDoPD98GPmI2A2Q20S
KKd2q15L/SKqoTp8gE0ddrWR2q9fXZXhC7Xx27JqxNiiar6QfOrld9nAsC2M
dByG5mnroWjofLgd+Bp2R/QFl9YZlmRFC/x+LGYQ3DHHwN8Z06Fgyhwo4pwH
BSLmwGtpKngdQ2GaZQclrQTwdY5aWRV47NjTOrCRjwfQlUYMLUTm0i6ZO2hS
3Hl6dd5zWvBYsLdGcEmvvXllb09Hbe+gO/W9cekNvYO3NPD2zY70xgyt4bUH
V/Y2GlfWWy1M9pZ1MJ8xoYA3f6Mg7//kj/SPsPc0O/EN4/+v6KMZr/g4FA0k
/02DbuTzFjnIsNw4huXqFfNWrVDCW2VxcW+5RkW9RY6EeANj/6anrV/oIuUc
7WHtpMVXL2CcykEbaWXpfN9pXGR1QNZHPPOt0zz+RGRjIWGYgDD/SL61nSBO
46SIgU4w08SaTny9gQOB2yTH+JNUchQT65Ysc3SCO84xUKpfIthDN8Oo3MOw
LOECnHDegwfH/gBpbT611KRQtUaOrDa7F6G2s6qq3arUUvtejVQHPqqnxs6p
rw5YXU/tszdS7Tm9ttqlXk21U1x1tUNINbXDLUXt/Ki62vtcHfXLzMbqZNJG
TUrrqO4I7q2erPmFeiF6uHpp+0j19D/D1N1t+qo/2FQ1el41VRqdTx2XcAKO
5saCw9hNGL9BxlFxSFQjejBhAP0tdhINw/lU6b6cNvuYTKOd26hjxm7a6+Uu
SmI300ozltLfMybRLc6edFSgCe0WWYtxl4Z0u8NBi6csoF8GDlEvPqJhMwt4
m2VHeHs3jfSO+qeJd/yDVt6pVhvvtBy7d9pnuzdhpt07ZXEb7wQ9yhuPzbwD
G9X3QnAVb0RqUe/Pmb/TKXo6LeVMpGO05pTPOZnqbyPawyMNEfPpQ7X8pKFS
VqzXtsfqSz4oP4i1wxq415AKWpJYQy1ar0Z4/+HrJK6zLtn52mvrbJfJwNx6
EOSbBUOTDwImPASOvRoMLqN2Squuxnavrw6TG6tDNzVSB2bXU7vur6m2Dq+k
1rJKqmGpBdTn3d/Coai7MD0FIWbGDhEL+DUwAVLNvjDDCTAytgkMi2wMo7Wm
MEVvA7Mi28I8rR3M1FUY42wu1sUp4goBpmPkpDWY8PWm2/mrivz38rYw+oOs
0icuJ62TvVLEWDb7rtD7mS9p0UYFvHXvlfZ2uKN4Y/vU9371pKn3u4hW3vHB
Ud5vP7bwjhzbxDvQVt/bJaSmt7VayVv3fWkvs6tehk+8DC/Rm+EvKM18SA9E
3aG7pZvCV5zy3RccJjv6Df1gMcw2PNhbNDPEWzg4xBv0Mp/3me8N9eQ8ENy1
R8ZOWiJjgWhnPvbM5z9ONwgelX5OPyDdsXu1oSJ2y9cmO2r7mTxw/EEkLZ9Y
66RalMwwTIRY9ygupiFMzmgNa2O7gpU6DP6MnAblmi+B1u82wpBKB2Fu5GnY
9/IW3Br5Aj6mfeJroKh1bpRS26yupHY3a6lxMxqqXz9ppo6vEiV0fsrQNurE
C1Hq2C0t1NH9mgpeP3RxI3XopEbqqAdN1PFFotS5jdqp60O7q4feD1DPDNfV
q/NGq75jX6nnqwxX9xr91FmZqtq5Qg21kJJfXRB7Bv7KmAZ8nISvSc/nI3SI
qkYP2QbST/4faIRrCY2MW0WbZK6jLWM20KaOZDF+FzJyNv0xahid7iK0S24N
2iKrPO2cW50udkbTTxk/0G5WCt0WuEY/ZHykDAt5uym1vKMTm3oT0uxe9n3e
xE0dvIsKRnsXBtp75/6jeX94C95Jjtbekd4mXuZ3/x9fXx/f0hm+75SiKIJq
g6qgKiiCIprnPg6KsCLoCIqgKIp4GWVeDoqgCMqCIl5XhoVh1Zz7LJuOepkF
tXXelmGEYdmYdcZ+z/P4fH///F7+yMdbEznnPM9939f9XPd1qR1KYtRa5irq
d89+xQVGBfX5W/Cr4BjsKetQsd9VWO+a1VH9hHjGSTa9kF/T/NGTVHTKXB+P
adsxjTta2xAav8lAWwK5Kj8yFcq3TX11zUkzp5PpMxJZ6g6aU6thSvEX4Mv9
GSKO0r2xrb7Y71ZzMX13W5HWmWJmWidx/BGDODzUWuyT0Uw0jIkRo3Ori3/p
34DXeJc/Q4vjU2j+1gn/FSyhGH487PUNgvWGPkDrdFibTV+ZKZBj6wHzzMmQ
bm8LncsbAOPgzNIVkgJpKGGa0DV84XymJOD5Xelp1eE2c398YZuHCXM3o/Xo
Z7jh6HksyXyAYVGCGrevlpo8JFYd3FqvZsztoNqzu6ofPeymzvnGqE5VktQx
m9upg64nqMTTmO+j+lWqq5WMYeqT2Fd4LTaIPvPPeMZ6C095fkJv4l0sSX+A
Pwaf4qPsP/Gl8A++yXuL5Zn/4m+6v7A05wl+of8J1zqLcZRwjJ/h3s+009rL
hFHWajjL/yXnxAfkmV7mNT5d6EIo1uKafxRfkpq6KtCloCHQ2gJWCD1gvzAY
UBgDZdZp8Kc1G6o+XA4x5WuhVVQeSJY9MFI5CgudCuyWrsK3/l/gme0vmp8r
i7qU2mLSqQZin7xm4rC01iKNAaJ9WFdxoY2Iywslcc3DXmLuot7i+uLe4rpg
iri2T4q47n6KuNHfR9zarr+4++RA8cjsNPHLhyPFb87YxIsNM8QL34wXv6w1
StwemyrOLO8iGhc1EkOev3nP5qTTCjb354w/5b1nf6HkZPfAPyKysWFmLiZK
W7GTbjt2zHVhC/8mjLCuwLOhUTiwMAGvGYIKXYOcj8rmEtls0fhMAztvwc0H
SrDG/XC13/3m6mIfqPs2W9RC1yj1q2dj1LN109XDXdLUvCP91CULRXVKxST1
Q7G12vOkTm3/X7TacHykWumtoN7QP8F883c44Y4HafzHv/Uf4z6zBdNcrbCa
JhyXW3xKQJqpZMmnGc+a6W6TJMt2stZTzDWFaIzleo70+5FwOYwwfXPGJ+oq
7DT9IE0l9JmTXREDod3cbZzfETL/zfTsxJTlTcXRUe3ErCWdxVntjOIMdxcx
I7ODOPS1XoQ3jcVmJzVi5Vth4nfGR7DZUQIj3UehVekWqKBfCsXyONhfbuE1
Vb5nANDaA/YbB/Pfr/OnwDRDZzAZGsM/hrdkQsBD6L0hjKM0wNeCz0eys9AU
c1NcU94Lr7omYQ3DSkw6uh3Huz2YV3gRL+U9xLCrFdTYMzXVrq8bqgMnJag2
e3t1WiStVw90VWe266pONSepNnN7dfCjlmr35CZq2/P11QbtItUqhyqqTzNe
4aWjD/GLUBkeSr/O+82Hy2/gl/rbeFF4iLfyn2HQ/BKfF/+FT169xNuBZ/iN
HMA9xu/xo8gi7P1sL9bNcCCWjUZrQRukeFbpEdqjJMuxCq1ji34T/jLRZ0KG
2Y6Q06GfSEWPAJ10DWBCwACbLWaOy14UzAN6XaAzb4Qk13boLx2A8VYP0NwD
eQUX4XPtj3C55CE8TnoJFRcKYp0XVUWdXFtsHxcjdi+JEwdOTRBHX28rTqvS
Wcw+aRLpehU3ZPQRt2X0F/P3DRDpGhEP5Q4Rjy7/UDx9b4T4TX+beC0hUwwc
nSnSGkd8YZ4nPn49W7xZd6p4+v4IceXVHmLfq81EoaiCODPpS/hab4PZciHj
yXvZ9W2KMHOs0aB4HcabN3GuR5SyBv80Z2O+ZQAarDE4X+flnOPWcpR3j/C9
sb98wEtziGJxtkSKqThHoP79aiqt+dRVB3qqR8d8qH5dOlY9v3y8+tXrMeqJ
p8PVvdcHqU65ryov787j3Njw9uqAVy1UY89GatzIWmqF1hVULLuLCyIVTE7P
x0pXZM7fsthbYliEgKzvxuYhaPxn/JzkoPTStN9n4TUU470zTgzFGKYJwoki
1tdisyB0T7DZEu9Qn578ZHhG9voHQYdnn8Dm3BJ4kfIa4k7WEsWTceIwC41D
SzqIUz1JIq3dxPEbDGLayVaipDQRWybXE2voKot3y57D3ig/0NwKSXMp1ijJ
gTvW6XC2fBQcNAyBHY5U2BTqC6tcPWFByAS0xoN+vuZcQ/Kx8JIssahcn7Ze
IIIwv8a38jsv47YvMCjKO/87xWxtjrv0A1FIWYp0D+Oc8LP4RXkZvs57g7G2
mqrpTqz6YXhrdYo+SZ1fkqzSmktdfA/UeXKyOvVMkjqqOFHtG9dc7ZipVRuV
0RgTF6beLX+OZx/exj3ke9z09gJujL+ALutlLHDcQLxzF6/nBvHXcoo9LH/j
n1I5PvG9xJtlT/g59JbIizjpwEnskr8DK9ros3AMwZ52Hd4MPOEzZmzeiXmB
Lwt0J90M+ZzHVK28EoAmDuYEjPCZ/kN4aJ8FNWJXQlMf3QvKduiTsg+sts9g
WukpWmN+BVsSLwKt6+Cs4Q74Ux5DcNFLCKsoiJrUqmKTpNqiwRMj9jylE4dJ
rcUpLzqJHz8i4roXKeJ2Xap4yDJEPHF1uHg2Pl38qu5YsXjDOPHyowyxdMYU
8d7cGXwP/Kb5SHxSPEe8+2q6eD5/vLjPbRFnNTOKXXIaio+1L2GU8Rjs1VmA
aZ8xDQc2h53tMeG5MhuvZx8E7HjVOgkL5KE4PdgZGYdsneFbugYnsTlQ7wAh
wfutMN47WKdX1mm+VWaVdMVmhU50ZVzGKssrqtAxTp0e6Kw6LX3VA/mD1c+a
fagW2Ieqe54NVPNm9FPXZqWoy6pI6oKrJtWe3lWd8MygDsnSq92MsWqjHyLV
56G/cFfiVV7HhpUsRVqDIus5M72HCroKyiChZRHT7GL8tFFCWzLL15UkyvUJ
09kOE+Sid8J/XqbVxLirTIOlpm+lwrjpFb7+z3TWd5uw9arP2gKrnN8AXStQ
L66a2OF8jNinTzNxSH+9OKx/a3FoUisxNaWFSHG72O5ItNjov0ixSlZFMZD7
O5wo+RGW5/hguOYz6OhxQVTmGniVvQC+sdtgs8cMk8s6cl3QxiU1gXEgPxd+
5NrCLXVbeJ+mX6A5ofUB9wE5J4wrMko7vR0CMcrzwEfKLEOhUs1XifcE72pm
oOHUJ0j3Cl54dh+r/VdJTcytr/ZX4tXxLoM6J2hUFw0EdXGSqC54aFJnRndV
x1UxqIMeJajdImLVpokatVqokvrrFYoN/Hdw550ruLL4axbXcHZGIT+3Wi77
cFPJBYoV/OhJ/RELU27zfjLbgwfLrqGz4ALO8xShNfMz7PxwO9YsW4nntONw
kqcjVi8IR6Y3w/Ic44Qyfe2PhCJSxxABGfYOcMI/HP4OLoSGGbmQZN0O5sz9
YLV+xvsWjCs9L78IlvpUWE3OwZZXJbD3zvfwRXEZlNgfwC+JIahQvYKo2VBV
jJfqiMa5jcQBCQnihIYdxAUJRNz4Qx9xX55FPCXRXLDPJvqzJvP1//zPj0Ra
w4sVKiz9P16hU/PF82vHixtO9RFTF7UQaT0iztGehe+FycBwEPNSYborFwwP
FKZ30M4cja0C9Thn9oX9tbLDfoVrXvWRmynXhCCb8zNFS9UZt4c9y7P0c5QG
xkj81TgbM2wn8KbhKTaJq62mbmuhzrB0UVe8ktT1uj6qc2BfdUNOHzV3Xm81
dwh9qb3V9fF91HX63mpORg/1o0fdVIrxVYiPU6Ozqqs3o57iogzEhLzNnL9i
cMTgWqlY8dsmK98Jj7y0DvIyvyg2X8A0+Jnn8wShg5fmV6WqsILPm/9gf6r8
63+rfKd7pJjt+znXjGmlM+4l6sdAtys7Yf2Vb+GHvKdQ7VYlsQmhuflRtGhM
bSSaIhuLyQdixc5iQ7FtQrTYbLZGrBeKEMO6COLd0HM4HXULNvrPwzTfKTA7
9kNC/mYIz18GF0MTgF4vWAvbQBtjfX7e/nXgZ37WMtp3jCQ780mjUC55Jywh
FwLjuc5gX6E5Yfr1DBfdk2d41wd6c00Hdhb/me5DjMvagNMMp7Eo5w6GhQt8
jZP8xqrlQEt1bN326uQundSph5LUKW87qROuG1TrjjaquWdztcvIhmpTrUat
qa2ivoz8B783PMbPyY+4VbiEK4I+XGhReA5eckrFnMyvcQ0pxg3283z9byIl
uDFwHh3yOVz8EDGr8DQON3yGonU3Nr2zEd8ULMLjhcMovmiLVbIrMs6g0k2I
VZj/5BlpJJ/HY5qkjB90wTABKumXgS5tI3QL7oRBZYd4vc72wqoD38CW4hLY
bbsKh4tvwGntLTj3KgDXFwXhgfYPKM/7FyLclcSYh9VF/ex6YnJOrDhwUYI4
/qhBnKcmi2v0KWL+kAHi8WHDxK9qjRX9hZPFX67OFH/XzRffDvs/98TfrT8W
b1eZLn4RtIrL/N3Fvr5mYlVtJXFd1LdQXcmBBGtdMLubEzbn9pX/nmJ0NMKJ
xo6YZe+MQ4N6ZNzGG7onfD49Uaqv0D3Q7aBw3RTmq0De+6gEvTTGKnPKjRhX
sAFX687hb6WvkGIhtUdJE3W4to06MdhBzZrUWZ2xpIs6o2cXdXoy/XVuF9We
05XjwTl3jOqM2V3UCa8M6uBAS9U4tZHaoFak+uLUazyouY6jYo9h3UwH5hX0
wxol4cjmTDvKLi9diya3exDX0GTa9l/5xhDmhUD3ahHTABwbOM41Ld4Z/uMz
bEzno4qtIsPlxG97TDbq+0KD0nX8PG/fIj/cjH8Kb0+9gxo/hIt1V0WI9R9W
E6OmVhM1M6qK1dqFi2FPK4gh599wJ+85XIh9ACfTymB70hWQ07+CjJwT0Dd8
P+gtW6By+HJQ5TEw09cFdM7acCLwI9cTzXP3I/fkF9w/g/FTmccb8xi7LEzk
fhXsfJP5YCwVuhvZHPQTYa7yjSWgjNK0xccls1E07+br87uIRxh+KkyN61lL
7ZimVSVXE7WfPl4d2CdBHdAwQe0XGa/2PKNTk8fEqu2NMWrzpDpq9JHqasS2
SurrA2/wnvsFXvQ/wDMpt/BA5jXcXFiCy20+nJ1XyPkOI3OO4hBrAe+RpBzd
i1LqHiQpu9C4aCcmpWzHtsVbeY9Fk78aX/qyOf9ropbmCikcmTbDX8Ib72yp
0ETxJwkTBBgbageeguHw2r0QGrxaBx0LXdAvtB9GRx6Hmc/OAI1rsMF1HnaF
X4XPYm+Ct/gOXA4+hDv25/B76WsIixPEyOOVRe2hGmILoa7Y8YhWlIqaiJaF
LUWbq704K8EorrgvcRzx2fU08ev/xoply6eJv4fP/7/miP95lW2eJu7LsIjj
DxnExqSWeHzRD9Di4SYYLOjhsW82OS3c8s61nFXqlURgn8xmmGZthT1dOmzk
i0RFvstnZWiO9zKd0LlSN+KXJpNxvvaE+UWy2eb2ZdH4umAh7xuqi+5h5WYV
1ebfaNQuqQ1VaW0TNSW3qdo7oplqTmuuDkxJUK0j26iTxndU5+Z1U+XU7urK
Wj3V5Usk9aOGyerYknYqrVNUeg9Udg6cY/8aW6fmYYFrKFbTheML9zyFaYOm
u9uSjnYXWWh771XQRd5BRsqJpJKwrOg73STOzewQjMEJhg6YKXVCo6cRngj9
SPd3Y4X5cVTyCXC04ENoXuqEDOsJ2Oa8BIp0F24Gn8Cvxj8h5PgbXi96A/+E
/oU3KW/hn4i38HfgDfxR+jc8svwJpZlPQM27Bwf91zgPbrLmC+hRugdiQmvh
B89U+NgAkFBYFw7qrhONfTWb8SLMPzBWruml981L82sR83qi+ZjPjLU1bCND
nAWkr2E/qRxaRlg9yOZWmB4byxfnC8ZjhygX0uvFokV38I/4cqy1o4qqS6ut
JubUVzsZG6jGI43U5KmxqtHdSO30Wqu2Ca+vNhupUbUz3vNHaM5S/wj+jXcc
z/Hiswd4yvkT7j5wFdemFOO8lCKcEHkCB5d+ilL+HuxQ/gnqU7dgi9JN2PLV
ZmwTtRUNcz/BTndc/Hu0LsjjPflw5zIskSbgfIMJG8qRyPrJ8XIdhXnXNDds
In8YyonV3QZO+IaDkL8U4m2boFepG0ZHHIfZzkJYEfU1bJZLYE/89/R53ITC
U7fhvPs+/JDzFB4bX8K/8e+gamIlse6iCLFxqKaoX1hPTLI1EKXcJuLAjAQx
fSrF2aEkcZETxI2kr3igaLCoSKPFG7FTxN8SPvr/7osn/80Rz14fJcpp3cWe
Tp1YqWOYmKt8CxRHQ3pmW0ix7yXMf5PpUiwIeJV70gslTCfgU+crheZBJdK9
UjkkX/cyb6cpuiTOI/4qMIbNtpvQd9fL5pena7tgjfiVOKrkKO65chVvhp7g
u+A7jEyrrNavXl1t3KWW2vJKXbXjAa3ao7iJOiiUoKYPaatODHVQM8fTvP/W
oA7Lbq32nKtT9e56ao24yuqtjGe4/eFlHHbgCNYrdqDbOojPNDMtSqaDe1d4
YaqgW8rXUq+Qm7y2LSTME2e7kOotk6ZxPSFaZ2GjQCRW1VXC7f7LyjmfjZ1z
nL3nnkF+8f9OMjI7wJWCiRCVtgYgYjeMz/LAilIf7E30w9ngbbia/QhofIXn
htfwu/ZveGF+DQ/n/gE/pD+F4kW/gEf6EVy2y7A0/iuYeIfmDN8+aK7bBOXZ
H8NerQU+KI8HpgWe5jxMPvcN4xrI/+MrxGbil0sS931hZ0VL3CrX0WZeJhSj
kNmSkXm5JGfKnZT1vm+VzuUN+JxZ9bQclDL34Gx7IcfLJYse4G/BV8j6rbWO
VFHr/1dN1TpqqNrjNdTojOqqZltVtVqgkip4Kqghz98YSP8d/Y7H6Ev/GY+V
38RPSi7h4leI4xUP9o3aj23Dt2H0orUYbl+GIXk+PsychT8bZ+IvBjs+LpuN
z+wf4QvHPHxUOBu/103GgsKhON9oQtDF4V+Bf5QRmqPKOJ1BYf0XxoVZ5EHC
5kGWFIrwU/k0qB+xFpJd+TAq8RjMT/TCxofnYa//ezhe8AOcfXUbvtYG4NKi
h1Ca/wTuSyH4I7Icwq5UEKtnh/Mc3jRSI7bLihZNb2PFfmXNReukNuKUMoq5
3xCOExjGOHNopHj5dYYYyJwpvpIX/D/3xsu32eLVlEninuBA3k/p8CxG/CP0
N9D6EuKsG2Cjrw+wGMo8cVrq6hHmB0nzWxHTlKgrObw0znoZH535QbHeDdMz
qGlYRe5JM0gzWUMo7j27zpeiHLGUKgMdCXihfDzGpq7HAfGHcL7gRVfhZTyT
fwuvzw3is7y/kJ271pUj1KbhGrVdTrTa9c+GavJJGuscjdT2JdFq3MlaaoSn
knq7+BnuJN+hNe8zpGsX93ksGO+pQzHeScUsN1faCzFFzGdqjNyO7HCnkrnu
btwPivmt9vPt99Lr4hxGuuaU3e6rymZPiQL+XVzThumhML+noYECEmYUYLjQ
Bg65h8AfZfOhoTOX8TRgeOAIzNIWwpric7DHdxVOZpaBL/VnuFjyAC7ZH0Jx
3i9QmHEbDh29Dpv8F2DeqSKwSp9BB42Ln2mzM4tshwkSLfXBb3lMxkjHSYRz
BT9rZH2aTwL9ufZ5k8AGrjOxVXeJYQxyx/mc/Gj4jRzz3+TzoMXSOJIgbzZt
8ZV4mxg2KhTbMGyLBY6hGPZwKbaW83CwoQDnHjiLW8Mv4RelZXjF8yv+HHqB
T+VX+Dz+NT51vcKH9j/wJ80zvOR5iIVZt3H/FT/mpn2LcwKFODzxM0xOycdY
13rO12bzKoXmUbi7YCBuFPriWlcKOqW+uCs0gM+wnHRY8bRhJK+jDpcPxW3O
/hSrEKRrB5tqNOxMUIHQLqWrryHTGUp2uHuRBSEvqVceAVOzkzi2q5K+HPT5
WyDl1F7OrZ4ePA0f6xFWh74B54EL4Mq/DHtLaS7JvQlF7jtwMekh3H77DF54
XkPFNEGs+aiyGF1YXYxLrSXGT6ojtjHUF7tIDcVeV3Xi0Dd6zieU+3QX85cP
EIuy0sUfX00V/zBm/1/3SPmGj8UfO04TT4RbxdW+nqLV00Zs+ayu+Ej6ExYV
IjQqywVHYS94Zf+HNNKsJzTWEua7x3RA3krvTF/oRlCMuJ/7Hv3pKSdVyysC
8xHa7C7h2g7nfAHTFuFiUZLUQKnlWaUssakKrUEUpmWwytITbwanYFTOGpTM
ezAr8zS68i5zzi47K6qyqqJar0o1tdHrSLWJr5Yal1lLbfC0hlq7rIpaIbaC
Wmp5gltKS3BA4CBWdMhIYyre8jxT3roXszNhL9NsZ556zIORabcP8B30umwf
cI3dLww/KWFaARsIkajLrI0NtDSPlFfE24bnXCuE6XExbW9arym0zmF8H9LQ
kks+9V8nMboaMEJIBJfzA7jpnwJVbMuhyZUN0Cl2O/RK3Mu58qO1xyFDPgEZ
B05Aev4x6G87ALQWh6raFXBWmw42Z3uILKwMq4VzpIY/hwzVtSJM257hC+aZ
y87qaQxhvsp83rqSYRlpZ9tG6DWQ8TYPoddH6OfzebJ6IQehGIrNzDDNg6JR
urZcU4vmQEWyNcHNmWa8b7djdNZa7HplBw59W4BTHaeQxgd0mi/grqirWJB5
A4+7f8Bj2h+Q1oO41XcRl6SqOEE4gWbrfmzv24bauesw/MAy/M03F69nZ6LP
MRYLLaPwtHEkflk+Er1l6XyGutgxDi8GJiCtCfFaRCb/WcaxPm8dT+u1EfiJ
8AHaHV15H7dWQRX83PeD0ing4hpB64XzRS995aY6gdVcUycmVB2G69rAtuz+
cEM3BSIsKyAhezP0IG4YEX4UpgtneM9qQ9p52Gn4DgoKKE433oJi1y/wY9lT
eJ70GsIXhYlRudXEhOV1xW5CrJhqbiGOrtVOnJ7YRVy0GcS1Z1JE18gPxAMj
B4vHKg4TTyRaxc/fDhMP6oeIn/zZX1w1vqc419NNnGDsIA59qhd7xTUVu95q
KLatGy3G76sjNkiKFKsPDBeful/B6aRbkJ3ihSTLdrhfYIc5PiO01URD3cwI
iBFqAMXl3OeH9WAmCh0hQ+oAqZ4WQGMH0LqKZLhP8LntakI4835LZpz4im5Z
OawpVYizMZ8ZqqbLwS7ZO3C49jOcmnkKafzASa6TaLV/hn31+7Fb+U7ep2wf
9Ql2ce7A7sIe7P1wL6bk7kXTs3xs9XAL1spZhfcKZ+AOKRXpd8Fmbg2yeorN
ot/xPFcC9t+59sUb51umF4uVygSs5BewiqsinylkuEpXUBsb+2tizUBlvm9W
Sd8oEfYVTKeQaYmxXiqZHjhNKDYkzI+lVUk97lXVzhYNLQ31oLUzCrq4G8IH
gXigNQXMcybDKk9PcJr7gtPRF1aGesBsmxFG6dtCb6EZtJOjIUZfAyqVCMD8
UxT3Xb4f82wXuT5DlvM0Ge/xkMm6L0i200uctgukwHKDfBm6RbzCXc7R3xg4
T0Z6jpK6bgdZIouEcZQovj97VLrpZTpUTDOInTMd891UyqTfFMFaAaOzq2M7
VzT2NTbH8Q4DyrbuSPMuHiv5EIsy09HnHos+M90LtlF4WJ+GW4R+uDgEFEck
4UhnIqa6W6DkbIIdXVo+l9kgUANra6pijVA4UkzFeaYN9JFc34Pud2xhqIuN
hJpcl7VUfqKs8xfTfLKDayV9LQS8Xwgjiuj+ZnGCvNQtIP10B0i+9B155fmH
tA3Uh4zsDuDOHAR3NTMg0rYS9Ae28Lg0ZtFxyE73gjP/AhzKvM7rsctRv8Ld
Eord77xm8xpidTutw6pXF5smat6fBRbHiYNeJIhjk9qL9kldxaUvRDF3ZG9x
26H+4p7zA8UDhYPFgqyhYoE0VNyvGSzuLE0VNyb0FZfnSOKcOLpnunQQ03a3
EvuozUTTvVixQ7RWbHmprhi7oaZYp7iqGH4oTHyg+wO8gTu8Zzkl/BQMDnzK
+UGpzoNA8zNk5J+ArJzTMM1wmp2hQ6r7IHRMc0G9Ow6KY2fDIfMQyHR0AjZL
+8zyF1noVsh/8hLikX9kvrFe5t+geO4yDTGkuBVXGHtgjrUHzrMkI8Xq2MfV
DDvrG2L7YDQanDHYLdgIe/l12N8Tz3UeegeboqEghs8b0PqCawCDbjebVeR6
w0yLkGkkMk3qH+SnCquThcwKWEFXAf/RveX6SlzzlentBipitYhwrGKviC8D
5Yoq3+O6iG/ci5Q30ltWb3aj+87EPC0bGzZw7DPEXsB9dGi9wmf1z1vuk9fO
N0RjrgpxjlrQzKaBOE8tqFsQARX++I98r3nMfYA+FpCM03nIKM0x7qc4132W
8YrJVv9Fsk2+RNYbzpNlgo9zK+ZZiv63rtnnmh/JN3KAXAs9JtelIPcdOmS/
zvdUN10+eeieRQYICYR5p9IY1Y3pFNURIpTNslmppsnhOqZMd5buUYXF90R7
fUyRmuKHwVY41t8Ox/nb44iIRPzA0AKJpzG2c0RjvFQH46RaGFtYE3X22tiy
pC62c0ZjR4sWO+i1fP+118dgJ10DNOkb82eWVtAKM2wdcHaBkc/tLwiYcHpE
Fxzhb4MQaIy0ZsC/Q2+UY6GbyjTdaa6/zbw2jshpSkygOs2Rzbxp8mET0yGa
bSkkzB/K6GwEE7Udga4RoHkKDjmGAK1x4JzfBjdLpsCvgVnwsiSb94zrHnVA
i+AmMN3Jh0G6T3m+X6xVYceiK+CNuAs0JkJ5wb9QTRMu1kusJsYurCnqHLXF
5uUaMWFMXVFfVE9scydKbJNUX2w9JEpsoasr6lbVFhv5I8WYsupivbrVxNqX
qogRByqJFRIqiGzO8evgz7At9xJMKfkCyIFdEHV0DfzqnwUe23B+7uuw9II1
Zb24Vg77/p+U9Yc8az+u38Fi66JMoPVmZ+6B1s4SDeFSGBzwXOPaLrulgYTN
Bn4l/FzEdFZoDubaYeX2fxX2LKyWNlw/aq9vEH7rG4ePg7Ox8pVlWC9yDeps
G7F1Xh52KnZhV/1O7Jq0EztFbcc2r/KwiX8D1nm1GsOIjI/9FFdqJ6MvcyzS
Gge/MozFy74MvB3KwpA0H8OPLsO6qQ6My96ArYJbOC8DruzCnkfd2Cd3H/ax
7cOeDjdSPINJMv38iK2oS9uI9QIO3sd5mjkXL7kz8IgnDXPdvTnHf7i+DV8z
DV2R+MT/UtkTuMr9M5hXRR2Dg2tkMz8OnWcj92ah2IPr0jJfAjZjwzhi13yP
lVvyM+W28FxhMbnY+QvXv2W6zHbbl9zLgXmgML1SprkYZ9/AtSIMnk+4dimb
d6H3mMcKpknLtGiZxi3NPUybCTuUxPA56IyCDrjEKVLs+AGetFvxin0iPiqY
jYJ9KdYsX4kNytZhvLwJEw9sxY55LqSfjR0dLmwf+Qm20W7FVr4tmFCwGVvE
bsZ4xyZsXuLEps82YpxzA80p6/m8ZEN3LjYO34DNCpxIvyO2LduKbUNbsbUz
DxMcm7Fp6UaMzVtPc1IuxmjXYVTKGqyVsgorZsv4wG9HtXAM17Caokl6P8+o
C0eK8fl1Mh8exqVb4zvHPYmYRg3rGdrkz00ddFpy3jaedNJs5+eS+3XXuM9Z
0PKS1DZU5bo0o3XtYEm2yLE5W797DIPghGCFG5opEHZlKTTWbADTw3wYln0E
pmadgnnWIqDxHhYYFJh3tAjmlBfC7AOFMMd4lr9mxn8JE8tOQFrGYeheuhvo
vYHqnhw+97OjMBWGG9pAlKUaML9W5lHWSpdHop1ridazjp+Fxbk3kDjPBkKx
HPnDN59QDEgmSR2JQYrh/su1bFVIpYBAvL473F86Uq5smiUYvd19cVzPpdjz
i0JzMs4s6YL7jYPxu+BEfBKag/8Ki2kuWI7R7rWYuGgrnymdoDmBC3QKOrLP
4QbLeVxrLsYluSrOLD2DY+8cx6FRh3Fg5iEcFDiEQ18VIF2nOPbtcRyf4qEx
9XMcHTqGw3KP4OA7n6Il/VMclnUEJ8SfwHmuIsxVvuW491TuT+iz/YznhF/w
q2f38HT4LTxiL+U91K0lF3FDBv1/7cXoKDyHqzXn+FncglgFp0ScwrS8w2gi
uzC+YBPWCa7GcGkZvnEtwjfSIhSOLsXKz5Zh1agVWCVrOYaVLsVX7gX4m+Ej
fFI2h+9tps1SLTYHaczCOMcGjD+6CRNcdJ1aNmFc6gaMOrAGq+fmYFiEjP8E
Psa/9AvxH//H+J95CVYIX4r/RizGV64F+FyYh4/1czCYPYf3sITspRiZvpLP
PLV5mIcmwy4c8OognwvNlL5AugZwXkYRLg4grgx9jRtSz6PLdhn3CN+zOVw8
dPQ6Fig38LChFI9IpXjowHXcU3oVN4Uu4Kr0b3C+1otzU87i7KxCXGRDXHel
GHf5vsPDkaW0BryJBeYbmO/5jv88e3bLM30ou77C5Wn014yvcJEF+ZzclLdf
YPrcYzTvHcTkbFqHB7ZgtH0t1xZ6oJmF5zTj8Eh2Gn5S0h/XCCm4LNAd59mS
cXRZW+xg1HIe2Dx7EdcaNukac02+ncJ3Xja7xbTemGcB00BmugRdpIbMJ4Vz
9iLclSheTCKrAz2JS/6AeAPp5LV7IWlmcfLawi19T9663xFjYSOYFewKe/SD
+Lnoz7qZ8CBgh58MWZxzd8AxGFYKPSHT2Yn7cw60JEBqYQvo74zn/qnMJzLC
VgkoZiEp8l5yWjeSVJQEwjzqRwltk38WZp5tLtRJjpNrcd/6G8IUlmuSPxag
iO4vrltM8SrX4l2q607ros6Mk6sQuTHXFnTIvZRnto+438Ue31WlirkiJrti
+XkW/V64M0Rr8rIPEbVj8PvgJHxonYUVYpdi7eJVPAe1fbgVu+TuQKNnJ3a+
sx3bJm3D+MxN2Ch+PUZ71vK9yNZQM7eT560Or96fFRjsn6C+cAvPMzGx6zi3
vq7HgQ20uZhwajPPd/1C+3F46REc+4rux3QPnwUcrv8MLRmf4gcRB7F/3gFM
zTqIAz2HcLCP7s+59O+jDmKP8j3YMd3F82ct1yoUpKX4VJ6LAWkm3vZn4Y/a
aVjqnoJ++2S8GJyAPnksflkyEo+FPuTznYdsQ/CIOQ1PGK2oymPwqnkS3pGn
v99zlvn4XDsPHzpm4U3jVCwx0/dbxiKtLbHIno6nPCPwy9BI9LiGI63j+Uwo
q6EmWTviqPJEHOVLxInBDpjtNKHT0hcpHsbTZSPQ5xzLZ9tLXVPwJ10W3tZM
59/1bsl0DFrnYIU/lmBk/kqMCV+HsdnrMdZKc4kmF+v5HUhzLf4VWIBljml4
LmjDs8Z0/FI/itcCDEOprjF4Jnsk12ViOogLDAQnuTvi8JLWSGtOTLW04DOu
IzSJOCOzCy4zSLjB3gc3lvTBpeUi2qT2mGRtgOGZYci04xdJyPOz7PxK2eS/
oCx3+7hGENPeriVX8db2VeFah0xHks0MM0yVI3/N/Qd90s+cf1xHcJBM9xfk
jPsWuWL7leetyaGTRJR3k4H2Q2Sr5hL53feaNC2rDaSwMffgHZKthxGBNkDv
4XtPW31ril3awxK3CMcihsEtdxb8a1gM1UgO0HwD8YWbICltO4g5u6Fnmhuk
A3vAeHQnJOZuhcav1kONUA68LMuGH4VpXDf0G4cNvim0AWrGwOe+YbDN2R8W
aAiMsbbjXr7tNTF8doDhA+Yp3S47Grr6G3LPZ1oXA8MPB4XrhGIPVsfz61mj
Keb6Xuf8tPYXguQH91NyQfeAa7KmOPeSi7oMEm2rTiLkFaY9wqDk996HQ7kn
4Rj5uJdhU6aL5ZT7Km/lxVwrmvklgLCb93eY1wHThme+cvT6lTvSdIXGeT5P
3z60TenpdiuDDQXcn4H5jDF9hNqBVRRHTFdoLOFeSkwzu47Gwf2dsi0Up+t+
UH7SPON1FNO/vat5wWf2aV2hnLffV/zOx5xrc98d4ppHTN+WPkPeT1mm83FP
KubnxLxrekpuZbjhM+6jwHTvmUcJ8xZgPl4MOzC+4RPfHK539bkwXLkuZSr0
2rk/1kwDXWOerxTGl2Y6Ycy7hPnjsJ4906+gWIz/PfvsWUIh19Nf5ytWFhtU
ZZjnCPfva+XfwjXwWc1I16OSIG3mf/7Af4B7aaD/LsdUt+zPlDP2W8qKkI/7
SDBtSXafJwonlX0evxKy/62wXnRPhw7pOkTG/2ez/kX2OwrTUFroUbg28RZf
iTLF/4XS0reZPw+m+/3YN5v7+5VLHyun3COU8bJBae7TKCXSAy/dS961UrE3
3Bam9NI1Vea6uynpcluF8fvCBNm7RehXxLwyfxFCyXsFf3InYXsyXa/JJmFX
co7cw8T6k62lKLLZZibf6yZznTRas5M42wbSR97H9h33un1hee9F79XdJXMt
ZwnFkyTdfoysMHxNCu23ma4RaVxek3OeO2kbQANDJDxy/8k4AKTQdpt72esd
9WCc3gAbdX2B4hpYXd4TrFIb0NvrQZRcDdqHoiEruzOcdFnhkWs2/KtdDH+a
s+G2fjpcsmbAJWcG/KK3QxXncj6n1Fy7CeLMG4CufSjzTIODvsGw3CHB/JJk
WCp057qlnweGwRchK+wKDQC7oyv3YK4fqsb9g8PlMIi2VIcOgRjop6fxoUAP
fZzNuLax4KhAMeZPfG43W/ZyrSoWa342/E4o9iL/Bt6Sn3W/c+1wtk872lyk
irycKPJoxgUidD+T9cJ5E+vLM8/T1UKvZKZLN0j4tIjmUi/dK16mDRyjq6Gw
ealxgkGZruvCvQiY1xl7lkPceu7NWewex7Xq2wrb+D5k/hP0O/G6g3mxpEmH
OV+tn+6Akm47piwNqIrH/qPyRHil1DJXwSYait119TDBWhd1rtqozayBtP7H
msHKqLFWxVhXTZpPYzhH48NAK7Rmt8GBtgSEiDhso6mPTYy1sbG+Frbw18HO
gQZ8DntwoCWm2VtxjTIob4x6Tz1kmKmiS8DnutfK88BfCtM4Y2fBSe4GSGsR
ZHNH3cvisHsoDntodSi64/hcUZtAFLb2RCHTQmYzAEy/M9kci22CUdjK+P7v
+/ro/xlsyfV+2bxW7WAVpM+A86OZtk7zEg0apUZotjRHc2ZzNAViee+uhi+c
94hYr2hioANuLevHOR87S1JRtnTHaYbOOMFvwPHZBqRxGtMcrXBIoR7HZLfD
LHNn/MjfDWfbjWhztufztI38kcj8gmi9rlw2/KqEu8MoXovi92RoiR5T7S0w
0VOf95mYR9Zh/w3liv1Xpa4UgV3cDbFroCHWE6rhDX+Q+/V8qrmhnLfcV36Q
nnJPmEPO69xzjGk8MZ1U5s0Sb9vE9ffr6CKU19Ib74SAgcc85h3A/N/YeqHx
3fur8GdyC6Eu898tCsl/e28HshStc51yS8riuqWszmOaz05bX5Jn68e0Xwmt
IU1MM8UvTzbFS3XIVWkS10msa3Hw842qoeWExgwyxnacLA2p3Jea9WwD8u8U
j9WADv4Y6OjWQrNMDff5jrRXhiqeihBuDgOKQYHFhKTCBtwnvWmoNvyq+ZPQ
vE/6ePaRFNteMkV3imxzXiLHbT+QXcJVQmt5MlR3mPMeKf4lSc7thMYq0jm0
nTTVOUk1TQ75VTeb0JqLrAukkM5CQ8K8iJlPMdNajfGt5drWZ6RbJjYPxmYr
y+WPGVeym0Za7aW1rzJU14rvq81us3JQN0ShtRfXp7/nnsH9Y5lXA+sXME/H
waFPuZ/oTP8Z7p/FegTMY4x5UO2z+7lu/IXAfX4O+nvgNeePsnX5MlSuPAm8
VH72veAaNVfdj5RL7of8xZ71U8sr5Z3uP6VyMAyr2Coi43+wnmTI8jfXDKS1
gMK8qKr6K2LViEpcm/M/93/Kv5p3CtOaZn+OkCtxLWFaL2FNYxWM8FTiupjM
R43GJuWm7qlyxf2r8q1wX/lK9zPX2mdxgXk+MT8m5mHZTt7G/Wb6CQe4xxHr
f7Dv+5PhGfeaWh34hscX5uvCeMy77VeVx4E/lUhHZawXjODnc6XuJ9ybiXk7
sl5KhucE9wPcEirh5w92+5f8/q0LFHMNfOZrxfyJmJcO84phHhXM+5P1a53u
C1yv/6RcpnxjCyjXnUHlmi7INLWUE7oyBUN3lUv2h8q10GPuC3jMf5PXA3Hy
BmWvbxDHJulSW/5cmR8w899kXpHMu2O0rp1C9yD3WrknveAaDocDQ3mtwXxN
mf8fzSFc3zdP7uel9SZfL8yn2SZ/zvxMzj4R5ppc0mWTzl2bLPCZyBl5JLkv
2QnqxhCmzbFc8pkeCLNMN4WppsU+NOlt9WiOSCMUA5IBukPkI00R2WG7QrbZ
L5HRuuOc787WdG3Dat5Pvmd7QZob60BfbXNIdbTgNWKNUDg8lV6RHzW/kX/8
/5JOQS0scYhwNjiKa/1+bbTBDikVpmu7wGhjO5jqSYIlLhG2BvvBwZLBcDxz
GBSbx8F9lx1e2RfA68yFnIv/1rUYKscv55ohFdNluGedwblr6yJ6wzJ/d95v
Xa/vA1tKzLAhuw/XjWDzG5mWTlwvimn3DXHoYZizNYx0JMIYuR2MLW8HI4Jt
oK+/GdA4CHU0EcBqg2f2v8hvmr8Irfe4jwDdL+Se5QW5LTwn1z1B4vXf4b73
dueXZIRwlKS495JWhjxSXc4h192Z3H/9tG8Ei1e03p/IdeqPBT6k7+lHFklA
0m1tid5dj9ySn5nypIumRTKa3PL3pjLpN64De0Qq5b7kIXm+aYFATP3leNNy
WTJV8smcG7RduGJiWj6f+q5zPfrmPqdpq9Cfvi4lM14NxRtFN4WnRfTPRWze
q6pQKZnN1HUQXMkULxu7C3uKugqNvCwOM78eVntFyWu8vXxurpd9QLrmPecL
eM8Jv1D8f537AtEa3EtxJff0eSZ/5GW6oUxjmGlLM88ehsFrCCuT6Wcns5jO
/H3S5FbKCd9wXhMwnxaKZZgvI/MW5jVFvvydV5KbKF/6RnLNeeaRTK+R+96M
lwzcH5zuby+N2coaXQr3367uzuF+OKW2Kdz3ZbEP6J7qzGOkRxrO/XIYP5L5
bDJtPYqr+HU0EWor23WpCtODK3NPU1boeigjdImKxdZSyZV7c1/qMnmawvSt
6D32xsubuId5f1u8clAYwj1Ym7k1ygqfj/sRTRFOFY0SjiXTmtxEP4PQe0l6
2nTEKO00dRV2dpssdCpiustNA7XJL76ZpJFuPYmwryAu9wc0bz0ysfzGYnwX
eQd9Bg/OPvG9NFW35JAs+TShuIQYbTvJXd90zqHfoxtEIp0ryXThDPN1IO9C
7witx6GqthLQzyL5tu/YrD3ZafiOXDA8IBULBYhyVwMaCyCsvAI8kv/kZ50u
92VCMQN/0fqd0JxP/tW9I+xnmxo0EO+sA40jakFDTyQkWuvD0IhWsCYiBU7Z
R8A5nw1Ol4+A7WUf8NnhxUGAZcHusMVvhmOGYXChfDxQ/M51h78tGwdu2yBY
4ZNgaUCETzQfQFFmOlwrmQzXApPBG0yH3faBsNLYExZZAHJcPWC7MZV/vt89
Ge477EDvGVySMuBTw1D+c1m2znx+fYQhEWzm9pCV2RnmZSfDnJARbJ72YHY0
hy6OhpDsjIWBjgSYrOsEH/sJrAhKsNwmAd13XFeNxQA27xybXRNqa6pCLU8V
qK+pDnHOWhBvrsP9B5i/TY1gOOfmXfY9JKfknziuPeksI6r7HrkkPSTXNO/x
7Q+2p+Sq7RFh+lpHLTcJxU/8ddB/jRR4bpDDoRuE8V93Ct/xszMWSxke3uS/
QOi+J+nSMWIy7OIeJo3963nPuIluI2nq20honiD1Q2vYOT5pHnKSds5t/OcY
t4HGbXI5kMG4NFx/nPEcmc/CEFsB14tuFdhCIuWV5GJgArHLXYlZak5my0ZC
9zAR3bsJjRsky32apEh7SZRlDfldN5/XKmx2g9VTDe30e/g3MP4UaeZ2kmj7
WlLJL5NH8mxC9z8Jl5fx79bJsJ2kuQ/zdcs+j+n1sc97ELCTt7bFTBOd9Nbs
4682uq2kjbCVWDyfkvWBb8m3gV/IzcAT7mfENHY/1d3gsZWdFx4O3CALmDWr
vIdpFHPtY8aDtEmfk4m+E1xDlJ3TM6zzlf8eeRAKkYf2P0iRfIfQeoHfiw+F
I2RW4Et+Jqk67xFax5BIS2VorqkDLC/p5Xq89jvjvMXPMk8HfiL1IqpxvsBW
XX++9taaU6C/PR74XA3dLwxnMT5vK10UpGW2gjl+Iyx3STBLawSTLxbeGf4j
XwTKyFndHcK8kWwF7SEvsx/sKR8IywslGF3eFgaVJIDV2QZmuLrACm0PcBb2
hXzHADhuGwY++1j4Tj+J92g+Ez7k2rXZdhMsKgDYZ7ZAqTwF/tZ+DELaUnhk
nQ2nCkfApggzn8vZLQ+EU64RcCVzIjxyzoaKaTLUKM2BiPwV8K9+MdBnDy/9
2RChrICGSi69/i3Q+mgeNDduggb+dVBr7iqolb8KGkdugE6h97z9EZFHYYz9
OAw7dQRSHHuhnWsb0HUJMcG1EJ26lv+qzV/HXzGx60CTvRpoDIegfQ5ct2bC
Veuk91rkhsV8hrKOzgF1iAOqZ+bAW+diCJhnwre+cXDSaoUjrjTweIZz/t89
8wz4IyIb3pUvhjfuRfDUOheuaTPhlHME7LCkQq7UG5ZnSzzPLxMkWFEuAcVI
XIt5VklXmKjrCOMiDGDLbg82S3v+TK2WNjC4rCXXCmVxYLimDYxxtYOJZR0g
S+4Ms/xdYaa/C0zWdOK6CEOseq5tmprdAgYWJgDFuGDNbMP/Ld1JY1HE+97c
0ICeP9M+UjMwlcQCxaeQmFkf2geiudYAMTcGk9AYuuljoVtELEhSE+gXaA4U
I8JgX0uuUdzTogOKI4FiBOikf9+XYDOoqZYW9P7TOklOgokRHbkGYYeSGB6r
2xVEc33PKbr3nkZM12GZrztMKe8EA3wtOG+ovqE6aNxVQWurAS3K6kBHs5Z7
IfXWNYMPy1rBxGAH7onE9BDYembvoxgNrI42nP893N8a0ly0dnLq+b/1tOqg
s7Yh15w3WGKgp0PH4/I0bWeYVNiR9/JbRUQBxdLQ0l8XkiV6vc4mdD1pIdZc
EyIzKeZyVoRa1irQWFcLaH0CnQ3vfcvYjKXZ2RyGR7SBYZmt+f222drDfH8y
rPOlgMPcC2ZYu8DwYGuwutpApq0TzHMnwzR9Z+heEgcUX8BrzxtSX6gOH/jj
+VnDvkwLP7ueXN4RBhv1MND5/jmOCiVCutyWX9fQoB7GWNrxOU+WJ1i/55Rn
BN9bB7VD+D0dWq6H1q4orl3fRFeb+6uNKknkeirzdSaY50rmeznP0Y9r8C8O
Ae+jVvNVgr81/5JWZfXAbu8KJwxWKHVPgQuh8bBN6s/vHeslxRbWhLb6aH5+
yfSPb5a93+fPhXmgeEbDKmdPmFBmgDR3K/7dp5UnwYJyE6ySesIGTx9wZX8A
h7KHgLckHb4vn8R9LZ7o5nKuecUDMlQ2LIdw9zKocHEJPCmbA1cKJ8JJt5Vr
iuVm94YtQj/YpR8IO+RUcLh6wTR/EpgLm0Onci0YnDEAujiwFLbkGgEz5C4w
3dgFJoQMMMSuB2JvDE38tSDcGsZr/+e+vwjFihDjrw4NnZHce+mZ5y/yVege
2R/ykwPua9x/iflOMJ1axq1imjyMq1LdmcM94D7RfUA2CWZyTBhGKN4nP/mm
8XxHsRL3eGnqq01+9D01HZVumk74fjQxrg6tzbhXGK0peS28RihOfi68To6W
q3MvJ6aHx+Za/xb+7TZI+LQbxTCF9YQ1Rd2EWC/TyRvrO+49Ipd6n0l/eaOl
6grdzwqtuymeG63QWky5IUxRvtSNUnYFBihbAmYl3zZAOeMeqbDeBettsF5z
Jc0ypiOq7NQN4N6F+2SL8kZaxL1SaR3NfXePyje5Dy3TAqB1ufLGtki5ZMtQ
/hIWcv9U5jdL6wflWuAx94Zm2oEb/ed5T3h44Igy216oFFhuKA80fyiVS8K4
DzTj3Lk933NP2PFuD/cDYbrNVfWVMN5ah3NkEs31OX9M66mB1R3hGC6FYdVQ
RaSxAVsF62FHpxaTLA2wTUkU6p31sEGoBtZ1RWDdwgiktRHSOIYWT0t+lsJ6
b6x/1NOtw+7aJkjrL6T7EjPsHTDL0hmnFibh6FBb3gezutvgeKcBZ2q6Io3Z
uFrfCxd6CGZkdkC637GNPwpjpZrYyFgT42y1eH+N8U7TPK1wbLAdjilox9+f
ld0ZZ7uNOD+YzL2zmJdZf3M8pkotkMZhZDpaYwrboc3RHsca2/P3sheb42T6
vKxfx85BW/rqYjOnBhPl+tgluyHS2Izgb4zGwkbYyhCFjcojOa+UadBVsVZE
TUFV/nf6zHrYxheFWkcNDAtVwOf+vxS6t5UauspYp6wqClIFpLW8wrgMLstl
NhfDPe+ZZ/UaTbEyNFSgtPVtVTo6XdwDnXlRz9IUKmZ5v1JDs1K5rZvOzzQq
fL2E45wwncx9MJmH2tZAP2WKrxPHJ8xHlPVimb8oO8+IkzYoie6tSlODU2no
zFUSnJsVUd6t0PpHGSkdVSz2T5U+zn0KXfPKXNtZ7i38c+AF91MJL6DX6KiI
lTUVMdwThjX84Rhtrs7npElmY6QxDLtHNMHE7Pq8Z1pZqMj7O3X8VTEhuy7n
uvUVmiPF15juaMv5VLT25rqYM41dOd+H1v94KnMEXirMQH/BZKT5nfPg2Zkh
m034rDwNvwyMxGLrOKR7HW9lZuHP/hl4O2I6llqn4HflE/GSM4Nrrfzgnor3
3DPwgX4WPii34z3XDPxJk4U/+qbiD/apeLskCx/ZZuNry0KseFTGGs9ysJ5x
DTbMz8UYzXsuSs3ile95Bu7lWO3ZCqwZWIkaeTXSWIAx/rXYoGQd1teuxVr2
VVg5ajl91ku5jkeNYA7WT1qLTYwbMcG+metA6TPe+8gwHkKLV5swIf3979mr
ZewWbKXJ45wCg/UT7KTfzjk37bWfYNuIbdi+fBt2vbMDIWI3EnkXJjm2Y6tn
W7iOcmzmetRlbaT7cAt2PODCbr6d2NXwnhPVJXUHdk/cw7XzhqUcwbSjh3FA
1CHsme3GzlE7MHHuVmyly+P8XaN7J3Z/tht7Zrmxr38f9ks8gH1y9nGdSkja
jd2u7ORn2l1LdmBSwXauCQCa3dincB/3cyDpu7CT34VtI7fRtZ+HLQ1bsFmu
E5sW0++2aAu/LqaBnWDejI3frkeKVVB7ah029W/Elnc2cy5R46QNWPvtKqwU
tQxfOxfyOdK30mKs8MsS/mL3lq53pDUkNo/YhLG29VgpaRne1E/FIlc6qu4x
fF080czFKqnLsf5b+jzNuVjn4XtO2K/CbLwuZWJp9hTOD/vPswQrB5eh4FiK
9ywz8LA2DWkOx7nWbphtMXFvvF2GgVhoHcU55dc0mXjHOR3p3sMrtolI8z5u
CZpxlsGIU51J7/lU1g/wYGgw7tEMwtXGXjiurD128mkxwlEJb9meKTd9TxSK
CxTmeVBJE4bsrJBxvCiu4X1IpvG/3Onj5yAsvk+STvJYzc5HmMf8EEuBYrbs
5+eXzAucvcdn+VnxWx4rF0MPuNf9ft01Jcf9tWKXvuT8snz7d8qPht+UyoaK
WDOiCvdb+Mf3r3LdE+Tf55LtIdOZUW4YnihPDK+USoYwrOWogtHO6lwrq7o9
nPNLGWc7IP2u/OkuVyju5ecTyZmxOCiYgKOCiTg2QGNoKBHTClvxOMpyQIar
Ay6Sgc9p7wkOxB2ZqbiuJAUXGAnOcHZBWn/zXMDi9Jygkf9sjqcHrtb1Qoe1
F65y9MQVuh64WCdyP7NZghFnBbqi3dyVx/iPyrvhfK0JF7kAV5l74iZfX9we
kYq7ygbgdl0qbjabca0zhetGM27BTs0APBh874e4z23BPGs/XKntiQvNBD+K
SMb5gWT8WAsou7rjyrIe6LD3QlpT4jpNb1wRkjhPZooxCSdJHXG6rgsutBJc
6euBuYW9cZPWzGd4clw9cJ4jmectprs4OtAWJ2o6or2wKy4VuuP6QG/c4OqD
KwISznV2wwlBAw7V0HumbYnDClvjeJsBaQzHDA99v7ktDtW2wn7aeOxR0gTZ
LD7jeTXX1sEWmrr8HIniDrS52mNWZme0S11xckQnnhN7h5qiKRiLzBOF8V97
aZtyrdkxZpon3QYcpG+J7SzRWFugOclWAStmC1jLVoV7vdYvr8Z74bUNVTEi
sxJW1VRCpkPN+vUPLX8oPulnzm/cL1xjGitKBX0FrOuM4DUCxRF8VpL5b92X
QzzPifbdyme+NIXN59AaUdmi66fUD6zhZ9cLdIqSZjus/OP7WGF6KHS9eymG
99L6x6uRqiof6FrwHjarm0RptzI48Cmb9Vco7uVz5TTeeFfJPb07hQHe+sJa
7vudLh3znpfve89L9701fDlMJ+PsHOFsMpujr+xb5v1FCHlfCv94/5OXePcL
g039fM35WfHfwse8b/FCmkfqhFaT7v73PZAN9vOE1orkE98l4rZ8z/2YL/ju
E+blwbSWrrh/Jefd93mf4l3gHWG+ZobMGPggFA+Zrk6wxCNCjrsHLHQTjiHH
mynmdLUH+oxhnMHAMR6RGkNCQV2g9RQ0tERCC31dPtuWYK4LMdoaQHMv/K75
m/urMW/mI55S/p3ypItkj/8qofeLFHpuEzTcI17NXd6L2hS4QGbbCrmGl9m5
n6TJh7km6tbQRV5nB9y/k1+FPwnzj2Jaa311+wnNc+SmMJUc831I39+X9yIV
22jya2AW7/98H5hEaL1L2snRhGmEfSMHTFekX03vfO9MjLfRwRdDegSa8Bfj
L0ZJ1chT+ZWpQL5hypG+NjHNaTZjm2RrQLLdJnLU/SEpktPp9/+QrNP1ZjPQ
RCfVZudxpl2+73i9zrz0ZgmFpkz5C9MY6TjXQWZcT+ax2kNwc59oxolkfo6s
30rrac4DqGgTSF05gs/0rhC+Npl8+bTu32Pa7rtsonUYae2OYlpyRJa7cy9J
9lpuk7iHLK0tSbI7lpgCscRoa0QaCJFM08dE6zBTXclhipbW8p58rLsmvcdG
slkyE4qRCcWrvHcblF+aWD+N4gDyeWAYP6NkHtV0D7BeKqnoFgjr5Z+Sf+LY
hN1DNo9MsSDTHOX/X0eblnyoa00mCB24nzG7v6ekn0x3pOemvr5mBAOjSS3b
KtLEt4HU1qwml4WJhOJKclk3kWus9tMcIGPcx8lg36ekjWEr99Vk887RlrWk
u24PmaY5TVYK3xC75UvSRdrB5+nf6ZaQWHk995Hba/CTq/ZH5JH9T1JZXxEi
XZWB6Uy/NPxDzmruELv7y/dnQP6z5IrnV9JAGwndNLHQRl8faJ0IXwsBst9w
jXwWKiXXnUEiFFbgPuREbszx+8RQBxhlbAu9/DpopY/iPAZaR/O+K+sti1Ic
x9SZ1k78/IdpR9MYzr1QWR+Heb4OCLXgvRrWz9hU1hfOuEbCxbIJ8G3JOFDc
o4HiMvhOMwle6hZATf0qznNKUDZDK20e0BoYmgQ3QMydtVDX44Do/LXQVOuk
uH0nDCWHYdrbUzBf74U55CyMP+WBgZ5DIOXugeSCfBBTdkOPK3s4l4p5u7YM
bAbtgXVQM3EVVMlYDrRegUoB+iqW4b/CJfDSuACeZs/lsyS/amfDY+0ceByY
DbQ25T3vbyw2rt1M6xDYrxsMbscgyHcNgHznAK4/SfcjFJpHAfpHw+mIkbA3
OIifZ42XDNBDq4M2EfWhsb4W91pnM3/MF4XNp3+puc3nkbJsp3lPtYd/D0n2
5HP9EXr9vH9L4yY/r2N+soyDHCWv4f3d6rYc8q+wmFB8wfiV/GyQzaCzPXtC
Z+Vx4WudjVDsQWgMJmxPu+TLpivyRBPzAWOeYF8II7gfGNO9csp9TRQHMJ/k
ZHbmVFEWvDlyD281IYdpZnjpPvYG5TletzzI+79YuhLwKKqlS7OH1WERArI0
yKogw6bJ9L2hUTYRYUTEgKiNIgQBHQU0CkKzGvZhD7I1CBIWYVjUZPpeaAE1
KuqgqFFRB0VFwWfALa5/nfJ/38eH+pTMdN9bdarq1DmYPVFuonhekdTGF0mq
y8HfTNIZT9LnTZYYZ5O9jeY+eNCz3Byf4qqPGv0T4xL///AuhUc1PTu/i7vW
X2K85n8TXPbp+ahMrw7vwdB99qcYL/tjgwM+xXMfejbwd6U6RVU1K6uovYvn
Xp3c1T40NVFTDfba8RwJe86EedQNdhMF77+GdgZ7xj5mZqld5p2KnpUi3EJ1
2r9+bXe+/5Qh/GHBC34Lt56abPdWU81shblWDbuKKrY/8wmvQYvUd9xu/j/G
v8mDRlnyR+M38Np96E4dMO4uoe8IzT9rd/ABx0LoKVAOjBS4t3B8bGBmiPuc
G5iDOzvI4bgx0ruOdQB0cK9oEV0m7kjtYt+z/JjPvMLM+BIBDc296RHineAh
0Si0SAwMtotp8RKxyDgpppeXiEHe84I+G8+E1weDRbFzj6icmi2uT63h/vmT
YV+sDr0pdqZPi93GGUGfXRyPpXkeWtk0ZBOvtuxY0VDekNuEZ6joqaPv196g
XxUNJNWIskdeJt/lR8M3yRXlA3hfHH3ePXkj5FZjmNycNVQm8u/mXVj4tDY6
VSBbtlsuWyWWy8ylSySdXVlj01xZvXSOrJdB99xcLq+/sIY91q4btEa2GLRM
1knPZ/+9ixnT5bexx+WF+FR5MZgmv6t4XH6eniLfKhonE8V3c6+cnhn37oa7
neTowi7yYacX60Wjz/hwtJccXtiJe7CNzFry19QfhB++E6+FvhJvRc+j5yQ+
C/0oznjfixPhc4Lqe94h3BJ/V7ixY2Kcc1CEE+vF1eZixhtU14rp6WzRxbua
3sUPlmVstsBlo7Mcgb893ZVITWNeEt4zlPP9RkEGz/2h1dnDzVT0PFUX52pl
263V3enr1GPBTYowr6I4yb8wF53mZivKP2qo10ENcdtD20VB44liqqI7rd4I
HlBf2TF1xc1XfzvP0Lmcy5zJdomVqmd4A7xiVT93m6KzofqXb+M65Lb0Dt5h
ppysxscOqUnpI2qy9xL70N4f7Fd01phDCU4GeDs1nLnMxfzHmKXqpRYoM7qC
+xx9jK2KchX/jA7RVYpwmDrk5KrNwe3sg1rfXqgGprerWPwVNc0rUXeldnMf
AzzCI/YoRXFI/c95grmT8Kkf7hWpkd4e9qS/KbRRUe5TFO/UcKdIPe0qtd58
Wy13Xlf3OfsV5TpF55o9sjBPfs4dQnd/juof2q6e9pRannhdzUocVX3DnrqY
nqboHquxQTf+uejTuNFjqij+AWsi3hBbpxZ7/VStdFX2y6AYpjabQ1W5/aTK
SMxTv6afYi8a7Hvnu5ZP3zPygBtm3TPER/w1xT7CAY8Qnllg3WrssF4NvrSw
B/eeMUG0NlYIqtVZgxJ6Etd5a8SNsefELSlPjI7tY57tk4Yvnk0dFy9E3xfv
xy6IqkZl2Ti/lmySqM3+jpgJ1zNqSPhSNiivKRulM2SLonqyRyJTDh7UTt5V
0Zn7tcip96S7sF/sMmOA3GkMlyUZY+RpI09+Xz5V/h6aIX8rflpeGjRdfuE9
Is/nPyb/TMxkX67rjqyROYktcljqBdZLHDltj4zu2yVv67JTDl6zQ95xZpe8
//x++YjzsnzqpC9nXFByWn6JnJBxWNL3kPT+eD9zRGI3z5ZG5+2Td3XZI4ed
eUEOLN8u+1zYIul7yy6D1so2Z1bIpqWLZb26dP/duTzz+jnIl1+Xxnif5/Wi
B6SKUc4sGyX3Je6S2/OjkmIYc0Iw96U4KakeldOi2az/jtlxn8zW7Ev8R+hv
cLHEQu84zxT7RbeJcHy9aGvH+e5Wibo8O50eZDNee8JNWovdfvAfibxi3JOE
D/Re48Mkvbfkk4aV/MCYmFxvvJ2Elia9Tx/emuA42PZWv16wgHNEV2Ndso/R
OkL1ljXO7W7R3ba+NB6NQK/pGSPHb2Ys9XsaG3y6Ez7FfX+DcSpZyaiEX6/Q
PSqmPJEkHJmEf9BJd6wPjes3jXH+PUZXH/m2vbEqCU0l8Du+M37Gz/IpFviE
5306P5xnBhrPR+gzwiOJfUfGu4cYixOes/a7H1nYZ8Q5bWAURD4zpiSbu3X9
MW5Xv6VRH/kyOczomE21VvZPxpNJ/NnggUDbGXwPeo5+f2O7H7E3sW/uZPsl
f5Vd6hMmp++vfOjyUO707zau5z9zk3u7XyuYxzXhOvst/4Pggk/fVf0a/OFD
3xPapI/YL/sPBgl/qfsa13bYVYG3+TNpqR4ye7B3+2h3n9/NaOrT9y2hexnB
Tim9ixLwX+BbQPWDj92RTLeOBX/57XaKMXmZe9E6an9hUX1l/eL+YV3nNBab
7NvFp+5k5jm1T61k76KZcS12h86Id1LfiNPmBZ5b73HPcF7cGJziv8+IV5Xh
wqZyWEZHOc7pLicX9ZaTjN6Mb+8rvkHeEeokB7nX8gyFYoGcU95Heolhsti+
R56Mj5VvXHhAvp0aJwmPyQu5U2VFbIassXQu+781Cy2VrRuvkK0vLZetzy9n
f/SO5askxT15ywVPDh9RJKkWkBOyDjOuJewuZ5QruaLLG3LPiDPyRHlafnzq
B/nVkXL57b4rlB+vSKphMKuR/3N+k5dP/i7L836XF7v8Ks+PuyzLxl2Ub404
L/XZz+XBvz+WReM+kDvGnZY7Yqflzsz35QtH3pfPNz4tN7Z7Ry4zX5czZ2qZ
t++wvPvsHvaVu3mpJ3Pytkgrc7O88chzMjxkvWw3eaXMzF0ia8+fLyudmyUv
hqbLL8sekR9nTJLvZU2Qr+c+IEuMMXJH3h3y2eBm+WBGd64RUDP/mv5DHDO/
FHH3DfFAPCFEdDO0j1jn4HA6V0wKerH+Dt7nOPcg1VnzsENnUQ0bmWgciWw0
bo/QPc0ivJikmElnqT9j0XrGQr+aO4fv0BTjRvr9fPIWo01yq/FeNnjodL8j
dC8i8CB71jiR/Z7xXcmdxu4k1ZuMQeke4G5m0e8R8FKR07GbNMroYp11p7DO
30h3j7UkOGm9FHxi0fm16pjV+bMSnhUDvLa8B32n0Vk84IXF045gDHbAvFuc
9MZy/HnLHifecseJD8yJ4pP0JNYO+jj9sDhlP8QaiMBrCe9uscUdKuhzcE15
fdBYEM60XPcY+9oQPrZm2trKsbdYhKctigPZbYyQD/7RaHufv8x43ae770N3
4Yz9vU/nwqfnxHuYQ+0O6lnzFt5ZoM+jTqQdRfWKWmEOVFT3MncL/Z1W3nLe
IxD2ZmVHtyq6/4riuaJ4owZEt3P+x26sld6kKKcRVnlB3Rfbrx53ipm3CT2u
1eE3eb9gtLePdz0wc6N3pxbaN6t1zmDuFa01BrPOB/o/0PEe4XZmHtxVZk3R
2KklCPvD99N6wX3fSrpnuU/QM8gUFDO4jjnijWKNMnD1WsWWi+zURnG/eUCs
Li8Vb4e+EUa0EvOBWoeukm0q6FdmSHaKNpJWuoW8K3SdfDKIyHV5g+WBspHy
WPl98mTBWHk835E68z7pV4yRr4Yc+WHmw7KiYAb7mnYYskr2Tm1gf+f+J7fJ
28I75d1198qH7SNybn4gN5e9I1/u96l885evZdmYi/950Rb8Lv9J/SOrt6uS
U39yjZwmR2vntLzy3+53qzH1c5oer51T78/qOdW8yjn/rvlXVkz7S/6a8ae8
4lTIH8t/ld/Gr8jPQ/+Tp0MX5PH5aXkov0x689+TKxq/IWdXOyYfO/mKHDf5
oMz19hIu3yntTVtlz6wNsuOZVbK5t1TWz13IOnXfGVPlO+Z4+XLeaJ6jr0wN
lAsq+spnOuVQTs+WhJWk7bSGT4gEv+buYI/4xXlK3GN2Fa+7X1l0Ry2KeRbu
38fGpORotwv7jL0dnPfRK8QO1WkzT1Edqii3qF+8p9RXXkx95D2s3vfyFN0h
5utVDc/h+Rh+/RXMVCedsWqmK3kGRnnNhzb6TuP95FSjJIlct9e4y6cc4Oe6
e306T/5Tgc85xLRX+I+7WeglJt8wHoz0NJph18GieAAcZoGPjt/Bu8TdITwl
cu3rub+DXYlX0/eLE+ZYaBJyPfWN8Th2mQQ0/tBzuS+6XzwWLhbPmEfF03HF
vZc7QkWio7FafJ+eKgirC8L24q/gb4tiiwXdzJttz/rZeIqxALQbCL9xTYqa
FTv0j7g3qq3poeql9CjeXyoxx6i3zYfUH8ZMRbW2op+rxpoJ9bSt6J6egP4N
dqfV3FjA+HW5/braF/9QfZa6pNC7xZ4Bes2D89rpkfnX8Wz03lRXPSavqx5d
0IV9qMfEuuoHcsM6b1BP/Yh3I/fvY/Gb9MTynvre8A2acpwWxS319WWNNXSV
62RW1xRv1Ln0T6o0/rU6FCtTG1OnlGsfU2O8F9WNiedUY3uRumzk82w86Y5R
FLcZZ1PMV7vNETxnx45mm+AqVdupht06RfgVcwwf/o/I3/RcrGvMemJqOos1
jXam7xDPp6MicO4XVH+I/qltYlWsVHzllYuG0QzZaVAj5i9kedfI7LJrpGW2
lBTfJWEYeW+6q3zUvEnO9Wy53B0gV8UGyfUZt8kdRXewN86PFdNlaMizsnOn
NbLv+a2S4riclDoiqV6QKzNL5XYvJQ+nyuTJaefkh9V+kOfnX5aXz/4u/3b/
kVV2GDk1jao5dadVzwltqZnTeFCtnCYDauc02V+btVHos+XUy6qRA12Hak7l
nH/q/iuvFFbIbxNXZNmIi/L45LQscj+Qi2eelLG8V9hPNKtgo6SaStaeNl+W
R5+U76QekrtDI1iTAfyfO0s7yQFuW9k/qy3r4USjHeXtpe2lcFqybvkF+2do
1YhrzZW8wwvtrUrGbIswXuQWY1uS8KiPHdrZxjGfYqmaYUi+e31SW9TCxHHs
bymjoJJuWlpbdw030XZ+a021BJ8TzGxmlAu9wLxZL88fwHpRVFfwrCWvuCfP
OK41GujfvD95Fv5w7AjngmtCy1g/EvtCuOOGN1v9aj7NOyDYj4PfNOqxHKeV
6mo0YU3isNeU6+Ms9xpFeE1VTRtqd/CBn+NuoTw2wMfOEuHfLMLaEcKs1kEj
l+71KmiIWbW9aoKwJ+/g/2HO5P4YfJMGOc+Lwc4OYXtbBWHU//iQwROCzif3
jO8IOgpw6D82LlqEVa2HjB5WJfof5Vx/v/2RP8Bpq444o1T9+EIlnM0qL35Y
rXJL6a6eVefdy/An1S3L6zG/YmDmtXqU2UVPTPXUU8uy9NOFgueL4EUsSPfV
Sy7002vybtVe8TCdSNzNO93Yvf3WfVz/XJGv/yl7RlfJc9nbtnbufF0/f6Fu
uKmAtbmau0t1q3HLdZuyFfrasri+Nh3nGXLz4qX66mCRrle+QNfIm6srZc7W
P3d6Sn876HH9kfMw+7nvi9+lV3YapKcbEda7kBda6vYXGugGoQxdZZCh6fwo
aNcciX6iNpe/oxY7J9Ws2FH1uFusHogm1FDnBdU7/JxqEl/MPq3YaXjY7sV6
g93NTIpV9RnXD7Z3+AONa8HHjqw0BlnXBEux02Nh/4ywvBjstRM77DsE/Jx7
JTYIJ3aAzy34sgvSr4qpZomYErwkCIOJky7hbreqpJpA9km14r24aGFHOdrr
IieZveWz6ZvlvkF3ybKiSbLa5DmyjRmXYvJmOTxRJMc7h2T+fF8uXfqa3NYi
xdrcb5z9SlK8kV82/kle6PezvGj+Kn/M+k3+WPc3+b3xizy/5rL8/NKP8iP1
g3zn0jfyeHFavjz/U7kncUZuPfmuXDWzlLVcY8WvyDHRF2X/YJvsmlorGxYW
yEtF0+X+6Eg5qbQX88jOxy+LhbHjwjI3i4zoPN4bQK8IsxI6s2KHewdrssEr
CnODu4w98F+26PwmqfbyD7llfge7ocqze6pDdq6iepXuxnruzzwfOq2gp4V9
nNbmVbzLNTjeTt9vdtNPZlh8Pw+m7tanyyboH80ndNVyV9fpskBflfmsrj9k
oa5ZMVf/Xva0JmyuD5fl8kwTGuFDvQ76pk7XsE9w0/LaumZmVfZxKE18rTz3
PZVv+2pYaJfq5K1mHS/s3R40c9Wi9C28K9jTbMYemEX2B9wvrW7M5R4uxX6f
amqO8/fZ+33oLMO7/WX7Uz/X3ou9UPCzitETLTHOwrONZzLwXoCmBuYeVEMT
dpvNPiq/B08LwvfitJHHd5jiiBiYbisq7L+sQfbz0Bu2so1NyRvt53w6P4py
nDrjTaTcs4J7Wzu806o8/rtqnXGVHmRfqx/Jv1HHYwP1i+ZIvo/gGkBvhupv
/XXWY6x7Cv/rn0NPsad8jSNzdYNT//FJmlUs0S1Ty7Q5c4Vut2al7nxmtabY
pLtfWq975W9gnW3CzNrut1Xf0mKb7t9rux6QT79yt+v+v2zT/aLb9M0JT/ft
5Wl76VadU7xFi5mb9U3tNurunQqZX9K62grdqLxAVy+bo/+X+wS/1yPRUbow
7zb21pwQ6qmH53XSfSpa6W6lTXSrRH0ditbUVQoM/a19Rb0W/or3nKAj+2R5
krkJo4K97GGO3pyIbVY9g0Lu9XUPF6oeiUJ1fbBGNUoV8G4fYh/4cMvMAYpy
i9psDFX5jqVamvWxu406K/mB8X1knTvYgp4Efof3aQt3GWGv1yy8F+zz2W5r
gV0KxGhoaz/tCkF5QNQLFoi7gt3MpYdGZJN4bdktsyn70qBfuyZxq3w97wH5
Z8FM9rPrsaNQDrF3ygfDB2V+kS+X1H1Nbv7lHfli+Ydc0741+bz8oO738uPw
Rdbqfe/st/KkfU6+0uUzuTc4IzeH35Urq5XKhUeOy2eyjspp40pkXhHVtxV7
ZJ8uWyXVJrKy6cpkdIycdKGXpJpPHnLKeA8w4dwtWtj1WAfpE2My7+1sM6K8
Z/WPMcu64uZb643brHZuA7rLeyNUZ0UOGB+XjDL2JYe7nbgmpXrG72uY6rjj
cM8U+l7QiMXe9r/Rf7ETxnP8a7Ma6Ei8hc5NXK+fCefoXaXD9QedJupKr86i
uF1A73m5bp+5SndYukrTZ2btH3gP/xmbqcvcSayTsDZrMO+MDs3vwLy7WqVV
NTgn67y31ATzsKLzp65z16jM6BJVJ5jPGP3j4GH1gjtcYbezu5GpjgVf+I8Z
xf4qdxBmMUm6pyWYx180piebGXX9RkGB/6jxCveBngm038Ao8CnW+9iTIRzP
M2Dsycwz+/K97eCsEneWF4knU0mxNv2mwLNNxs/yngD498+nU2JeKmC83Tv0
HO/VUH0q6PPwTHht8CY/a/SwkGuoDvSfNC1F9a6aGDqiXk98xXu42ZktNJ0z
PbfI1lvDw/RLnUbrN4IHNMVi/XnWI/o7c6q+nJmvK+IzdKUus3WVyS5r1GTk
zdN1WizQhA/11aHFrFFBNYDu0m+t7lW4ge/nzUc8PdB8Xg+O7dBDcnfqIfGd
mmotPXTcC5pqAn1XejfhgH36vkH7tbPjgB5bdkDfX7qf8Pc+Pdwt0oOKn9ey
dDPHiTYVK3RDt0BXUS7jgJOxscydWxC+WY93ejCWD+c1Ze1x+FVciv7KO4cl
obNqV/p9tbb8TewtKao3OFffndrDXIvbwy/w/j94ifek96kJqUOsifBs+IQq
9N5W28wUc0oL428zf5Fyr8qN7uU9SOycAh8i98y0pRptd1F3pjupB4Oweipt
qWeMHDXO7g7ddgVt/ZbBMn+/O9I/5T7k07n34ftDOJX3yHOd6xVmd+jjbTNS
6HFGgPXRm2vnNOC9lc/MKSIrtpF3nbCrC40MeLWBR/137jOycWyR7JRYLWXF
ZnnXqd3y0S6vyGWXXpNFsQ/k0SNfyHeLvpVleRflp4WX2Cs5NfM7+Ub6K3nU
+UJSnpEHLnwk9+w7I3emT0sv/p7ceP6UXF/xllxknpQzC7TMKzgsKR7KHtMK
eYfh87IprC81Ir+zvLqslnwp9Ym4O7yXvSnedcaL1cEgMSHdg31QofUMD43X
7a8swoWEHw/xzh7iAnDq88bpJOUln+pPjqVUp/L8YlW8VL3sfqreM79T34Su
qD+9vxV4u82L6+qeWc30CK+znhmTeteF4fr9gjz9R9kMzuPQTYE/R5sucd3m
1ArdQi3TTXIX67ojFuh/i2fpL+KP6GT+GL3GuVU/ErtRU52g6R7rFrn1dL1U
dV05bOifw3+or83L6kzse/VqOK32ps+o5fHXWX8CehyU2xR01Ol7qpHOdQqe
yIZXif1rEvbHPrSFoIlZ7H7GXJ0j7ic+1YPc46b86081siOoez8xLln3mjdw
P6tZaokYWL6dfX3XRd8SB1IfiaPuFzxnC+wv2duUzqOYVx4IOsfiZsfjuYkR
my1eDe4Xs7wc0SfdSsBTjWoAq7FbCx7oScodPvSU3/XGs4fUAvO4gs9J/dwa
XMsQRtWO043xOOvBEN7ZaNyuiwbdyVrNJz3C4MFE/U35Y7oib4au3mKuvur8
Qt08f6lu32mV7p5ZqOXZzXpgi+d1NG+Xzu23V9/baz97Ik4oPaSp3tFTyl/S
VMvpqX8X6ydGJPVTXZSeGdf6mXKtZ87X+ul+Sk8rLNFTGr+sx0UP6lx3r76t
7k6dM2QL6we1yYzrhvMLdNWMOYw1UoUT9Cup0Xpjxu3aze+jH0p114OL2ume
RjNNWFvXTlTTvyT+UGXuRd6n3hM7wzres1NHOZ/cG9rPfbbhdpGKxnepW8M7
1N3mXtYbmR5Kss5NgXdCzUkfU1NDJWqicYTP5LDwLkXYift9NeJz4bOp3jTH
qQ/SeTxDqxafo+h+qAblzzKHuVpsDvd3gBO+MR5nbjPdVdUtvF7BPwS71gXR
E4ruNXMlt4VSPG+bGBzmn1MjMVcdNkepcV531dippVz3mH+/0Q17qhH0VD17
mOhTvoXn0nUyq8vs1DXy/sxukvKufKF4uDwTnygrd3Jl8x1LZY9xhexndO/Z
F+Vj51+RC/OPy+fsU3Jv6ENJOUKeaHdOvl78lTyZe07qXz6Xh0OfyD0FZ+T2
4hTrmG/p967cmvWe3F6Uks+L03Jb2XtyQ+nbclHWSfnEzKS8b/J+2U9t49l0
4zWL5D+Zs+SZwolyd9md8smQJe3c1pLei0w6Z3nHE7tyNyae470+1OX1owu5
tzvTkQJ60e2DlfCHySac5Df36qqV6YG8J94iukzJYLO6x3hRzShXaqPxjno1
/aX6NnpFVc2szHy91uGrdLeMpvqWUBs9JtqVOfOrEoP0/ryR+rXMB/QnGZP1
hRjlt4on9ZWCfMLxT+ivMx7Tp4MJrKX0fBDVi+1+empWNnPpgQ9srzXz5Vlv
s7CBziyuozPiVdnjHjo5wM3gl9v2VlUvvYD7VfSuVA2viiI8xHp+0PLuY7TO
6mysidQ0qlpPGhZzSq4KFjI2h1f0FbvCssyWYkV6gDjvPiZah1aI29M7mYuE
eQtiAvgH9HPFP6F/xb/2v+L38F/ikvOrOGv/yPN6zGpOBGnxivkZz0uXmK+J
qalicU/4Rd7X7p5aLyh3i7T3KNWXfUWzdB3RJ9hi4XNhFve+fcGfYUqq3eeq
W8ufZ40LqvPgE8Y8X3ibtvDq6XC0qR6YQfEj2k3nF1t6ZdYgvTtrBNcJZ/On
6N/sp3XNM3N1owrCY2OW6w7Fq+j5rdO9M57TkSObdB9BuP+8p/tnbac/h/DC
IMIL+3bqYV126eGxIorxu/XIfXv03Sf36LvCe/Qdf+9ir56+f29lT8Prpq1h
7fl6XRbqf+Oz9LngUX3CHMu6IcvdAXpaUba+x+zKXjbXRRuzngc0GRAXoFuw
OHFSPZQ+yLP8NqkVqmra5f5LSXAP72xj7wDaExuC/3D9fm+ket15QNFzU//a
s1St8HzVOLFINQ0tUVcHixSdYY4Lhj2buQZ/ujO5ZwuPSJzdc+lHWYMNfZ/u
wXrWa6D3oqieVwvCx9XTMcX9E2hogjv6YCqh5juvqiLnA/WqmWbdkSD2pToQ
/ljBm3xl+g3WQMJ/A02HGxLrVIY9T+23R1Lt0pbwSRn3hzsaqyNTg2JrtNdF
EIYVfcJbxTOho2K/+5H4wv6fqB6uIlvl15dWZkveOVtYcLPcExsh3wkekj+V
PyFrtpsnmwaLZbv8lbLHvkJ58zhP3nmmSI4rPiifbOzLRZ1Oyo2/nJJ71pyR
r4Q/k8cL0vLtCqozsr6Xn1X7UabX/CS/7nRZnncuy6/PlMsvwz/JT/MuyQ/E
9/JU7jfyRKdzMjnirHwx/aF8bv4pOe9kIB8UB2Wfsi2ySdFinpVtuHCbpBpe
9nAzZaPyDHkh9rN4I/WVWJ54XUw3kyIa3cWeCG8YD/LMAx5TPxlPYi6V/Mh9
mGfS4GOhzwe9COzfXxPU5Tkq8Dz8IC+b+apOej7VbsuZAzHA3q4oh6odsdOs
f9UiVk/fWnatnn4hWz/nDtFUt+s3yh7QpxIPsQ7riYyxujhxjz7YKVfvKRih
i3Lv1IRzWCf82fAt+vF4lr4743odcVvo5kV19e/GX+ql8KfMZ7edreqq8oVK
p+9lTPFq8CVrFEArDHiwulmFMdUu407xWjCWPYNeNRyxz75LrHFvFQu9m7lf
h118cNnAbaOzINolVrJ+y4NBQsyMavZv2+Od4ThCcUt8F/pZVOpUSdarqC5b
OPVYZ7yHkyl7X/hPC6ZnqJnsWna1vLYsJKEnX6esmvw39q/40fxNfBZcElRP
8I73TFsjhogfnGmiv9FWhO31FnQ4oCeAXv52L6oynHkq4m2CH7KiOk99ZZcr
1OLdjKb69nAH7gtC62e1eat+vtMd+mA4Vx9L3affKxuvP+/0iP7foCdYHw89
GoqZuvHSReyLjh5fi+JlHGNaly7XhCF1235xfW2nlRxzOmeu0ZSXdJfctfr6
Xmt1p/zVrFPYvHCpblD6rK5ZOldXODP0N50e1+8X5vHP3BuM0KvDt+qnTKFH
F3bRVmkL3tOi7873cF38Lc7T0D1rG4urWsE8lXYeVUfcUWpZ0F/Bm2aA11Z1
M5uq9kEDrgWk0Uo9FHRXcXsgc3O+9R5XlYPZfOYa2gXqanMx+zygzvyf/QRr
NeDXBWeq+teleJOep0LxZ/nfwcyI8qV6wRuu5nt9WQtimTFAvWyP5s8B7NA2
GmcvA/CXlruvc28Mu3XQxIEP4ajyvapffJui98ZzSmASxCRozFyXWMO62uvs
wcxtPxf8xHUsahnKkT5hZu5tUG0fKXUfZK4v9P/orwU9D0F4SiyOnRRHEp+I
z0P/E1UzKstMr47sVtpEDoi2laMqruc9TjfeRxY6t8nDGaPk6QsT5KX86dLY
N1vWLpovG7VbJFtmLJede62RN5kbZf9ftsnh/YrkmOIX5fjYIRmb/4qcNe2o
XD7zdbk1/a48ID6WRwu/kKcKvpGfXbokL5b/Iv8q/VtWG1w5p9bJqjl1TlbL
qVWtWk71xlVyjIJKOb+N+VP+ePZX+a1zRZ4TFJdK/yc/O3WJPQqP56bZD2Hh
vuPS6XdA9v57g6yVMV8eH+TIZyqkHBJrL3t5zWS3oInsmdFMZiXorpRlMlf1
d/MvsTP0vqBaU1BuEN8ZU8Un5mTuzTUNLxG93A2iv7ld9A22ihaJZTxf6+A0
FOBxP2YUM/cEPYK+huljboiZfdhd70MPB7kJGow7w++ryqlKvM+Xk2jFvXVo
d/UOmulrzQa6iVNbA+PXjlbTGcVVWTsdmkPQLDphnuN6Zpi5i/PF416Wei04
579ojGR9/C+Nn7JnGDoy0r2Oe9TAmvS+xXJ7gLji5Yv2oVWs34i4QjiV+bbg
af/rzRKfG4+ID9MTeeZHeU50C9aJu8v3iCfiSfY12eGeFnuiZ8T++EfiWPoL
8Wbqa3gZis9TP4py53dRKUSxKF1dtiyrJzs5jSTlbfZRo3gp67s1ZBXPkJfi
vzIXkXKiSDgfi/Xht8UTXlIM8XaKTHsJ95F/s/+0rnMbW4TD4CnKuxm4a8iR
o519aq4d8C5qWewia6HimfUPt2XtsWc65XCfeIs9lLHgrtCdmvKhPpiRq/2M
eznmv5s/Xn+UeFh/EXtEf10e01/lxfTnFVP0xxUP6/dS4/Wpoof0O+Hx+v1E
nv484xH9Y9YTPL8gjKGrijnaWDNb/xJ/Sn81KMZeHy8nRutt5cP0ivIBek5Z
H94JGmuE9W2h9rpXUTPdtFMd/bPxhypOfMZ1CbiAXeJr2Q/4p+AJRTmOtbEo
Z6vPgslcl9C75FiEXhWdDd6fhLYydLXynJ7qaU+w3lKhfZtaaw6musdWw9Id
WHdpnfsWc5ieNU5Ao8X/yfjdvxz87h930+hTcD8L+kvgPBHO8We6kjm+37qP
Mx+qhluFY1/LoJ4qdN9mnslnxo/wX0+C00zf2a8auH4Td7GPXvQ496Bf4J7w
lwQnWSsRfCo6mz7FoiS9P2uYsct6J/jGqmRWEn+7/1h1nerCMlqKTc7tzOke
kdgtqJYSe4Mz4s3weXHOLBc/m3+IanmVZaigprwmVVeaiaskvWfZtiDEOhg4
W1aqhRyT6MoaEkHifvld1lT5Z3Sm/DvvGflXxUzm61Q35/I8tGW15TKcv14S
VpdOwQE5tXGJnJGpmev36N8vy0nnj0iKkTJf+XLB36/KlZfekIX73pbPFZ2S
6+u+LVdnvinX5b7F/kQHgo+kb3wu6S7KN85/JUvtr+UbFV/JN7p8LU/N/EbS
uZTf9/ovflW9YOTUmFslh+5wTo1V9Muhv75UJaeWWS2nXkaNnAa9MnIar6uV
03hErZyratfMqVm/ag78Cs+lfpKUq+SBMx/JdXlvyWeMo3LciIPy1owd8obY
Okk1tbzi5jMHa3Pp7ZLeIe/gg3uEXYXf3D+Z9wydJ8Qteodivt1X3JvuKm4z
24vbgnbcryYMxX2qp9KWmGpkiylBb/412unCPYm2dkjAlwazrvfdPOsaY1lk
gXE8Cf4R+Od17erqjnRHtdq4VX1gTmScQJhH9U1vZR4u1U+sOTYvHaiV5W+w
Ltpm8121znmLtcrmhAPu3Y9zCMvHPeb3Yrbez2lDf+abzLmHnmZ1Yy7vyMDv
q6vZhOcid5vXM7d8rBlmHhJ2WYCT6fOIPmZrAc1N8Jbgi4w53djggEW4EHwF
i869RfjaArdugnE4Ap3mY8b9xdBtR61Hd4C5g4Tzkr2N55K7jA9KwCFcYbyR
DX/Z1sZVmA0kFxg3+9cba32Ks377dAPuIWLfvrG3iPsA9PzVE3aSddqS0bPq
R+M3hR1G+G3QO+A9OeyXEwbQS7L6641lQ/T+6Eh9PO7wbjC0vqEnTueaNcGv
DMrX36em6i/LH+EZ6Lt543Vp3oMc116rGMv12/E8h7Xqj0bvY1+ioOh+/vOO
pe/TqvBeXWKO0S9dGMWa0ejHes4wvc2M6h1Fd+i96RE64dytX3ZG65e90fpQ
Xq7e7kT1SnOQdt0+enJhbz3G6apvz+qg+6Zbc3zreKGhbhauy7v53xk/qwPp
j9Rs45i6L7qf90LvNfermXGtVqdKeb+csAX36CmHqu5moerhFKoBznY1xn5R
PRp6RT1mFivCvKx33Si8SH0Q5Kmd6TtUwr2be/hp+1H1uv0AY6fOZmMVd9/w
fzSe8O9zb+B5HGZv2F8oCT7zqVbDOyxpbi+1sN+EswMeSw13rkXYNRu+S+Co
Eh5nvXDCTIL+LPGL/RTFoxGiY7oh+7n3cptZ4NZhZw+aZdAzo5raauLVFj3T
mUK4LUV2+hr+NcRpT3ighehpNhOj7S48y8P+yh1mkaA4KY46X4hfy/8QTYpr
sxZJpLCFvMFrIpu7dWWVqCHLohfF2+nz2FET9YtrSLP4KtmxvKHs4DVkHUho
1o290I05mk5xNzks3FHmeK3kTeXNpXWhhRw6qIN8tOxG1u952R0t3y/Kk2e9
KZLur6QcKDclbpd0TqWT2411fWLuTXJZeX/mZRB+lnSm5JmiifKdCw/JQ8W5
krC0nJWXI/OLLTnHtOWy8AC5pXCofKl0lHy3aLyk/CkvZk6X35dOlV9mPCpP
l09gjvNJbyxrAp13H5OVusxmDbw6F+bLjPnzZBXblb8lnpaX3OnyfPQxec6I
se7H5ax8+WvpU7KiaIY0ium/OTWPe+StM1bIzhdWy+4V62Wv+AbmfV1/aY00
j6yQTesukY2PLJKN/i6QjRrT75cKZGjas7LWL/Pk3/nPSMJk7O07L2XL3Pzr
Ze+yZrJ5fl1JsUFmJKrK2oOqET6sJqsUGDzfPmx8QvHQF/2DbaJN+QrWwc70
lrBG56jQPkE5kjWjodUJTzLhbGadqxbeMtav6hv2BOFz1nmCbi28/mR6s2gW
Wiou2dMF1azspdDObQBNLmu4XWTtd0cSBt8Zgabae8Z3ya5GE/CCmSMN//Gx
RsKn80DnuamKuh3VYLudMr2rsPfK3DSqS5lH/bPxFLid/lvuOB+9eeTze4wX
OV9TLYc/M3mNUS8yxXg5ApxIsSxCcZD3lhq6Bf70oMQ/bqfp3zcU+DTAE9W8
ysxXAbepa3A16+FRTOC9CfqZ6hZzmxqUeF7dFN6oMhNL1I/p6Spw7ud+S9Vy
lz0ZJ5UfUc/FT6njibRKuz+p3xJ/qirx//cF6vSfH1Tt3Gq6Rl4VXTlkaPgI
1SyrohsPqqXbZIT09cbVOlzYVN+Q30R3ym3EPX9oXdRKV9UNMjJ056CRHjTo
Wj2hogdrN2BXfkZI6nHx7nrghbbsxQP9kFBxTd00q47umGqos+LX6IHmtXpI
or3un9lW985srtvmhTR0ZGt49DmCSqyXAX0JzKfgE1YlYbAnWLVc+mvH0JXC
lfRf5X+rv+1/VLXCyozZa9hVuD+Anhv2MIBXgVv7JbZxjzGS2KTal69Udcrn
c88KWivjnR6qjRFSVHf7Y9wXeUd4uTvAv984AK5+NnRg0GvEbilmzxF7k0U5
mDk94O5S/LGoruSdVuyI7gqGU5ybKZokFgszsYJ7tNjBRG6nnwMvP96NQ84H
36BuYoGol1ogir17mHPawMgQ0Hb9xf7DauHUE1SbiDlBH5EZXSJWhktFtaLK
El7yzUJ1JXqXuBPwSKIYKUZEd4vZqaNibfgtQRhB5Ds++y1AE42woHgm0GKT
947Y4ZwWdN54boqex2/u0yI3sZd1rgk7s5fmU5mC952uTtWSL9jv874weqrz
zFd5B7RdrIG0ylrIm4LmrFsFbanumZmyc7ixrJpVWUKzZ3LsJTE3GohXy78U
obya8tZwO/lo6Y1yWmG2HBftzhpW0DGqnq4s6T3LRlm1ZDuvwX+1YdE1rAEF
nzroFv7m/Slq5FaR7UsbSLu4tYwO6iiH53XimX5OQSvWFOoWbiqb2LUlejPQ
D8LnhB4ntEVLwmdZw3Bi+WFB91NYqU3iPne/SMQ+FnTuJZ13SWdMQu97Yuqw
EPHNQsQ2i1tTzwuKE+K+2H7WBn82dIL939bE3mQvq5meZn3EAucEezrheYdj
60WL+DLRxV0rnMQB8UL8ffFR7AfxZvpr8Uj8ZfG5+Yig+yeeCnyLcJzYnb5T
mN4KQbWlyI3vFQO87eKG6Dr2wK5hzxUdEqvELaFtvKcJ78ZDdi7vJfdz24iF
zs2iwpnBO7vwZ3zCSYox0RdFu+hK7oVTzmT9I+i5Ul0mzqUfFQ0TBaJDdBXv
r0DDL8OtKih+RToba/yDRplf7j7pg3MBD48a0bmssUS1DvtvYf9wVLCXtT3h
sxP2mooLzlT+XNjdhjcN8nVLY7l/1P3Cn+Ue5R4++EjAwdgrxp9Z4NxCnydl
VTeqwA8v+yHjUKSFvcwCFwJYADuKz6SlAAcevDzCf9Am9Qcaz5c0thdZ/dNt
xHHHEaeDCWK22Yf5iZgPYkeOMNBNXxqPZhMusXYGp61bAlNscYayvip0Vhek
+wr4XN4f7LcGuG3BEYrQZ+dZQnOnLmOJRkGGQP8X9TDlpSR4Rkn7LMWG13k3
E7wF7OZAMwq8f/rr7PZGQ5/wjn9HsMunPMv7OOD8YweH7jpzJdFfBvcQdd1L
xqc803zaFeB7JLH/c9mo8Jul6yjge4pzvHv6rv0ta001DRb78AqmM8E/A1xC
8KMoTqhmQR1F+cunfO53NwqT1xoNuDak2py19eEbUO48qSaavah2fZv7I+hJ
UW3pY+evdWo5exHi3/s8PUXN9KS6Pt1YNTJqcXwcZF/L86QT5lj+BU7ubmME
61bRM1XvOuPVm8GDPHvb5N7OtfEm73a13riNeyXCbqnA46bv62MXd6sx7L/z
4eRwz4zqUc5Z8AQY7XZRVOf584y+PnYroM0FvVhoObQxQ6qT00hRvGVeCPaf
9thn/NeMr/zbjRd4rwn9tauDRRa9K4veFTyWiwvsEz70k9En/tq4jL+m/+YB
C1hxvtNX3Og0R/yL4JlnePNUlrNR0d1QC93j2JuyhrodeHeW6jvrjDvRusp4
NkI/y6oZVBH/BM8IygvMBcW+7QpjoIUdZmjjwuuxf9BGDExt5/13qr9EWzfO
9RE9g+SC4FX/aVv5dGey70/fwDEJeqHF0c9E6/Ll4iZjo0V4yIcuLWoi1IQX
vKnoe4mos0t0Ta8V35lTxYNmd4GdpAbpmiLpjBE3xzzoNQvXOcY7CxuC/3Rk
l9uvW4RZue800t0jJoVfElRn4f4LyodiUXCL8M17WTNgfPQQfcb3ON7dlt4h
KGeylgN9b9ZKQHyaEwrE/sRH4ilDCTqfhMvCAh4n0IXArBJ7rir2uZgQPizo
vQrsmRHeprNzxkde7ZPeImp71eRN5jWydqyaxB4jeE7YnUYfF30Q1MOvBJ8K
aCEOyGsrL4cqROXy2aKvYVr0z/3e6WbqOfsU9sSS0GSgGpH3Wh72enH8+8Gb
xrqiiKlNyxez9jtyHnIfdik/Nibxr8ohV3SKrv5vH57iI7An9Exzvb3slTAj
pPk7lQT3EPZsKfqbbdnbqKW5nLnAXby1guogUTldCbHY+tS+xDGPal7xV3qm
eN17QJwIHN4VhP47YRPWFBkafUHUdRaIVe4gkWO3ElTPCuyWXW9eLUbYnXmP
oGe6UDwYOijapFcI9BUROyj28C4hdvFappextmyraH0JbyXkA8TJF9z3cd8U
6mXoRTSPLxVb7HdZNwTnA++6smFYbYy43yZYAZ5tCXYXpdFKzDCl8NxhrKEH
LerH0jcJxPvNxrvoR7AWNTQt7g8fEK+G0pzn4G0z0eiF3SV/vNtDvRd861Os
tZ437/jvOcZfFdem4gIc64HGtexzAq0x7MY2NZYk8b3/dp8RNY153KvaZdyZ
pOfMvf0PjYc51u1w7/C/NH4qxt4edKuRa3a4p316J4rwPM8OwTWEP9U76Ye4
l7fYPenvMj5IUn4ogaYA5RKeK9IdU3QmeNdAG/epE8ZY1o2uG12gGgUFPDcA
17xSaLaqnJ7NWtGUv9U3wWP8z64KP6s6xVfzDjI4DdhBuMm4Jok9rtnBUWus
EbaaGnUQx3jff7jdST3uZjHHlXISzyIwI4VHZL5tqV5eM465EaeFovpJ3RN6
US0z/9PyM2KzVW23mkKNQdiT+VF4v82MuorqYe4b9jFbq0327eypAm4FYj6d
DTXE3cna9eBk3Og9p2qVz+Pd5m6pdczDha/NseAL1tMHvxO69P+k/2Gdfvxz
+A0q+17m1x+3He6nFyROsG/ttvL31N3BHu4XoFcKbhfFR6pVUgr9CVneUt/o
NtctBtXTv3h/qL3lZ3h+uzh6Uh0OytRXsXJFcVVBa3+n+b4inK1Wp0uVcj5X
P3i/KNQl73sX1MrgDdY/hD74Y0aWWur155kxdtDnlB/jOQ3mNVRDqhxvC8+S
J7u9+Xn2DDIVxUUl3M307E+oJeZr3A9uHluq6Kwp+L1jTxz9keucNQq+3cg1
hB1YwxG7Mw+mE+yhMz/6Ks+asW90jVlPoa+7LXjPp7Pof+pe4t/hSUH3l+tF
zIPQb8bPwFmB1vhOY7gPLfAMu6qgu2Y1MmsxxwW8AYozPFPCnBwa5Bfsn+G7
lsSeYC2jGrzQ/e/Sj6t9zoeqVllVXSmzksaufXuzIWpUi2pF0cquL6AZ/l56
vEo7P6lItIXumtlELwu9rr61r6BHbNX1qouWwTILvZoKb4ai86qOxD9hrcgR
3m5VYN/C3hvgn7ayl1vYl6XYrghvqo6pVYpwIp877EIC6zxoHPSxowVtQcc5
oEal9jKuWBD0VbcY24B/siinJ7Psa1jD7KfUb6p2fjV9OnRBDY8XMVYw7Nk+
uFiTjP/6oZjjUpzxKT4qJ3ZA5bp7mTMw2usCPUR/iNue9T6wkwhNA8xmMJeD
PhTy+LPBzQr3A/mf7o5Pz4R9zvcGZ6zNxlAL823Enkh0kxoS28m1NfYZKb4l
CXMStrsLvacknW8fu0bwm6K4zrjjDqOTDw4u5Wju9cMHHZwlcFkotzNv/Vfj
T/QFSoA3sM9Qkr5HdTPX8/wT80fKuX6ZO8mifGiNMvYRDrwcAS/2pnRz5jz0
NT3V1o6rOYatUJfeaey2Im4LQdgMONvC9wcvEucY/TvsWDQLLeX8Cu2AzmZj
YbiVBLT865k1VHNnKfOzphtJ1kio61ZXwK3XG2uT8NXF7gx27AhHqnmBjTvH
e9zAsODshaLPKlm+mfka4Gm+aIxkbSPCgYJiF+elL4P/+e/a4xXhA54frTQG
8eepZMx+hX6G1dxdyhoHqBPwz+hXsorrsh4LdFQQ47Ab/617xTpjT+R9VuRS
4Nqtwbvw0MWflXWP8aKFmnqkex2fd2A+4ET4EMIr7BajjfWwfcSiu2kttk+y
XybqdnpfJTizrxoO74FPMA6XEB6PFLv3WAvt4xZ2+N5381gLhXInvMmS0IE5
7jmK6k3o8WGX3wIGkmYrYB/wB7PxuaC5ccp5iLD4BM47lHN5RgheM+UWH8+h
g9OQsfUfxt/Mczxlf+MDY0NzAt4FwLXQcoEeFD0T6A3gPkAHxsdOBLxyMNtk
34DgkHWj3VzQuxWUu7On2dnM2U0kPlYPmYc4BuEOIYcj1/9o/IY9ruJ29kq/
g73Kx/4g/h7+Ol+5MQuYCloBue716jtjqrrgTlUz0oLPMs4B9g9bpuuJCvcv
nknQs/HzXUtRnaRQT1CuY+8Iuje8L4G7C+4uappebjPV0WjEfu3gmNwUPIc9
Rt5t7hasg46WX+zcw3F5RqBU+/RK9a/7L7QNrOFeJ3Fv0BW4AO/U/zqIMc9K
eJs5f1Js9LG7DMzUOVgNLr1v2lexHwRyPp1jy3SvEtDQwGcEPw7xFTOQBcZx
RfhQAUvCH4Nighjs7WBuHd1vi2oD1S62kp9rNLFLVTfmqmZmXQWfsTFuV94P
vifoAn2NyASjJ2vcYQ6D54K6rnW6vqA7Lp5zhwAXW9d5jVWv6AbmsIBHNSfd
B3WXf8z4MruZsRQ6LyWoG+izRxq7izgu0GeiuF89gj2YJ9yIStkTFNXohFm+
wPsrAX8dvXT4nyHOPW4X+62c+oo+P+sKo+77JLjI3i9090ro3LOWA3pR+52R
jH+B2e8J9mHfxX/b+MbvbDRW9YLq8HrzMXPBTvtq41aLsBbX1BR34BmAu+W/
Y46nvPK4ovpDDTM6RijHIKehR2FhHrrQvZmfB2aU0GQDpqfPxTUBNNAwJ6Lz
Ym0whrBmBv03JW8bD0Ww/wFe4yKjHzw9fWjcPBrcyPxAigfWxvQQ3mfHztMB
4+MIYSyfcnWS4lkEvmTvGN8mCYv4dJYp//QhzFgHGiuEm30ffh/gm9S1F8BX
w3rJGM394l72BgHvYOwCQxP3fOyyejN0nmN7f2O7Bbz7cfgi+8dRDgAfDP1C
9Un5RZWO/sR4lu52Enu+9DvrHmE3DTupTRKL1YvpD3nfFR6DdGctzAjBeZjs
9YbHRuQj9wf/oJGr6Dko9ITRY6DvwXpz2FmcEQjVwVmlbk/tZL++t4NximpX
1JAleH+E4bDLAHztQ8OKnoWaFHqJuQvArC3sepSf3kueMM6xtjU0qe5zbmCt
nU+dyaqtE8IefhLvCTM65HXU+Og5Y2+sa/pqyg/lSXp++BmRH4Nf/avLFymq
NZmb28xcymcN/ZfO6UYCuxqu24fPCXg54MzgHiE3oK99h1HEmieo49Hjfs4Z
whrawK6fupMVfGHonWD/KwIdEnj94Z3BpxXzd3puqp/dRlGeU5iPYp/ztJHH
PlmI+/h78BlqROeqe439zP1D/oWGV313Ic6cyHcs7oH968xSV9wK6Chp+EQB
q9OztTBfAA8QfaIhXnv+DqvNN9XTjmIeEt1dv9C9jWJiPUH5Dz2H5CE3V42J
vch6SFSr8D3EfBWaBOCtdUms5d+xrw2uE3x0kIPBC6B/h70P8a7Bj8a/2yxY
omqm5jJfsmGsgHkZeI4jo3tUi9gyxt0Z7jyfMKKPXh7Fet90rlLYN4UGGXYt
4SWVEZ+nzgWPql3BcHVX0Jk9b9DfQg8cWg2Od0AdDJWpQ16ZGhc7yHqd6Kv4
xucWNAvvNW6wbk1fyxxveMVhvow/E/NAumeIlwKcA9zh5c4A3v08Z5YrygXq
BWe4wpkjLClGpa8XlPet7W7KBy8U2kr0brmugH9XQ6cAtR779aBPD2+d5nZd
5mgecUfxPa9qzPERczHPfCxcrER8s+qfbqOgmUb3Pps+o59yJ/CuKfBg76CZ
wg4hdqjQf6HawO9ir/U7mo3Us+mbuQYscyYp5NGeQaFPsQJxuITwkg99ibHh
hJrlHFVZ8Y2qk9dIIZ5QncD+TBSfgC39rcFQ3sPCHBXaVveb3bCjQbX1iuLH
jOIk+jlX7AquByN2C9XCq4czxz2eGk4VhX4GvuvXQTliMOYRFmoFwg+428nA
/dKH1xHVUOinJaEjssIYWEKYxy/wblFfp2NqQroHaiQfc/bLRgV6lNAb8pGD
s7xrFP5dzNWhWznQvFbQ9xXQjCN8GcEO/a70cJ77ov6h/AidHb+tG0If1sIM
o75bAzwmC3MzOv+snXCza1L+vJH1caDJSc+iBO8WOj0UR7IR36iuFnl2T0Fx
HDv6qo65QJW6XwNPW3cZ14lu6SZinH3QIgxn5bitLDpPSejAVk9Xxr6hj14s
MDk4MX8Ff/P9uMqoiXgbQR8d2glUhwvsCwKrQ2vLiM9WQ50O8HX2oQU6Iegh
nraFuOT+inyZbB3UV+Oc7goeVphJo1dNNbFFGAiaFNBB8sGpnxMc4zoD+Jyw
TmSS8VIE+L+d2wBniuqRGxV0BUfae/zAvZ/1heDBRdjJQk+FPbkII0hjSxL+
AaiDEG/hSwWeIN4VZkwP2AnwQCMUl3ivtb5TA3rLPjzu0aeheJy8zl1jPZmO
CDrT3P+n2GGh/5tpL2GdNvRDgcd7pzdwv+sdYzy48+rO0G41PFGkTnkPMXaA
ny50Fan2isBn8LHgFd4ZxmeCb9yqaKlqFV0OP1js4Fp0D8V0M8I8kEy7DtWu
Wyz0jcD/LUp8oJz4AXBVocUoKCYIemfW9HQ21dNvs448egQUGyP03sRG43ax
xn3TovvpUx7nPAXN+T6hrdxLoXMA7rE13ushlgT9BLhMdBeTwJqIy+BYtvLq
804z+kOIQdgNoxyd/M19Gjg/gpoL/Y/R7j6OtdWNKgq9I9QtqInwLuld+xuD
Uz52RcDjR3zHPYKG42vGA+i1YBaCWYWP3jO4EL/YT6l8z1Jn7R95R7HEOOtn
OFXBz2VcjT4n5h7Qq6IzzRxE9B9w11ErHzZGWciP6OGgBw5OGv0syvkfoE+V
TTgZcwn0e3367pybsSednd6oWodWKOAD8M1+Nv6IoI7HWUbNesmdzl6958p/
Ym0dcLeBieF7i54nesBz7cCH7+bC2HF1c8JjTE5xMALeImJNX8NL4s7jGTQN
FrO2ziEvV2EeXhJ8Zj1hR1jbF71C7GxA7wH6z/hsyIM/uNMIS31qwdsMWi4D
g+3wfFP1vYVqSvhlNTt8jPd9ZtlH0XO0ss0WvL+CuXiO3Ur1Tm3gz4W5xAB7
u49/TveN78SvxtPg5zPXCT06PO87gl3WeecxUduez55qE41ePvDR96FfWF/9
mZRWV5u11X77Iwu6lzLYLCale6GP6h9L30e1yRKem+N9Q7+zvl2D8sQGaKFZ
Mmgp9rgjxD3pLoTlZmIHz0fdi7403i3lfL+Duwq6nJw/ofdEcdaC/i/V1YKe
RzHmH5hvrA8GK7qDiA30XN6JYJ4B3UW654pyoaJaTEGDlLB+EjGAnj/36eFj
Av4MdOBQY8JrBHMh4CXERIpprGuKGH+b0d6iWCmAaXC/qI6wsMtAdbFPeMun
/Ia5HbQjk5gBoT6Czz30SbFXj5niw7Ejgt4zzyKB8wlXJukdKXrv6m/3H7+t
HfepjmYuM2ZX5+3LVt+gNcdu1NtUo2XjuRwz7kdNU9I1WGtRThPDnU7w5MKc
zp/v9OVdf3xu8OBWp0rZxwsc2d+DP5FXktDlhm4HeJHowdxsm2K8d4h9v8Cj
nRK8ZKGuecBNqEnmS/wOgfWgSXtv8CI0+NgL7CbjGoEdY2B96EzAk49ipTW2
/ADPZbELEXFaoNfkH3XvY28Vim3gkyUbehkCPnvDwrtYV7FxfBFz3MAZaehm
8J4aeKRl9kV4IlrQiVoYPy5mlCuBOc0Wd6gFTihy6lOGStL3sqBBA50u1+kj
UvZ3FuGqyBwjSIITBW0/fFaqlayqgcFebOj3U96wKG759N+xRyL0aLcG71rQ
fIYnHGbULZxl7HUNbW34MSO2Y2aK3Atdpd5Gc8brVPsl4WUDPQ3MOTGLnWT2
Fp8HP1rt3JWsAdbSqC++Ni6zLhr0A2sGc31gX3Cyp6ReErOiR0VDt0BQrLJw
3wa77RT9f9w3BacFM5JT0W9EE7e2PF3+He9bAyPAa4RqLK4FMed51x3PcybC
FbxfQziXzltT/Hd+3BvIMXup3V9hPxx61tfF1jCfGhibMFw2+IKEY9i7FJrZ
mB9jHoI9FniIQ1sX/VPc3cbeIlEU/UAo53Nxg7cOWtmY/3Lvz3a3MjYlDIJ+
miDcC31tMc47KDoGDQXFUu7vvet+66NHBwzxuvMAz+DvNDpDQw6zaeCkYuT7
p0whqL4TUbsjziJyagTa9BSj0QNKIgbgbCEOoV9Lz8Yi/GT9686ygCUxr0Pc
AY4mDBrBz4cGIvoTddLzRX7CF0PdF0QHu6HAnhz2/8+7l6ElmU342IJeOHTi
oInwofmwqBqaw5rkiKFXB4vwzPj8fBk8wt6A3xu/WJhbIB9hng1+5xU3X0zz
shFHrMqGgRlGMXBfq8RycW/6RVGvfAE0oS3Ui+ftx1SufT1mE1aX+FqxP/qR
8Nz3mLcCnXZgJ+j0Qw8ZuRZ97JZBPdagw2zoojFd/OnNFOu8waKZWVfcFuyw
0JPDPiN9VuClVwgLU6183notPVbI0BbmrIDfh9qYakQfuQB6MdiRhoYetN6p
DmDuKXDNELs93bcJ4mfzKfGb9zTPtrAjRDgc+pbsGUDxxoKGZ/PEUkHvlH2k
CVtnI94BzwX2lxb4Dlb5JtEvtk1Uc+YIPEfgQmB97IUA79/gNRG1nWqyIH6L
nH4hW+6zPxTgDGDnMbOojobfEvSroVHTIz9Tdg41lpti7wiq9y3M2Z9MJRXV
8gq9MzyfdOInAa4MfVcRc24S8FnFLAp9FXDLwMPtGKwS94b3i0ecl8Wk4Iho
b65iTj9mDZhlgLtAdYj1Y3o697foOQnCrNDztjBbBq8AOb2KbQh63mKM96JY
kj7Je+rQWgBvs65TXV1wf0YvxaofWyi2xN7lXPFgeUJMdntjdpv9aPCyTzEf
uTBS06zKc03EugfssOgcNGJtY+xlveyNFi87o8XNnimQm6G5hL4itPihwxdx
N1lUt1rC3WxhP+3DYKKobszl84oZ97Kgv6BnLap5lQX6UuhR0zlOTnNLLPCv
MLeeYwa896XcezkmAveBlwz+KDT8gYsR83DH4W8AvT/sCE8xbxSZTh34c+PZ
ZOPOUozCbpYFraEX3Pcxyxbb4yn+LMBMyI/YgQSff5abI9bZb/HO6cHUx3ze
6hjVLcwQ4MVNcQb6Ctae+BnRP7OtvL1TB/lx+Q9isN0Os26/Xnih6hherQhr
AxNGwt56USurGnPyt8dSooedCX1oH3rCmF/QWUK/UwyNvyDeLP9anPTOiQ7e
KjHFuNGiZ8+YapsZRa/Cgj5pr0QzeVdpZ94vhi4dtFbR37mtfIdCbsa+NHyJ
4fc5IL6dYwE4uZSfWY/lnFEewTzqcvC7BZ1J8KVuTT8vCCOKMe6LVoZbFfUd
+hARcHIx88afgX499uxRPyXsj61q0TmCamrRI1EoEA+eNW5BbFCU91Afi/bp
leKu0B7RzlvJc3DH7cY9edQV6PE8a5yIYI4ALgYwIrQdUcvCgxR8reFukRjv
9hDw38VOGfiUiJHwTIBfquMdELcY2wTlGoE512ZjKGtOYI6Bvg/hC+a4I0/C
L4IwGuX4ahQjSizCTaJ7+XpB9ZQw3NmiTjDfAlcH2jZt7ZACp6nUflDMco+K
kvRn4mHvCPP9MYd+yxunuoXW8wwTuqOIqdjreSf0LT9v+DUfCD4Cn1Q95w3B
brQPLsGe2BlRuaySBI9vXmCDx+SjDwFNM4oDFrhT8JRHHxM+wJhpgKPdN9gK
T+YI/C1uM3fyXvPu4E7KLa+UUI5i7bTG9iK/aVBb0BkQB8Nl7PeblzjMsx3k
anwnzL0xB+7lbvDrBdXp2R4SF9O/iNL41wLxgPJuNnAYzhLlHvQZs79wHmE/
YcJUsl6qurwttBO4uAS62phNPhQc5H7NTaGN4lfzT/ZdRWztmr5aQEMZfyYw
Jd4xNIiBD6DhdKe5G3mC8xrlcT9m36RGetcpyntJyvuiV2wDa7VhnxM7VuBS
uPYxaBdH0H/IsbcwRsVZrxNUY68T8Ct6h5/jX3WMBYyLCEdBc8aH9zPFIsyM
2P+VsLDYWX4az1hcY9RDH9enXIFecDbyIvDb2vSt4rz3mKhmz2GduMbOInHF
yedzgPiG+SowBbTh6N5bZnQFxw2cGT8YAw3vCHooqAtQ0/5gTxO3l+8UTc0l
HJ8oZ0XQi6WfWYI6Ffx6cN7wua+LrxHrEm+J51Mp0TW1VsDbvYW9jGeL0OGB
5gbiFuJhyH6WvSHAPVocPynK7EnweIDHuA8/a+gp7HPvgqeOtTa4lXeHwMmB
JvbtwU6BXj96035wFrsAyTvTnZgvCj8A8LOPBV9g1sPfEzUftLjgK/Ko+Qrm
NTzrxX2GriA0P+iORqDtBJ4M1ULCSm8SR+37BGob9ICRsynOWuAQYsaJnAgv
evBPcqJbWIcZvaAt9lD2fcTMsZe9AfNVi+Ile9aDo/lG+gH2dDlsfGItCF61
wMmscGegRolg3kK4y6JzJUKJZ8WA6HZxb2i/GJ84JG41drCeJ2FM4PJizBmA
0Uvdr61BzrW8mwBsjNkgcg3hKgH8aSRms44vYiRmiJST+LP868wS0K750Pgh
QrVwJDvYaAm7Jec8xEDcZ7xD1A3wrsRMEucGmBq99eeNO5gP390sFJPt3tjn
w2yYf/ZZbwrvVuAZXQx+Yd7OB8EF9pfB36NefTBI8Henn2/dYrZhXSrEa3CU
qWbAXjS+Zwl6DEfcUdYYuytr4iLHUNxgDRs8V3BM8f/hZ6BexawJOnTY1QRu
BbcVsXlKureAVw80kvH8qJa0bjc7cG6vE14gaobmcd6e5mTzrLF6MMfCThv6
i8B7FDf5jGJ2Aqzd0M4Q24yUtcA4Trl8FZ4r474u7tVih3MHe4MC690V7Gbd
8qF2B9YKy7ct9umhHG+ddM+BT2atCF6n2H6CNXfoHVuY+Qxw2jIPFr7UHexV
hOX6w4cUvSvocmVTPZhEjALOXOUNEk1Ti0VHc7UocybROWyEXEN1cVXg2WLC
weyVhBp0UXDCojvE/ELgzcHRHYR/l3LNh10B3Fdo940y9vmEkSPw8GjuLeU7
Bc2g+vZCaNImMSNCDMN3xbu7Nh0S2J0JuTX9nkYzaFDDR4J9WqAX8oX7P3rX
D8M3CTtemFWA84t4GMGcFDnkbfMbYcQryX2xD8VnxhRw1iPwkIS3wbXpOPMq
uthrrdqx+WJicFgMSjzPHGDMB8HDhafBw+4R9LnEAuNmAawA/WvwUqfZJfA2
iTznDGHONLjZcxOB6BBbJa5K10BM9dGDv8foqjArbuc1YAwBvA89UrwT9O7B
vaGfAb36yNQgS/RLbGPf+76mJ75yY+Kn4DfsnZXgZ2KfAj1F3GvoKuEZj7Sv
I/w+lHV5M50l4rNgsrjBaQLfI9ZbgsYI/FTgU/Oi8RF6v4rqd4UZdH2vhpgS
ell86l4Sm0Pvij3eCPSxStB3pjiGXgT2o6y5ni2uCZayRzowb3O7Ls4j8hjv
l2CPDf6y6JlDrxb9ui32u6wH96k7Gf1VK9NdYqEfRXkVc03WPJmRFjx/RG8S
fWH6M8CrLRnt7uPzleVuRF2EeTfPkNG7xw5eV6MJ+CYRyrkR/DU01U66Yy3w
BTEzc+xuzElHTwcax3RO/Bfc4eyPNsLpzHPsK26FRd81G71b+h4l1ezK4kfz
CVE5mC3GGmGueSmugItdgroVWBX1IfjNk4zeEdQKOYkt3GvqESvkOwwtZXBm
MbMc7/VQeDb4zC3Ll4mFznE676WcK3hvPtjhUw5RTdzFrB0IbI68BD5lofs2
4zL08BsYGaqaN4d7r9AWBIbDWfzKi4kv048A87HPCuIaZnBUl7MfD/T1Hgtu
Yt7uqNRezuHIfeC2YM/wWHCfovzCGBXc2O3RlBibOsD1PrgIi4JbFNXdCr1f
1HmoEeFxhp7JBOMw9zzgoYO98SVmf9Z46JXYwLvF7E2XniPOO5dF04ra8pT9
Dcc5zFfATRwR3837eeAx471h/o0dEMRWzCjR18A8KxLbxLy9Dl5DNSq4XhCe
hM+YAMags1lCeVRRjFLo/4EzQ/fV2mOfYY2twW479iub5eSgboVOAfNIf3H/
8OkeJAnvMgbGzADa9fBRhk8C8CNqKWB59KUfd4stzKa+Ma74qGUIo6iVRmkS
HA3EWsRZxEbCWnzfUGOC3wi8Ci8JxHGc5Uy3DveF6K5Z84y+0DlKgvuJ/VHk
rmFBB/ZWQ14ARmwWLPEfdnrx7BD8Njon1iEvV3Q114naifms/Q9ew7ZgGDhu
6CH+H3t/4h1F8b0B4zR7WB32sA97WB32kOk7NBghbDIsQmRzWMTI5ogoERGb
RQiLMCxKBIRRAkRkGZQlZOqOo4IGRBkUMSLiqKgRUUfFj1HRt56L+f5+/8J7
zptz+vSku7q6urq66lbd5z5PGGtk2h5267mCYMReMM6J1gWef3D0ZaxlC9+P
Hs/w3hH7pccIh+j1YB0G62Owp7BWCWzMK8ZYwc3p+bC7uq+S4CvgZ25jbHRD
EwY8V1etecATCXYFsRgua6vp8e2U7wi8b8CKQBsRPDfAxWNdDt/Bd67fED9i
Aj+j++ow1m/1t6nAyw+dD/i14FtFDAVwCA57lanHH/hrCrsbuYJHAk8KMAnw
GWO+jvg09E1YK8I6GzhlYStjvWam9Rrwc+5Jwa5ilwKDBvzLFftH4PT/82Fm
a1tsi7k1ftYcldhn6vHaxHoXMPXwR2MdEutb8FXhfcLmw5oA2gDGBcStA3+E
eGPU+b3G/jTYgsPtPfDLgevc/C2abfYI5opOGcbMPcaHaeiLezubqEq+8sAS
AKvmRj+OdE57g/CoL42+gfE27bY2SstU4MdgswFL+Y49Laz7bPeYaIrM0/H8
WAsA7gptERyFb0bvF65C4O1aRmsLB9cY1ytip2B8h30ETg9gF+dZx0XfMNN6
FXMvwbRAIxDa4wX2Z7qPs9AXn8RcUs9DRG8tJbRZ5hq6PwIGWrSc4ONG+4H9
BT0/YMT1PN6sGltmor3o7zTcMr5eOX0boLsURuzBc7Ezoj01JpZvVglWALcD
9DCVfl7RHwcWBvgQ2KLgzKwYszHPcfewkoVPG5pmeI9t/RvNrYmzEu+FOARg
3WFPIFYBvDTgZgIfArA0KjjZzA98hPgD8yVnTHiJ9fdTuN4eJHgT+MssX0v0
l4WIHxgdzDfZcdWMhK4Kv86N4GPmDnuEG1gj6EUAAwjONj3miN8b6weO4Cqx
D8BVgPUAxKAD+442r+f9gi/EWFHNucL0+HfCVyMYyR3W+9pG+w7zGPQJgq/s
Yee6YQtjTnYpOEvsFcT7YU7oNpq7we2FMS4SnCJYf9jomCPAzs62wzIPRDzO
Det391j/K8I1eNj1icSfIh4E/k/dH4rGlJ4LKdij0PpCzCs4OKCrifYG2wW+
DeBYXzQ+KNQ2aBreN/rFOtGqZoNoNfPT6A8Se4g1Zqwh63Km3rKfcvePthCd
e8RyYW5yKDjO1N+JG9g6PcarjonNqoeVGz7ne8A8Hrpslvh+M3clPhAdP223
u7WNI9gRYH7hT7CsXW7MOcFZ1DW1oawzQiME/eJdiaDKC10QjQ7gdM4FHzCL
Az+YHZPrU0NvdcIY3tV43n3YOV4t8UbUHN8xdcqaqtBPQgsh3/+RmZxdg5qE
apIeO0zYg2eiX4fBPfBD4qYKBs/DNwe/ktkqcQcNS25H1TMrUR1HDtarT+o5
ndoTvyDYa+Af9VzUPBj72KyRWpk+T/wo69HaDoIWg/o1mK20fQFeyULohuYH
x5jl40+jHzJruVaa6+y7zXT7JTf89jHruzD82njvsIOBDy2LXdG2l/DyAOuI
uehk41B4a/QsuEhPYlzDmldF51Iz6BtpwmbStlChnnOKnQ5/CbQOdf27U4NN
JbYGMcyIZ06zmmFtFRz6YT13FZ0nzHvRh0CjD7YvOBKwPgbfLtaBtlnDJS4e
OL1dxnl3ut0Ktqd+b58ILzo4bCO+KaJBhPnlPF8f80vD78Y4gPgi+AWBAUU8
KXRPgEXYb491b7GHuBGfD54QPLsutxu4Tei8AK8CnCz6QOiNAq+HvgzHwd8K
jAz8pZjbgVM7J/C2+YLznKnPw7Zww98KjBXaGPqnO6MNwfHq3hcfbTaOrxU7
Hng7tG9gHYFTre1fKT5u4OX1HBx+VTfW3sDT3Sq2wcR6JNYzgdf4O75YnY5O
FQ5RaDbp+kzTdp1bp5E1Y8xLMIdubQd0/Z0TLCLianW7SIPOIvQlgNHR/YCs
n6PvBWc0+jysoWMOrW3tsLYX1NrYKYkj1t+DYKW/jP7sNgJPm5P8B018/4gx
gm9Ezz8Es3Q6PlXwuXpsciOWBT6tt4I+WWMAZhfrOZt8GcJZBW07YMmxPoL1
hBqOZyTuEWt5ut8I63kV4tmE0wialmirwBZCkwS+JvTJs6NH3QnrD/eHdol7
kP2yW78XN/zO4Jnx231VnjUKOCXweBaiL8L8Gfa7ngcJHkDPmdPA2fBoPFXp
fk7puYq29S+kYf1Cv0cT67TAFsP+e9PwCYdv/WA16GrBl5UGWw79NNoHMFXo
/4LWedhTYbxz2InAhcH/CfsRmpnQJDSsckqPPWmYU8Ang+8E6+7QY+pjbwtj
zNXvRPRKKieWArsXBlerI7BK7Dj00dD4haYX8G3fGwsEQ6H7F1XeaShdL7pd
tAIWIy1gvyt+cdiS1a0VWC8p/DP6dxiY1RHGXolf+dDKUu8a01HnbsyzF0bT
ZG0A866L9vfh7o5cdTT0qXo9UazSfDtUA6O6bnsb0oAvx9oC5vPQyNDPVKi/
sbAe62StFFqH5R226JYgPghxnNBCA88J5kf6XRd8bswLz473As5RYn0QiwCM
H+ZB8KVjrRA4WcQJABer2zXsMeFo0u9U6bERuDjBdPzsXKj0OBLubWwT7ntd
ByZ8khgvYQusMt5W5x3fCa8tNBUxlmH80f3cSawxwE+M2Fb9/ei5dS/R29Zj
ruAmoccEzAc0SrHuDswjMB59o9vCx+3LYcSWaNtONLl1PSvdHwlHDXCd0IbC
eiJ03BAToe27wqv2T2HgABp616i7XC+pMcYrwhd9PbhAOeyq4H8TrD++L/iV
gY3Vfa5qHQqoyYmDapJ9UDULPSs8JRPjXYSnaYGvn8SqQl8RMap5vlHCM494
nY6OLeLvre5fofC9AietbdxCYKCgGafnPMJZD769R6MFgq3UtrBw1KHs8I+C
G/Ev+5asBThDG9R8f4Ha7nhfvRB/T3h3MPbrcUbKom1U/X03VgMtp9ofHKta
BNarSd6D8o6hc4kYDMSoweYBNjEcnyQccy/E3sP8V7SyoDOJOF5gR8FJhbnn
46FCVaO4Ejt9d/DHse8l3uUt26f6WE0UfChYe0HMH+wPYG503ywcMLsc59VG
Z5Hy2vuEGw/4/kq+paqqa7nYf20SAXW/47DyB0+oQaGXgY0WHVBtZwi///rg
O2qjo0i4wcfZ+9Wo6D7l9e+TPeYpswJHlde7T9okuCHBlwUsox7DJEZlrvM4
YjUFVwYf6PJEVGWGXhUM7cuWVz1q9FOIAQB3H+LzgCtHDN5oO19ixrQNo97y
xzH3VeCdX2CfVL9a2RIPhv4LcyR8/+/FZwgODroEeB6U6fFgoToUuqSC3vOi
L4Y2ilgKtGVlT0acU7hWvLIChg7fUdj1udzjc8dPiGMUPnP0MfiGM+zdYfhL
gEMG1xew3ENDeerZ2GnhJX0kekItdUaxTqSq2MskBg0x88D56zllGD5UPGv3
xFa1znda7Qi9rx50vS7tCTFbTeM1FbCfGIOBKzjumyDPstL7ltRzcnCt6KqN
DqaoNkYdia0YFe0geOqPjO8x9ohWBfoU4KmfjnvEXge/bo14JfjABCeMWBPE
oABrA14TaKbhXQNv1svXGHpqsjYF3CKwsIhN0PPSws+Mubr9F4WhvYSxG761
Gs7KEpcN7MYku6uso4LHHNqJiBN4z/imsE3cIdoPj/vSBD8L3Bx8Kvj+4AfD
+hTW3MBFivkT4k30XFZ0Ue81OoneVlVjeRpwGhjfJkcPSty3Hgsk9qReNMd9
Ovql+P43WUUyNkIfGfkgzgo8Qlh/amSsTdPzcHD36rHggjvJV1Hb5ZVN+Gyu
2b/I9bo/c+u2IfxVe60P5RiwCeDqBC4Ctsy7zunm5eAcGb+qOpcLn0fdYI7Z
KL5G4n6DwZEm1v/WBweJn0j4DB1rRVfZDr5hbo+dE24/zJ/AyZcbek+0lnU/
IlyIE0IHZG0VmjbgDH3LFxct1yL/1+JTAyfglsAZ82HXCXN8fL853XXEXBl6
S2LN3018Zf7P/5fp8FalOsVVqWLMoBLvb6Zu0+IfZtdVsyj0tS7nLbOZtxb1
jjemVKsp6bk0dS9qRL1yGlOvgsaUFmgmum0DilqS6W1O3ZOSqW1GHUrOqEF6
niJ6bk2yaop93yhaXbhmHYGqpG1p0nYqNfHXpDuTGoldP7X0Tsr2uWll1kBa
mT2QFgT60URXVxpqtaX+JS2ET6RPsInw6g4obknDc9vR+NTONN3Rneb7UunJ
qElLi/rTyoyBtCE6iHK9w2hX9B7akzSaXk25l/K9Y2hHzgh6tvRuWlLgocft
NHo0qR895kqjp43+tDb5btqYnEHPxYfQ5kQGrbcG0crgQFqcRTQ3pQ/d77qT
xmV1onu87WlEaTvheBqVnEL3lnSkiSVdhP/pwWgPmhXsRVmBnjQjpztNyexG
EzK60JiUjjQ8ox3p/k50PceUpNAEqwtNLO5CU7K60ZSMbjQpv6vo3XtDHWiw
sw2l5TQT3hRXdiPq7WpClt2SRha1J/390AOuHpRl6XtkdqfJsa40Oj+FBhe1
Jj2HoC7BBvIOWkXvEM6ULr4GlJrRlAb5W5O2LWh6cneaFehFc2O9aXasF03L
dtHYYEfSbVfea7vkutTMX4sal9agZhm1hNuvW0ZD4a/V8wsakdqe7k3qRPfF
O9P4kk6k+xnKyGxDnuwW1CuzMXVNakidsutT52h96pbVUDhvUS5KbUF3OVvR
XUmthL88zW5GPV06faIBdSyuR+2tutTW0uUuuYOcuXcQ5nttkuuI/neH5HrU
MUXnaTSgTvn1RfcIv+X/QH3S/QV1iNYVDphWqQ7h52qRU5uaOmtJW6zvrUb1
HHqLJlHtzCrU0F+dmuTUpJbx2tTadlDbnDrynK2zHaLX2CxLX5dbQ66pk6Sv
8VYRrt5qiYqk+wOqUlCBkjIrUvXcStKW62dVo+SCGtQ4qu9VUI3AaQP95BrR
SlS9oBLpfpVqWpXFx13bd7vty5ZThWoVV6bq+Tqdrbeg3qzb1+BeVYIVqGJK
eSqfbBC4PP92/aPne3+aN6zfzW+Dv5pf+RLCY3Pdf9Ms9f+NdTXC3NeRUZUc
wapUO6sKVSupSEaoHP0S/8P82vWLCS6zS9Z186L1vfmp84YZ9/1sloR+M3+O
/8/803lLz0HLEbQrsd0K/QPMpfmLq9S87rtpXvP/gnVp0S1HnNPHruvmh74S
88NQiewver83P45+b34Sv475m3AaX7ZuCL/oRd/35gVHieAYzjivmbovFm4A
Pb+R/enEl+YZxzXznO8b4Vwv8n5tvumKmyccn5kHXZdM3RcLR9E2+5z0jS8m
3hcNB3CyA/twOHHJPOIsNo8kPjEPOi4JLzPObQudMwP+d80VoTfNJ1zK1PaJ
6Q+cEJ6jZf6ocCe96PzABHbmJVcM60LmBue7wiX2cPy4OSN0xLw/dsicEjxk
To+FzCz/6+bcxDHzkfgJ0Zd4xFlgzgsdN7V9Y2Z5Xxd8oB4XBCMFHg1t/wiP
wxBXnpkR2C0+8Xt8e81RRr6ss43z6748cACcM6bPPiy+Ap/vMOLtzHHB/aL7
ODy0R7iJ7ooHRccb22DHbvEvDHPtEc055K3tZFPbZuYg62VzcPxls69ru9nJ
t8VsHF0rnJPABkAbo0F0tVnPsdps6Fsj56Bf1zm+xdT2r2gfAmOhbXzhxXAG
Nph6TBT+2b+Np8wvnA+Lrxn6lVhL/cn3uGgm1nHmIGZc+IXauTYJbzF8W3Wi
q4TXB3pa4O4Fx1FxcLb4r68G52E9wvwjvug2Tia2QrAitZwrTfg5sLYBvZai
4HTztHOa6NgC83wh/qCp52TC8aPtQDkPnlxgFm/Yj5kJ30LR3SuxHjXj1sOC
38B61ylrqvBwhKzxsmbwejRT8KcRe4rkgXUzbWOZwJ5CR+QdaxqwDsIRtNIa
aC6w+4mvfJavl+wxH98a13P8+D3CTfhqfKxwpbzk9Iovco2Vbmo710RsBGKC
BxhOE757baub9wTbm9ArAZcSfNnwNz8eTDOz7J5yHBhN4AXAt6HHXRM4aWDY
we+ENPDxQYcWmmR6HmAiLj7T7gxfkHC2w+8AvhDEceKeWKu5z9lFeO7AV6PH
P9lD83iSr6vwjwI7Bv9MFauC6N9CTwvzV2A7gSEDjtsMNjdHOVNMxF5k227z
6ajHfCpKUjfg/RwebGcCtw8sX/tgXbOJXdPUNq7oKWGvbTFTj02C98J6OfwW
wFJCsw86qVjnwjoauB/hJwCvzXXrpmjcw78Hfxnm0yeMz9zAJQPHDhxAecOA
foMbXJLfRH8RTW6sZ2NeDJ/uOuu0G75T8C+/bXzpBs8f9H1hgwIXrKzPJX/4
IJAeNuJGo0h8DsCOAYd4OHpJcKNYv9luvO/eHC1yL7Oj7rnGcTdwG+Oj+93T
jSPAtLqhHQXcAdYAEMMKXw/iNDsbz7mBB0NMNfiD4IuBDxdrgkOtPNGdzrJe
d2OtAXYu1njht2pvbZI1uTuMVRLDCbwefFfQxtXzEtFAQwx9regz7kbRNW7w
N8BvizgZYCiAB0CsMHhbq1jL3PBLVI0uk3UJ8AGA7xD+Y+DLgd1HbDUw6sCL
ACMJXDL8WMeMCRKvBD4JxKgithY2M3zn8PtiXRZ+TXC2YA8cB7C6h43xaUOM
vDTEaALXrudsiHcSvkNgzoExhpYe8F7QWYcfCmtquu2FEV+DTd9D1kb+02uW
eEjMz+CHhg63tuPDeq4rnKP77bFhxGfBT4P4FGgdIkZEzxFkbobYPviKsY6m
37PoViO2Wbcp4XXEesIp60vhkd0TvSDrVuDyAJ/Mq8bHsqaBGCzMqRCPl7D/
EM4t+Cqw7tTUqCValdgQawkODm0TqW52Q4W4ccRNULy5GuB0Kk+whRrmbCcc
AiOc7RX4KsY7Oyvw5OjvWWKXoFUNHBtiRpY7B6gV1gCJzYB+8TKfpTYYt9c1
wLG11TlMeKixlgieEKxdgE8G6wyHfOPUAd+9EieENR6spYGzC2s3hdYkVRic
pE7ZUyXWAXNlaCRjg/8bPAfwcV/yzZL4W91ulJ6DCUc2OGB1f6sQZ/Sj83H1
vXOBxEBc8z2iwEnyg/Mx9T9rkSrnelpihSs7lon/vXJsqcTN43+shyXZy5Vu
p0rPl4QrRrdpiXPFGjA2YKnviK5UelxR9X2rVRN7nWruWq9axTeoVokNwomB
vR63lNPeIPw7mO+3tzcJx6P+jlQ7xybEl6jOiS2iRYh42TuNrcK/ob9D1SOY
Cxyj6JD38W4TjGxvxzbVN6a3xDbVL7ZdpQa3q36J7cr0vii6hv2NXaJHflc0
qPT4KVwj4JfE77sceosHRQPv7rg+F3xZDYntVkO9eUrPZ0UzCfuh/rzbx315
So/tamjw/7cfGtC/jT1Kj/eSTrdd0RZA2uG+Peoeey98nMKXMiaqt1i+GpXY
J74mbUPIGo3Xt082bY/odnZbs21kbK/8PzywR7iAoLuJ63A91nHuTbwinDNj
7dvxgaNi++Re94T2SqzzKKdO59sva1MTrANqovOgus95QLbM4KtyDteNC+1X
MwJHJH53XOD2MTnu3S/XQUMKGs/Qa8F9kQb6croPVPe5DvxfntCXA0cMeGSw
DoY14Pvjh0SHalLg4O3NOij8SJPjB4XXyBfSaaN6ix1W2sZS9ycOSR7Ia2JC
39uv7+07CA4CNc0XUtP8IYkdQt64BrG92GO9CPeaFDoo8eKSv/+QQow/7oE9
7jM5dlDywxok6mNi7IBg9lF+PW+/fX30dvlQzvscBxDzosZZ+9WYuK4Xv968
+aKpJXWhj4O3WtuKamzoFXnH2LB2Je/Pd/tdjIzulWN4N2XveIRDb9E9t9NZ
e4UbYIjzdtvJCO7W/c4ewYLcE9wr98N7R97Q9UMeaJsZvt1yjbTXwO32ONy6
fZ3cw9irhsX0cStP1i7Bv4H/gRlHex3m2CPtVdqt8d/9dTvH/bXdKnniusHO
3WqQffu7GRx7Wc7hOmn3uC6+W9LgGwI/xkB/UFmhXcKrge8PsTqWf5dwbGAd
D5rmHu9OiXdMs3fIGjW4XsEDjg3fMzTFe0f19514Af4W0SfFej40hVyBrYLF
BhdW1/hzomODDf2GtpdVx+hmleLdrNq4NgrvAvoc9EVYy4UGkvQn/lx1Z/x5
lWJtlj4K/Ejof9DvSL9ibBO93fbBTaKFhnhZPXYLP1KbqO7LHAH4ElQz61nV
JLBONY2vU3rMV3UcOaKdV8uh+0Xff/1iYqX0mdCPBhdSndjtPhJrgri+obVG
1YmvUtoeUDUcz0gapNf2tmhyYj2ygs+WDXpr6JPxu2LUFo6zisZSVcHSv522
+O+hx/R7/AmVCC4UjuEfjcfVz/HHJeb2urUA8Q7qqm+e0uOycLRpm1/0cWXM
MOYqbdurK9Zc+R+x+OCrgJ/m3fg0BRw8jkHnHTiBT5yzJUZY2/zCcQKuMYxV
x4MTxJdSEJwo3BCI0w9HJ0lcLdbmsT6KsQ3HcB6aLtByQNyqtmXUifgEdSx+
n3BVwt8ADi5wxSHGFGPlq857JQ5b20HqQPBeddB5+zjShYLjlZ5DCEcb0ux2
jlIvGV5Zrw7aI1XQ0ltwpAKWCGMzxmL4PKBvi9i1NcF0BTwYcFbg1AJ/uh3s
L/xK0LHHGK/ta8EqQVsJ2MHpRnfBXM+N91aPRPsiHkI9HO8jaeDffijaU/iF
wNMz2pciG/Q0EVeCbZwlOHjhfxkZbS82h8duocCRp20w/V00k//dzuYqLdhM
AQ8A/wOOg3sOHCHwtadY9ZS28UVHHdxEPePJClzYwCW1cdbR421dOSe8AlZT
BRxJil1PgXsHeYBnR2ykaC3BCGHfwqqt2lp1xFaCLxfpENPqsKoqPSeQOFhw
YAO7V9e6vTWKVlfgSKvrS5L43KrxCuL71fOXMDiCEA+LuJFqzkoKa9LQkEMa
PV8QXpDyUZ3WvhWG//Gm9afocoBzAT5A8DAhThx8GV/ZifBn0RuCDYA2JWxF
8BNgw/+n7C/D4P5GnDP0pqBVCT4GxNJD1xYa1AejH4cRj7HbuCB74EZfjxbL
OXA4wbYE9uMF45ysoWN73jobBteWnm8gNje8zT4nutawR/UcI4x47KejEeEV
R3wVcCjQxwR+ATwh2FYbp8LgrAGXAOxd8PFjm2aFwo9ET0h8OzhoEf/9pMHC
OY50wA5BYxW8BeA502MmsFphcGdgD84e5AOeFuDy0qwdEjvhju4IIy4Rv3Wf
LHv8j9gQYMx62LnCkwZfOPhbdD8ahm8ZmC5omCAOEXy50PsFLgnYEnCh4xjw
e+BCgQ3/j7FE+HTB9QF+bsSigrNGz3XCwG/9z14k/D6w/bVdKvzF4JH723hK
NpyHvwLHtT0b1vN+4WUHJy9ilDC/eNW4F3yw8JuFgT3APZFujZ2u69wMw5em
7ecweKXg/9P2scSOgIsS14JTRNvaYcRIACsL/paQPR5xDGHdtyGGQnjFEdek
7X39rtLD4KEExgvpy87p+bWkBS8cYiWQj55XgVdDzs+3U+E/DyOeG7+BY5lq
uML32O3BVQJuKIlJB88TtGUQFwM/UrJdAxxjYcRg9DQai74HfOO4Hr6UEUZ7
OY65WEWjvHDNgvMJfhk99y782/hH5mvwGSEvxJCDxxdxXkjztfFLITiF9Hcg
cczw9ejvTuZ1SK/7gDD+x3H4msGhBo42cFmAKwexkauMtwvB76HnluAmKkSM
Oo7ptirpgV8ArgxYLfCo4H9woOK+4EUBzgVxeseMy3It9FKAxQQmELjMkca+
Qm1LSvlQTmCEgC2HhjDKAH804veRP/JGWnA4IH/MV1Em7IFfRRq38WJhR2NL
IfgmdDsvRAzAXcZLsgd+eK5xHLh7Kf9E4yA4qXRdLhStAN3OZNPtrxDaJ4iZ
wW9g8cE5Aq413Xb0c/eEbkAhdE8wdwbuFXh/7B81+oETG+9H+MJwvbYVCoFR
0t8T5uMnMefuYGxGjMVJ6HHAf1dO/4EjG7gDcIdh7o7rEQum5/PIR/+/UPbA
7iK+GnvotABXgv+BqYdvEnljw/3A9wI8A3iogEO/ne6O//uNdMAYACOP9ODd
QxwY9igzMMm3y/Og3A98OTo/4DULgDHHcT2vl3Li3viN2BGk+e+ZUrEhVhj3
QFnB/fzfc/YFdg55Iq2+LvU2DrTcCTzXf9cXAGcg/xtPyzFw5IBHCHzi+rhs
qNPbeZZLxVoI4j6w9qGfsx9wqp8YP/RDTIjOox9iDcFJcLsezhfgndx+rv4F
t8vb/79yPN0Xz3ibD7EcOBElb7wn/I97Au+D9Pp64CFSkS/4anAOcTaoM8Qo
A1uB58d9/ruuL+oIdYV3iveBPdIgbgzvGu8G1/33bnHNCZQR9YByIy3KftgY
L9dgwztEmf8rRyrqqywd8sI9Ud7/nqcvMESIjcMaEratxnv9ENuHerhd5+X0
/otU4IThy0XcLbjhBxu7++E46hLvAngT1DW4DDoY9fDtyrVuo3ma/o6g4Z6m
+7Y0vDs8M+oA71t/P2lYn9JlTsM98A7xvKhX3ab0+yqXpvvANP099MP/eI/I
F/fFu0T8zlrjbskbPuR3ja/leVA2PDPa53/tAu+sH/zm3xm/STn1d5yG+Bms
g+lvFnzxafCp4364D8qOZwVnK3gAUUZsSI/nBecRcD/gxtPvOQ18PeC3A85Q
j0XyXOA8QNyaHgvTqhkr0nRfAJyh7LF2B9yhHg/T9LxAYmaBr9Z1K79xvpUR
SANvnp4zyf10n5lWx8iR9Txo7On+WrRLdL+ItTw5jvxxPbSicB/scUz36+C0
kPU/XIMNXHKIC0J6XIsN/njwAel+9v/WDLW9lIb1RhzHhvvp9yFlQDxkWb7g
Z8U12MARjxgo7JEXcGngt0Mcrx5T0nSfL+nAu6LtLvkfG/LH/RDPDGwweKQQ
lwQsLnBjwCTgN7gIwJEJfj6kR+wM8sU9cI0e59zAQjrsqhKnBuzm98bNND0u
pem2JxuuRwzrbQ7fypJej8du8BrgHojzRt7gy4bWsW4bck5/UxJzjOv0eOvW
7ccNnDJwWg3t6pIWW1u7juglgZdP2/ES5wOccXcjGfEc4PSW8/gfmgpIj3sA
a4hz2ANfAc5GpIc2AvICLwXuB24E/AbHDGK/9RxF+K0RfwS8B3jhcLzsN/Aa
+B8cmjg2we4inEe4B/4Hv5b+LiRGCccQf6G/FUmDtNNsl1t/M+7HjDTBf4BX
HPdEvtj0tyt75AFeV5xDWsQzYQ+OWeSJrewZ8VwoD/LX37CUHRwnuM8cu7eU
F3g/5I21b5QLe21fSXlQbuSL30iHc4hZwB5lR8wljmvbyw2sKuoHvHDAb+Pe
qD9oxuDd9bCT5V2gbsvqGxuwzKhjlAF5jTc6y31RNhzDPXAvlA3X4dlxDzwX
0qBe8VvPI6VuUF7ETWr7UcqNeip7R7gP6gblR50AA4z6L8sDeeNaHEMalA/H
UUakR/tAHoiFQZnwP9oPylZW36gf/IaWRhO7prRnxCqj/qGVELAHS95I28Co
7tZ2pmBYUVbESuC9gwsOsWguu5HbsltK2VE27HE/1CXaO8qBZwa/qbZ3ZUN9
oQ2graA+8bxIi7KgXMhjpT1QrsN7xrX4NnGvbnZD9xCjrXxH+O4Qd4w9+Llw
LZ4Z77Ps28K1SIvy493iW8Y1iPUAvxueHd+0077D3dioKfWA9LgP8sT/+NbR
n6D/gSaFtpsllhbXIz+kQxmgv4LvXo81/3cN+hP0X/i+8XzYUG+oe8Soo29C
P4I6xvWob3BiI0YQe6RBGdHPIE+UG3HNuA/So9y4P7gAcQ36MdwX51A+7Mv6
qnpGNeljkC/Kgb4RWgPo68r6TBzDM6McZXmCHwL3w3Og30UfjPzwTvA+sUcZ
0ceiD0Y65ItyQk8G14LzEH2unsNIv45yltUX0uKdoHzIB3UCXDj6avDjXDBK
5BrUO8qIOsEeeSBfPT7LfdFXI6YI/TrGUlyH58D7hc8MzwwOX6RFvujfkW9Z
OcHxDO0Z5Id0Pxr/k3EIfI64RtsXcg7HysYQ1AfqDs+AuvuPF0ryRXspG2fw
3IjdQvlQfxh38LxoRziPfPDMZXliXEPsOcZLPUeT458bP8m+7P4oK85jHEW5
kB5pcQx1gbGwrO7OGNckXdlxHMP9cF1ZPZeNzRircQznUF4cx/iP+FFcjzQY
b5EG+eI87qPt0jTg1GGXYCyHTYDxXM8l0/QcU+wD/I/jsBlgg2BfZk8gZvgx
ozBNz+ckD+DgYV/AjsBxcIsgL2DMJb74P1vltn7b4TTw28BGAo8g4gL1PFPs
KbQFPf9L0/NCsYcQs4s0sKsQMzfC2JsGTjbYXLDVEF8C3DV0a5AP+LNhh4HH
CP8jH/CNgc8QNpaeGyJuLw04SNh5+B+/gaWHLg1wjfgfG2w92H2wuRCTiDxQ
ZsSWg9MDZUGZYJehfLDdcAx5wFZ825gqNjXKAD4TtAmUC3nouur3mTFXyob3
hfYG2wv1BTsVdjI22KeoV9Qdnhs2JfKErYo6wD1RbygfbFyUG79Rdjw/8i97
Xyjbf3GBkg526pMGSVknG4fSHjKOSntCefGeYdPiXeB94r0iD+RV9sx63iK2
6v//cbxb2KqwExFfiD3sRpxHPqi3Mt0ntDPcD3ZnWXtEXaDNln0XuBbnkBbn
cB2+cdQlvnu0abR95IN88Rz4H3WJbwbfX9m3iO8UNjK+RXwTSIMyoq3jXsgD
G75NfGPoQ5BH2bsps6tRFnyfKEvZ94ayoE/FfXANvm2cR7+F8uM58C2jvOhf
cL6sbNjwTLgfvlN8xziPY/hW0QfhN8qFPgvjD8a/svEEYwb6Jox3GM/QF5aN
NxgTMEZgfECfh//RJ5cdxzH05xhvYffCToU9gLEQ/THGDIxBGIuQHmM/0mG8
h22CsRr9MWwW2GKwm2C3wb6BfYwxHeMu8tVzSLHhMN4jT5QP98J1OAdbATYE
bBLYKcgfOgSwkWA7ldluyANlKNvjOhyHXQVbDjYJ7g97DvYxroN9hD3sL9hw
sMtm2j3ENoYdW2Ynws5BGtiKuAb/I088L/LFHrYp7CrYYHhW2Fr4H3YzMNHA
hjxup7mfMEzJH+lhi+E47GWkg82MNDiGsuA6/S26ESe5wh4ge8RkAWOCPTjD
kN8S2yPncPxZY5BwjmKDLQg7DLgTnEdeyB9YFeQH3eB19t3CBY/fSI/rcd+F
hlvsfqTF/ziPPJBX2RwCzwAbv6z8yBu/YRfj2v/iyqWsuAfuBU6ooD1StEK2
2cP/r7yI6cU5xNAhdhWx6+B0QDwMzuEYeIOgWYvf4MxCLDvwNziO2HDE4IHn
GPnjPDjMsEceSKv7SNnA4YS04MIHVgf8IYiNzbNHybW4x2t2ppxHfthQHuB5
kBfyRX6w7cHhgLaCGCvwtIJfAnHteD7UCWxx8MGV2I+6r9rzRFMA7wvvBffE
vYFnggYauE/AswyeeDwPeGHAKYJ6RH64N2KiwVutxwnh50I6lAVlf8O4X/jX
wM0IHgNcj/Kh/hDDh2vB9QPcErTawJmL5wU2CWlxPfbYwOuGukI9AOeP8p2z
H5Br8I7wrlCHKAueD2nxLMA94VqUDbgn4J8QQ4hzyPeIkSl1gLzKnvmwMV7S
4T4oG45DoxsxbqgPPd5JPaBugf9CfCeO4XmQ1wf2TMSVC7+HHsclD3AooL6x
R744V3Ycv1HnqAu8M9TXDfsxeUfgvQQPEs4hLfJDOXAcfBVlaRP2Qjf4dpAW
7wJp8Bs8VUiDvG7aT7gR+43jiOXDdT8bC+U37osNeoX4H/GleGZch3zBB4G4
ZHBI4Hrw5qD8vxuLZEMa7HGtYT0tMXjAplWylsr/ZfmizCgDeAKAW0Ma6MRB
cxV4Nuh/gOOqfPRpSaNtJvnm8T/yRLxnN+t58KFIOjwfnrXsnsDNJdnL3eDl
xoa4FGDmHNYqidHHb5wHdg+/gcErw9YBV4fYaeQBrRnEmgCrB3we0gGzB2ye
pNdpyvIGN4bkFV0lvxHjgjhvYPmA38MG7mXg+5AneGTxG/kif/ATQhsTz9Ta
CkhabDiHDfwZwAeW5QeOR3DGIH62rbUR3DWSBvdE/CfqCHlq28qdYm2W3+AM
AfYQuEXEc4KjonN0CzR6JB+kLTuHPKDfhj2uxznJL3r7N67FPVA2lAllR7mR
Bnvkh/MoF/7Hc5Wdk7yjG/W4ukHqCeXChvsghhn3QDmRVp5Z5w1uL2AgEd9f
dh3eD94h2mRZu4ROLza0JeAjy94Xrsc1KLe2T4X3CWUryxs4S9S3lEdvOId6
LkuP8pfVL/Yov3BK6nNl9Yt6Af8YNG9c1lY9539OzmMDlzvKjT2Ogy8ZdY10
yCvdeknbBrvdE6wDiIuV+sN3h+8C7wGx+8CUjonmSzrEfaKewHOAeOAR0T0S
TwU+7m7281J/0NtBeXAMPP6oT7RhPCe+JfQf+K7gf4AOAmI6obFRNVoB+BL4
Gvv1sl9w1/ZVMecF+whH4A5rhAlOeuinIlZqin1I+iPYRrD/YeuDRwm2Muwh
9JEow1j7FTc4OxEnDO4McBWBpwf1jj7jXWO69PnoO9FH4R2gzOOs/aIzoO11
0YWHXjz4Ot3RHVLnaAP45tGfXLJnSf+u51qy4fnQJ6HfgXYO8LHYKhpL5flx
Dc6j3SANfpf19ej7MQbAHthkZ4i9gGeDrxfYgsnObqLxAT0JcEWA6wWasXqs
C3vtfWHDV04tjKaJTiFwhsDCAY/V1fG80s8reBBoYYHXCj5l4GGhFws8LHzU
4LBqF6+jvo8/quZ5j6vrvpuqbUEd7lvchLtkNeBqqZX4tVCxSve9JBgb4DGA
aQVPODQOoN8S8A0WnUPgIScEDqjHXIVqWSCqbPsNNT9QoCY7D6nBjt2Ch4Se
G3BR0BkHBgxc2wH/uyrk/USdta6pz+M/qu+dN9UN7+/qeuCm6OV86/9V/eT7
nyr35r+qVrwytzTu4DtLG7IZas53u1rzYFcbHpHankemduDRwRQentmOR+em
8GhfCo/L7MT3O+7k2am9OTvbzatKBvJzsSH8suXlQ/5xXFgwid8u8vHZ7Bl8
PjaTLwYf4s/jc/n7kke5tOBJrnpqGTe4tprbOTZx35rbeWhGHk8sOcBZua+z
P+8EP5p8kh9pVsBzbxzjrPzXeUbBEZ62LsTTVIgfqPkaz44e5UdSC/gJU/Gy
YJTXFJziTWOLeOuts/xCl3P8Quo53lp6ljennOHA2Hd5XfZpXhM8xWuTTvOG
i+/wlhlnWM+VeHdxjF8tuciv7SjmgqOfMfe6ylH7C456v5DfhelX+Lh1mV87
WsyhwCd8OHaJD23RW+4lDg3/hF9LL+ajBZ/yibafcfjiFY7kXuU3a8b5VPqX
fLrkSz6l9BbQ26Qv+U1XnKMLvuA3K8Xl3Hs1v+EPV5Twp0U/8FXfTxxf9zPH
F//Mn6f+xJcn3eBL9nX+0FfCHwS/5ffafsNnel3jd7t8zaeLdV6lX7DK/JyP
51/mUN4nvN+6yC+HYrw9do43VzrDa1NP8zPxN3nJgQhnjw2z/8AJzvK9zlN2
HGLdjvnuxEvcu/QFbpO8ke9IXcV/FC/iczkP8MsBL2ubm4fntxO999+ipcIr
kul9VeKMoYP1jv2VYAZgBycHawh3IWJoEB9Uy1mFKNacZif1pi25Q0jlTqav
An6qELSpXiKH2lTaSD0dL9BdN4M0OpRPev5P/jknaEl+hJ6Nn6ZtgXOUv/gj
Op53md5Z/BVdOnCdSrJ/o7+Ct6A/7nHMqOppMqWmp21WHU+34Q09fUuaePp3
aukZ3LqNZ+Sv7T3j45089ye6eR78t4fHv6Cv54nLbs+yvZZnXeHdnuc3DfUE
d4z07F8w1nN02n2eiD3FUzRuuueji1meq755npK9j3p+//cJT7lyT/9/2/8L
t3+KnvL8El/o0Xat5/K4OZ7z12Z6Ti2Y6jlZaZLn0Ppxnt3XvJ6tXw31rHkt
3fNUC4/H/3hfz7SXXZ6x+zt6Bl9r7enXpZmna7OGntY+h6eRs4anllnFU2lg
ec/NSX/SF21/prOBa3R0zqf0Yux9eib6Js2Zc4zGxPMpLWMHtbqygZICy+nr
mJ+OldxHq6IDaWKiC7nyG1ElX3nSfYc5MrZXYp8S9h/CUQadCGgoN02sU4tC
Sn3suq4aOWrwwJCT53h783OlQzhcOom/cDzM/ziXcA3XM9xwyxpueXM9t7u4
kVN2bOZO6Vu4Y7MtrG0y1vYaN8t8lut7V3ONGyu4wjqbb/qf4O+i8/m9pAf4
hGMiv5zl5XXW3fxYchpPjHfhNKsZN0iuLjpa0AVzO19UP0QXqGlBl2jPZNqd
ocOUlm2H3VawpfmW5TNbhwLmA47XzHzfRxLv2CBRjfp4m1Cm1ZmeNIh2xe+h
t0t8dM16hMq1fZpqlK6gem1XU/KKtaTtTWqcso6SA2upUaW11DB9DelxgLQd
QA1u6s3U/8dXU71YDtXespKq5C0jPV7Q58VziY0p9ELxMJqfk0rD/e2oQ7wu
lY+Vo6P+T4XjuKF/jfCNI9YIa1zQ76Foc9HZBS/GJf915cy5g+9N6sSrXenM
RZM5YS1kx4FVnJKzmT1Hd/Lo/Hx+oOQIP9askFcMf5MDO97l7UXnOG/LBT7o
usTH0y+z2vE5v218yWdiX/P50m/5ku86X53xE3+77ldOHP2Db4X+4crvlI/U
3Fk50uBKtUjz5NqRdj3qRnR/FdH1FCFPi8jdXVpHRjRrH7n3asfIpGVdIzPS
u0dm1+0dWTC6X+SpGxRZVeWuyObLGZFdzUZGDrx8b+RklUmR0zemRs43fDDy
yeVZkSvD50auzpoXuTpvXuTKzrmRyyvnRIp9syOX8mdFPm6vtyazIpdyZkU+
uT4rUpw1O1L8/OzIJ1/Nilzc9JDkUbRseuSNxJTI0RX3RfKXjIlsTxkR2ZA0
OLJix4DIk0kUWTChX2TeoT6R2d/2ijz0Vc/Ig617Rmau7BF54HL3yLSjrsj9
be+MTDS7RsY37BwZcyslMrJth8iIaLvIsJ/aRoYebxsZPrRd5J6X20dGh1Ii
42t3jkzK6xqZmuSKzJzSIzJrWq/I3IZ9In5/38j8GamRR2+lRhbs7Rd5rE9a
ZOH1tMgT77gji5QZWawosmSx7qZn9o8sbWhFlh2wItruiqx4bUDkmdoDI890
GxhZmaW3Kfr3zQGRVTH9O29gZLWRHsnx3xVZ9dfAyAo1ILJshxWxQ/0jS4Ke
yFMNPZHF0yiyKGhGnjjnjiz8Ky2ixzvZHuuRFlmQ3S8yPz01Mje5TyRrTs/I
1C6uyMRbXSL31u8UGdmkQ2TIv20id5e2igy41DJCZotImmoWST3eNNL3ZpNI
7+pNIr2sxpHuiUaRbisaRjq9XD/SvrBupFULR6R5w9qRxr1qRvT3HWm4rXqk
4bLqkUbF1SPJU2pEGteuGWmyt2ak2ehakWY7a0Wa1q4VaTKuppyvZ1aLOHKq
Rmq+VjlS7WbFSJVFFSIV3zEi5ZqVi/wZ/5t/u1jKN7b8zt9m/8pf9PqZi/N/
4A9zSvi9c9f4LTvOBQWf8eEblzgv/wJvP3eON60r4rWnTvEz195kO+MNXpzD
nB0K82NGIc/PKOB59nGedfQoPxh9jaflhHhy/CCPv7KfvXP28ZCUPLa8uzh1
8XbuHt3Knawt3KbXRm6xYj0ne9eyY8cqrlqyjP+yF/O1jEf4/eIH+KRzEu+L
juatzmGcE7qLF2WaPCezN09O6sYjktqzGWzOXTIbcNOimlzdV4l/j/2pLga+
V68FitV67zsqy35dDXAEob2pvvXNF+w2OP6gLwUtCfCy6ftJHNpnxlxoUPQD
BgVrr5hbBKx33TWclc1MX2fhkP0m/oh5h3OV8D0Ndu6WOOKl8TfMnaEPhO/u
qv8n89/Av2adkqoSw97HbkIZ/jaU6e1MWb6e9Fi8H2kbiNZ5b3MUbDaG0Jbs
IbTVGEY7skbQ7iIv7bfH0uHU8aTnQ1SQP5EKQ5PoZOlEOlE0gY7m3kdHnJl0
ODaODmWNoyPJmXQscR+FkybTWwU+Opf5AF30PkRXM+bRl0UPU7zgYbqapX8X
P0yfFs+mT4zZpL9x+jQxm+I5D9MPJQvoj+giMvKe1uPMUqp8binp/o7+KFlE
+lnpA3um5I9+c7FF5Mu8k7RdTz2NxtTWX4caOKtTxaTyBL6KJcGIqec70KWH
JqRwsEwtupN/DWZzWvoOnus6zuvz3+Ht5vv8fOgsL49HeebY13hw6cvcJf05
blx/HdfNy+HkgrWccnQzk6n7U38+39/2MN9/6xCPuLiHOzg2czz0MN8b78jg
X0F8IGKHL4duiMbCkylEG6ODhRviCcMkX8GdNKKkHQ0qaE33+NvTA44etLJg
IO3PGktns2bQ5855dDV7Hp1JTKed9j2kxy1q5qtF4NYAV7DH10K4yOsZ1QrB
VwyeSvDYAYc+PtpJnYlPV52jW4Rj78NQiapdUIU7ptQXLfSezsbsDNzBlazy
fNrxFfSpRV8WcUOLfaxO2V+qhtnVeXxRJ84tGMbFwdlc2bGMk9VabmNs5PZb
NnG74o3cqmgDt/Cu55auDTJmp1k7eMzFfJ4/o4A3J4r4qPUpv9/lW/7i3E98
bccv/LnzJ34vcY1D/k94Q9E7PCfnGA89kMedzee4bmYO/x1bzMUZs/lk6iTe
YY/gxX7icf5OnBKox5hnPmEoVdm5TGIBwGcDrTKslWPNDGuU8NkAIwgefODY
yWghMRfQnZzjP6bwrI2MGjzam8J67syXcmdx7ayV7Fq3lb05+3hO+jFetiPK
m0uLeFel87zP/IgPnvuYjziL+fiWy8yuq1yU/jV/fON7/mpGgn9M+R//z/6L
/0z8zb+bf/H1BTe5eMUP/NakOO9L/oifrfQOPz6jkH3Zh3lU8T5OX/ASDyjd
xQMPBHnQgpd5aE4eD3Pt4cHmbqZeO9llb+WW59Zzzaxn+GdjIb+TO43zskbx
6qR0XpRh8mMl/XSf5ualRf15VelAXhNI52dcA/mpFA8/HO/D9xV3Zk9mC24b
qqOfq4pos0NP9HfnX+AkY0dWVYad0CunMY8obsdZdk+2s/rz8/lDeb9/LCvf
ZI7lPsjfpMznf1xLuHpgBTcqWsOt1wW4a+w57l1pG7u7vMj9U/UzjA3ygJJd
3N+xiyn2Iqdl7+A+Odu4Z9ILfGeS7kOHb+HWmQFuaK+RvvN7xwJ+s+h+3uId
wg8k9+BUX1M9P6vKV70/qVedH6vVrlNqQfCkeij+usTHIa4NfFzgf9T3hlaq
xOhAlwk6C+CKQ1+JWFasWSDmB/FH0Bhc7Tiljgcvq8vBG+rHxO8q4f9DfRP/
RZ2Pf6t021O671TzAscl3hB9cB//NomhAh8S4jQ7+bZIjBT0G3W7UuD8mma7
hBcJcRG6LOGuRkNwmxYCcwsfMTAv8PnAL4A1c6zxYN0dPgGs08C/BR8d/Ibw
P8J/B98V1pWx7gS9cWhpI96d45NN6Ly0MgKmLp85JXTIfDoeAc+fedr1FXS0
zVollamdoy71d7SkzGBnmm+n0pqsdNpljKTXvJkUCU2h045pdDp1Gr1l+2S+
ejxzAh00xtHe/NH0UqqXgvkjKRgaSS+leEnbz7Q7eRQFs0fS8zlDablzgHDN
DIi1FI4S8GTo9yEcCeAyBKYCuH9oLszz9RG9dWhZgxdsWq6Li4LTufGVtTyi
ZA8vmqR4+5Vz/OrNi7yv/ke8KbeIH44d54F2kOsHV/Ol0Cx+LmUoz4335qlO
F882evOykMXbS4bzXu9oft43lGdkdudaicrcKbRFQWdd+DqdDnrRdQ/9GX2S
Ghasoeau9VR/x2oqf+5pulDyIOk5Py3zWfS4N43szP70YukIOuWdSj/GH9Nz
7mVU27eSqq9bQb87FtGbJffTkoCH+uQ3oR8SN83l0ag5ILbL7GRvEU3mUa58
U7dPc6X1lvlkXJnDfXuEO6JxtIYJn/kM+4joB7/tnCrtFFo8ltVSrbFPSWwE
MPrQj7zX2B9+wmlKfO43jl8Re82rnen8huN+vpo7j7/Nmq9tndmssieLbbHA
7scTS7rwPQXt2Zvdgaf4uvEjib68LNfitcX6+08ZyLNLerGZ31zbJ7ckvnVq
9E5oKJ8ET3LHxGZzu+t9U9sfJrhqwK800tGBZtm9aG00nQ67xpOuf/onaQnd
4VpFTXs9S63qB6ilYwM1iK2mSnOW0ufJ84Tf6MlUohGO9pSSUY+SvBWpOPSD
mee/IJwkaKvrrUGicYCYFej4IBb1hv276pPRhGd5e/Ha0nR+MTqCdxXdw1v8
Q3hFYAA/WprKWdk9+cHknqznjLwqMZB3O0bxW34f6/GPf83J5r+sxfyb8QRr
u4BPF03lvJxRrPPnLH9PHpPUkTO8bfhuozVn5Lbhe7Lb8+hACnszO/CgUGvu
7kjmugVJ/Eniulrij4ieKOLZD9gfi64scAJ3R19y635c+OVPxieKVsqo2D5z
m/ec+X78G7Niannh1mmaVIualtSk+tnVCDo4p2NfgtvZ7OHNFZ0zaArrdyy8
5FhnRnwKuP+hPwnd5Aedr6uY/Z1qlluLvbkdWLc33pU6kl9Pvo8jmVNk3DuU
OY63O0aITflEsZvn5PfmmYEerMd/vt95J0+OdeXRBSlshVpySkE9ruqqyGeM
a2p+sEA18z4r3JaIL/vXXoJ4q8LbWPtV/YCrh7YfMOuIt0AsAbAp8L3DfwEu
CPBQ5NrQjzwq69/w6QMbBJ7lf4x/C5cbAyT2CHYp4p2g+wSdP8QGgR/ebTSH
Hm3Yad8hcTyIWYFOI/DywH/ANw7/BrjxoYMBbgxwj4IzDVwYTxkR4fLU35j7
YPRjdyVfeeEzWWZZ5rvGdPOf6FPmHYmVpm6XwgXzd3yx+U5wmnBsg1ukgVEd
vEXuc/Y3buiugIMafCParhbuXeiU7LVGm885hwq3CvgpwRkCf8FJ4wr0k9y1
rSrmSKODuSc+yqxg2WYf7zZzRuCIuTL4FrTWhPPspOOKcAl9FC8xv3H9albw
G6TnP9QjkEyjijvQAl8/6UNhI+u5q9ixSd7lVH/damppbiBtQ5Jrxlbd12wj
d2wHeXw7qX+zXdQ/ZRfRlRcpdex2cuVspZSxm6lllw3U+NRaalBzDdVfvJoa
FK+m5DlrqVnBs+RUG6jNzQC1Sg1Q06J10p/9UbqIzkSn06aMDBqX2YmSAzUo
HLsiOhdYz9RjJrRY4acBh334lv0UNL5U/1gLDscmsXPSBp6eCPGLSR/wmZKv
Oa5+5q9TftF2wXe8377Ij6cXsrvXi6z7BT7kG8dzk/rw0Py2bGW2lG9wRGk7
HhJvw13yGzDW5uuHVoPrsFDbjWaPnGR6N2U6taoUoHsW7KWZK16j2SVH6f7U
wzSkeDd1dT1PDc6tpoqpS+mvjMVU7s0lVM1YQY1uraE2iQB1LNlMbbM36u9v
Nf0WzaaDiXtpWoGLmhfVIv3OzWdjp80nnWxuCZ3R7eVr08gpR1jDaRyvQZVd
FeiY87KZFtxhjg12NIEn2mC8G14YT1MXjCzhPdS2pMSUgs97gX1S4jR1fyUc
A1VyKohP4KLvIW5UaS27b+0Qmy4z41Ue1SyfrRW7uOPFzewoWMW/Jy/ij4qz
WI+5fChnHOfljuKtrmFs+/vzBF8Xbu1z8MHYx0p/Wwr6FNDA1naPWTO3Mo0L
daKNzgzilCl01Z5HfyQ/SVUWLCOHWkXNxj5LHW5sou4lW0nPVSlt8Q7qk7GN
tL1CDSetkfUkZU8m3b+RtgNJ9w1UEPoMfOjmEGee2cV6Tr4bcCRtjA826/uq
4bsCBicM3W9o2j7uK4TOpErKqsgtcmpzx9T63LWogbb/GnC33IbcO9GY705p
zVMKuvHSRH/OD4zhj2JZ/HfKU6zHD26h1nOnxVu4x7pc7mtu57QDO9jMfpHN
sdpGDOzgvoaeY9/cyh1SN3OTnHVcrWi52Juh3PH8WFKa+JF0/6QeiZ9QN31P
KIevKvg2C+GTHmK0Nf9xLsF4a550XTHBY9Y72pgyczsLl9+K3AG0qmigjFP3
x7uRu6SZ8J1x4nNzaCBP1vjAxw7MGfqthPVHGPrN4BnRbU897i3U4/eXKqmg
ojwz+ui5xb1Z25e8KTuDc3OG8dbSobw+dxBre4LnlvZmn/9OGXMGBpycajXl
XrmNuWdKY+4da6yf9fb/roJGnBKsx63id3CytwbXc1Zjh78q10qtwtoW5Jo5
lbl6ZiWunluJq2RUYMMuxzeCv6uzoWtqZ/ADlRV6XXgEKgRtiQNHTDV0DdBG
9bxZNDEQD6RtQPFJ6jmgqZ9fNNbiwYdNPX4K/5W2S6Tv0/00NAQlLgBjBPQV
2hl11aZghvohvkA1dq1Tqd7tKtP3qnrMWai2+M6o14LFwkP6bfBX9Y/rX+gd
cLVERa6UW57/Nv5Rce/PKmx8rvMoUtONI8rl3yra54hVBwcrNOehOQxdcW2b
FCLGCThD4MSAdQI2B7gc4Lww7gB7Bow9cE2ipx3dJnpF0PuFRtDQYFvRvoAu
K7ROwdcFbclKwaVmA+cas3Nsi/CXzQseN/OCF8wS+zcTfHtWsCXNzOlBq6N3
0b6UMRTNv58+KsmiL11++jHpcfoz/iRVylxKtWLP6D59LbW1NlLP4lwaGAzS
mOJ8mnrqMM3KPUoPp5ygh+ufoFkLjpJv0mEadWof9b+2kzrXfI4aXVwjeXxb
MJ/eT5pJKjCZjsXuo6PWfVSYMUnsct2PkB6b6ZuSR2Q95IOCmfRqYiw9npMm
fJWHnZ+Iljy42M9ZD6hfvaUKc71ayStZ26K8udkZWaM1MspF6pytGkneWyPS
IK16pNpbFSPf1fyNQ5M+4QWBk+xOepGrh1aID2x7fDg/ndKf9fgk/fak7K7c
IyOZL0S/0+91vgIO8NF4gTkz1IMqx5fSsOI8eiolQttWnNPzgvOkx2h6NFpA
QxfkUcuL6+kXVzadLJ5IufnDaENiEG3LH05HouOpKDSdPi2ZTXq8oQuuLCrM
nETbi4bTIr8pXJS6/QrP5IRQF5pb1JueShCt8A+gxV4iX86dhHEC/IN6Hiia
Tq9GL4qONHRPoBMKTRXopoPXVs+V1EOx11UDR3Ve7x/E1fNWSL+88dq74ov8
rvhXvrn4T/7x3O/8YV6J+BPhW80Yvpsb31jLX5f6Wc97eH5+Kg9LbscdYnWl
PW+MvauSgssVYuWhjwsdCrQhb0EHeik+kr7K9VO1a8v12LKWWnUJUNtJG6lN
zY3Usv4GarJgHdVVOVTtynL6u3gxXcmYSwX2RKmjGf7ulJbbTMal32Kl5ofB
EtG6+iL2k1m+pBw18dak7inJdFdqKxqa0VbmXx2L6lEF26B9jo9M0/uiaCNA
Tw+xfEnW8jB4B8Brjv4BXDlHrU9VckYNnma5+JhrAmvbg3ufeoHvP3WIl3d5
k4NzzvPrjk9ZHf2cVcbn/NqBYn55eIzXtj3Nj9w4wWMzXuFeoRe4vm81f+Oa
z8HckZyZ2ZnvSKrK67ynxXcPPgJouECn8h17mmgWPulg8/VYsflVKAGtPLGJ
wK2p2xil5jQVjtBu+Q2pcUpN+itwy3w1flHskl+c2cITDswGYmSAJcecGlhh
YCMxl37UOOkutK8Iz/x66x3BVkEvDLrh0CIYHG+tdP8hvM/6Xan04EtqZuA1
4Tc+4ixWcetnVTOjsvTFep7G2k7mYykT+Ivkh7lc6tNcfewKrnXlGa4+fAVX
yLL5p+Dj/GEoi/U3y5v8GfxwUR8elmjLrZId0jdvjhWpnrFcBX1CcHhB2wY2
sx7bRTsZOj89XS+Y3sA+837HYXOG74g5KXTQHB7YY97p2CqaIuAThB4UtBEm
Rg+ILjs0NbfYZ8L94y1UfnCM+sdYopIDa1Vrb0A4rOHzAScJ/Fil9t/hVHt7
GDprsPOBH0d8BeJKEFcBHD/GhVXG2ycRJw4dZfi9wC0A3R5ofDaIVhM+j6h1
v/BhWd5d6hFXgQr6zqtToS/VFetH9YXzZ/Vp9Aed5gu11XhPTY+HhF8G10B/
GdwJiC/V/bu7r7Op+bYxVfR/dTrzef9Z6IlC88j8wfW7+Yfrb/Nf+1+z3Jv/
mrcC/5h/Om6Zf3lvaVv+FvSmqXyKQRWLDaqUXZ4qGxWoalEFmWtCf7ZGSSWq
mVWZ6hhJ1DJWm3o6G9M9We3pkaRU2lEwgt5PnSn+eOfiDWTueJHGrdhPc5sd
p6U33qBNviLpw169cZGO7viUCtddITauEiddpXDRFXo95VPa5/yInveepSUr
IuRTh8nK2UXOdRuowjqbzpfMpH1FoykQHEzrswbR9tQR9Fowk953zqSvMv30
bWg+XQw8RK8Uj6GpqS7SdU3gYUZMhB5TdN1W5ue9Q7nazeXsydzJc43jvLnX
GT5cfImjWV+wtjv4hOMz3jnnA37iXJiHFeVxkznruDhrNq/IH8ADUp1crziJ
fzT+py4Fr8talrZrhPNb23XQhlDACqX6t5ttC+rQIWscNTDWUEb2bpoVOEqL
MhUtdITpgcQRyvDvphRrMyXZy+mL1IfpzVQfhUsm0dn8GaRtUqq+YAW1qhkg
/U3TIOtl8tr7aPzF/TQh4wBN2HKAJsb0fvEBuq/+Abq3/n4acXEPkWsntbux
kSrfWEq6z6apLhdV8Vcg8JoG7MGi3avH9cL21qYwtOTBCQNuOG0PqmPRT1Wn
nPq8Ludu/r30Ce4WfJ4nRw/y0vgb/Pyks/xCs3Pi25lbdIwHhoJcx5HDXDyZ
J6Z0ZT3H4+XON+Ub2RIcIjx4S+yIcFacMD7rJ9g8Z02zIDjRdIW2ms+43hId
srr+JFnrwdpZdq6btkaH0uuu++iDwEwZk/8seZIq3rSpanyZ9ONJmcvl2Sr4
bSqX8jSVM5+mitdsqn50BTXosobapm+kHnm5ZKldNNTKoxHOvTQksZvcpTuo
jbmRKp6y6URsAk1O6kblvvxXeFZbxmub4GrwBjuojvHNarvzfXDFcPfkZNbz
ct5YMpijgfv5p9DjXHPLM+xM38Dd8p7n1AXbWbdvdjd7kXumvsAdbm7ihnPW
cPlUm4u9szk/ewwvLEnjQdmtuaG3OseC36lsfxgaSMLDh3Xx141PoXEiHCPg
0gBnBfgb9FzwpJ4npwGbDt5JcG2ifx4bfMU85rosNneP/GQam9uRZqf0picS
brKD/WlJhocWZZv0WEoazQn1Jl3/2k7qRY8V96NHon1J29E0JacbDXO2E/7m
6v5KsqYIvZNPnLPNiHUVuMjCSnZ5pW0j4ep6wTgndmVNf2Vum1WHeyY3Zko0
Z8vbkj3ZLdhT0IJ7JzfhrvEG3CK/NtdJTWLdb/BN75/qK19CdCYi/qtqr+9D
tTZ+Sj2cOC5ccT0dLwgflR4/1ORoVwVtRm3XhGvazwg3CjhJoOsCnhHoJetv
uBDx/IjTAKYVeieLgyTrEXdFg9D6M/dFPxTO88veG8JfDD3tt+NxM9/7kbkq
+pb5QPyIpG3j2GhWjS4TTWBoNkKDXo9Hort40/7TvTwaFb1RxPyBn0DbyIXQ
BYG+Yp51IQwtO+g26TYtuiq1nFVkHNBtXbh0gA2AVsV0o3sh4rMQbwqcO/g/
gU/U37Jwfs42jrkXRgtFlxGaT+A01deZOdZdZsJaKFpws3xHTT3/MC8kvjON
7HJUP6catQ/Wpe6xRqTnNvqbbyGc32P9HemhpF60vMSily0vvR3zUUnWo1S1
y3JqnniWelkv0GBzN92XcoAevPIa6bGc7KNv0PqCd+jFm+/Tq80+psI5V+hM
0jX6NPkGfR/9jUp9f1P5r8p5Kg0q76noKO/R9/fczPuTrq34hS50KSFue5Ve
Sb5IL5x6j7RNQsvNN2lp2yg9U/wmrcs5TZtvFdHWlPf0d32Wnr11mvQcmMbO
eYVaBwLij2weq0XpVitoNaotmUM4I383Rw5c5bqTkiL9bjaNjEztEBmT3DGS
7msVab3DITb1U2aEay9eyZMd3XiTXSR8XNClwff0XXS++C/0u1Ad4nX5zkRD
vqOoCq8PvaOgsYi4UdH+030PRZvT/IJU4ZDfnDyE1pam09MJj6xTl3HFP5+p
+6OU++hi6CH6o2gR1Zz0DDV3rqfuybk07FQezck5Rrnp79H7Rd9QxZ8MjzN0
h8edaOYZWb+DZ8LOLp4Jvi6e4TPbebqXNPLU+LCS5+TNz2hs3it0LfiIcLBD
6xW6ZG2MjYXQ8QVXFNZEoQ+EdSGP1UJdtuaID+Zdx9dK91U8Lr8TLy+1eG/W
aA4nTea3S32yARP5qnEv53qH8dJki2d6e/Dg5Dbc3l+X9TfD5wLfqK2u92SN
cob3iMyz97k+Ur/FS1W7pLo8OjuFFzrcvDaezitzB/KM7O7s9N/BiyylMEeH
Nu/HzusmuPcrrVtKHrWT5sw4RuuGn6adMz6gPecu0O6LMdq27hxtSH5XzyXe
pEUBRY86TtLDt47TnNxjNCt0lB4sfo2mRg/T+Pqv0hBXHvXtsp1aJQUoybec
9LNS0DuS9JyTumQ0oO8cv5lLfBGzSWiducTymK9ZxRKnBe3jPtY24eCqEa2k
WgcdorEyyGqtsuyeao9ztKoWWy46K+/Frul+vR4v8Pfjt2wfV/Ev4w7XNrHl
38UjK+3jsd5X+J70vezx7+QO8U2CbSoOzeZtOcPZZ90p/tpf/aWinwLeTD32
iEYJ9JJOGleACXAPDDpNPScy58aOmVgDw7iWajcV3vw5Bbp/dpr0lOt23zy3
tLfMudL9rahTqD7VcSaRnpeL9js0IILWeejRmScSl7Vt+r35P/svExoLHZPq
a1uoJQ2Lt6XBsdbUO9GY6hUl0Zno16JDdd54EHrciKUrxJpZgTVRtLTAn2n7
31B63qhecJxTLxkxdTD+sYoErqoLrhL1T/QfVTc3iTuW1mN3UTMeXNpa/JJD
Ym3k/9Y5Dsxv+ZB1SfgpgTl2x5uJluowo10h4rmA267gM8zu0UYmtKOhV9jL
bmzqvlu0P6YaIYkJwfeH2FHMGRAnCYznA9Ejboevqvm0s7/5h/GkcJnPjR4z
t8bOmsC1cexz0Rg/EPrYfN531nwiHjbvcxwwUwPbodErGmxfx/3mWXuGecTI
NNfbg7TN6xJNRqxpQwMMcfn6nql6L/xji20WzRNwrkHHBdxdWB9FXPqQ6G43
uKmhlfw/a5HZxX5OdDiAX9Dfi3k++i0wdmZSTkVqEKsm+gPtM+pSl4IGpMdB
MvObU3qgFY0q6kBTU1yCOdiZeQ+9WzyNfnM+od93DnWObqF070s0MfkgzfcW
0DM33qTnSs/QS21jdLDSJSpQn9HbxXE6l/MNXcq8Tl/c/Im+j/1Gv84ppT9T
b9E/Rf+QttXp12ApfZ30C52/8S0VrrhCeXkXaEPqu2T73qDsgjA95YjQ2l6n
Keg/TyfafkZnc69RbMt3VJT7NYWGf0LLL0bJM2en4OmOBy6L1l//RAtuv2AT
B0PnucIWI9I+u24kdUfTSJ8lTSItf60d+Un9j1cefYsbrlvD412dGRyc0MSs
Ea9kro2mQ7fMBHcANCynR0PqjpSqPCGjCwcyB/OBgnv5aO59vDPnHl7uGsCj
Sjtww1B1BgYY+F+8D8S8fBefb77o+sBsllOLJju7kbbBKGxMpiv5c+nP5MVU
3btCsH53xp6nYeYe8q84QTu2vE/vn/qG/jn3D9VfUM3TvrCup2dqY0+/lGae
PsEmno5d6nvq/Zrk+b7+TQra58mbvo/+KX1KdDGOej8VXWbEnmgbQ2J3L9nX
3RUCtmjm9vAn0zOOgVTkn06J4EJZn7rqn0cve700xNGWjgcvS/vVc+QwfNjV
HJV4dnJvVlmT+a/cxVx/x2pum7GRu2Q/x91WPM+dcrewtu25QWI1Vwkt45+d
C/nD7CzBUO5yjuRnUwfxkgIPz8vsw5m+zpya35STMivyFv8ZddN6AprH0Otx
3x1/ySwfL0djrY60JWMIceoU+iA0k97JnEb7jDH0eDCNzJzmhDX455xnzXTf
S2bT2DqzhbXeHB3IN4/FPjXRfh+J9aWzwRlUN5Cj079IvsBhWjyHaf2kd+i5
1LO00VVEy1ZEKcv/OqVnvESNr6ylj2MP0aPO/4en74CSovi+pskZhrwkaYKy
5JG47FRBEwUkDFEwtgiySHDEhJEmukgaBAlKaIKAojjkZfu1NKKIARkUdTE2
CIqCOvpTxMT37uPPxzlzZneZ6VBd9eqF++7tqmv2K6+R7z8Wjhc9dKzr00am
8C3nbqlPYUzgD4EDcJFxxAO3I7R//jAfF+7W+cFh+tD+jkofLe436FfZZ5so
+3abTC2/ablqfq2j5f2S5Yr7Z+O/0gf2OXonOEOfJn+kK+4VanS+it8/q5n/
WLbytx8d4X+67T7/cuoJn/cnn319/6ejD0sN99FozG8yPeLPiR8iaBCDj4l9
YzXI2KLYDqqSWcU12yYNnZy/E/+KTsWTKV/lOmtEbxbc++zfqr+Mf2NfOj9J
nRI6uTeFTUS3GvXK79xpolvfILlIXRdfrDg2V/XDhapuZKFoHpx0JirelxQ0
oAeF10tNDP4mchW8Byje11AviT3ukPTOoWee/X/xNddYg4RXFnb8ffMclVhl
+LWMCv51iSp+bbuCXyJu+B+kztEc6xDdmF5J28MR9Ifxt9QDUVtFDxBsIY4P
PUfgIMBDhzp4d7OR6I81zzxH/Ds9mCkQjM+UcC8NyrwkHNunjQRB8zHLrUiL
rSMexyjCP8jXAC3ZQuingdcPz53PUTjR2FNY0pgpvFz3G12k7xs9pOjXu9FY
BV1fqTGCPx8YurXGh7FXnJOit4T9ophRTEHvHdrA0FooFpmhOpir1SNWoTqc
CVXZ7JJSc5hQ1F4/f76/9qJsG6ZP0X+aT+gyI2aJn1Ylf56uMn2erlQwV5f/
l+PGyCyJJUtGZ+qykdny95oF87W5fIlup1bqnv1cPSr+ip7Ueq+eNTDQK+a8
p7dmPtJ7Hjqlyf1KH6z0jeb4SPM16m15H+vnM+/qmf8e1JNf3Ssx+IARm7U1
Yr3WkXXaGrde39R6k/Qg2HNe15PMvTqxbT/HZHv1HZnXdI/f1+usVxfod6L3
6AF5zfTjNin0J5mJJcT+vP9tJuHnLlzjP9rM8zd9mfb5GvyXP/jYd+igbyXX
+3yvsjag7YY6Lq8jRamv1LvGWTUxskcNDZsDI+EtCY7QXeXa+T/lPOJ3nLxa
MJdO74M+7wn+vIFv+lPz9/l9cjb6lRvM85db/f2/gn9opmHRa8ansUfcQpWd
X0M/ksjVL0WH6T3JMfqV0SP0CwUD9Yzs7npipoO+PdlGjwla6XvMG0VraXP+
UM1+iL7ksq+cmKuzFi7QjTou0Y2NpG4YLBLcdanUTP3j6If00fg9+mVjhE4W
3KRnbbP0rLilF+T0EUzMm6Nt/UPOQ2Lnr0suluejBq7VPUq5utucdbq9tUrX
/3eh/n3bY5rtpe5yuZ5GbbieW0kBf4d+khrlyvP9RgXTsj0y0t8UHerPDLv7
A+LNpF7yWOCJHuAF4w+vs1MPmrldoaXKNqyQ5yRqJBR3t9LpzC8UK2rgz3It
n6/Lv1TwuM9zy6+Ts8Cv8/uzfuXMXP+Po4/5byZtf57T0+8TNvZLBoa/MPk2
4XkmrZuoZGgQcoTQUAfXIzBz4BtBPzp6DKExDq3f25020keHOgr0xFBnu2g/
LDq07CtJPamFWVNVcEqJtjM0PKA3stGOq1L2TGU565WTPKgOmaEqFi2m61+u
pG80s7S1qpHu6zTRPbeZoudVP6uyhg7Qssi7UqOBLUR/K9sF8IPSCTNP9IOH
R1+me+1dNN7cRaPcV0RjEHzVxU4/LVoBK42bhcd4ZtCdVgYDhHv5svMENXOW
0ujEdko679Cx6HdUJlnCv2F0db9XtLHP+7n/UH5Xf67R018S9vWf29ZPfANg
LZ7u182/P9LFt/Pb+fF+zX32Jfy2/Wr7DRKV/YqR0v4l+2/6OH2edhpFkgOd
ZQXEvqdo7T0a8YhjfGDDRLcPPQd/ZP6i0ueL+xWjpf1Ko0v75aaX9P+2/6XP
IhcItV+2tdQjvZ5KRmYS+y6iGQpc2f3GfnB45oKXCeOCeB06H4uCt2PKWQv9
zRi464CrWGb0F45brDfocdcIylE7sw4hd9zFrE/om4Qm5rLgqPDh7nJGe4hf
wKkI3hdwD4G3ApwU4B0BPyfsPuqKLa2aotkNnYRcdw2NS+ykZ8I3BTu7yymi
N+yvyQ+/ov3RL+h14zPanj5Jm90TtDGVpnX2hxKzIDc5M3OQ7jf3C/c+++1S
W0QfBvQj+jlNRYc13zrssW8uXLTQl71gPCyYkas8guWl731MsD32qfUjOC3U
1mCY6E6zLVcvhScUPxvVbHo1PSS7uWC4gFX6OGei4MIqt56nG15cpFtay3Wn
31frbg+t0+x360Hltuhhk7fpkedf1qM3b9d3FL2mx1opPb71Lp336m496fc9
evKevXrq7ft0YuB+PS2vQD80/QDbpEKOqYjt0EH9TM5hveziUe1uPg5tab1v
4Od6X+pz9MToDR8c189cfFP6wKIFK3Vm26N6+raYLnne0PUjixS4M6C1gdxl
7fwK/phyrf38gl7++vOD/RX5A/yJkY5+g2Rlf6q1jxqaVaAZETMSM9SkYI96
KuMrfp6il4Nnj37I+9OdpY/m1umv+mvPHvOPR773M5P/9P+LXvH/pn/984n/
+W+/ddp/bs5Rf9jybX6FvDn+zPPd/fPu/+gb834CX+9dwY4YfI36YSWFvRJ8
u4PtG3guvUiHMt9gPvlqVUO/f7SZ9PIgti1+tJjP8RJVM/IJ/NbgUXkg7KL6
Rzar99yzqn5RJT0g1UxPd2L65XC4fifnHn2x4GFdYpWjKxHvg3nzdR1jga6V
9axgHMpmz9Z/lHtcf9rvPsErrs5im2+yzb/cQY9ItdA946b0HjWNVtMNnMq6
wfTK+ga7uu4Sqa+HBs01j6leYt6kX4uO0m+5d2ueO/oDe7xmP0kvd/tr226n
G2ZX0a57XF20HlbID0MLG7qpOxKfgjPcjyea+w9Hc/35QS/pKXL6dRcMVs88
06+dV8FH7DojfIN0uJZqRZ6lSu5camEsp4nRPYKdQA0xMb2L75t3+qXyZvo3
rHnO71Vzgz969HZ/XL+d/viau/w75+zwB6/a4nc11viNLi72S0x3/Hcj4/wl
xk3+mEhrv0VWTd/YVsx/K35a8qCzw4Dt3UFanDxC7K/QR9Z5KhYp5tcqV8Fv
fr6636Eoy+88up7frqi2bzpV/XLJkv5HyfOU7x4W/YEj7ljJGUK/BpxH0JXk
OEk9Y/ZSH5sTVbn4bNHSahRZIhrZHBtIXnZpcJPq7TaGBlwM2trgiJlt9MgF
BzD4kn8yLhUiFwHOYPDHQpMYfHLomUb/OrB1NwebY+jXBocDuHLA7crzQWLg
HkEj0YBBHo7jXGIfjMoHJf0W52v4vfMb+2OyW/sToh38RLyL4B4n53Xy7y5q
5w/PbiH4vtz8Bn776Vl+23htv22ytt8+meXHwgZ+/8tNfd7T/GnTcwQn7eYP
8fckxvhvlxvrn4jk+Z9bk/3PU5P9T4KJ/jvnx/q7i0b77Ov6MyOWPyGngz8o
c73fMa+u3zBaxS9/vqSPfuKP7PN0MP017U4X0Sv2SVqX/JA4tpHc8iw3IOzr
k929osUxJLqV+N6pm7tOtBw47qHymdn0kZsnvPxsx4jjJ4JtBv84OKpRp4Nt
B5YYfR7wlWGfwXsErlX2bw8gJw3cHfs1Yvt7Wxu8pkFSbDvHFIXgYupjbIw1
NaupV92RgoXoFdmgxjk7OV4gNcsORJPu4Wgh9KtVp3C1ijjPiH7ZsqCfmmbn
KF5DapV7s2iocZwoum+zI4cE8wb7ZdpVdefp9ST+HHm5hbatdnqC2UEn8rro
x7cpPc/uqRdF+urnVvWTPOZqc6Be5w6W/BrwyS9mD9JriwYJ1nh7zkjtH71D
f2Lepzku0CWzZ2re23Ttbc9KvrOpsVQ3G71UN5mT1PVLLRJMKsfr2nhyhv72
ckK/mW/rDcEQ/VhU6WHxbN0uqK05LtHl0yV1iQJDF8sqpv+I/K2+MX9R+9Of
q8cynmoRXS7aqLxnCmdjL6OxcGiDoxc9IsglQcMNeTW+FpV2J0hMAI42cPRn
2Quo0PmSWkRr+lPOd/I3hEP8Q+fv8o+H9/rvB+P8fXm3+kuj/QS3C7zPi8Yx
yQnydSF/h5gU/MsHvnOmeZbbSPSKMa/ahbX9Rwpy/dfL3eJ/lr7P/zbnAf+U
OdlnO+g/ndfN73q+vuDleyc30PjgRoLuLPiUoBsG/VjoqG03PhGOCHBpgaca
GldHnLFelrXAg243eO8D5y6p+YCbGLxPTwV+LMeqL1gL1CcmpnerTZm0OhF8
r74Pf1N/Zf5RHCNzHFNClyoozrbb0NBt/c29rH5OXlI/pP+nvsr8pN7PnFV7
7FPA1qmZ0UBNMHdL/VvZa1WbzPPqhtRzqml0qZwjO7lMdNTbGStVm+gKdX24
VOYqcO/AaT1kdVU8XoInBg5AOQ29Nc4x5IKJ7TrxHipYB752Whv9kHZmPiM/
8rXoM7/phBS439DhIKQjyTN00vlB+gCQx7huVRU/127gj+7Xyn9kdK6/3Onv
v2qP9P2sO/13su+RftKjiXv8IHGXvzsyxt9cMNRfkRjgPzu9tz/jaDf/ETfX
fyCa4ycctkdFXcSffDTI9R/PV/4TEe0/YWqf56L/UL+u/pQM26rsqD8yu6Vg
k7tmNfBbRWr59c9X8ivkl/J5XrI9vkAU/4rWR4+LLzAhslv0cqARVddcyP67
Q2fchGiWQOd5hzWK/a/RosMN/SxonnwTTKXP7cl0xB5LW43hxPaZRlutROPi
F+NP7wXrA9FWQO0V2uzQTnjcIu8D55xXx6xIHBvQ03Y32h6MoFPGZPrbepJt
8GzRYq4TPkt1zAWEOV83vYDqpRZKP03TdFJ4GdA7gR4N6ANBYwna4hxfSz4A
Wt1r7GO0xf2IwAkBn5HPSZ87F4n9EelLwR5XpqCE4OAidlk/sqqsX9Uo61ea
zj6zXdIvmTb8vxP/0s/WJdHdPpW5ILrY72a+pXejZ+m95FlKJ76nTzI/UFHy
An0W/Egn7R/oePR72UvetEPaF/9cNK7ZhlFeYrfoF6HuDN2bkmmHTloTRbP9
frOLaKfVDSoSNDBaGc+LnjT4tcE1Bw4lYLuhv/dy8HGM1wD42dTtVhs1O7TU
y+YIxbZZ/RM8qeqbixSPi5ps71WLU0cU79nqvfhZdcbNKGieQjO15qry+jqr
ivT7th+dpXXWdbrftqZ6pNFS33M+qhOrumjH6a4XGH0Ec7CwoI9+dltvne/0
0nPye0i/HuLh2ZctwfKvLHez3txvqN7n3Co+z/fmg7pYzRm6YoT9rG3z9XXu
YsGPtt22Qnd0V+supV7UXdIv6I75q3U0sVK3yFquzeQSXX1bvmZfU59MTBSs
0+R4J52baqAj+WX16UgGfciir3o5/o9qsiqiR0Za6kXn++jD0bv1xcTDutip
pwWf+158nOZ1I5q9G4LjaoXLcaTR7sA8tyeNcF+WXsjPjAtU6H5JU4x9wkny
TfAz4uFc7F9/hU+obsl1iuMS0Q59yRimwK8EjZFq0Xw6FA0Jez76RZZG+vnr
iwb7Sfsmn/ci4fv4wvxJMIzvWeMoy6oIDXOZ/5j7wPnuD24ltkvE+6LY83PB
r/Rn5m/62blE70fP0YvpD+ieyE5qZT5PfxlPik7PQ05XGmm2JI61Oa6uL/oz
OBbPX9gZ0S056UyEbS0EZg34RWB7kP/i+Eyhxspxj7rFaCU4c2hdNrEiqqJR
GriYWNmwhGpmVZNeAtcZInWJ1snnBQu3wnlPcoaoMX/t/iyauKjVLE4cES1Y
npuC89zjjlE8xmqq1Vndb3RRLwYD1QfOeFU6mKmynWXAYoh2a193o+K4WrGt
UQ0zi1Tx9Az1WjhSDQ+y1VWc5RJoYILzEv6d4JKAO43adWhQcL1o/YxwWyCn
Kdo9Ha2rOvDAoh0ybKlXNXGTpIO1kt9DzxV6hNZYx6gg8QV96vxIlxJ/i78H
vxo8Lc2zawjO+MZ0Hb9tfm3/+rCaz+vRr1RQ2i+eY/i/RP4k7IGw6SfS39Pn
CbYlHMP8G/+P0AtRxS3j8zj71c6X9SvES/n/Ra7QaTNDb8ZDeinyEfpx6IH0
fror+rpo1g1IbaY+5kbR8+L4mrpEXqT29lU9rVbR5+mG5HN0XWIxRdxn6Ir7
NB0z7sW+S+PDG6mzW4+qBWXpvPU/9Dp4+4PPRZ/n4+C896/1nwfsMnzuWmYF
KmeVJLYhnuscF91401oiWpLQcEENCP2i0I9pHCwRW70kOOL5wVfe6eAXj+el
97X1s/d+cNZD7W+L85G3ynnfYxsrOEjM52eCN0Xz56j1rVfMLCZaR93s64Av
R78UrXJuFh2p95xx9Lk7mUL7fvrSnkLHzHvpgHm71C3hl6K+CP2nW53W8mL/
gh63FS0L+9Er1gjRvjoWjKciexJ9Ek6UPYjtjeRjppideSybUP2gEkGvMum8
4/GYigYNNF+gdfKoEStEjya0DeAHrTTeR78m/lb4vfG/A9AsAJ8nOI847olF
rTqCH7oQPKQ4nlDtE6tU3/hG0bDvE+X5a69TUWel+BfZ8WUqll6jLHe9Yt+A
bc3r4oe8FJxQx9PfqSv2FVXDLM/+ZDUdXVVHd81poHuuMvVNQRPds8AUG8fn
0xxP6aZBRPPc020TtaWOAU3yMTmt9aSsTvqxHKXz+/XSC8w+Oj+vl+Z9X3hh
7rrcVvO61qPyW+pbE61FN35KVmf9ZErrpUdv0psTQ/Xecrfqg+Zd0pd3OLD1
wfBOvT96m2ZfQ6esW/Tr5i3SRw2sMOpORxJjJRY+d/QB/WvwqL5kPa7/zHlC
/9Zvuj5X9ID+yMqT2BZ1PuBw7s1rr+NOc90rq7G2pjfSN2WaSC14SrnOmmM9
6fdDz/bRgntkj2A/QnzxyfmdZA/KWH9Kr0vLxHLFz00tM/qLjvEV62mljXUS
B6Sd71VFs7Rufrm6YKhQD+Z4TXquLyX/VrvNU+ruaEr646C9CyzRKKelx7Gx
d6vdWjDh25zhohkGHajPjEm5wGhVDeepBcFbwMGohjlVdPa2Grp2QQUNfe8x
0VfVfW5H1Jq7Qqu0t7OBdiQ/Jd6PeB7+QGwDiWMV4BWh1Rr7IpysFkTeFkxt
80x1ydlD153XoV5vHldVnHlqd1AUg+bRnW5bqpqeR1ZyPfUI1otmHfCk0Pep
ZJVWTZJJ2b/LRkrqZquqifZ8Vn5F/X36N+n/qmTPVTlufQWeQ/j13Y1GkteF
Rgk4AqFDfDy4V2o6T6V9tT19UrFfKj0qGKtk/B1lu68Di6JKBo7iWE89GORI
HXuwfYP0L2ENsE1VGfdRVcWep8zEEpWdWqZapJcpttOqcmauYIp4nSr250Tr
GLWiX43L6DdV7Z0sxetaLXT7qNfDUYr3PrXGHaR4fUsuF9rFbzh3Qp8XXNOF
wIWBU+xFY5D0ya03jh9Avxh6uFAnvcPYEXvaekMwROBDAzcouF+Ag8X3Es5+
DzwGyEG2MGtSw7AyXbL+9tg39F4zRgGvdADcucAlcdwc22p8HNvsnBDfCryP
4P6Fti+0r1Dvh24YYmXogUEfC7kH4WEOZsUOGt8gh6mm2p3VWnMwj+kY6QnY
ZA5VHIvy2LZTbKsVxzyKryGG+uo7wRnRbkYMWMYpwf5FTTXKbSn1Nuyf0CAv
4TjSb1Yn/ayqm1mgakTnC64XtfkvrSmK16/U/beaw9Vma6haawxWq4ObFdtC
eV6PWLlqjNFasb+ghlnZ8lxiQQPVJayn0MsyJeykVlgDJO5ie6p+MR9VxSOO
5F6KRWeo74Np6i37bsU+mORpOM5QE4MOivce4b2bG/RQL1gD1Q57lGK7LDiE
983xojP+pmOrN11b9MgPh7b61L1Psf2QmLa6nS/3Uy+xUH6GJjowaaXNWeyH
zFW1Is+qxukl4nd0Sq9W2lynejqu4rhTdc+sA4+CisZXqnbBCumN7eauU32M
jaIhPzq+XfqV70vtUU86vloSeYf9to/UnuQpdcQ6I3h33r9VkXtB8f6tCpwv
1OrwfcV2QI2yXlH94pvU8MjL0mvLsYM6HD0tXDwlthm6fKSULp9VShfPFNPf
2b8p3tPVi+Yx9UiiUI1NpdTo1HZ1q/2q4KzvNlMqL7lbJRL71aOZQrUw8bZa
ab6vUG8HJ8SvwZ+qpFFc8gRlc0pqI1lMA5/8bvitejlyUvp8ea5KTWtSZK96
wCxQT0XeUM+m3lJr08fYJn6m3kyFimMN8cXOGb+pC+Hv6pfMJTk23n+M/66+
i/8muQfgaT6wz/HzPA2so/LDr1SQ+Ea9lzir2IdRP6X/UMA+V9pWWtfKriBc
D42KqugGicq6TqaCZr9Gl9pWXP9l/Ksuxv9QPzq/q58Tl8RW/hf+p0pe5vEJ
Smr0kFXLlNXsT0kNxrSqarOgqm6WX003S1bTTZIR3ehyFV03WklXT5XTlbPK
aPaTNOKRCqtK6crlymiOwaS2XiNdTo5VOcKfSZbSZfJL6JKR4tKLgPfSOSU0
x2jyXfZbdal+xfWVxBV12f6Hbf9f6mf3krqY+kNddP9QP0Uvyetc+ld59m/F
T6sdiU8FV/N0/A11X3KPuiWyXQ1MvKT6BBtUP3uTiltb1V3BDjXV2aeeir6h
5mcOq8XxI4p9OPV4ktRYK6V6plzBFGDtbLGHidZ9N/c6qVVBF57jK/YP6qgh
wQ2iYb8zuIWf1TRVzpqtqgXPCGdK6XCm+iqYol5wB0quE3WGDsGqq/35TgnR
LgCnMzgyofXO/o3Uw9bZg9U74ViFvearcIpiX0jtDG8RzftOYV0FTCX8aOBo
2UfjY7wdY7slWEvYG8SN6Etl30f66jl+VweM2yXOYV9M+Cxtp53ECX3dJqqv
3USx361udVtzXNlJ+mJh77eGwwTfnLYmqK+dqeAFUWecBN/Hfert4G613Rip
lpr9FN+PmhC053XWUsXt5jy+zSXOwL1MMTorx+6u5ge95LPL3f5qiXmT4EGB
G7gjbCP9stlODVXdKqdKWcXVf8aV2P+Cy7G/gn+kbl7WKKnAyZllV1SI39h/
UqZdVdWzK6kKdinM2RhwGuj15f0hNs7aGZvmFAgGFX0dPMfFPt5htlVPhEot
MvrK/c0Muss45NoNFM83YG0FwwqeUvDEQvN+bnAolra+j7E/rjguU7eFrRXv
VWqZ2V/6ZTaYcbUyGMDruqe6P+ysbglaAoepGjiV5T5Q+2c/Mbbcehd9GDH2
o2NlzZKqg1lXnhPGer05ROy9F9yu2FdTSfcmNc66UbW3s4A7ErwZfFbsiRyj
xvKdwzG2bzHgetGb3M6sw3O7sRpgN5PnCd4x7PEYJ+zXlY0yqrxZSpUMDVXc
NNQF44/YseBc7FXrkxj6fTj+k3rtpiAdAx7xqPNtjGOPWNmghKpvVBacSHez
kWIfXPUKTJVrNVCtgpryPCJWWQWsG86DXCb7Q6q305jtdhPVI2gkcWm2XUOe
H+Y/+sCxL483dsUeCPbHVljvCY4DtV+cC2M8wGnG+4IpcwnYK8wljg3hG6q9
wanYLcZ24X4G5zd0gIC5A6eqstbGZgRvxNCrfYNdXXq373TacgzbRsXMhrw2
SyrcJ/hpwe8C/QDo0aHHBXpptxltpM8Ffh74WznmirFfL9cw1o1K3Ht30E6e
C+Ymx5zCiwzOdnD3I4+L2iL6l8AJC30A8LSDVxp1L7Y3sS3WR7FTwYXYeed/
sW+Cn2OHgzC2zvowlrD2x7oH66R2Dp5l8DwDrw2OZ/QkgSMW3NvwpcDNCi0j
aAdAFwH6EbWMZ3ORZ4bOGtsV0caAngp47nnvjU0wdiPmlueKsS5jlVAc/8XI
+Ursx2Bri/DyghsWPOHXOPHBnQ7uEXBadwpWC74b2JbjwXexy9Y/sQpWKVU1
KKPKuSXVZeefGHre3w2+jaEPdKHzduzBoCCGmtDtzmuxIcZWed3qvCr9pHjd
E6RibG9jk4I9sYnGnlieszs22dkr7+AOwHfxLMD1Cw5gjDf6NsGFAg55cJ6D
dxzXDb4e8FPjM+D9BQ8y+LCBUwePPJ4FNAzwrICLhNYE9E+gfQI9DOgzoGYN
jQLwy7PvI8cFxzVe4FfGudiXFV0FaDEgH35N9weaB6i/glMe/jm4msHnDF5o
cE6DvxfxZ661RuYq+I1Rw0JtAPzY4GxBrw0wRdc4fPH88QLHNuYt5kg3a12s
g7H6Kt90sChW3cqPXXaeEK4i5BLBD49xwTwGTzvqY5g/GDdwLOMe0BcLjgbo
KEHXAnoxeF3TxoAWB7Q38I6/gyMMeiaYZ9BHQS8HdAOh4wfdE8w9YE0QZ7Pd
7Qq9QWgdvm581hWaiP+HRekKjmVoWIJHhP2kQvZpRSP0mn4ox+6FPN8LwYGD
vh5gB4ArgF7iVR3DCaIpg3ecH/Md9cHPjAvQcRTtUuiqdjfWF/K8L2T7UBgz
GhZCKxSfwfGuaTjimNA/ZBsAPIDoH0KjsYvxYtf/05uU64HWKTBhfE+iw/qY
QaK7it438B1AMxWxDTRUocHKYwDcbSFqIeDzYXsmGrbQr+Vr9N41xsmL17Jw
IbN/73HsKrq5HItJ/gZ6vZWNeZJXhO4wx6XyGhS85PFa9XgNebw2RDf5Scv3
5jlvitYy3p8IyOP9zwN3DHKTg50tfA2bvYHWS6KDzGtOXvg+fh9hvewNs7YJ
jzN6PdCzAn4Z8BUgtgbWA33WyDOxDffYRxWdZ+gyg395srXXu9vgYxo75bpw
HPwNeaST1g/e187P3ifBDx7v0YJRZrvrsf0QrWq2Q8S2Q7SsEdedCL73Pncu
el86P3nI9bCfI7mqtPO9x7GVx/u5x76BVzIwpFed9x3RzwaOr05YgdgnINOp
So3DqtQiqEHsD0leEdxeN5pZlO3WEGx93bCiaG/zvkQV3FKE6yhtlhC9bbZn
gnGBFji+C2w46qqI3dFfhhxlP7cp9Q+byvvNYTPqbzajm4Im8kKPQyezHoHP
GpzX17S78YLu93V2FQJfNfJoOB50zcHxw/scDTWzifct6mmZ1NVsgNqdXDO0
xTneJ/bfpT8H2I26RiVqYkWouVlDNMzZxwHvD6H2bdmNJI+I7zcNInId6CuA
fjiuh2NkiZ2bGtVE+xyfhW56D9Mk3u/kGDpsKPlXaKZDLx356OvcKpKHQ30H
vFU3uNXlHLlOA2LbSjeb18v48JyXMenpmqSshtTRrivHgaY6zsN+BA20r6eh
YXMaGbSgUU5L4vV+9RW0pDFBK0L+BHrxvM8Tx9p0m9lG6k/I7+B7w9xs4ezC
+I12WxFyQPgc+A7xvTvttnIs0Yznz44MWxDHzcQ2QfKP97kdaVLYkSZbVzXq
8Xmcl2NqqV0h54g6qjavk/vCNd5ptaXedmM5Bq4V13iPeaN8H7lb9nnlPPg+
eJrQw8P2R8Y3atWRZ4U52cqsdVVf3q4v44ExxxhyjCE/Yw6BixX/Dw16zEGM
GY47wm4h93q73Ubebwlb0jA7W8ad/S7qHlxHymko52VfTa6B4w8aYDUj9AQO
N1sQ+7HA5hDvV5SwuxC4tiYFHYn9JRljcLyzLynzKNe9el24bzxX5Mkwxuzb
06NGjDj+oScCRY+FMXrI7Ur32R3pbjNKt5itaIjZXL6Ha2HfkDhmkvlyY1iH
Orp15Z57mVfnjVxbkE0clxDwQVgbWHO9QlM+g3vAesMaQY0A9w8OJIz9vVZ7
AufGPWGU7nXby/Mfa0clT41evLuCtvJ59rnpLrOdPGs8S3Ba4flNMDvQJLOT
zDXU6x4OutJDVlcCjwvuj2MY4fKeG/ageU5P4viFnrV60/ywF80wuwsGe6rb
mcbZNxK48tnnvDqneQwwXpgT+Bnr/P/Pa4vnnt2JgNea5uQQ+1tyvofDrjTN
5d/DLsR7ktwX6vK4V3zXttsJb9x4o72M9YTw6jvm8wNBF3owzJF8+7X36VaM
nrS18PPzPkSPuFffkb+fEXYj3guJfUpiv0buT3j++WfUe3FsXNtTZjdaFPSh
VfbNtCEcQhvdOAHDzfs0vRQOpZ3maDoQ3Ebse9AOdxRttOMEvCn+f5V7M61x
+LPhQDn2kqAvsc9OrjWEOMakzfZQ6XlDHez1cBQdCG8j3hsl/w/cN+oicm1m
T+IYUo6BugD6che6fYj9b+EYwe+rzYFyLlzbCzafL+wv7/gdf+e99up1BQNp
ZThAfsb1cSxH7NPQy8FwqVe/Zo4ijsXk/LhG/N8q62Y5Hmq6uJ7Fdl9abPUl
9pHlfnBNL5pXx2RTGKct1jBiP+v/19b32bcS7/fEfqvgSvdZt9IOexS9ao8k
9hmJY0la4w6SY6yzB8t14x3Hw1jhmFuDYTJWL4fDr16je4scA9eKY78WjKRX
XL5mc7iM6/pwsDwzjNvS4CYZK1wz7uE5u5/c0wsWn8caLDwHuE98d5s9XK5/
iz1Mav+o0eCccm6+J/DF4HOo7+A7OAawl8vt/rTc6i/PY4U9QI6L+8DY4PcV
1gB6zuknn9/oxOW+cSwcFy+MU4F9G/nBHeSbd9LB8E55D5y7ZMzAu4n7fNXh
MXOHyTXgHtcHV8cJ58IcwO/gV3TdIXJ9wDi8H4yjneEt9Fo4kjZaccGhgh8X
n8UcWx3cTIvMvrIGsNax5rHO5we9hMPpWbc3LXb7EscGMm/WhoPo+aC/1LDm
m71lDc1yLLEHsBmPWLn0kN1VbAO4+bC2sQZR93rC1IJLxxqDHWFfVo4BnrVF
YR/BWONasOau/f9ip6+ML86/zOwv62BZ0E9+x9/xbPFdHPdJV9N0JybnZ5/7
/++hY62o2CjYD9ho2EDYSNjAKUEnmup0Fhsi9oftEWwT9ocpYSeaaHQUu2Vb
V+3nHWEbGmO2phFOC9mTZR/nvVjs3rU9nI8P24vz4nzXbBd4Ju4O29FEs6Mc
F7YX55/sdKL7g850f9hZ7PA0O0fsmFyL20VsIu4F+za+MzHsIHv5vXZ7OSbu
DefkWJ5utVqLX4DrwZ4HHyDuNKe41ZwGuM1ooHW98Hxir8H/YV/F/jPMyZZ6
8///PO+Fg8LrZf9EPyZ8M+zP2Be7BPWovZUlL/iX7O/LO/Z6YJ3hQzYPq1Nb
tza1d7Iox60vezJ6VLCnYk+Hz9XXbiIv+EvAWeMzOCZq38ACtDFrU1u7NjU3
aog/2CqoKefBZ7qEV/08+Lv1zcryd+BNsN9hv8a54HM0MquK/wbfEfsw/MXO
dj05bgPnql/Z2IxQEydC2VYNORd8znpuJarulhP/ulFQRXzO2m4FamBVFn8W
fmVpowT9alz28EKc8KP1u/zMsbGHGnUJxyCOqeQzGedPqWOXsoqL340++X+C
fz3gfDmelv8rYRl0xbni4XXe+Z93IfjdC61fvJ+CPzzUxdG/i+Nc+5njLe+S
87ecDz8jRsD/oxcC3we+7ovgosQhH1jn5PWmFXpvB6e9QudL+flQ8I33nnNW
6uz4LL6D4+O6EKug/+gH43f5+S3ntNTkOVaW+tFi54g30wjkhbr5o4bnPRX4
HjDo4AxG/zP6oPcGp7x91udSb8d5wXO6z/nc2+UUybHAC8RxpDfXeFN6OjnW
lBgL8dwDwX6JzfAz/o5zgZMCMR/4IIHZxvnmB4c9xzroPRZ43jSrwJsQ7JJ4
D/3YiPMGWJs9y1nvcfzq9TBcz7LWy++IL7tZ66QuBvzntb9nW8u81tbzgqVv
6Sz3WjvPexz3ejpYK5xJ6IMDpqlr8KLX0VrttTNWyndMZ4lXz1no1bMWeg2D
RYJBwHsTK+nVNxbJ/1V38r2qwTyvkjXXK2/M4Tkx0ysdzJT+OvBBnnESXklj
plfTmu9VseZ5oXM/j/90qf1/bzwon/vHeMorHszwfnYeEQwrMKu813vbnOHC
I/mU0c1jf53vrzG4m70cp77HPqb8jf1djllbc6x8I49lNw91Qd6rvIVOH4nL
eV/3eH8XfjG2v8JJyfZO6rDA1lZ3ynm/GH9Knxj45D42fig8Z/xWyPO8kOc8
uKQEEwm8F3rLGhpVvBZGTY/jLvkZ7zgGeDDRQ/GS8VHhSuP9wknG3sKhxrZC
cJrx2Bby2EtO4zbjtUJwe/D8KOTnX8hxeOEm40ThU8YbheONXfJZ9KkdNyYU
ov/3sHG38G+gfnqHsaPwReOY5ChwndBfwnWi1w3nxfGAyelvbC7sZWyQHAe+
M9x4uRAYYJ4rchzkWHBM8GogT8M+KjCuhXwvheANB9cHj00h8K83GU0L0VON
XMrrxmcHruZaZxTwHJG8EPqG2C5APzWXvyPauuhlRL0YGrio4YO3CTVZ8BAh
r8nXINq24DWCdix4j6GBCv1w5ODAgYzaCvS1obsKDVjkYqHhek0LGnqvwD9D
Exa9seCMA7cqcM7Qq4WmMrSSkfcCxyhyhXhBlxb6yfgcr0HRV8a1QAsMmrvX
vgOtXegSQ6cY/YLQ9OV5JVrG0FjG93B+aM5CHxY5RFzXNV1t6MdCwxU5Xlwz
jgs9LvCmYhzwOeiYg/cZmtzQHoMGJziteG2Jfhtw8tAWRJ86dB+h2Ym8JrD2
yB+DCw+5ZOR6r2mKog6Pz0jO15kp2m19rY2iXQZtOOjLQdMRmpXQtEQeHfqr
4AMBvhzXDK496E3ivNB9RB4SvTZ4h94Y+AWQk0a+Frlu5O6hUQZNQ2hSQvsT
uWfkrtFjCU0yHA8aZ3z/ovMJXUPoxOEF7CT4X1FbA2YAeWLk21FXu6YtCJ5H
9EJLTjZYIL9D1w6acdCUQz4VNR/o1GHscHzkbjGG0MCDPh0/z1ivwBVNNujS
DXReivUI1sv5cR4cD2OPF/K5eMeYQY8OenfQrIOWHXK/bDdlbHFeHKOn48Z4
XsTQKzPZ2iscAuAYGOW8EhsSbImxbY4NtK5q3rFdkLw4zzNo0EkdEDWhOc4h
qXvh/6A3h3P1szbJd9HvxWtYaifIpwNnca+zK/ZEQDHeM4QDkeeYHMNxDsag
XwNuNBwPPOLIyaO/FTUMXJvk763XY2OdlPyO/8fn7nP2CM8v8vw5zouic4jn
Cswfrh01E9QqUVMDVuIt63QscL6RWhRqI6iRPRO8Kdd2R/CajAmulfcw6bFF
zhzjjv+bZQVS0/gluBSrapZVqJ9eZ1dRqPehzrEhOC71hVxnjYw3+txQa8A5
gNHgvTxWMrhaE2OfAxryPD9/5jl7IcY+gNTBUA8DfzA4F1BHgI3BeoReDvLn
yMGjFsf+lmJ7pTgeU0etexTHL4p9eKmtoi7ysFEofXeoVQFbD45MaPVCqxX5
ecw9tidyzkp2aXVjWEcNMm4QPCf7oYr9TqnDoW5D1lcx9g1ig50tosWIdQS9
U9QJMHcxzuA6xviiJoy6Kvt8qnFYVTUNI1fHyCoj9wyuFrahsY1WWnqX8cyf
MHzhwgN2RsYpuFoLRE83aonFDUOBV559phjqcezLxL60foqVDourukYlOQfv
cYr9StXaqqXYl1S1zAqqeFBMao/sy8XYh4r9EfwldWzUwHA+YHTwrNl3ieEe
ca8djKt10ictrRaEvdVkt5Nif1jhGGyjZZ1D2xBjCP0S6EliTpRwDXCMqIhb
VmrEpZziCngc9DMAL9s4qKraBbWlnt7Wqi11ZWCyLjp/xN5wvo6tDz6U2iTW
1QzjoKwJ9uFiJ50fYuybSq0SddAh4Q1qvNlejbWjiuMbqeuCR5Rte6zQ+jKW
dN6RfnCsqwXBWzFwTqJW/Z31G/YoxfuV4jhF5VkdpP4+0L5eaqbAGFyxrsQ+
ss7zHPlErgc1NawbPA/2uRX73wrzjm2ufIdjDMX7hVwbMElYE6hro4aMe//d
+kvqc8AMp6zP5HjoT8ff0KuPmvX1RnWptbZ2rz439B9Xt8upSm5pVT4sqYAj
xvqqaZWX84NjEHxjqMejb5BjHpmneEbgAahtVZDvgWcAzxzji59xTODDWro1
VUe7rsxv1HuH2dnCwWrZjaRmDz4B9GsAF8A+lsxHrM33rLPgIoSmOu8ff8dw
nxgzzJfedmPFe5xiP01x7KfAvw4uZIwVxhzjgGO8H5yVtQ6uycpmGbkfWSM8
F4DvQD1b+F9CU8Xd5oK3wnFRYwf2g/deZTjF1PfBb7FvjF+EQwH32sioKvMe
mqGoZQN3AE5Z4AaeCJTgOICXGBm2kHsElhGYf44/YputE7H1xvHYNuvjGPQQ
wDeDWjjHvmqx3Vf4lZ92uym2PWJbugb15Z5xLnBdDnSuVzeHzRT6brBeUauF
7jRqcvAv+foRX8CHy8UeBtwH8JTAbk+I7lbT3AJwpiidXqvKuLMEp1HSBF+6
K3YL/kcjY0kOeBD4Orui/om9G3MdGARgQnh/Vw0Si1QzZ6lqGFks+PB3zHuA
15T5gnWFWibWLPv4sjfAvqNuzPGp8Gg/binBiKKfCviZOW4PlWd3UIOdG2Td
ob4Pu4ZaNmrPHI/KnMUY3BK2RB+setjIVY+FMcG3Addyp91WMCp4se+vOD6W
9cYxvNgE2F5gLFALh/YqrhO2m+Nx9UzQU4GP9H/hdFUuOVtVSsxVZSOzhUvj
uDlBejRmht3FDmD+9nWayLMHBkG4g9y60hcGfwu82KgzIc8HjSZwfM00LWjq
ePBlce0qsVa9mvhEeHlKZgydcf8Unjw7/rq64jwtzxt+EHqxwOMWt7Z6vO8K
b+djhoIGXVeMMdYieu2vD5YK/m1iZre6J7pT8HbgGZoRdJO9Ej4YeD3ZxwRu
+gB8TWAN4BcAA4HxYr9MFbq3q7eNsWp3MFq04/BMwI/UMKwsOn3YC2CrwLcA
jADWBGwPbDDsBp4Z8DwcM8meAXzO19bPYlOhedHaqaW6WdcJrgpYm9vMNqqf
1VTmM2wL7BP2FdgH9jsV76FXuZHMGgqawezvonfU2xAMoYvOw/SGdSfxXkSo
3Z4OfolVcucq9t/V6fQv6nf7LwUMcDL5jvSJPev2VvCB4Eujb2+O00Pqr4h5
wUXKezHwqgXgw8aegD36OaefytiP8vx7Vl2XWiwaAufMacLtVTooruCTQqOe
90U8d9FkR+/qK9bJGHjSsXa7B9fJO8ctYiuB9QFWFXwK7FcfYJ9W6tDtjDrS
94HvYu1vc4erM25C/ew+ok6YeWplOECNdltJvx7wHtAGBs4MMRJiBPjU2Cs5
fpJ5DnwL5jeuo5FZVewj5hX0PTBfYc8Nq5iCj4b9GdgqrNNp1lVsFewV8Fk1
3fJiy4EHgu5BllVR7GfzsLqsUzz3r52fYxxTxoAfYB/DQ57fstfTzGhAq8P3
6anQJ/bhJU+GeO9JW6shmS1qn/25+tm5pP6M/KM+Nn9Qc9OHVPVUvuxziANR
c0Z9h9cmnbEStNscI3W7UdYriPG7wpe+1W6tzroPqCbxpHBxRZMrea4tUB+5
ecJbA78LWit4vuizAd8Gcing+QEfQjOnmvAkYEwct7tggTleEruMfQTcjeC4
Bo4E1wRuGGBIzjgJwYxc0+1GLMTXKXrLwC9Bjxn2D3rwwJdUcebJ34A5gfY8
8CDQG4fvirGDbwO/Hrg04JuBjQb/GMaU5z0wFge6G+uFnwZxL3jPob2+xzoV
qxNWUD0tUw2wmsnzxZrE3oDzjDd2Ib4ufMUZITke8Ifx36WvAjE21hX2WOCg
JpmdpPdnsHuDYL6w1oENwucQ2yNHAfwF2yTkLoAByQXeBHEA+kdxf/OcnhJ7
Ima0nXYyHvDpMa/BgVnBLSVzqo5ZUYG3DL4S9kXEJMAfYS8C/gexJuLo4oYj
2A3EyF8YUzhW/EzWxx57DPt7c1W3+DrFcYCamtqnRiReVjXM+epeuz2wmsBW
edPdmPBH3Bx5SfjwGgdLpEbAcQkw6l2Ai0Pf6NfuVME5X7IfV7vs0eK3waZ8
6UxBvNyV92Svf7DJ2xp85PGYe4875EFXnO2dB1wJsJ6IW4B3+y/4T3qyMK6I
U8ChudjpC5wfnl1XjpkKOVYr/MyYVFiM/yEfAsxLDWN+7iLjSC77H+wnDIm9
a4yTeBzYHuDE8Dt0odB/y+eNIb+BXAbmJMYLsT9iD4x/jlM/BmzPVdzYXQc+
NiYWcswquSP2YZCryW1sRARzBs3xEpYTgzYcYn7kLZC7YTtwADmf+439B9g+
HUAfBfA0jxoxeS7Ie/D5cmG78DPPU8Fc8fE5Dm3Btug6wVAhx9LH2Ii8SVfw
/YEHALYWuSHcO3oEgM2CrgRifXDaAUfV2no+9qsxXe4F63278QlyUh72RPQn
oycZnL3IW/F4doUdRpwk8Tb7P4jxwSsA7gDYe3A2IIeO/Ddy0cDaWE4j9Grm
/Gdcge+Ti3wZ+qEwR3Lja2hmeJDWpT6kZPwdGmJupffN8QQObOR7jjhnYuB8
wt5yv9kFfUIKWDjgrPhYhZOdTh7OixwkP6tC3gfQy5QLXB/yQ3hhDfHfORbp
JXEe8gWIkRD3I6bF88bzQi8d+8Qe21zpG4QNBO5paLBV/DzwwSE2vc/qqBA7
o+8feBv0zNTI5FPT6FIqEXekhoWeM+CxkNtAXI19fnZgSQ9/a7uWAi4WY8lr
Djy2Hq9NsZnAJ/EeJX0d0FkAlxMwqqOdVhK/oa/AcboL5vdv61/ZR/A8E04X
6Qn8n/EYMJOSM+M1kAvtPcw9fA5cEYh9EEfBjsBf2W2MKURuFbYbvdz8zCQn
yuMHHRrBZl3j2EUeB7hX2MFnwp5yLeh3QGzDYwCcpod6fr/4JtqS/IiKEhfo
m8gvxHsQsc8knGHgp8f8Rg4BvRYP2V2ljwb+xz7rc8EdIo+IdYRcNPYT1BWA
n0KNhGMNyf8j7w6dM8w79lljLYJlvP6PSHyDPhLw9cK/w94Nvmn2izzfuFN0
CqDNgd/BxYucI3i24LcghkAchH0d+SrkITnexhh4BdYX3ptOKFoZ6JkDZ2VH
a3UM+zJiOWA4oTF1p7UjttYYHKtolM5Fvho5edQC0OONOcrrV3qWDxi3y9oD
fw5yYsA7Yj6wTRcOIV5Tok/G8a0H/Bz6czsZL+RyXCo6dRgjxA/gjkI+GppW
4Kni4xTC54EGAWwdOEXYrmGtdOW/ST8f2wP4QoXwU9kPQyzSFflk2CDwzvI4
e7zHiVYU1hh/tivWFPucXYEpZN/Bg7blMeNej9cO6lXsXxXbj30e+Ujss8i7
wX9iXzCXfU4ZB46ZPLY1sOUe/GTeH6VvCdhS4D7BdXTQ+OYA22Y5NvqVehgm
xkF6ioAT5nGX/Qv4XowDesD7GE2k1lE2mOXxvXnIuWP8gU/GeA0xtrIfuB54
ScERYlzxXHEN4DDA2gH+E7hX+BjIbWMcUUt5xTnpgQPqinVF6k+wEVuN4YXg
gUJOi+1ubFlwVGKeTcZQ5BZhqw+gdgBbxHtA1xuNVbm8T0lOuoRjxLAvYH0/
aniF4MlEfYScO3h+2R77xtAAQJ0iF5hV5HHgEyKWLnboivieyLVXNsp4POd5
/I9KHQw8nby3gF+xK9vb2E3BRlkDS4Ij4hsgd4w9Cz2cyK0Dlwp73MmoJ9fE
PjI0X7piz2RfFzXAQr7uQmA54ZvBp0KcilgYawZ1EvYhvL7ORo/tqYw/OC1w
X8ivc1wvNQRoeSMWwj3Dv0OeHL4Y4hvk14BvRv6cxxEcKR7qttPtmGhHAltU
1SxLPBYe7DzqQ1jziNUqB6WlVs6xvOALgM+ZanWWHlngr1A/Rx08ad9Er7oj
aY81RrAdwFFwXEtsT4ltqGDDgE0E3gjfBwYI3wUWbJxzo+BHLlmPU+NwCcUi
a4n3Pcp11lAzdymVis8kcOoCI4B6N7BrbLvpC3OKcDSgT7m9u0r2hZLRmbQ/
vFXwQMBsoY6Na8C1B+5ddNF+mOfY0/RVMEWwFPwMBZ/J9+wB94i6MWrJZc2S
tNFKe22dFbIGUVdjX9ibFOyR/mLU5peEfQVDhH3pqUBLjZ2crzyOYT3ocmC9
IMZlW8t75yGpGQOLiHo0asTAoPL8l1of9gH2jwvZvxHbAj8XPjI4yuAbI+fp
Wsel92G2cUjw1agzoJ6Eug5qPaiL3BK8IvEq8m7Xm9VVP7epxJ38rBTyA7lu
A8kxIfeE3A/yEXw/qlZYXn3uXJS+Dcw/xIBsV2O854uN5vkVM92q6kGzq8TV
v7uPqSv209I3tDYcpG4z2kjOBD0NeLFvIjky9NB84I5Xf4SPKV77or31lns3
x44D1b1uewX+ZstqJL0Ps80eanV4s/AkzLIt6ctBTwby3yuN92OPWIXS//FT
8Ecs260h/Yro6UQ+DjH5C9YHEsOwHxXr6zSJLXf6i/1CbIU+HeRjEK+hn5Cf
meI5K+ODfDrqK8DbA/s92+iBsc9BHgm5HsTubE8VxzKiH/a1NVU469GPgLWH
PQPfQZ2Q57jkesFDgzzgLqdI6i7Ar8NmwR6gHwB5ccQMGCNo8SHnxP6nAhfh
OufDGPjOEIth7FFredLyJZZHXQD2CnYcdh2+KJ497Av8a/DFwG+HL4T8EnwZ
xNtPhVp6fq4Pqin4esi98/4s2lOI1dneSm8DenWU3VDiJzyDmYYl/STgIEd+
ExqJwOhjb4U2E/xk+N7w6ZE/Rn4KeRb0aPKYKI7t1EdWnroQPqTO2g+oneZo
4RZFfhjnhV/Oewhw2dj/c+Fzoj/oR+sh1SmzWg3PbFMxcy34fYUnYpiTjefk
sU/sgaOEx0l8ZsRujc2I2h2OVhUSc1S95ELpXQ2d+9VGNy55OuS4MO+v9Ttx
fCJ9Ptucj2Psd0j+B/03C+0+6rz9oOQFh0S2CnfUqOQrql10pQI/Mq6f/SuJ
e7HfoPaLPBb8PMTNrnMctUb1RTBZQfevZ9JVN0U3yffRU4veNvQlIy6Cb8D7
mGDqBxk3eNjTeI+SnjLH6q6+Nx9UVZLzVMXMHPGJkV+Czg56BBD38/P2elqu
2CjU29HXg2tAvx1y2Ogrx7oFRzQ0JRG7w99C/zDHvYIRAX4GPcrApHCMza/2
wCvsb+9kSfyK3pQdzqhYS6cmanOI+w6Acxb7aJ9gg+D62SbJK9tZxrZshPgG
iKX4PqHpg1wxauLwfwrZP/IOG3d7bYLnBY/CvjI0fATnDhw/eJrQa4E4kI8X
A4cueozQ98J7Z+E6Z7DHsYKHfQzYfeA04CtB5xM1dOz/7IOIXcQ1IOaNGQ0l
PuHxkfod23k1wmoh9gNrsEZYTqFOiXoz1jH7GIW8/hFfCgcjemxQn0W+9Vnr
Lalv3GBVVw8EXdQh01aGO0N6Kcubc2TOoe8O/W6oF4L7zbSWSO3xms7qanOg
4nhV+pt3uaPFhqIXEmsVPYvgvzbdJaqz+4LkQMG53jx4TlVJzFO/hI/w/LtX
bQriwvvN8ZZ6zRwlPAUfB3kyd8FXgHmTZS2Q40AHt116heqYWq06p14Qzgjw
UKEH9DtnmthE5Jmv1ULY95ac66f2fapmcr7qaK9WA62XhLe5W2rd1WtJzZO8
8nvWOLU9GCF93yvsAcKdhvsDnxr+ts0art4Px6kL5sPqivu0Yh9GtJ/Qnw5O
A9QuULfjPVjyq8ibomed92f1oX2vuuQ+rkqkHMV2R/ra0dtW3S2noJ3Kfhnb
+XelVoVaWym3uNTH2G9RWW5F1SHIkvUKbvqUfYs8K15r6lm7t/C3QisQNS/U
+mFb0B+F+Yq4AbVo5HQ4XlPQO3nFGqEOmLerHdYotdzuLzEZ+gxRx0KPHPoF
Udd8y7lber4uOg9LLR1ar4ghYRtR+0G+CPU99CMi34W5iDpULGygoB+Fuhzq
Pagzor9qpNEyBl53XB/854ecAxIPoZ6AehD4yFHzgy+KdQLN7VXOzRJ7ovb9
a/BnDD2O13rmsc/adjs5D+Yn+s+gzY19ZIqxLxd+LdYd6gCodz0f9lcn7Yls
N59W7F+xvzBDnTInSz8o6laoVSEnhn0WOVdoyaKuhxoP6hroY10fDpY5Cr7u
Q8Fd0qeftieoU8Ek9aUzRbEvJzzd6NUH/wO0G8ENgGtFTYltkvTv4jifW5Pl
WrDeGkWXKI7LRY+gijtP/es8pT507hWdW/TyohaAtVIxMld1jK+WvBrqRnbi
dXVzerNqbT+vytizhHMNfOLQ+0HOEDkE+CmoLUEDGz3ZtwWvqvsSe9Q0u0BN
tfepOxM7hJ8JXFe8/6m3w7uFDxg1IOiYT7dicv4PrPGqpj1f8Z4r3KVu8rja
FKbVYveIGuum+NmvVH+7T8r8Qt0NeUv4JqjX1E49K1xFD6T3q5npg6Lvit5+
cJHUcxfKeTFuvBerd4N7FM85tmX5ol8zILUZmnLCwXV/Zp/UU3APQ4ItqkfU
VR0iqyXXDBuBMUC9BusZeUPoSEr+2kqq7MQyqTtcn14qvAfQ8QHPADRb703t
UsPNl9WN0VWqnDtbfEPUGrB3wS6BQxz7PvZi9tNVz7irBmVeUkMzW9VgZwtq
IapdZgWvIX5+8XnC/wD+5TNWQp0w8mQMvranqnPhA+ID/GA+JDny02ZC9HyL
rEnCRfGdNY3XwWPqj+Ax2TPRC44+Zez96FN+3FbSG499Gf3kwCwMtK4XHwl1
z/HBjWqce6PU42CTMOemmJ2ltoPaO+oHyOdgD4BtQA70kGHHGgdLYrxmpD+V
9xdeS2XF/oBnA7gD+IjAsSCe5vhMcujof0Q8/n+5NcFJIWaDjwh/G3kyxMqI
Gzl2QD8j9jXUz8ALjPzgAeQa2S/O5RhL8iDIo/Keyr8XSrzIdtrjnz2OQTnW
W+N97kzGPu+hfxG5HMSvqI/iWPuN2wSvBx5TYPyAHUSMf58DLq8fRF8ROj/A
qgLr+ZUxVTRXeV8t4Bid/b+k5EyRg0YMA/wiYmTEQexXe82spdIjWMJyhLsE
xwYe8pwxTfifkINpbixDPqUA+We8kOdAbI9YlJ+Z5OqQU0COA/i/BUYfuQ/k
nDnuKUSege2Gx/6Wx7Gj4D4LndtFAxz9mPBlAucusYnIPdzutJG6Ffo80ceJ
XBzwkRxPe+CvQS4W/JLI0SJfDhwiX3MO7CTwSailo5aI1xkrIzla5E2Qw+br
klwy8seIIdA3C6wG/H30owOvANuNuHye86b0EwNLhDo64jHUFMFF8KozUvbN
0+H9wtWLfRrrAdyc69zBisdEbA3HnhLXgKcAdfcC+zZ12X5CsR+lBie2KPbP
1GbrhCL3KxUkv+H975Riv1c4UNmfUbmJNeIP5Lgvsi+0jW2Xp14yP1IfZ86r
f+3/VKXppXVtp4Kun1NZNODr5FQU/ZsqdhldPlNStKWvpK6gVqp+iP4unByl
ksU134tuZdbSffOb6BH5LfT4cu2FK/WuTFs9PJ2t+0Sb6M6j6+nsZA3dzKmm
b0hWF03D/ummeuyqqH4sHdPz3J56fqaXcKo+neimHw676gmX22uOZ3XfVU10
p3L19PVHq+ksq6KumlNWg6Oo3PSSopHI8YDudLmu5nhC33G0jZ6U6agfyMrR
k/M66TGZVrpbv+t0w6Cy/s2+LDxEM8ODwts0ynlFOFSmRPexD/SGWmC+zf7C
W2pO4pB6NOqpRGq/us/ao8aldooW8+DUFhWLrlWNzaQqlZopWu3YP1Afxr4P
biHkwhFXA/uInmzkkFHPAOctcoHo1QV2Fn3G6P09aHyTc5fxes7/9QEXYi6O
trZ7Pzq/e+CbQ9/Kp+59VCYxi+rZC6l5ZBk1Tz8nXLuNo0nhZS6VnEk/BA8S
+5PSG4QcDfqQ0FuEPpXL1hNUP72QrNR6Gh/ZRXPTh2iNe4xejpykVxInybWO
06LIEeF3vzv9utScupvrpZbAc0V+7p/eROyLg1uQ7krvoHvMnTQxsofYD6DH
okTzkm8Sx4W0yn2f1obHhIeS5x5BFwyaII+GhcIbfUfwGsVTW2mAtVn4NHmf
oJ6uS33CDdQ/w+cIt9LtidfoXneX6GNMTe0Tnc5pTgHdH91Pk8y9xHEa3W69
RsMS26hfahNpcx21T60SLSZw59fJPEvVIvlUxZpHldNzif0Hqm09S+xDUOvU
85STelF0UfqkNwjHrI6sI7YjxL6QaI9yvEfsW9Pb5ljaG46R/iJw76P3ZpZr
Sc8M8mQYY/Rs4f/RS1Vo3S59PWzPpPcIvW7o10SenWMRr6+10SvnzAZvl5d2
JghGHPx4wLTzmEveL8tZIJhx5FSRt0XOu5JTWvKr7Cei5/sAetyRD4Kda2Es
F4wj/OOdRpHkN2FvOG6LfWL8GEOuB3n0E8Z5wbXBl2YbF0MdHbkV+MzQ5/vX
eko1c5eq/uEmdW9il5qe8tSMzBvKSRxkf4wU7zHqIfuAaACyH62ez7yrtiU+
Vgej36hT4QX1W+KyKhkYGjakVlF5beZX1a1TtXRusoHuHzTVo1a11GMTUT0l
3Uk/UpArfJ/P5vXWy7L767WZQXqLO0zvjIzWftEd+p3MWOEzLxo9SX8RmaLZ
b9Sfr5qsi1ZN0kXxSfpkwUR9IjtPHzs/XvMaFJ079jX1W/3u1u/Z4/RHqTz9
Zd4U/W06oc+Vm6bPbEto9h10evoE4VFOJW/RL8QHara9wj/aO9VYZxfU0JGC
ssI79EXkJ/VO9FtoW6mP7PPsZ/yP475iumJQSlfOlNZli0pAK0rtDotUwt6v
mmeeE/4p8MyARwP4U2CVsf7Bc409DrVM7HHsm3js73iljVmikwW+YswD7Nv8
GdkvUR/ZEBz30EOOXklw3tZzFlJfeyNNzOymZ9JvQq+ZNqXTtMY5RhynEvt+
dHOwmbLjy4jjQfozeJzYHyP2l+ii+zCVsmZSdTufeK+gDplV1DPhivYG+4lk
u6/ThPQu4hiC7jB3UJ/IRoqZa4Wvmf1S+sV8VOb145airkF94Xh8x/hW8uQ8
r7xPnR+lDwZ5VfSyo0eWfQvp6YNuMHjwoP2A3l700oKvFz0y6BPBvAevN8YB
eYLhxsveI1ahxzZJevVLh8WpvZ0lfcWzbEv6Icm+g9gXlnH5PpxGvwSP0K/h
o8Ln+4fxOHEcSezbEo8llXFmiQYm+8rUMLqYWkWeF52HwdYWsp3XRYtndvQQ
PZc8KpoPryY/od2RU7TX+Bzaoaib0svpj2lTJk0bomla53xIbuK4aLyhJrc9
c5J2WUXC7Xo4E9KxzDk66f5Ap8yL9HXyZzqd/oW+NX8FTyTxnknfRn6l0+Ev
op0BPXKeZ8R7tXAjHwi/oILkF1SY+FI0b8GJ/17irPD8fhn/CbyadDb5K51J
ZOTYRe4F4jGiY5Hv6J3wDB02T9PB8KpeBTiicYxD4Tf0dvQMveeeFS3dT6I/
0qn0BfrS/om+tn8WvWjoHn9l8vFSF4T7/V3zLL1lnyY/+Ir2m1/QzkgRvWye
FK3kFfZ7tNg+QvNSb5KTPEhPRd+gx12iR+xCsc959m7i/YxGRl6ReZTjvEjN
o8uEs9BwZkguf795m/Soov+utVOLn9u/0o80zNkmPTWuM0Rq3OCtAO6JfcYD
7FfmDnCaCWYDOFHkCJGTAf9bBWeO+DVDzK2yXzvOQbXSeF/xNavXIp+qY8E5
xc9AgSO9alEZfV2iim5TVEt3NxvpEU4LPblfJz33cg/hltzjjtHvZu7R3xyd
qn93HtO8bnSFgXN0FZqnOU7SNUfP19UT+bpy0VzNMbj+K/2E/i5vmv4onqcP
Xr5T70qM1q8dHSk8lxwjaY5vRBO3Zmq+bpqzVLfe/Lxuc/l59oOW6qrRZ/Tp
zP36uW39dPesRvp0NKN4X1VVg3mSb0dux0quVzzfVJnpJUSLFHybeaM76LvK
tdM9wka6Wk45/Xr0M4nxnra7QSsEGKgu5YPZ3hvW1x74J8AXAK4C9HY/aHaV
/sY+QWMCbyv2JXDs5zkdpO8HPvpfxpPC8zrZ7USVw7nE8R/50a+peKaYX/do
RZ/Xr/DXNsyu4ldIlfIxJ9kW0jPmYRqf3kmDIltE8wX7aq/IBsGx3BK8Qnby
dfEZHk4fEIzCQudtsWOvxE+Sb35NJzLf0zfhz3Q+/j/62vmZ3o6cofXmcbov
vke0n8HZDU6DCk4paEN4a6xjwheLfkT0pF4wHyaOXWlQ+BLlWbvpIecA9G5p
XHInDU5uobbJFVTJmStc4ujNRk8mbBHykuh1Q16TfTCP4zWv2KErHngL0GN7
xklQA3eR6ByMs3aKxjB0MR63iSZF9hLHBNQl/QLVSy4kw7o6x+E7HLXvEc0R
9gfJTC2hXuYGynN306LwbdoR/1S01qD7+7N7iX5N/0k/RS7RGTdDn9o/0nvW
WeEOBqf488G7NDsTsN9RKLoL8I3gx0119tGD0QPCp740eEf0dt5yTgtX6Hep
3+hc5lc6Fbko2m8ct8o518U/FL0aaDhgXDimFw0y7AVjMtvlb4n4fuGKzrcO
03Pxo7QpcoL2JE9RkPqGToTfi93Bc/o8dVG0go7a34qt2RktIh5HsY/QeHbd
4/RS5gSlkp/R4TAUDmOOGahMfgm/ekE5v360st8kGfFvcKv7LcrV9Fv2q+m3
KKrhN82p5kOHNWt6Rb9mvLxfNausXzlaxq+UV9qHtn2V/DKigVwrp4Jf3+Bj
WBG/uVnDb1VUU/QxWq+qJboaTTMRv16ykl/VLOuXGG34F1N/0MeRH4iSX4ku
K/Q6ndRB0Uu246+LP9k7vkH8Q/jXDeKLhB8e+x98a/Rlg8OhpVsTdtfj/Vbi
RvSdAQuFviPgJpCjQ54ZOD/2DSV3A6061BjA57c5cUK9Z59VF+0/FLgEEc80
6FdZNy+qrjsm6+o+RhM9Jru1npbI0Yvtvnr75RH6/azx+qfzD+uyHWfrrDUL
dPPsZbrT2dXaemi9vinYqG8KN+oe59frTh1f0DdMf07X7D1fF4vO0F+cn6yp
4A69I2+UcO3CB7qy7WndIH+Rzp2zRg9v8LK+W6X0WCelh3bcJjpgxS/P0GuP
DtJdM/X1kdQZNSh4SVV381XjYInow/2X/k+Bb3deqqd+zRyl2Z7rTTlD9bRU
jm5bUFu/lTit2sZXSA4GvS6oVQC7A1wF8DDwZfGOuik4hxoZS6RPE/gA06kK
fZCu4LJCPxfy9Kil/2Q84nUN61MVd55o9AEHE8kv6zcKqvgNrMp+2UwJ//3g
LD1tv0FtzBV0KpwkvBjozwbPAPRIagT5Umu+PfkaTYtf1eDDC/pWmAP3uXuI
fV9ZowlrPz0R8UULalHwNs1yApoY7CZlr6WywSzhRbjRyCJwVYPfCL2v3we/
eejjBo9CrWC+aHs/lDogWjbLXV7DxiFiH17mF3y0T4KJtCmI8zl6Sj8+9P+k
/97uzbaxj/BSoK8ePAw4JvuIUvduFFkiXONYr1MT++hJx7+6njkuAsd3o3Ax
XXIeF54C8BqAUyFl30KfhfdRKfuqLcq11tDA1FW7PNrZToOdLRKHdbZeoDaR
FRIndQhXyXl4btHNxkvUL7FJuMMRg1Y05tLX1lThZUBvP3AC6HUHTwn4DoA5
K+E6VD+6iNqmVkh81T65iq7PLCVoEP1jPkVpd4JgCMBhAK4W9NADL4A9CnwH
4BIQroRgDL1rjKMzdoKKHXpavg8tRVwL7Pod4Wu8LlOyv4x2t8vfeqZcyrFe
pA7pVaKD3i25joZkttCk6F4e37doe/QTOmp9K/7Pr8Zl+jf5HxkFxfySoeGX
ShT32e/0y4Yl/PLlSvmVVpX2I4myfs3R5f06kYp+3aKKfr3Rlfx6iUqyH2Yl
+JXPf1tVyW+YVUV0MKFV1OpyTb/VebZr22r6N6yq7pupqn7ddEXRyy6XX9L/
1/2PfrR/lz0Acxf73dbMR7QpeoKWO+9SfuIwJZL76dbUq9Q9XEfX2Yt5D54h
2nHgmphn96Rb3dbSiw+NnReNY7xnrfP2Obd6HAtKnRr4SmBc3jXOxlD7B0/v
GmuQ1F0bpBap3s4GxfNach87058p9gFV8SxD14pU0Ddsq67bp7J0j6JGOj66
ubZT7fTD5XL1gnRvvTk+VL8x/U7Nfor+t99TutKaubp+zUW6xe/LdBf1ou4b
36iHn92m7+y3Q4/NS+k7n9yhh/6+Veucdbr578/pyPRn9OX4E/pkcqI+VHSX
fqPgTl20bZIu4TjaHLFEq+Vr9dCzW0Uv8uaizTqaXKkrqrn6cPbdmmML3SKr
pr7s/AO8qyoVL65b27X0rU5r7SS6S0y5KKevnmJ21h2Muvqr9E9SA0BNCXyk
VzGPbYRHuoW5XLF/ovpZmxTv8VdjYec/aOUAFwRMk/SgI2ZDX3FPx5Q+QtRg
MLaocWbZFemrcAp1c9bR5ORe0cqDLlL1ZL7kb4B34rno7XBGAcMoPfGwHcgt
QGsE/tFEYw9NtvbS6OR26hx/gSLWM/SFMUW4WIBfgb1JObfQuwH7FOFU8XV+
th+hc+EDlLYmCCYH3DnA2oDfClxd4FsAPue89aBomfQwXbF99yZ3iWb1wPhL
FI2vlFwJ9rijzj1iZ8i5g750p1D56BxqEVlOvd0NNMzaJj4CcjZYx82spaIX
0DC9iLJTy6hL+ILYu5HRVySGvDO+Q7TBbzRXUU1rvlwnMDTPmwNohTuAdtmj
JcdSI51Pbe0VxPP2ai4muo5aRJeL1tipYJLksMDhJNwZTivh2ACWaZM5VHJb
H9r3iuYXsDngMwE3E7jU/nb+Fd8QmgLgcgOGtrNTT3idwL+FOBScGaiJww9G
TRzaguCT+875zatolKbrjerCIQYeNOCZwB+C7wvOya4vXFQD3euFNwk2DL0d
GMfKwVwZF97z6YbUc9TUWEp1gwXEfj1VcOdQ5cxcee4c70pMf1dmBz1qeqKv
BQ2lTWFa/BO8oOWw2TlBL4cfX9X+YT/5WPocfRX8JFo/f2X+oSv2FXBT0F/h
P8AI0y9R9iXDP8S2/Oj+Tr+Elwi6jsXMYn6pvOI+x+l+6WgJv3i24V+K/03n
0r+yTTkvPv6r7ieiM7Qk8g7NzRySvWVaooDus/fQ/+PpuuOjqLo2E2oowoKU
oIAjRQMirICQZO+BARFD0xUBI6AsPSDiCghBKQMECH3poQ/V0JeiJNkbHBQx
KOoqqKioo6KCoq6KgvU7z8nr98f+oiHJzs7ce+4pTxliH5BcMd3dqG+PL9fJ
kblyzqImxxkAzBb026CNAa0JcFQa2TcJNvF947uMt+3Rgs0EHgN8OfRMwYe8
060jerGTjHTBscMbCX5dE5yXxK+dY7Ro0jdMrUEcR+meyw0oI78RdQ/dTg/m
30Fc24iu/5yIRVt9D5EbHkpfZoXJyJtFtc7Op8aXltJdjdZQeo1N1GPJdnq4
bgENjO7l2m8P9UzeSWm5G6npkghVW51L316eSG7+UMm5kNu8mTqKyqlZZOYv
l/zqMbWfRvwdpceS95OVs5VuCS+h95PHSU+rsXcTwTNgr3Ne4ugteTXowfAd
NN0m4rOMVngPyM9lWs2oZmFlgj5+T3Onqm8vUr7IAtXJt1F6zvCmh1c4/KU4
/qmrzrMyTwB/AphC4OG5Ls4Ajxsex7xnheP2i5UjesLQ8Gxnp8Q4Juqz9ihd
yTdHJ0JTeX1111jjqPPaGg2EZ851s+gT8PehJRkDxu9z42ntCy4QDDbOG3BY
gB282aiqoXuIWgm4Y9RITayaojHT0bqF13M93TxUW36upl1Z9lUj5ybB5nEu
KHvkVS+k/zFmap+9QJvB5dLDbphYLLHmR2eK+HSgfwofD2gzYV+j/13esuX8
Q18KNctwJypxDGdjD2u71HYNjSVS3+HzJkfnitcB+r7wdOJ7LDHlD+950V3a
5T4s+SF0x6a5AelHQOfpe+NZXS2Sq+tHFmmu2XWSYXOeMELbVhfRDIRXNLRN
4F0y3IqKLiXuaW0zWbRr+hp3iP4dtHlaW/VEY/E140vktDGuHQWPzmeHaJpw
rhW7w14pWiKYkeHcBvZ+gNEq9qyREeP9EmtjrY3Z9suiWQl/FTxT1LvQX6xp
VYavlnioACcD7ZOO9obYU+6L8IyOcQ0lunTQYYp5Q8QP5QfvWf2LkyNctK+8
sPijfOWG9Y/WFP23PUNXis+WXo3EL3eFrmcs0k2jEX2buZxj5SrdIbhecqtH
ffv0k/FjembwhOTHmxNv6d3h96T+2+p7R68wS3Vu6KTOsWOSa4ed43pKtFjP
Ml/W851XdCT0ul4bfkNvdM/qDdGzeq1d1leaZ76in/e01LXIx7kukZnDQ3HO
6UKO7hBZL37ZeJaXnUnSS0K+DC061OvQEoLXKvCZiEHopQJHj74GsNrAXQM3
BI4MdCSACXnDvgTMruLviw8FMCB8VsHnQjX2lor2+mj7iFqQeEUVWOfUqcgX
6qLzA2a/0peBfjzndnRPvAF1TTGpf6gljcvrQPNKu5JT8BAVFwyhc8ljxTOq
gmdT7Rp5ZOrl1Na3jsjcQr0yd9IjqXsoK7hP6rEeWdupXf988QGsdGk2fX3j
GXozbRSdCg2j83lj6d8g12+rl1LnkVvosQ77KbvgKHHdQo94BdT+fD5Vv5gr
PXGuKai7dTtx7KB7UlLo4eRUmpHamXaH+1FJ6hNU4nuCdhY8TFP9Aepyo4n0
t980vxYPkGLrovo+fk3Vz6pGfrvMQ6aVXVc88aBlD497cMTBX1honArALxmY
JswiJ9qFEsN2xOPiK4AZpeSfxiLo1sagvch1u+b4K/gz4B6hs821g9TM4FWg
14f6EN5t0KFCbfCgfYf+x/0nxnmWcCvA6wK2Hvo7wJK3seqLNhj6xNDDRPx5
0njx/zHsjY1lUnui1/yh+10M+/S8M1ZX98+Tmdot1hJdJ5wn/ePXveGSe0CL
EFpfqEkwA3rVGKavhaaJT1ID/2Jeb8t0o/BSnRLm891YoJOdueJ1bIRn6X/M
mbp8yBY/TK6fJR+s4pvL5/JkXegMFl03YK4RH1u4tUXHCv1QzIygnwhNN2jM
IYafCD0hum7IXYCfO+peEK3dh4wXYg8bBbHx9ovCFUIsgu5URTtJQ3cKfQrx
xTP2xbj+lb0APSJg+jCHMqxZsepurmgc4XvQH/LZVYQjAT1haO7A+xRzC+Su
wP0hjoFHgj49+I7AJsJ3uZG1VOb/uL+oQ4ChPm58EsMza+BWE50w5E3I0aBp
hvwUMwHMyeZ6lmgCYl6Az4wa5zN7gr7iTdJXrWf1Dybnuu4z+rPQBIlZV4zJ
+u/QDF0tnCt9mrv9a6XG6xvfJZ7ayKMf9e+TrwPie3Qw9IL8G8dfyWUf8+2X
WedI5zDXrYf1iHhUP+4/qB/z79cD7b16gLdHD4zslRc8vdDPho8Wn9eCW4cP
7s3GQv2XMUNznJY6GL1CaMJBhw65EHRGwR+ta1XlXPb7GHimmPuA7wIdaGAp
wCcC1wdaHN0sRzRLoL/OOY/4lQPHCk1+NzRUZs7wluwe2qaGxg/yWa8Vx1Dx
HIGH5Y/R3xW8K29OqSr+F4G0xtTXdwcNd/w0xcmghRfuo01ZfelIZhaV5o+g
S5nPiL9ozYL51Gg6125nV9G9vg1kZW7l3Gobdb26lTru3EB31l1FDRotpuTM
ufR75nPE5wZdLHyKvk2bREmtbaqvF1GbJWupW4HD+dhuerBgN3Ub6dBd3mqq
OX6+zN8O3BhAc/Itmek/7m9Do/ztZO7POQFt9PelDdE+tDjRncKFnahfZiql
u7eK71LTAh+1vHGz+C/1sJoS59vULWpSi3htSoSuK85RxRdjndlbONjAmAMP
Bq92zOuXBF9TXOur7dG4ClvHxfMFMR5cWHAzsAfg0wMMCvh8wHdwHiQaF8iN
5honM1Ls6qJVhrMWs4rD7ofCwcY+AXYf/Cvgdnjtxt4xvo1BI/BTc4LkIEnu
LDmjOOfTB9z3RS+Ma1I546FhhtoE8QVcrluCS8QPk3Nf6WPXCM/TX7hPi47p
YfdR6YH86UwXHECH0Ho5DzHHRs+mmReRORdm/YgvP5s5unJojswN2zhrpff8
YHi31HCWvVX+PvrSr7oh0Q6F3iK0i8e47aSvgFrtPTtb8oU/3Oe5rpimL9nP
6LPWKNH3RH8KGowDQ610D7up1ESop8Cz6BYyRR/4vzwFtRf2APJC06qlm4Z8
kjNCcxqahKifjVA5eBOKnxLHaeFLcuwV3TPOR0XDDdyKj62rMZ9VRZtOLckt
uXaQeAgdY3AMEftwxhwwPoi9aXwtPTn4xUNTsLPdRPR6od2L/Qm94PlWN8kx
4Sl6wXlS5qW4f4g5iD3wjkNdfDY0SrxJkTu+Y46RWJTkt3XdyEKdGlkl/X/g
Kx4wdwgm4f7ENn2ff5vumtgq+SniRl9zt+Y1qXt7OyUOoUeA+IKYE4oekjks
+oOjo0f0uOgxyX84horX6FDfIf1ofK/uE94ldXyH8HrN+4vvw3KpLbl+0FWM
ueIt+Z0zWTzrwKVBLw6amdDPhm7iJftn0eID7mCxcX+Mz2Xxoec1XAQ+Gvht
nxs/ZYDbxJ9XOAjg5r9tfROA9gpwoMAeAetf0ZotmOMMZ5N4GnGdqJb6Tqvd
0ffUyfjn6hPjB/Wn8ze8NsjMqUXt0xpSZl4zeiKvDeVkBWhVSk+Z+WPW/72f
c6NSm/hcpSbZy6hlo9XU5thaah1eI7VZvUaLqErzuXT98nP0uf9pqcteTRkm
3m5XSicR1w9kblpOnB9SV28r3X9xG3GeQG0vrKWU/ovpH99MeqNwJG1LCVJu
fleadCONJuR1pEkp6ZITwVt0tmHR1EQGjSltRwMLWxHnG/Rg5A4a4LWkEf57
aGJhGnFuSM+nEY3xtafO0SbiFRxxXpf7sMMLqoe9O8FdEE4+17/iE7XKLeV8
8gO1K/6uynFi4gN8yB0oWjjwSoBXOLC4wPyC9wY8MLS6gPWDRgq8wLDWoXEK
3VLOwzCbEZzfGKN9RnWjkuD1exu7ijmXikEfFHPxlolVOiO6SXQMPnHHywwQ
uHto74NDCU4wtL45L9Y3+eZLrwYaCAF3E9dxK3SyPVdmX+jTor9VLZrLe3qd
HmTvl745ZsCYgQ2K7BcvSfQ9sPYQsyraswU/EAy/INgf9MAxS5rrunqYGdWd
/BulzjrjjRDdEXgyOvZD+k1jlP7LnS69evSsUHek2ItlDoPYhp7XD+6zss6x
3mt586XOA2YH+xYejwvM+6RfhB4YNO+51pV6DBq40AxGv+yS84z+wntaYio0
gTETRV7KZ67+2b0usf6ccUV6QeBOVDCSBPcA/hziDZ4H/jY006Fxjv4Q9HUR
O9G3h14uakbkrZIL2LdLfMQ+hJcocB3obcNnE7kNcsbqiVxdIzRPVw7O0eV8
swS3gR47+v6YI6Ln92douuC9cD9qRudLDlLfWSTzScSCVs5qqZEQi4AH6ecU
6EGh/fLMULP19XMdZTk63duo25vr9b3uet0lvkXi0WDjAF/vMT0lWKyfN0v0
LN/LenqwhPOzIp0dPKoHe/ulDnvAt0Pmup2DW3QgsUn6660ja3TTcESnRMtq
eeBP4Ndc6ozQLxqDRLsZM1dofEMDF5iOKkYFDZ1R1MDwosBMaLPxtnhvAPc5
1DhUBL4N9AnhHTPZThe/Ej6LRSeJ94HgxcGPAL68ijlX6g8+k9XQxEHB+a3z
vamOhC6Ah6R+8/+pgN+5/UItahdJofuSb6dHS1vRhMyOtCizOxXkPEKn8ocR
329KZE2l8oW2eLRjdl8/uIhqX1pAVc/OJSMyi34J5tCXwbD0r9+OjKbzOWPp
69SJVK7iLKqxcx7Vz11Et55fQg0bLaE6hXlUpXQOXYtMo4+j4+k1d5jgA1CH
bfY/SOsTvWldam9a4c+keYmu9IzbibLsu+i+yybde7kh3eM2EBwVYmdW9C4a
5d1D4yP30gjXT70vNKemjo++TfyiltmnpZ8Ez8QG7iLBewPH3dO3Uw32HVB8
35SKbBaOEXCl4ICApw1tQehugM8GnCo01ODBBO8a+KfwPovVdCpLngIsDzSm
oR1fyU3SwB1fs6dJLQEcG2oOaPej53yHs1JycmAIsUbPGWNFtx0ax9Bohn46
etzoNfQ0dupR/iOa6xjB5Tzg3yFzKKzrJtFlur1/veTlc0Ku4AVOWV+Ixzbm
zsBAIcYE7RdkvpduluF7uD7SK0Olgs95Ne7pE9Zn0ludZbwsMyM+63SH6HrB
DpKxRX6f63z9jK9QMApjzWNy5sIvs21ircTTNmGuM6wt+hHfHtSWemq8WE8J
F+sx/jK/bcz2mjjLdPmIrW84zwseoHZ8gfwuelf3+7frzMgOmefg/MZ9qRyZ
I/M69J6+MsswWz8ZUyUHQc6FGAktcvTPEFNy7a5Sm540QxLzqsbnind5k8gy
zbmwxE7EQ2CiLtpP6Xfc0eL9jZiHuVv1eK7m9aFvSywTb/CmkYj4nN8RXCnX
hBwUnwPXiH4/9roV3qozwpsk7+AzmfOtVfoOa6X06rH/EVMEH5rYJ7nKcCsq
uQxmkqitQuFD+gnnoMzp4P3+tHlcT4wWcswsll7P5HCRftYsllnsFKdYsKiY
v86MntBzLFfPibgyq8f3JoYK5W8Mju/XQesFjr/b5fnB65zrUN3GXiv1mWkv
l/wM9+eaM00wY/AGRmxG7ge/D8zy4bkCbWV4FqOu5XNLNA16Gy1iiEfgh3Ux
bkuD/gM0UTmGyZ7haxVcZRO7pmixcQxT73ijVaX4bNXMv0J19TmKa0yJQ9uD
cfVa/AsF70X4CDYqvIn8OQ2Ia2F61HcXPZXWkXIjXWnzjb501P8YvREeKbjH
K77J9HNqDv16IYd+sXKkh/RN1kTi+oI+yBpH57xs+jA+jrh+IM7V6Xry81Tu
ykziuoOM3Fn0V/IM+il5Kn2RGqb3U8bRG/kjxY83dmEIHbGyaHd+P6m9lvse
IDu/Cz19oSMNvtGa+ibfQfdfuJ26F9wuMeYRN1UwCSGnLQ312lBW9l1EyU3I
zKpFP/h+V8XORRWxXhdM+Sj3sOoXLBDuCXBZwA3At5XzacW1jGgncr4j2ozQ
gwRv6Ufrd9Hdgj4hNF04J4EPGjjqsYe8O8TXAnr9XAuL5wT6CPDEQZ8ZPehM
u5no3UOn/zt7sswmaobm69pGnvRf0BOu6MzWdYJ5ms8bfV/ckbkL8EHPGyX/
j09Gv6BXeKfMwjlP0o8nDugpkWK9IvG63m+9L9i605Ev9StRj+uyT/Q+77ze
Gn9b50fe5Fz7rN7mvqMLouf0QfsDHQ19KLi5TcG39GLzNc25nx4ffFFnR48K
3uB5fwnXXq/q5cbreoWvVC9yTmk7+LLELeyXrHDZXB79jMGJ/bLmJztFHENP
yL7AzAh/T/B23h79YGi3xL0B7h49KLxf4ij2HHrkfZxdWlmbdVvfOpndNfaW
SpzCjOpuY63EV9SR/tA63cIsw33K3MCaqrlmlfwPMf0Pc7qu4p8rs6y6oYXS
H0Zvq6Y9X3qyqEExn0cvHnElNcwx01ormIy7jDXik36rt0TyFjybev5Fms8r
ifUdIxvK6iV7u9RRPZzt4lOcnuB9Hc6Xa2sXzJfcBXNC1LTdw9sEZ9gjvF3y
EmDIe8d3Sm31aGIv58wHBdM0zi6bryK/GZU4LL7omIVmhfbJ/QUufYx5VGIL
cIw50ZieYnM88nN88golLsFPHZj0Me4ROT94jUutZ1lb9b3x9To1tErfEl2i
fdEFulJitvSnrnvPSez53p2sL9hPin8EPCbQ+4N3ATyX6tjJGnNHzBIwV2hu
r4h9Zk+IcQ4g2ojQFuGcJp3rdfEDRPyBxirqBPAhwYGEZtvzJgnnroJnC4er
u7NNjbQOq1znpCoInRMc5M+J6yo5vwJhNnX3jXrU1W/SwGArGhftQDM8okj2
AzLbL4wMprdKR9Fn0QkSc67lTaM/s6fTv6GZ0jMyds6icu/OpL+zZ9Cf4en0
l38GlfuC/y1/FiUl2zJ7+ztrBv2e/Rz9VDqFeO3QpYJn6KuUZ4hrCvKiT9Mn
5lN0PjSW3giOpJIbj9PBvIHEtQDlRe+jnMIAPe12pHGFHWh81r30dEoneibe
icLBTjQ2tYN4kD8YvYPSCm8lzmM4T6tMfyX+Vl/5f4YGGjRn1B7jvFrqvSa+
qpxfqGZeRJUP2eptZ7TgsqDnCH4ouIvAwZPXWPg60GAA7x764dBwz7felD4N
+g7AHqIHhDkQzgz4BOD5ofeMGgM+RLPczjK7glfLSW+o/iA0Tn/vTZZ+TCNr
qaxlrFnkM4P9B/Rj3j79kPGCYLI7hngP2uvkHAv4N0u9j/2N+clM+wS8usUD
fHX4jF4TP6M3xjnmmHFdEDynD3jv633m+3qX965wLxYFTwkuiHM0iQMDo3v1
Y/F9EueAjQS+Dzl+XvRVPdt0BVcFPPT46IuaY7h+PH5A+qTAxgETNTlYpCf5
ivTT8Zdk9jMyfFgwN9hLcq7HjwiOARjPsfGjfMa+pIeah4TvoYKbBWsA3A5m
4sBhYz93cNbL3sG+Bk7Ib63TbeMcK8yyHAOcjZTgYsEQYF/V8i3Qtc08maFj
lp4cmquTw3MFjyQ1Y3iZ1J2t7bK/39ZYp/2RdRLjWsZXcc22QmIQ9EYwz4Km
CHrHqH3x3vI73lr5vXvi63R7Y73g5VEndbDXy/PpGN4gX+/x5wtOqlVwtcS2
tu5afW9iPdeRm4Uv09tf1mvuFyrQD8dfkNiMuAauy32uI7EO/Tu8cB4hj0HM
e8DYwedZWfz7L/eixGbB0yL2ofeH922WiOgGxmLNNYroZGGuh1j9jjFG4gz6
dPCbgWcL8FXwZ0LOg5oV3hnQpSywz8XGukcFgw99ss52E3g9iD8h9O/BV8S8
DDxI8JyhR85xUbQ0wW+GB+tzjhK/WHA2UyKLFcdmiTvzQ6+oXf73VGn4K5UI
X1c3xSvRbYma5A83oC5pt9HDZiqNjN5DOXaAFt/oTpuTH6So8yi9lhgmXI/L
0Un0q28a/XNhBiWl2lTp6myq4ptLydPnUpVkfnlzqEpr/lp3LlVSc6hcKsee
a7PoX3sm/ZMykzjXpRuZz9NviWn0W+pzxLGY/vBPpz/zptO18DT62j9RcqjX
UocT16i06/LDtDrakxZevo9yw11pblpXmhfvSrmZXWlWWhfKiQQoHOpEI+17
aIDRiu4rNYljM3H+R75gFSqfZdDl8K/qNeNLtS3+jnre1eoxY79KdzeqxsYy
8R/nOl/woPAoB6f1uDdIuH3o80OvNOBugs41dCSLofuQbR+V2RY8TP4x/gUX
SDd0q0sfFblrmn2r+LXAhw3+MNCexKwKXkrgSQB3U9XIlR4Q1g5ymv6hPbp/
mPMFZ7fEIaytjg6v50TZXgFWD/k8ejePGwdlT0+KF+oZ8RKdF3lVrzLOCL9r
p/Ou4JN32+9p/rx6jf8N4Xohr0f+3z+6R2oivDCDQX8BddLECOdcrhYMOOLO
bMMt6zUAx+jTZWcu1wTPmIUSQxBLhgejekjogMyC+Z4K/wvfQ1ya4LykJ1tF
UouhbvsvfqEWQX0A/TRgt4HtRU8WtSW+lxnaIb1Z7EXUOunGJunjov8OjBNy
ItwTxKNW0dXCY0CdBPwksAtNg1wzhcpiDebiyEmwt3s5O4XfhjoP74scBrkX
alPEjXt9ZS9gpoClARYT8RH7u4tvq/TgcBZ09baKPtJ//DhgpFR4s+6U2CCc
N/R4gLlCHoSYg36OXC/HLtS0GaFNmrzNWkX/93wRz1yu7UIbpXeD98DfQD2L
s6aTu0H4Gqij2prrJFdETYj8DPpLyPv4/JeZALRNUVtifoqZAPriwGnCiw1+
WsBVQO8J/S6s1T/cv2Jch8c4dkjvsb69iNf1AOHgQreLv4q2F3yKoRMJ3jT6
oZz3BFa4rwfgDQzNeHC5p9ukDngD1FfGM+om33yVGlwltRbnvIqfv1odPKOO
uhfU+77v1PX4n6paYUVqnFyT7vGl0AM3mgpH9GmjE82OdyHOAYR7FjMfp3fN
bOIama6Fpgnmp1LKHKrWP5c416U6I/PoZnMh3Xw2j7iep1rNF1DNnPny4pyX
qjefR9Wycil5P8en3LJX1WtzBVNUI2se3fT3PKoZnE81Vs+jKmqu5FA/+abS
J6Xj6XR0uPSDtl1+iFZdzqRFke40P6cb5eZx7LE4DiUsudYZF4imWBn05OUO
9LjZhnrfaE7pF26lO/03U/28alQpuTx59k/qmPWRyrVOKq5lRM+jcXypqp1Y
INx86IpU98+T3v3V0LPix55v91aPma1FD41zdczFMv6bkwPrgtllNauizG3g
IwofSfGJMsrmPPCRAgYVPk943vAbhA7XMecx/bU5UVd3cwUvht4Bei7YHz39
O+XM6+TbKOc/zk7so0bRpYIvRr/EH10n67JHdLt+OPGCHhI9oMdZnLuEiqBN
LbVTXuhVbTsvC+YSOXlfY7fsoXvNslrmHl9+Wc3g3yR8z37RAj3UPSg5vOQp
nAuNCx8TbDfiDPo/I9xoWU7GNQTw1Jj3IhZgX6GWwXXh76PngPgBviw4L70T
OyWucN0r2GTsU+QM+Pm2/nXyGf/7inoHvRZwTpETtfCv1M0jnJuEIoLvxn3g
s1RqKfS3a0TmyTmPr8iD6gcXad4runl0hfQ62gTXSv6El9RanF8hZrX0Vkl+
0iqyWu4p6jHkX+jdyIv/G3VLq9Bq+Z3WoTXCtcHvIN5h/0vM4xjQKLRUajfk
sMjLgGuUHhDewy7LgfB38D53hFfKDAE9mEb2UuEpg3+I/A283Gp2rtTlqNPR
n8FXzBvwtWJ0ti4ftfUfxnTpb2F28bo7XPCvm92+Os++T7iI8F2Dtxr8bjNC
jYTLU9+qppMMQ3P+IvMNznPFFwp5PHQF4GsEPUh4Ps81uopvBnia8KhGTwc+
IfAEgQcFcMBNHZ/ox6BG4LpNnTPHinZFY/8ylR7fqAaG9qpw5LhaFD2ldhjv
Kh39VF0Ify/c+CpeeWrgq05NM33kL+Scx3cb9Qm2oFCkLYWzO9Eipzut83rR
C4l+dDT1MTqdN5w+NJ6k741npbZCjnNTc4490/OofmQR3ZpYQk2Cy6hJIb+6
L6NbCpZQg5TFwvXwFSygm0o5BkU5Bk2eSxVzZlOFCzZVSJtNlYNzqKo3l6qf
z6XqqfOoeo15VLVGLlVqPUfqtGvBaeSFn6bX48PpsD+LthQ+SJHoA8T3meZk
WTS9gGjqhQyamJlG43PupWy7vfD20aMGvrGL/zZq76YQ10tU16lKSRfK0fvx
K9LzAj+WzyfRbqluzhPdFn4WohEEbQ8+P9TL5lCJQcATNbdqK/h8QFcXWk7Q
4YRH1zLrdOw3948YZi7AAWGmiX4PeKXgZaMvCuwFcDPo7U1y0wTfB5wwZkqY
mwPXhnwfZ30fa5fk5MjPMZdFHd89xGessZVj2iadFtwoszOKbxZcN85YnLXB
yAuSxyAOPesViU44uGAzrRMyN0GPAbXQwOBeiQuS7/u3S08CvwuMidRf6OMY
J4RXAswb58p6QeIVwfznRk4KtxL9B/DdkedwTJYYIzkFxzH8TfDcgIWUnivH
NHDT0CNCrwN9Dlzj6NARuZ4nwgflZxBD0eNC76K3uUv+HvIi5HvCxed8A59V
eirR/73ssjpEchH+OdwjzKAR5/BzfSK7JDdDfQPuBa4TWBt8XmBnHjX3CS8D
fal+kQLB0eD9kZsBg473ACYBuQq4uYibwMBD6xH8DcRPxHD0pdFrxjmCXhXm
CsibrGBZHYU6CbMsnBmBOOda0bKcFhh2YBjBRQFmq158oeC8pIbkOAScBtcS
wuupELe1EZ0lczZwiNFDB9YIXOO3vFHatYaK9iV0FuB3ybm7+NECfwivRuU0
FiwX+gTwKQf+abF7SjQ2G7qLY1xnxO4zbo9BnxN6JtCRhY899Kf/01OGvjo0
+jZZb4n+GDw9/vN3gf7iNDeg1tq9RPfmKzesKttzRFeHP6vi84h/5oB6xjuu
+GxUm+y3hNcBTtb75nfqivergoZHtWhFqp9TjW7z1RIuBdeEZIU4PkVa0GMp
rWl0XjuamJdGvK9oWaSHcGMPXRhIJ6JP0FuJUfSJN1649VedZ4nrTvrt8jS6
Xso1lo/rLf9z9HNKDl2NPCt46i8Lw/RZ4QT6uGA8vV86lt5JHSM9n9cvDKfT
2cOpNDJC5vln80YJz+113wg6mRaiImMI7fMPoE3hvrQo2p045tN4+14aluan
QaHW1D+/peC/M0PN6L6ESZ3DTSjdu5XaOSnUyqpLt5m1qG5BVUp2KtAf3l/q
s9CP6lXXE12m6U6JGmTtFy0U8GCSQ3PV36EZgvnkPFS0PfgZK44xwmODHwJ8
a+A5xecAdMQKoRkLrRuuH2Jr3DPi8Qj+O7yVn7OVzIHznPtEf3WilSY+q/ge
8CannGEy0y3nnyU4a5yVqM9Q9/eK7pT9Di7FQGuv7BX0dpFfgIf1sFGgs6x9
kqdMCL0keNm5vpM64rxepusRPycc9uLoRf1y/DN9IvKZ1lYZvxw80JOGJ9wn
cM/fCF3SbwQv6bfMb4T7/UHwO/1e9LJ+139Z+Knglr9tfaPjkW/hWSH89lL7
K/2q7wveC5/rosQn+qj5kY46H+pj4Y90ofOJcBRe9n0uM7pXQp5cA67lRfNj
fcj7QLgM4JSib77Zxy/3Lb05/pbeEnpbePZb3beFgwBMMbRE5Kvxtsz51vvP
Cm4YeAL0t3Ltk3pO1BUeOj9TPT1cIvcDnPTnwvyytc6JxGRGh/4tcDXAjoPL
gP4b9EbQYwPHDbVh5/CWsl6LW/bqHNpS1p9JOJIL4oxA7JPaiWMW6jHUjegJ
oWeHGCU9JN//ek//+2/kVIhD6E0Bv4z+O3Kp+uH/9c+d+dLDqmLOFc0C4MbQ
axestvWsvmxPktkgcGWouVBvAdMN32HwaTAXgVctvL3hBwt/1XpGNeHBQKMh
an8YW2K9FptgvSR+m/ARgW4S8OYD7VaxmnblGDBstYwF0IkSz0HowsKjg/8/
UMOaJ/510B2F5xp0jMDDh8YotA7hCwS/EPhN9TZaKI6H0o+GNuB+a4B61Rim
PnDGqd/M50S3s2F8sbrDWam4TlVdE1tVMPyCaLUBozczfEItd09D51XtMt5T
XDdyjvC5Omt/rT6OXlVXzGvquvmXKh81qFp+RaoTTKZbgjVkDt4qvy75nQaU
Fr2Vuiab1Du5BQ3MaiX94tHRdjTB7khTghmC+Zkf7kZLnPul570iOZNW3cik
1ZGexHGd1iT3otWZPSkSfoCWhO6nBV43qcPQB3ouT9HkUDpNCHek7Lz2oiEy
LNlPQ9PKZmPQPXoi1IaG5N8t8/pHzJbU90YL4fV2LmhCnUpvoTZ59YnzVWpi
1eTcrhr5wlU4R6tA/0b+VV97P6uzwa+h3y5YqnzrTbUw/qpghzgfUCH7kBrg
7VHdw9tUG3ut8tkL1GVnkpwH0KMM251Et5bMJqq5XVtBIxh4CeiagfOxx+gP
XfcM6A4B5wuuAXIs+EOAM2XatXS/UKrkVPC2vmA9qfm56SrxOYJPAe4E8x7B
n3j/m/WEI1LLyCzJWC/aQegrYO9gz6AXOii4X3RKkPeAH7ApVMYZiFof6iL/
Re2GOWY4X+jS8Ff6Hd+3+iPve/1N5Bf9S/SG/ivxt05KMUrKFxglFTOTSipm
JZVUSOaXL6mkfMgoqeAa8v8Vg/yy+fspSSVGtFyJ4ZQrAT/qn8Q/+r//T/L4
a2a5kgoJoyQ5XKGE15DwyqunViqpdCGp5B/fv/rnxHV9NfQb77tf9be+X/Wn
xo/6Xd9l/Zr7hWhi7I++r3fF3xUdkC3ht+WzrPedFe4DOO87g/xv3jsS0/LD
b+pV5hm9Iv66Xux7TV7ovYMfMStxQs9OvKzn+V4R/QTkgpjtIV5B+wg1KjQ1
MMNCHoe4j7PgPs/RXH9IrdfMXCHaA8hrwHep55V9xYwfmFLMpG5xlkgfHWcN
ch/poycWyAwOM1HUmJjdJVtzhQNiRGaJTvcPxhThhwCLDT4e1z86bo/Rb9gj
BX8Av3fk2MBcwecbdRn6j/C/Bt4Ms9sH3KbSo4Q2OLBYzZ3agrOq4VTS6Cvw
+ayrexWFJ3nV/g2YROieS6zKsDcJZhret5l2M2A6i6GjBW194BVbGCtFaxme
HbWMKuK7AT8R6LFBMw/66PC4gh4XdJDhzQFPBOi0Qq+1p7EzMNo6It59K63S
ANdwgn8BX+EX60YAXkHwX+tsN1EDjFbqSbeDaCWvDGWqnaGH1THnMdGUhKcV
9FFLnRGK749oGSKXSDJt0UuE/io8mcCb4DxU8bNQtf158v260YWqib1Mcb2u
OO8Vry3wcvlcUo/F94mO5VOJF9WzvmI13S5RcxOu4liuVnmlivMOtc0XVy/Z
H6vXzC/VeeuK+tz7ERwKdTn6q2DC+d6oP+J/wfNOvv4d/keVz+bYGeTYGUmm
W1Nuoqb5PtFAuttXn/yZDait2UA03VLzb6bm0dqCw8br9jT+muejZqX838k+
apJXk26xa1BKsLrUftBju8lfmaqWVqDK2eUFH1m5sDxh5lg5vzwlJcrRde9P
eOioj9zvFecTyg19ro5ELqjtTlytMd5QS8KvqbnGSTXDPKEm+YvUmMQRNcje
r7i+kD4fxxeVaq1StyWWCZ67WiRXPONO2cNUfqi36J+iTwhN8SpmBdFwhv4z
xzfR1QYfGv5G8PmZblPgHiMFHqAZnPPBR6AQOMp+dqp4PcNDeq7rxqB3BC4X
vEyA6wfGH1wT2+4i5y/4t+CMYK8gp0Ntcau7RPAx4KGjvuzv7NHDEoeEs/98
XOtF9im9OnJGYge0MraH4xJTCqxzusA5J9iBvc55fcD8QB82L4ge0Uvhj3Vx
6KLkcyf9nj7juyT6HtD2QQ6HHC3ufKvPGVf0+eAV0ec4G/5av+77SjBQrv25
1tFPBbtwLPSRPuT7UB9IvC98+L2h87ogfE6/EH9P74y8C118vcV6W683zurV
wTPCCV0UPaUX+F4VDTnojuA12+fqmZETohkSjh6XXhp4W9AVQI2NfjtqRvTV
wfVFz4jPG9FIQA8I9wvYxk+NCfpdd4xwnE84T/BnztJbjYcE9yT5s6NEwwY8
RuAqB5itRIMBnC/0fTgfF194xBV4u8NbHTpa4N4h90GODp0hzi/FAx2e6I8Z
+wW3Bn1xjpfipwEfb3C1nzdI+tPwxIYOG/wY+DyNgVsJ/4RtRhCcMq7lesYW
Gt1jQftO8fLms1V0/vj7xRWMJMzSCqHB+T/d6nRgduFb+JXxjPgvf2I8JWsP
/Sh4TL9pjBKfEfg7Z9iNAvB3g4Y68jBohr9nZwfgscJ1SuAfY2agkbVUvIDh
EQI/pyHWAfHYRS8X2vL4Gfi3wf8Y2Bp4owDvBw1jePnCS/QF970A/GL4nonf
yyfuVeHoIhbCixX7B5r80BGG7u/LxueBuP1t4KL9Q8AIlRNtYPgQ3GXUUy28
2uL3CS9baJN/6v4gL/hcwmsPGv74WWjUw0sAXnz4N+joYwYGDXP8DXgYQCOe
8yfpT2c77cXfBvF3vtVNNIPB1XvKvVf8MKHfCk1raNvhffGC3jT8L1E7Q+8X
tRz0r/GC7wD8bJEr8X4W3VhwkOHPONlOVxOdNPn/KU6GaAbPNi3x0N1uB9Vh
91HxkPw4NF76WZjpGdYsVT5oi6Y3dHWruHPgiaiqObmK17ngMqAfXsG1BYcA
zT3ELehegyP3Z2i6zAerJPj3vLmiA+WzFqjavjzRB8bZ0SS8TGaJ0L1v4C1S
dUJ5MgNBP/9aaJr0A3BN6FNCl/5zb4LohENTG3rO0NeGNjf6b++7Y5W2Hld7
vEfURrOv5I7Q0IWXAHQtp3oZopcLT1l4BUDPFDrzyPWrG5XEAxX3Gvgt+I1C
X3C1dUZ8oeEdAAzFt8avGfBzO2eMFU915JzwiIQWK7RlA0bjGHgzqKPBX+U1
LHxX1CvIBcB5BY/kIfNOqW/A/QdeHHyYV81hkpMAE465VOXoHNF7xKwK+Q5m
/JhjAWuOHh54q8AIYe6J2AT8ArA+qBHnBF3R1cN8c3H8lF5mn9arQ2ekPkU8
PBj+QOLvi76P9TGH46b5od4bPS+aceCuLjdfl9+HfyBmEzOdEzLXRC8vN3pS
Zp3oEf6nOTPDLdFz467oZi4KnxL9pjW+N0SHDjEWWA/MP4FBBT8NOMph7iHB
PAJnibkiak7gt4S3aOXJnKWyM0eXD9v6X3um4Ek55xEdGGhUrnd7SyxdZHfX
/Jz1LrOf5pgiGG3gQ6GvhZ9/2xktfS7w+iX2Omm6p9dMJ9sVMI+NrbV7xfgZ
FkNPGM/wjDFSuIicGwv/iT+LaFlCzxAaw7xfhNMDrDD68eD4cA0T4xpcdH+4
foidNEIx+OTAmwj+AcA7wXcNfkkNjMXQ50fOlw4vDGj6wjt+ltFFdDpixqcZ
dxqroPmf8aB9h3BWxJvPPSZegPBBwrUihvPvxjrYDWNPGi+KrxNiLrynrhvP
Q8+3EPrIPeymEt/hP4GaGP05aDshh4T3HPBX8DOE7w/8juAzBU8WaBVx/pgB
zDQ06/j3RbuO89J0+DZh/YPvCn86YEqhzYzf/974LQPebJzLFvN7QCNZ8l74
I+De4SzBdSJPgeYI5yfQHC6GVii8u+Br09i9CRqDoqf4s3GjGH4d0JFHPgwc
B7w3fjOeEx8oaEdDu5i/im/CC8a54mp2bgw+OOA41A1V5dz/zxivQd6Dzwp3
+m6jvvg9oE6E7xQ0+qBpCa8T5Nv83AKcI8NXXHwY4DdW3jZExxm4/rHGsWJ4
s4GzAg8MznfByeXnfTzW2oY/RA/RrAEXCZ8N+qfQXuF7Ip554KFiVgNvS/Aj
D7kfBDq5G8QrAmvxGSNN9JvBHYB3H/xgwEuG/ys8s/H/+D76G1x/FsPbbqPR
V+4Trj3FWix88KZWRPxRhxpt8UxkVnTd+CsdOt34d8wmeI3LOdjIXhqApgU8
L+Hfw7mAcBPgA41zDf6w8B6HjzN8VOHljmsCrxDeWPBYh989PLXhRY3zFBrC
/Jllbf/nIQX/Ufgpwqsc2uXQ4+d6SM4neIWftr6U94V/BnxB4fNzj5kifszd
Qqboawhex10Ez3rOLW6HB10xNMcRp+GLAk1z8Tjn+8T3GjmK5EC89qGVLZ8d
3tzw3gF3EnkLvIta2XVln0DjA5xtPBP0rZFLwGcD+QavX3imSZ+Bcx3xWOJa
RPzC4PsMPwJ4ogFvDbzLDfsv4Qw/YR+EFm4xrgmccJw5yEXuN5oGsMY5R4r1
swpig427oWGYAUwkPJTgj7Xb7sfr7KNYRSdJfDPRe+fPCx+zwNfGRJn3wTeE
64xinD3QcpjqFosPHvpiSYZdDO4ncq4W7gqpGeCdi/fg+ImevHhjwg8NPmXw
b+C9itwog9dBET9nrK1ieE5Cixz3GPgF+Cx0t2+XPGWn/a70+1F7cLwTP054
KIL3azm3Sf8G2HJ4ZeB8hTcx/I3gfwNvJ86BhYu3xu0pWpjwKj7sfhjgGCbr
CL4T8FJAPfqzN1U8PrBmvrF/EX4Z8kHOiQPwiE5YU2Wm2TCxWP1s5ii+FvFI
gC/iMquH9Jegew1dt9bOGlXXWSj6+/zZxUsSPga7nbL5KHIg5CaNzWUqyZvF
zywonFt4i8Oj6gW3n+KcX6Xaq1Rfb5fiM05xTSR+JSdCT4jXKvwVa4QqqSJj
iNR78GF4LqjV8HBUZUQ2qUq+Ocp1hirewyrmDVE17fnCix7jO6oeNw8qPldE
E+W0NVywad84E9VN5nx1p3+V+A3hZ/tEd6khzgHF60B0+aYmitWT8WMqFD2k
RgYPi566Y78jWurx0Lfqg8h36q3418K3nm26KjO8Q3ENIzkVPCruNTaoob5D
4t+ww/+uOmNeUt/6flU/uL8JP/tg5AO13ntTOdY76lXzCwX9qhr5lciXU4Wg
ncz1GudgZ9RT8RcFs7rY95o6GP1AxYPfSj0Pjs8niavyuwfi7wvGDH9rQ+Ss
4txDNMsnB4tEe6F8mA8pszGNSm0neugPp6ZSq2BdSg5XoOuJP5URKUd8f6mB
WZ1MpxY1S65NTSI16abkyvRj6HfBsHF9qF6xPPVb4g/VMF5d+gJp+WXzlWYp
taneZa73zWRqkVKHMu1mNDErjVZn96Rt/iCt8fWSec1j3l1EvibUKlqXOPZT
++SGlJnfjB5PbUNjUzpQONJJZuHZofaiLwYscp+CFtTfaSnfezYtg2YkiGZf
7kK50a609Mb90qddlN+dnrnRiQaXtpZeK69z0f55KWuQ6BEeMAbSHl9/OhgZ
KNi+ozeyaM+FR4j3KG11H6Rd7sO0L2UAxZIfpzcvjKQPE+Poo5Tx9F5eNp2O
DJdZ+DvJY+iDzHGiJ33WGUXx0Bj6OmWizNVrefOpZu58Kj/Spq8SYXrFDsl7
vmQPok/8T1Gl+Gxq2GGJ6Lw20csEJ/RjcArFbgyhTdG+5FgPUWneCCq/xCZz
5HLq0Gc9dWq9Ufiut2QtoeQhc2WOhvka1wfE651q/72AGrZeIrP/W1svpXpn
F1KNyfOogjlb8AIV82aT79gCMguXU9uK66hj7ga6x8in5nkrqG6fhZR0YZZg
KqGN9IN/ClXUsynFWUx3GWuoY2gD3Vu6XvTb6uYvpD/t6fTh5XGihfuhO47+
jcykW6JLRF+kc8EWSr+2kVqeWkUN6i6m6mnzqHLBHKo8cg5VLZ1LN1/Io9sv
Lid/n3XEuTe1G5JPZvflgtuEhuUXN56mn9KmUo3sedQibaXoUHY/to06R7ZQ
6qZVVP1qLn1jTaTzzlj6PvlZ0ZZrcWoF3XuD79HFDdR6yRpqVLiUeM9ThWs2
XTefp2vONCrXehZVbzSPbilcQqm5q6jd5Hxqn7ae2qaso9S8VXSbbzk16LCY
6gzJI1/eAqqdkif3sGFzvqd9llHj0qWU0mcx1UsspAali+j2S3wfzXV0r9pA
bcavlX+vkVum+wseYN39C+VztrJW092pa6lt2jreI+uorX8dtRufTx1Grqf2
FddTm51rqZlvBfn2L6B/wzPpx4Ipgk/lHIBaW2soPW0TdWq+ke5KW0Nm1nKq
13oRVfdy6a+UGfRN4UThRlfLzaU7L62k9IqbiGMb8XlGv8Zz6J3Lo+ljZ7xw
FRvEF5E5ebmsH9+QBVTlxhz6x5tBv0RyKBGdSkl1baq4ZDZxvKIr7iR5ttgj
mHcsNx+gtU4v2uPvT2/5RtOPmVPob3uG8I/c0FDinIPW5veiLc6DtCe5Px3w
BtBBZyAdKcyiwpzBtD9vAK03+9CCRDdakHwfrTAyad3lXrQo1J0mBtNkVts5
v2w+m242ooyCRsJv5DqcpucTLb/Qg5Ym7qfJOen0hNWGBlxoKTzxYal+GhRt
TVyDCt7t4Rt3EtfrNCR6N/UJtaAOeQ2J829K8ht0Kfqz8kI/qS8SP6lE5Lqq
mJUkejVfm7+oIv9Ftc17R3H9pn6P/Klu9/moo30Ltcmpz8+hquDmdvneU0vN
04prWLUncU4Vhy6qd8xv0ZtQdfOrCs7udr9PNOLnuSeF4wWfJPjzgP++KHhK
bfPHBX/3bvxbxfmauub8oT73/SSaOvDzaZFYIR7g0FPF7Pk5R6sS/2fqJ/d3
hc9gZJejD6LfqbXOG3xm7paecVVfrrrLXKNGGIcV5xVqo+8t8RVa450RXx70
BVC3twrVlT5JA/9itcN8F/xyqpdcjb4yflaDvf3qdGi4eN+sdnqqSv45gsuZ
5BWqDc5ZVWxfVK9EPbUp+JbiGkJdtieJX05rp54KWW3VEStLegzQKMN7TkoU
quHBqHwGX3gB5yi29GFTwovF/6ePs0tNsYvFf2SheUrOys/Np0WfA/0e/G1c
Q7ZzVHFtrY5FP1IzIyfU3eZaObNneZ0V/Bh3Og9Lb+Qed52c1WP9x9RD3m7x
a1pg3qeg2wS/u6pmRTXb66KqRXMFk7XQe1VxLa3GBY8JNgIeKvAI81sN1Ciz
ndrs9lUfWOPEL6pGZJ7kLeh1IF/HzAxaIg8YzeRaRxlHAqg7uG4NQDvyWTND
HXcHKa6R1UQrDb13zBTg/wpf4fRN9lsBaHcvcV5TXLMorjsUx07V0rtZTTUC
yE/TkT9jtor+HDTxOM+WWqKesQje45hxCPccOH1oy8IPfZF9Ch5hapDdWlUy
yit4vcKLFl9nWidkjjHDLZF5bGaomfRtMJ/l3DHtlPVFjL+nb/aSwYOEH3GA
nzl8LUVviXMk+MZynV5T5jfgtwOD/p19DT5n4nUHf4NXjWHwLBJPxtX2mRg8
+uCPjTx2l/uu6ESAFwntAtRkmCdWtsuD0wKvngzUTshr4T85zu4A707RToPO
ErRu4XkCn3DcI3gS4n5tNN4q5ro/Vtkqr+EZwHVUMTx9oFuH+wgsBtf+0JaC
joV47UK7k2sy8VOGVzS0vd+wLgl+HthVvN8OL6j32v3LesyhHqIbBe+CQvuT
2HSbYv/zey/kOCHeh9Bbu82oJZpuL7ufCe4D/sJ4Xn8Z/xRDV6GbbYruBjQG
4H9wu1sLGufSZ0bvA37b0IsErw4Y8J7uDtG1g05vRSsJuHjx5wbW9jGjtea8
WRtOOfSMxJ8YHk/QPsfPAn8LbWPogf7sThUPGM5DhH8ETRZo0XFdrSt5s4Un
Bx4OsOvgg4BXCY0UaILMMruIXgwwnsCvPuV/STwlwHuELhY429BDQH8AGgbg
EzfwLRauC/Aooi/AL9GGNDbp5uEVwsXBrLihuUTwvcCdPZk4ph8z94vOJ64H
OJbB5gHBinFOr3lfCxdJhz7VbvBz0ekFjh1apMA/AFsKP3tgyoCphzZEBc8W
fQT0uvC+XHPCm0Jfif8qWBRwAJNMW/MaFu0/aBqD0yDcbTOmNybO6pcTn+lX
wh4/r9cFH19oD5a+15dOWLRzgFsDfyo7fFS441xbie4dMMngEmGWgdkGOJa4
x8DUPewvEJ7mYeOCfjv8jXg5AMeCXuMY74ge6OzVDwZ3C/4N92GE77D0A1c6
pcIFBYYF9wq4O9wXvB/HGf1Z9Ed92fpVv2FfEj1pcJDAg8IMGJjCzxM/6lrJ
VUpqZlcu+Sn+uz4SvVDGA0vEhMMBvusM3wnxcnjTu6SvmNf094lr+qzztY5E
XhcsDHx0gF3B73wZSeiGKTVKWtyoXVKjoFLJ6fCX+pnEcd3R3qDviKwUzCAw
kJjZV7lRXjTXWxp1S+pHqpW8H7+iB/sOiF7aSSMkPUqusaAhqf+K/y0eGeCt
DTOiorcOLB5m1NDEORb8SCdnVihJyaxeUjlSvuR09EudF3xV9JvhBwQMAXDf
cxxXL/dO653Wu8K7hd8QuJy4L9ClBZZnZPSw8FKAscyxYoKNxPeAn5I5VbQM
awVd/WXB0/q48Yngm8Dfte2XZY+2NFfLfu0f2SPY8UHOfuFOAO8DrAP4GeCg
gvcB7i3WIfh0mNnXMxdJrxU6hdDzAHdjmy+uvzV/1VeDv+lXIp5gmDDTB8fi
pDtUYuFW70HRAAEXBTPDVb4zenswrtfF3xD+HTSfoOuNOVg3x9Qhp63wfriu
l3WOOdys+AnROAPeaHeon85xAoIdgo7L+PCLekLkJdl7v7o5oikAXio0UqDT
Ca9uYG1TrOq6l91c9FKA58DzAkYTei3oP0I/DhwyaIBCrxhYSWhHQYsFGMlJ
XprEdWjswnuc83bR8AN3EvhJaB+U+2Km6LCg3w8PdN6v0rP5zroWm2F0lp+p
G14o9wPXUtdeCK+GtDIv+tuKoaHJeaD4LgFbx3mD7mO1wJ6J4Weh8bXO6A0N
51h/u6X0m7X1aQwxFh5OwLpAu/ag9UFso3s2Bg3bql4FzWeaaD+j14VZHs4U
w54lepucA8a4ro/1sJqKHjd0uoB/AF8C2lX4HfSdgV3AXAN6hOBO4Ofhg8sx
VmaHU41Y0QjjHngLF/F5J/fyPfuyaB/uMN6VXjA0wzoZt4qHEPrn0M8aarbV
5DaGVrj436HXC1/5+XY3nPmF0NOHLw90j81QLQ2dUPR/4fUB37wt1tvSb4OG
NXCo6HdC3w9zVPgEn7K/iCFXWGDcBz2WjLeMbzJeND7OQC8WnLS5riXzl/3W
AF3fAZ9wCvQcC9Eb4xwlgH4tZqA/GVPRwxatQMzU0Yu+Ylwrhjcw5rDAy4I7
e5tZC7FZtBrhmwT8GfAd8AwsMZ6IIS8YZx0T7hC81Pl8Lub7w9d8szzXeUY3
8S7hM0m8ZODNAH22T4wfxHsR/V78DNZKB3t9jPe19Pugb/Kb8WcxZgDQvgoY
jYvRn+bfi71ie7EiYwh/rnLoz2cA84n7iNkUPJT57xejXwy/p1FGO9z3Io5z
si6AcUH/keNRbKhxCD3XQBNrWWCt3SsAfRvowCbs67G49a08l0PGoxmYXXC+
EuAcFP3fYpz38EDq4jXRGU4j0bSEX2OSYcQwQwZXcLBxN/y5i4EthpYO/BSg
rQmdXmjOQWfudiMCLUeZL6O37lqfx2q5lcEThvadzHPwWTbZfYV/nmZvFO3Z
RvZS8aQK2W1j8Eq+07gZOJsi3s+x943vYj3N5qJJ28faJTkqr6XAq8YXuJ4i
9HOxh4HjwftwXRV70N4t+xC6Y+gbJ1tzY3ut87GbvEoannfQeQMmDV6O4GgU
2I/Iv9d1qorWG7TkuFaSOPKU0RHrvhMZWzKgiYznDm4rch5oZQILCZ0hcJOQ
9w1298eQS8I/E7ldBdfGzEl4BMdCj+kNTh/R+MbexAzyK+OZ2GzDivEeljWH
+448GjMSrovkeUDjFz5d190/Y/DSwXUhTwOfFp8b+ka4T19aiRh0aTHLhNYU
55fC1wTvf7TdDjEgnZ8LZjai2/yvM1M4PeD3QieqtpEMDacYOKFY18AoPOTu
jn1sXxUNL2Ct0o1GwOrGoDXf39ojmj3Yo9DEAGfmU/cHxALcsyI+n4o5jseQ
6wNDBv4lvAagO4PYBn1p+HBcsL6Hjrd+wjooeoPQdOI6QHCleC/Eusv2rzFo
rve3WurZbhfRqt8U6quhA4TvL3VfiyGmQ7sPOI4P7HEybwQ2uleouZxbyM+A
mYHmIXz0oPmK9cDnOu+/izF46EG/D/rUC9xummsw4TGDF4s8Fvpc8I6AXh90
m/F3NoT6aOxh1ACY+aA+w3MBXgR6quB/A9cLjBywPJ3cDTHUD3/a02XujLMM
2tPQjLnHa6DhiYR1fNH6QWoaaI88YDYT/A+un/e1XA/maZgdcM4PP9JYBc+Q
/AccTGhOgDu20soEFxc62sV8tsVi7sUYYi7OUOijQo9xqNtGMC2p1qoY12kx
2+4iM1Zom3E9LrxLcHyH23592vpSYjXiGDwk8bnHW/dqrs+EFwONFMR78Pmw
f6C5iBnfEvs1zELlGfL6E+0hcMnhXQS8OnQV91vv8/svFDwMNGTB5wRWB1w4
6AdtcR7U0APPtHZIzQr/SeB68MI6wLXxGR7jdS+z4eGOXzDNwCHiPIfOLfYS
9hbiP/YZn4WCpUedttN+WGb/9UPVpG65za2ps532wjGEhgbX6BpnMdediNMa
+ndzza4y44ZXI/CH4Cje4zbQTW2frElovU0Pkd7n9pd9D01IrttjPmuBxD5o
ky01uHYy5wh3pEZwnviRnLW+lvnx/3w7i/e452LIq+CrBw2Bf7wZopNV1a2A
/As6EcWYi3IclPnjWuuNWMXwbNFtQQ0CzCVi24fG98WoZfkZFAGLBL04eO4B
8w3dInjE+Jwq0EEQviy4I/BH+9ueIXEGzxa5mGf/JGtX2Y31w96dEgOhP4c8
ATqYmJmhXj9qfCTYHviTYt4GHQVweaD5DXwAnwfYdxnQAytxPxWfYtSw0KsD
pwY4Uuh4gZ9V2Zoj/QdgjDiP4VzhtRgw6CGrrWiil1pfiZ4nx9w0zOt7Gs3B
MS3C/H+o10b8JoAjRR6L9c1/L8bnKGbARXwdGZhZIu+Bnif4XchR7/TqaMQ4
zCmRA8Az+T+PY/QkkFshv8SeHW0dkXwNNTzyKeg8YSaI+IL79YCxQ+b88IYH
PhT5SW+3uWjfXzEnyz7n9VDMcUG4H3zuF2NNY20h3pS3bYlp0G+GxjivRcFH
Qd8X58+tvqXajCzXG90+8PKK3WPkI5cM8H4R/NQy+zT4JMXwr0BNDQ4I5yK6
ilsedUQxn0EB6ESiR9PWaFC03jgbQzxHrAZmA/GC/y2WYwcCK4zSwHj7RX4W
1zOgnXrV+k3iBfY29Ot5zcY4DynC/BOf9yPjasZy4/VirCFoCazxeorWGLSx
+b2RG6Vb9laZt3PuBe+GDGAMcHYhZoKTx+dbMa4NvgOn7eHApaXz/RAtOOB2
oI0CX78+dgvxJV1nvAkP5fRfrBsxxAdwxjmf09gbyLU4hyhGLwwzac4JFebk
yC3ht5rkzRIdVvjagbcAnyjeV4G2ZgN1l1lP3WWsCdxiL4GWhXBXwZfIsWPI
/wMc2xV6Y/BR4LMPeygGH2ho7AAbgdwCeHfwK4B5gV4zzkr4dPN5K5gPaMLg
9xAHcS+xpp6zdGyaG4sVWOckjsNDDv0jPiPkWWAeC/+LN+yRMWhSvmQPEq+B
MV474DVF4xZ4g2p2xQCfuRljjKOCn4BuOfQ827r1NV+/+JzgHAKGCrNf9H3h
uY6ZNHR0wesHtxA9nr+tf8B5DXANqSpH56j1Zh/MUgM4t2u7C0QbG5xm6BLz
mZUBvNc1Z5pg6YDbgg7aYK+1aPwiR+X8A3VAgOtnaCILP5/jVTE8TMHphxca
zp1HjbuKEVMGGK0CT9htAhwfsM464X6stEvFVwWa5Mjd+PkF9trnA1W88gre
tc2MFYgfAa7n0uGTe4tVQ9btvV5DxNQY8Ifgi8JvNcmdpY67H2MtxcA3Bm6L
8yHJrzh+BtAzR788PbFR9fSaKeAFsGegeQxPHL525LfAiQs35YT1hOJzSR20
PwhwnZoBXEPQfkF6bTgXphmKc+s6gQ/d76DVKnw8rqEQP9Oho4s6Arkr8miu
+wLKaqw2e31lNo++L54R4tlco6tgTfH5oC3HeU0AnwPYw7VWLwUdfM7XpWfb
2KgZa2BUh15+Me4lMAD4me+9yTJrBz8Z18S1TTHqKWAlgOuBbu8s90SAczPB
lXxpJwJzLFewUPCe5zw/Dfl50L5T/uYst7PiPELxM1W8ZqXfzXVEoJIxJ5Bp
Nwvwek4HlolfAX6fwDy3q1ru9lC8H1R9u1qAP3sxdGrx/ohP+Jy4L2eMkYE7
nDriaU6JzapzaIv6yByvJttFAeT9yPvQqwQGiM+WQCV3thoXOaZG+Y+o30PP
KWC1UcfgbAAXHLkW76WMM94IFXaOi95cWnSjqmMnY23H0NeELjPyUGjXg7sN
rUvor1RKzFbwv+L1UhS2jguGCbgu6KxzviAYUVwvapMfrd+lJuOcp5jrLMHy
898VbhO0KaChj7oV8aG2kRdDzs61TxqfxQFgNR5371ZDrLvVefuK8KcwE9hq
PFS8xzhffLvhi+GM5D0fSDINxTFAdfJuUcD0AnuMvvu9xi3wnwNvK6OX01zm
E62Da9Rxc7CaaXcOICf8zZsmPWToUgFfgjnGKt8Z0V/mGlthD6H/DC3ZbKs9
fAO43myqapt5Mq/C7AReVp8aP8ZQv8+xLc1nAvrjqkZ0nsyQerrNVMx4HHg4
yYHhS8DPqZjrRtGuAWbkES9VAZMGz2r4lldx5/CZO6wY18nPNVDLrKL484vv
GOdK2K9F6MmAFwJt/ObWCvRtAm1C9dXX3jOCl8Xn5FoOuOYYfBfrOgt1gfMI
dI9jI1y/ygrvU1PdYvWh8SQ0QFD/isYavP7gN4Q5BDiyo512arz1YgDnBOJI
DWueaAiDawJs3PxQN+WFnlYDrVaKc5MM1PTIe4GdRI8eaxoYmm9CEyU2Ar+y
yuiZwe8h3iPQnYJHKvYon+cyQ/rSCQsmi+NcRlWjoswCtPO41JTQbxvmtlVY
5yfsJ9T97rYAzg143gDDWWwPAa8K52bADC5X/SIF6mtjosKshuOU6G+CB42+
Ftc8GXNCljwr8E94vcte4VhUli8a92nOLWKc50HjXvwE8CzA2wPmcK/dP4Zz
ER4OqNM5/8lYZp0O3GRWVpzjBjiuw9MD7ys5KecassehW4++DV+75FjT7ZIY
54vweQpwnhcA7izdvVVxboq9BO/x4mzraAy9JJyVvM7Qn0HfIgCvou2hoPrW
/SUAPCHqGeTRyEEQU/hsVy97T6io9ahoMOxzzyN2ZaAPBM+ea/Y0fT40Vtfy
KsOzKIPrIDkbyN2sTpohBc4i5kV4BpgBLDV76BVGZqySm6TqRPJUurFJ8V7G
jDKAnBNehNA2hUYY/j4wp5gJmvZyxXm3zAPhQ4x6CH6HuE7wLqFJkGTY0IvO
AM6ro3OLetS8S7V0b1bQc8LZg7UwwyXRh/vc/ZHrnDbwgAtcsn4OAMOOs4L3
vkL8Rg0Fn3loGKBPg/kScHKYnyEfw3nAtVgxnzXpwD9+Zk8IdHW3IqaCxyR4
SOTLU40AcLMZ/8v3pE6Gdh20w+821hYDZwgPrm+sX4QPBWwqsHD4uUpmeV3X
ripnNXpq6H+BZwCe1G3uMsGs8boR/DbXDDJbQ3yY4HSU8xq9FZwfnK+rF73H
lM+qouDtCS8E6EJhngJtD/RLOLfj3LG54OoneWmq0P4k0N5oWNzeTREtaejl
1fbnyTMBJhD9SK5zM76zJwsml+9ZUcKeKvEYNRfvs9g7xhjBliKHwHUhh4I3
SkV7Nnp2aZhXQucPftJPGS8V87PSv1g5ouUPLV3sI8vaKnNS5OjgL6AfCZ+V
1aGeomWCOghamfDWgu4Weqq8V0TDCD0d6HOdMUfqT92n9Eyrs25o1tAlxmcx
rB/4hr7qetLbQg74X/8Emsio/bF34THxoLU7hv77S6FBol0ATeUkn62HeW2R
+wM7H9hivx34y5gRwGeGBhO4zcsTp2XOBXw36iHOGQOcE8r9Gm5HYx+640QL
DPMJ6F1g5oB+0Gq7Z8B0agl/g2vwjOZ2bdGdgk8TdL3AAxxpH+YcfU0G9FKU
vRl7HDVaDPMB6G+t8JeK7g3qUF53xU8a9waQJ6A/2N7Nj6EuhB8XuNfgBYFv
ONUMSN8fOGtwNsDdwFkBTiF0guCfgPkdOIRcbwFLLrUhahfg0jEbQA8Luofw
HkS/paqRi9lE4HX3ywCfYwHMrHH/TttforYq+SRxVbS/uAbQyNWxFyo75eVc
xHoGPxtair+af+hfwjeE6wkdQuT7iI8dnIaqop2kONcpOudl63OJy/x5bit5
qPSOkspZ5Us4zsPzIoPzaDXM9CvcJ8x0wOeql1ytpE4ouQS+sNCwSbVXBb4M
hQU7CS1c9BKHOAd0Umm5kjr5ySXg6qdYi1Gfx4CxxXn5q/EHcuUi1JWY83EN
UNIuP6XEi/ykv7MmQx+/GLnlUfcC1kcGvNvgAYuZKuZjmJlybor+ETDjGZyj
gEeUgVoIvCrMNDBb5RpDvxfKFp2VD+zvYvysi3GGAOMKjzHwSDG/hJYqfMRe
dD/CHssADgJ6vrwvM7Dm8CyhBwU/udu9Whp6g8C9I2bhbEefG1wF9DxvNhdK
nYRYibkH6tWI/UAA/S3kDdCixc/AmwD6nHxmy3kCLfjV9pkAegPQX30kXqC7
+LeKhjbnAuBsCb4WmGz+nMDzSg8UfnfQOcF6hP5HqnUzdBSLONdSq7xMhfoS
/jDoPUGXBNwO+Bi84YyEN4rUEg28apLjYM2D71rNyhWvFugWj3Cj6IFk8PdE
x573l2hqofeEHh7mbJijYf1z/RGoa1VV4GoDy4A+GGpyeHlcs/8An60IOhTA
UDxsFMj7feH+FAuF2oo+F2Yb4PADUwJvLWhWQ/8IdTjwDp5Vpue7yeorniyo
xTYab2Ugj+Nzvgg9OK4rxGtqspUuOAbkXwuN7qI9CG951A/QCABeH8/oG2ei
zD7hYQKdu8+cCdKXAHcyxw6g5yReVNAzgOY3eIbwMwffGP3rObYb62Y7opXS
zPWJZwDm/cMjUT3aOqJ7ejtECwu9X/gxoMeEc/+6+bzMzCvdSCqp4ySX8Hkq
OAPoHsIHFb4y6EFBPwozWuhO4Gf+8P0tHpoveO+JJuHd8TU6OThXnj18JcCd
rhtcKH1K9IExV0V+Bg0uzPjnh18RrjY0wuB5QWYT0YVF/g7vYmghQ18auhUx
/6f6Bfc9PTp4RNdKzJdnjZkK6mfMYpAbgsMkmqLeOtHwbGBWh4dZDH0S9Bkx
h4QPLDTbO5kbhS+JPBr8KuB4uLYWDBJ6bf9aM/UI/2HRQcTP4zzBrIrXrPSd
sAZx3vPZDWx+MfJG9HHAy8YMtUaokuazEWcZckPkDxngW4Oz8rLxeXobu75w
JNA3QK8CcQAzPj6HpF4uw88boukNDDm4EBxH0HeJYQ6JXjT62cBZtfevV/nh
N4X7O9g8oLjOUJh/4bq6Gib2fgaw6qi777DqKD4j1Xqjj+KzQGoiePPxPlH/
uDOU7XQRDd9Mp5naZwwQzNWg0H71XFirp83jiuKbhVtnhGehT6T4HEOsUMeC
Hyn43l12flUVc5Ko9uUqVC9elXx5VahidhJ96STU3tB5NSVcrPieyrVWuGAQ
x1rqY7egR1JaUu/S5sTvTX6rATXPqU1muBa1TK0r3g2t8+oRXzu19eqL38TS
1B70UvYg4jqdXgmHqCDrEZqaHKCuPpNuya9B9bOrid/e2LQOxOtOMJavpQ2n
eOEY+iTlKbqY/RTFw2Po+OVBtDGlL9mZXYjzVHrQuUN8moG3hIbzuUQ2las7
i2qXLqCG8cVUt/9CKt/fFs/mV0Ih4nyXOP5SbmFXsvO60NqcXvR6YjiVn26L
P2H6xY30wNXt1D28TXDBf6ROp11p/USHeUTcL/qo7/jHUENzCfV0d1Ao7xAN
mXyAMsM76O4Oa6luAb/fEJt+jE6hK/7J9M+NGVQjc554YrRovZLu8q2hNrlr
qX3qeup0Y4P4RrfT+dS8cAWl5CymOtl5VMfJo0aZS6lN5lrqnreNHk3spaEX
D9Lg5AP0kPkCdUneSq1Xr6EmucuoUXQptfRWEV3bLB5kWTv30aP+ffTQxd3U
LcxJ9qbNlJ6yibokttD9FbdTpt5BPf/mV8pOeT1Qup26TXbIWr2V7r+6jTj3
okH999OoGkdofM6L9MyN4zTpfCGFux+nUc2PEJ8x1D2yjejvzaTyNlPnwi3U
LcuhXqt30qAh/Hu+IzQ2cZTGXjxK2UOO0ujxR2io/xA9Gt9Lj1wsoEfVPgrp
QzQmfoRGDzlCw1pHiXMXGuodpFF/H6YJOS/Rc0FNuZGTND/vFXq+YgmNqXGU
HrlRQD26b6euF7dSV79D91/aRr2v7aQBqXtp5OTDNHF/IU3fVEJzMl2afeFl
ysmL0ZgbR4jrSeq22qHAxU0USNlMVtZW6t18l9zPiU4hze7g0qKRp2jR9FO0
4NorNOvvExTOPy7/3lftpi6Xt1Dapo1yH/vW2E1jLh0hO/gyrUgrpfXem7Qy
r5Ts8S/T6OlHqFfeTrqndB3dVnE5NTy7mG67tEz+v2fFneKf+7ynaVnBaVpf
8SxtcM7SivOv06yLJ2js5aM04Oweuj/O97XGFupyYwv16LOdHqm7h0YWHqbJ
3YtoxsUSmtHhBOWMj9HTKceJzxzqW7qLVO5mWT/AXmcUbJJ1mJW1j8Z6R2li
biFNzioijmM0KnGYBgX3U9/mu+k+tY261NhKlLxF1lJm3g56JG0PDa3Iz8U9
Qk+mvkhPdzhOE/RLlL3/KA31HaL+q/dQ74s7qVu+Q+lqE7Xrnk93N18rePeO
hRuoy9ktlDl+B/UrLKDB1/bTE5MP0iB7P/XLLpD7fb+fn527lbrU3UrWEl5r
Hq+1HF6vI/fRiItRGqeP0YSdL9FT3otyjwdf3U998ndR4NImaulfTQ2vLqbq
vnlUoeJs+secSUneLKraKFd0AIGTb38jn7oXbqNe0Z3Up3AX9di5nToP2cLx
Kp/uvLySmkxeRg1OLSJf4QK66cI8qn4tl26qMZ9uPp9HXGPQrVeXUOOzS6nR
/qVUv/siqjFkHpVrPosuZ04SvwnEjpO+EJ3NHEWfpzxNv6ZOowqnbKqqcqmm
nk+1aiyg6nXnUaWzs+n36HOiLfja5WG0P3sAbSztQ8uiPWhJ5v0UyX+ANmT2
oV3+fnQgbSAdSn2UDnuP0gHfQNqb2Z+25wdp44U+wilZWZBJKyOZwv+Y53UV
zeinkjsSn200KK819S9sSQ/7UimYeSf1c1J5399FXJPR8IhfYhUw5Y/4W9ID
8aaUlnUrtQrVpSb5NalOTjJVy6lIldwk4rORoBULLdXbSzl+e2V6GHel1RO/
QcTmGk4lMpxy9L13TZ2PXFGngl+o44mP1WHzgmhYgBtUlPhElZifqRPOZ6rI
vKgO+y+IjtE6803RtpgTdtW0RJmWD9fB6hG3QPUK7hRtC7wse6vi3E31sXap
vv7dKhh5QfGz5Lrk/5i68vgmqq7NUAqUPUCBUrawFygQkaWQe8KwVxaJgFoF
IQpiBcSoqAURRihQ9shaNg0IWBYxomBp54SAIBVBI4JWRY2KWhU18qJWRL/7
nL59f98f9zfJzN1m5s6955x7zvMEVd/AVtUttkHp9Vs1DayAjUNizRFnBWzF
cvMZ9bPzKaV1MbFHnY7cr4p8k9Qh312iX290jlSw3z4Z66+mm73UvWa6Gh5s
p1SwlV5HU8TGCayzXr4KX+nevuZK684Kthgtl6mmwdoKdiT4WycEDYV4NK3L
ul803ode6e5ibJDYby27u7W86LasgW7YArHngr0zxMhpmUb8g+Frg7i9M8Y3
/bU8BBtpf/A9Yc3HHiV8VXAee2O6/mOfGY8UwW4B/xDIxcBagN8P9k90G7Ln
ousuhq/Qj9YcyFfFLnMzdBGJE4TuDnsX/Knhk4D9COxHb7LOCt4MdC7sC0LH
KTP/I7YS+HroexX/kUZmkuyhQh9HvC3kJfAK9nO2ENxb+MJgvwvpdrOT7Q12
tif4uohvBvapsYcNjjBwpWtZReRp+JmuN24T/1/sgyGBA3WXzyv+fztiYwTD
HXzVrzjvst+M3WufNH2y93/JOUP417EHCO5CcKaCpxA4JOAsxH7R+ciDNnRT
yPvwZwWnIWRH8NQDx1nrBSLjXvU9Kf9/M3LErgZ/O9hKwRf0d2y+4AGBgzvR
fE7wEoFD28C5TDhvwQUC/jjwwyH+HHss1ZzP2Ym+igRsxdq+XInNB+834vMF
q8i/Qvw9U/2rhKeyVXy1rce1YAUDc1bwZX3r4P9QgQns3CB4KvBPBWZt59g6
sb8gBr5j/Hk5B5w14EUKZr+zAqsfvpDA3QVmvpYZ7fTgRuFxAi4bdGHgnQPv
E36ZA50vCt+TYHCbFXiX+A8/V5zTskMFRpyjIlViTwoPCfD7vbsEmxP8j4Oi
L0oeYFqCUw/2W+DFoT7kBQ8k/JnhAwwfU+g4wM8E1yzwNO+O7ResAtQ53LfL
HhHVZRx7xO8YfC/goAK2OvCgtCxi3+XbL3wN4ONDWdSDBA4r2BImByq4YMDJ
AAxT+F5LPud+e5y/oKJe137B6gRODTCngD8Anlzgh+IasOOBOQpcwizvAeGo
EZ5dXQaYyeg37E5SxntI+Fcm+V+RI84DvwD9HB8v+B/+KnxqwU13r3lQ+oVy
8OGdGDkoOA1opxIPEW2BwwIYpvCPlj4EKhJ8cid5X/kfz9SD0deg9wgWPPQh
+PqCz0fq0vcMH2zgyU8OHRK8evgEAxNCjoGKNNX53zoch0V/k2QdFkyubOt1
W8t3Fb4cziMVHDOBI/Yj8SPir+s337QfjR21H3EcFV9buQ6fW+uo+DCDV0Z8
ssF/FTgm9jX4ZwMfH1wb8FUGDx/4icAVNC9gC24QMPJzfMXCWQQMWuBhg88D
v3O8ukzcFt6+udFi8bcGLi3w8cFrBh4Rv+9NOYLr5kmjSPLND7D4VM8zbalD
+G50H1EG/XvKVyTn55ss2BXAt8AR/UKa67KlHrSFOh83C8V/HD7w8KHGveGI
vJXYGIL976rgHUFd4IpHHfBPBy4aMHDBhwTeL8HY9VfU9VxUn/MdFy75Z+Ms
PvmWeRw6a0W98Qq/8FzzhOBrAK8I+jp8wNHWAl8FXi8wNqSM7gOuAYMNOr2k
6Anht1zqPSkYk7n+ExU8ZDoBa1PyIg+uB08IlttSS59z6fZiJ8VXHXvSwHQD
ri/O4Trywm8fuL9Sj7Oif4i3WO16W3At1/jeFo6XVYHTEgOx3FGBubQ8olPs
LXuV77S9OnpaMEqQ1kYq8qOc1OGt+B/wnan4b1bUtdqouBawztjrQiX2xvg7
9ibvWfikiA0l4K3Ap1serWhnZfyUlAv4zwj/lV4v7fXxEnuDWcE9s96lU6TE
XmeWiM0XXHuB0Bk7YJ6p6H/otJRfFdRtOyruDTEWKIM6cQ9oZ6l5Ev5b8o7w
rBCvoOUk+A3K/Ukd1ml7pVGRf1nkZAVeXqTimeLZ4TkBOxnPKi9Y0XfEkiDJ
e/RVvK8lsRMV71ofl8R1MireMa6jvGDK492hjoh+9s5Tcg7vD/nhpw8OQsHs
0+8O9aOvwICRd+E8I+NL+OqCx+XeUH5lrKI/Ul4ntLnSdVqeOeJJ0B7iPwQP
MFqBBwhcGLwzvEPcD/KvjlUkuQ89JmUM6WdX2Q/kXxE4Jbhc8q3pcb44HhG8
QbmfWMXzwBjEmMU3guci4zNQMdYxhtG+/A9W/Me4X+g6LgnfpMRT+CvGe+V4
xv0C+wYxB8JR5g3L94nvDPcF+zzyAKcVcxqwWueFbOnnfJ9OoYo5CPMXeP4w
f+T4i2Vug60QcwPmCCSZ+5wV/FxzQsdkfgM30eNWxbyK+QdcRlqvlXOIWYF/
62zzqD3be1RsY8BXBA+bJGcFtxfm6hmBN4RXBDxhwNR+0HlYuCmBxTjToedx
73+xtUMVawGwebDewB7s81XwOGONBYebHPW5KdFDwqMELifheg5UrKnYq8Ga
h/gpYDsiXgk4mVjPsMZi/cZ+2fjYf9fJSMUaKFjawNC2XhZO73FWBUawxBQF
KnjuwfeNc6NDFf+Fl8TaLf5lmcGXBAsJ2NvAvh0Rr5AxIJcMNXfagwMVWEnA
rQOvicgxge3CVyI8JeAi8e6wPcEXRK5BAk8bsLeBmauCO4STRPhOtHwFnk3w
neAImQzn+ri2ii0TfCPggQDWN7gbIaMhHghyWlf/BuG0hVwHXibErUB2w3lg
6ULug58XEuRBYJCC46BSVgS3AvjuwFfQJrrGbu1dI/wKkDPBl9vGqEjgGhZM
XmCEO1cK/11T3wrBqANHHXgksceUbC23GzuWi20Y9mhHcJnd0JFnN3AtE1/O
+oGl4ntcx7VE8HzB0wu7clJwsdi6IQsLv4GWpeFnawQXCo844tiA+QssPHAb
37DmC/6mpOA8kcfBqVvu0zK58axd5cQC+4Y5XzhGr1k5Ev+HfUjglceDT8v/
XyNPCX4nfBgRE/RNzG/Hgo9ir1w4muFbir0dcIyC5xnHyvS1zy9xhZ+as4S3
Dj5xH0aybewbfhqcJX7g8K3D/hD0C8T7YC8G/tL4Dx+EC2a2cFHBvwHY6e/5
pstvxB/Bz+KUeb993JgivtiR4BT7pM8nmKL4D58J2NsLgxOFVwb7xvBBCZl3
Czc9uK0OmXfZr8XutrFvvz84wd5t3mEHzbESl4SYznxrlPg/Y3/sRedY8VOG
nrU5MlLikuCDDR57xDeCExTxn8C8An/N2thw2bPF/seTkYqEWCXoa887M/Uc
PEzP8x45P9ep7DnB/lo2Ion/Accx9jPn+PprGStDuJ4Rd/VIpI+ey/rb8Mue
bfYVnRBcltj/u9eXruXddNj8tbx6i+yjI8+Dzl42/KUnWz30/OKSmJ97Yt3s
O5xpwvkE3kvwT8MnBPsK0Dehd8L3F3FSI4MdxG8K8TXDnO30t91WOAdNXxvs
Vervt+I3Ygegx2rd33ZZzQSnFb6G0G+7GU3ED7yrL9nuFGwkR/g8YG8YPq+I
cUVcbItIXRv77YgphS8l9jAQv4x9YPjcgz8P/NnwAUS8R71IdfHdAF4jdGzE
WyHGF/G18D9I9FWV2NcqzipyTDAN2c/Bf/gsA28dPqTgMUOc06/GnxUp8kcx
OLy/j1wrxj464g7ej3xXjFgLYEKC1xu/L1o/yH9wouO6+ClHvhYfe/hdIMb3
WOSz4iLzsvhWv2F+Iv+BKxQyPy4+ELko/sTwvcbex3bzPHwUi7UcINiS8I3R
Mrwc9booe1taHhB/Ub1eCWaa1gWKtcwvscHYn9TrVjEw1vAbsU7YN4QPKGJX
EEM2PlIgscT4X3kOftTwiUE8E3wQEQOEeGutu4pfotNaKzFA8KfqZmws1nNs
Mfbh+5pbBX+tq7mhGFhiwNuCz0G3yAaJX0HMC/zN6xlLJUYKqbaZKwkxcNhT
1HOP4Ir9ay2Q9KfxTDF8MXAN8TOISYDvt23dJ3E08FMGV/Q560HhuMR1+MXq
eaAY+0OIB0d8C2I2gAkGrCgcEZcE3DmcX20MFy4X7CsCp2221Vc/v/7FiJ0D
xhRishHLjn1N/L/fcBXDb0l/H8X6mxC8c/wfb3QRzM67jW7F+hsS7js97v+H
d4bfiI3DEXEciMED/id8zFKsOoiTE9x0+MbiP+KZ4LMJnFDs7+I8Yk7g/4N0
wogBC7ToE+OqxIvjGvzn9ZgtQgK2MWLawL8HrDQt78p/+DjgeMC4JD6EqAf/
8Rt7b1rmAzZeEXDdcHzIeF3w1oDdhZguxOuNMfYWwXcP/xFXhpg6vT4VwbYG
zLRqxnPg3yr63nhCMNgQnwYfI+CEwc9notFdMPjARYrzM40+2JMXv3vEhY0w
2sM/tAh+8noMAjPvGPw38B++h/DZwf4h6kKMHGIe4cMBDDD4l+n5+hhiFoHP
VoFB/9kxYOfBZwT78LimZSeJx0f8Gc7B13StMQIxZ4idOKavZcCPutKeiP8o
B7xJ+DZhrxLYfMDD09f6Ix4B+YArCIw32B7fN77vD99bYPbhqNtEPQOA2wpM
wpeND+HvOwDxmvqegEEwQN9nf+zTwu8d+XAddk1gyyFeDv6zaE8/C8F4BT4Z
YvcQt4d2gQuo70EwMuEPoe8ZGG1iA0VMIHANkeB7iL6jTfjl6fGOuDe5hjrB
T40j8Azhg6TvTbBkEe+GutEm8MgaG8sFdxaYiVr2kdTeeF7+oyx8e4DrBwxa
+AXcYuQPgM8e8uE84u3uMw6J34aeq4QjEnEB+p1in3gA8N70+MPesPyGnwD8
K9n4YgB85BBHCv+xHcZ7A/QYHvC8UTJAj+0BwFMD5i38ZBCXAN82YCPi/3Hj
S7kG/Ef4JSE2BXnAh6u/pQHwo4ZvLmJPEfsA2/I3xm9y/Nz4RfL9YFwXH3vs
TSPVMhKlTIJlCE4p8iKeEr5luAZcv1Srrhv8l/r7Fl/2ulZ1N/bQGxu14Icr
+IMoi2vNjDruLkayG/vj8BVxWg2AvSh+Y7im5wopD18j9Le1Vd+t5wupH2UQ
O2labdyIacDz0mNDeGH6GKmCeYf4CdSP6/Ad1OPfPdRq61ZWK/gByX4+rqFd
1KfnK+kHrsOPe5DhlPzwb0J+xOL0tprLdZQFDxbwMydYXSR+V3+rbjJayzXE
7MBmD79ZPV+6gcFZESfQ263nV7cey1IGfYRfObAwUR4+Jbh2j5Euvv0oA7xF
/Ea87AOWS+pA7IqexwW3Xc/bch3lkPAbZYC7Cew9YCHDFwi/wUuKWIS5hgJ+
iWC+4wg8TmAoIhZarxfurdZoN+I44JOq5UO3XlekHuxRIK4BMbnYlwAGH64h
L456LRKsUbQDLHnUiz6ir+gz2gVvD+pEHWgP8TroK/LBTwL5sA+CtvQ3LHVq
uVTqR8K96PXsf89lmnWLHIH7jPvBfaAdYJXjWeMZ4z3hd+WzwnP1WT3liPJ4
R3oulBgMnMNvvDOUQZ/QFu4BeZEH7ww4nnhPOIfreDeoH+8H/cN94P7xTvB+
K8ckxgTqRTn0Ec8R+z24Nzx39B/PDu8FzwV143nABz5iTXHrNVyeL75TjDPc
h54D3XrOcmsdwI24FTwHjCWMR/QRflyI6cGzx/sFTgza0fOr4P3jPaItxJig
/yiPcYLr6BvilFA3YiUQu4T64PuIvSrcN+4DYwXvE31D3+G3hTp3GLe7EStw
3pguGNw4oj74Vh62smSfC3UftO5EDJi8c/hpFljj5b5OGD5pF1iy2CfDuUJr
ovzGPeOZlFhTpS7gTx4x7pW8Uesht5aVBH8TXAbAsYTv72XrEfdnxiPSD8RN
oW7kxW9cw3nsyYG/V68B0mdg68AnB88Q7YFvDWUQh4DznxuzBbsTcU/wz0X+
D4xs+Pm7gQGEe0Bf0C7q+8GYI/WXWU+44W+OtnEPqBf58BvPCPcH3H3Uh/oR
owTsTBzRFrDJ0b5e1yQvfiOhXtwD+gIsVHCDah1asM3hx4dYNlxPsCzEJel5
dom7tpUreKZar5Z88JHV65+et5e6HdYyd4PIUkn1zYqk11Epo3V2wfmEjzDK
wo8Z14DZmmqtcmu5WLgCHeYy8aWqF1kidcJvqYmxQv7jnrR85UYsUGtrjVyD
jyfi++tbFW2hDNrVsrecQ3wOEuqEzxPKAI+2bWQtMKMEoxZlkMBfgPtEPehH
k8hy6RPqQh/RLnxU8Rvtw98L9eA3YlFxDf7ciCvEs0BZLetLeeDaol3wkGmZ
QGKBEJuFOv+Lr1rRnn4OwJRFnUgoo3UNwTiQPvy3HeRBWZRLtpbLvQF7Hglt
oU3cW6vIaimDVHkeZXGv8OUHbwfuGc8Hv9FfPE8klEdb6Bd8fpGAyYDxgHda
M7JI3gt+493iOWM8VI49vGscEUuDsYRYHvxGPCh+Y7whvhXfXuUYBgY/vkGM
fa3zuOGPjvGJenAOZTGegbOK8xjfSPhOcA0+qxiz6INhLpT/aAN1Ig/aRznU
jd8Yw8hTLWJpGeQ5KYvvGdeRH3lxX7gXXENd6EfMelT6jetoC/eN9lEnvnN8
v0ioB33F3IbvFt85vnnUAVwRxPkiP75vnMe6CL9q7OmnmqvkeWNM4HtFHsyD
mPfwneMZon78PmTdJfNO5XyD7xkJfUI5tA+eA9SNeSDfGiXz6UnLJ88G94Ij
5q3KNpAwh6I82sCcg35hTsY8zsZkqQ9thqy7ZW7GvI61GHIE1hjMz6gTawE4
kvZbE2QNQ97KNRtrPGQDzOlYS7CGYc3A2o71B2sR/iMPzlXKGVjvsP5gXcEa
giPWRJzPtQZJXViz0Cf8Rx0bjZGyriIv1mGcw3WsSViLcQ4JMWbAUsMRvvZY
XyF7IGYbaz3OYd1Ge2gbayHqhEyBNRtyBvyOIQNARoA8AJkCvyGjIQ/WaORH
HZXtQsbA+gp5Eus28J9xDuWxhiMP2kYdkBcgV0IOhbxQKWdCRoRcCbkUMi1k
3X5GCzlCXsV6jxgM/IasARkFbaAexNVDPobcDFm3r5UqMjFkWiTIuP2NlnId
/3FEHsQiQCaHbI94yHaWQ8rhOuT4QUZQOKiRB32BnOyymkl+nIdugDpwLt1q
IrqB1uVFT4HuAb0Asj6wofEbMj/K4Bx0ByTI/9AdIOPD9x4JZZGgq+A/8qE/
0Gmgm6B+XEMsMXQO4KycMGIDwOUFXQh6C/LALxfXgNUDvQnXgYGDcu8YV4DB
NwCxhcgL7HzoU9DDoI8Bvx7loKtB19K67QDE80Jng86F39DDkB86G8rgP9rA
NdSLa8iLGDWc22NckHZQZ6UeiLoR64wj8kHvQl1IOAf9EPUgATfhMaNwAHip
xxh7BQ8A+id0TWB44wjdE7oo4kOBu4FYKeiy0GGBow48ofHGPtFjUccwYxf8
40W3RUwXfKehEyNOAkfo78D7AW4Q9F4tA4h+Db0f/tDQz6GDg6NWj3E56vE2
4L/xcqLHv2iM1c/zDuAOid6PfNDp/3+Cr5Me/1IfbBOwBcAmAFvFWuNM/0r/
a+j6aFuPf2kL59CGlrWlHdSjdUy5hvqA6492cR1tIz/Oow0tOwrnDO5ff0vA
88FYK4KNApxawKBEvBnsAIivhE1EP/v+wIhCXtgUYEtAn2GLQD9hI0HbiF/T
86z0B3YP/Ndjtz/i0NAn9AU2CDxzHGGbwL3h2aFu3af+sN/gWaEO2FLwDOEL
9rpxj9hGcMR9IaH+ynvGc8c5PefLe0C5ymeHZ4T4S7xHvGPkgf0G9aEOtI+8
KAObCmwnsIdg7GAsYAwgfgM2GOA6VD5DYEZhXOA/cPph84EtBfYX3COeH+wt
iE+sfK44j74g4Xel/QVlkPBs0Udc0+u12HRgv0FCfXpdl/pg90F9GMMYq2gb
+ZEP19Ev3C/6iHO4J4xt1FfZLsrgPPKgLNrG/eM5oA84j/ekZTbpP8qhj+g7
7gv3jDZwDd8KvsGpxmti+wHeFLg38Awxp+K7xX98i5X9rrQ14dr9Ruh/3y++
dZxHHbiGehFHhLphW8J3j/y4ju8a8xzaxDn0FXMg2sK8hYR5BNfQNr5/lNfj
VuYdzC3IW1kv7FGwZ2EOxdyF+Qg2LORHPcAehe2r0u5VabvCvIl5C3Ms5kSU
xXwHHDT8xzXkwZyIetBHzMmYMzF/Y47EfaBd5ME1zM3oI+rC3FxpI8M12NIw
r2NNQDnMuagf8zp0acyzWB+QD78rbWFYc2ALw39cQ34c0Q/UjfaxRqDfWGeQ
cB1H2NRwDUf0AXlxv5X9wTXEG6FO1Ic1CWsa1rNKOxvOIT/qx33jHPqF/uCZ
oG9YT7FeYr3FefQfzwzPCP9RN9qrtO2B/w/14t5QB347rJpSHva2StsgzmNd
Rf3A88AR18EdCFtcW8MhCbY52NHAF9HQSBJZANcrcNlaiqzS1UoWexxwaBH/
DDkAdkHkwznIFpApIENA7oBtD2VRDjY/2OqQB3XgiHYhM+A/fkOmgVyCfsAG
B3skYuWB+YD7xXUcIYfDvgO7COyNSHg/sItCNoMcBnkQMhTuB230slLEfgP5
DDIm8DrQN7SF+0DdkLXwDlAf2odcBxsf5C/UhWeB+4ONEbIfbESQEYdb7cSm
iGeAPCgL2Q1toE48Dzw/3DNkOMh46D9kRMihkNuAZYi+QzZEggyGZwGZC31H
OfQBzxRHyIPIg7ZxX0jIUynXoQzqq7SFQvZEXsifleVwHXIo7g+p8jzuDeeR
F7+RD3Wgj5W2tUpZF7YmnIOtCnlxT5B18dwq7Z14F3hWlfI5ZO3K65XyO+R5
5Ku0CSIfEs5V2v1QB2R52PEqE86jLOqutJnCdlUp++M87FjQH1AW+TFu8G6h
I0AvQILOAh0HOk2lPoE6oHtAT0Fe9Bc6CXQg6EXQW2CHwxhAOdSBa7DHoRz0
Ieg5OEJPgp0Qv5EHdkL0DTw6iEOFPgcbE+xN0BWhe0Gfg60UbeE6zuMc7HbQ
8fAdQFeDzQy2NMSMQu+DjghdDuegR+IImx9sapW2L+RDwnnUAdsbdFDkgd0K
fYEuiv5A/8c1nINdC3oy9M1T1v2SB7YB6NzQm78y/JKgl8JmB7sXdG3YCGDT
gv0OR+jMsBWgLBJ0YNgXYL+DzUCwRSxLbF7Q6/+/bg+7A+qDDQE2ArFbGRW2
MSTgVkF/h+0AvH+waeF65Tno3jgn13UdWiYQmxfsDLAnoDzsBmgT94I+Qwf/
/3YPXEN52OJgV0D+yjK4XmkbRILNovL+YSdEKrVmyn1X2h1hV6y0Q+K54Znj
OcMGgOeO89DlYdustDPi3eAIXR7vAjYK2EJhY0A+1IOEZ4q20CbeBe6l0vaI
e0Nb56wHpQ+4hneH9wabQ6WtBvYX2PdgS4I9CjZD2BphO8Lzx/uCnQXPsXqk
wqaH5wi7FWIkKm2PsEVgPKIfsJ2AGwq2OmAzwDYImw2eK+qBvUyuW2vF9oWx
gPeI6yiLupHQFyRg1qMOYBzANgZbXg9rk7tnZJMbGEnp1kaxucGeCHsZbEaw
kcGWAxwt2P1g0+tgPS/9Qdne5hbhmnSZm8U+CVsebIOIf0aduAa7ITC7gGOE
tvpEtriBg4EEzCTk0bKie2DkBcG+91gvCI4Azpnmi25l7gDOh2BaZFov6Xl0
t/BPgVcQHFeIax5p7nYPNXcKfy/+j7MKwFsl8dC3W3v13L1Tfk8w97m91svu
eyIHhB9zfKRAcMqQkA//kcCDiTrwW8ubwqMJTi2tZ7rvNQ8KhhfqAv856kVd
EyMHgSMmCdezzANun/WqxMH4zFf1nHpIygPHaJr52v+O/0vWa+CQk7zTrcPu
qZGQnutfE5w1LYsKfxa41sE7gCNw/sFp5zffdD9uFiKu3v2UWaTna3aDGwCc
T+D/Ao7LUvOkYPItsMLAQAGumHCPgV8KGB7Ag7LM48IJjvyImX8+ckaw1BCz
j3PID7yYgHnGDT6mTeZZ99rI23INXMlaFgU2v3u/edG9PlIieXPNE+7Tka8E
kwL4goiHB27XJuus5NkcOet+KRLVc/dH7gLzQ/du8wO5pvV+4Rnda15wazlP
eNbwG0ctfwtOmJaBpezOyPsSbwT+eS17CzYd6gP3FfIjL/oETDEtP7uB6YW2
UC/6A76Iw2apnD9oXZJ6UAZ5pD5dBnUhgRMN9wEMhUPmR3IdR5THuTfMT+Q/
jugHyuCIOlE38oNTGnUjH/qJdnFvSFutc/Ks8NzxbPFeHo0clTkIGLmIDYev
HDi84YMIXzjEJP1k/F6E+ROcYHXN6uoL6xd3/8g2sTXBn2KjcbboZ+OPImDb
/RenRWRtrLXAicG3je+wr7lVbO349rGOYt8Y9hbomLANAIcXejHsKZDXcR0y
A+yQWIMhW0AugtwLmRy6CvQU7NtXyt6V9i3oKJDjoV+BExQ6IHRU6PNI0MPh
3wBbg56r+gPrBhg34EkE5h0S8Am0jH9M54XPR5HWO4v0nC7+KMCMgW8JMPrg
EwI8a/i16PlPfGGAkQ2OQeBm4vnBPwf+PIgjQ6y5lqsFd1LrUcBvLQI+G7AN
4a+D68AC1muV+EoBYwZYTcB5ybOGFGtZSLgagVcMbHHglwNzXK9NgtkLHORe
Vr74XsFHC5yHep6X/3p+LCbjhWLgweo5rHiYsUvwe+H/Bb+wJ42iYuAj6O9V
sAX1dy2Ye8BJhT8Y6msYWSZt6DlWcLiA7QRccPinAY8D/m3ACgbGFTB7gT0D
7DzUBzxxcHPquUXi49AWsBiBU1NifSM+dMBcQDwccNHB6QEfOWCAAw9XzweC
x/BshMW/DZiyWi8WvGf9zUtd8InTc4PwMIOLA/gCyKe/Ff3MPpT4O+ASgRdU
z+nigwZsU3BOwl+rupEgWFbwYQI2IrDZ4KcEfka8f70+gmtP/IyAAwpfHNh4
4H8CXw+MW+gekHthk4dMBxmich2HfAJ5FboX7AEYi1o/fBNj6bgxBfgGReBN
bGM06A//F8i3WPPAm1zbTFS9zebqrmBX5Q/2U1pOFv484IZs8N0mXI37IuPV
sdhEpcePxGbGg08r3aa6aD6sQsG7hc94crCHGuPsJBw++H/BzFYtnKvV3ZH9
akPoHfV+9DtVtaQKNYnVonaFDkr3NhFONldhM+pZ3pR6FDSV462RFMooaEEe
X2saEnPSMEc7Gu5vR8Oc7eT/QFcbcpe1pH7xVOFAyvC1oAFWSxpU2obGedNo
cnYPmlnam55MGkDzMhXNLyRa4PXQgoCHFiYNpGfLiOZmKNL6B83J7k9zQv3p
6RQ3zc8kejam82Z5JM+zGRVlrOBAWlxm0pL4IFriGkzLSgfT8pIhtCI0lFbG
h9Jy51BaUjKIFmWbtDBjoJSRerJ12ZyBtCQyiJaXDaHVzuH0fGwEbSi4jTYn
jaItUZ1io2hTwUha77hN4olXO4bTyvKhtCJbpxxdf9Iw0nMVrSvMpM0Zo2hH
yRgKWmNpV6GXXop65ffmlFG02DWIZmT1Jq/ZmXoHmlPrnPpU31uDEoIG/e34
R/0V+VvdDP4jz796rCrVciVSPWcNcgRrUuO0WtQsUptS8+qS1v2pbYqDOroa
UXqoCfUKpZAqbEUjStrRHUlppPU88hX2pAcKXeTz96SJsXQa7+hCI30dyMxu
Q319qZSe3YQ6+BpSy/x6lByqRfXi1al6UgL9Fftbfee9JnyARYHLwvMHvD89
P6hJoVeEz6lrcINg/IHDsTA4UQEjblCkjXBILjFOiuz6332KY1rnK9YylOCy
9A42t59zmuLHjbjMYdGdwicC3JLL5s92zbRq3DbagPuXt2Bvdmd+MHoL52S5
eVnJYN6YNJJfzBjL+9Im8OGcLC427uNTvvv5fPxB/qhgBseyH+XvXU/wr0lP
8+9lc/mv2DN8I38+3wjM5/KCZ/gP/zy+XjiXrxfM5d8z5vGfsXn8V+QZ/se1
gKsmW5wYeo5rJeZy/eyl3PhUHjddtYJTR6/ilhtWc2vvGm69ew23StMpeQ23
fGM1t7i8ilMPruIWJfoY0sf01dxyqD5vrObm8ZWcunsVN7u4gpvfXMmNk5dz
/bylXGP7ItayO/+ROY9/LnuSf4g8wd/E/fxZfBZfzHyY3ymfyie9PrZ99/GR
pHv5UPZd/FLSHbw5MpJXeIey/kb4sXg/1noy32f0YG+gM2cWtGcqbcW9rBTu
VNiIWwbqcbKvFtcqq6bbqsLfBa7Z74W+s9+MfWprOcrOCRRLvCPiJBB/AHw0
+KMDa65FrK79ZuRT4cgGt4TW3YrgGwh9u7uxSeQXYHfqb1llW7eq7cExSus4
Ksm3WLV3PC84KdMCr6nljlPqdecnKhb6VdUsS5Bx3tefSqNDHemBfBflFLpp
jW+4fB+F1kR6r2A6fRt/jKqcWCA8fKl5q6hLfD1lTNhGI8p30Z2999NU9Ro9
FnuTFthhWnn9FG0+dZb2Zl6gw9tL6URSjKK7v6fY/F8pbv1JxgNVPEnzq3kc
j9f0NMuo42n9Qn1Ph1kNPWmhxp70B5p4el5v6umVleLp815zT7++LTwDgi09
nttbewadbOMZmtvWMyKhvee2tA6eUU07ekav0OkFnWZ09Izq1NEzcloHT+bW
9p4RV9p5hjVq5xma2dYz+A2nZ1Ca02MG23gG1m7j8Uxr7VH3tvL0v9nC09eb
6unlTfF09zT1dHEkezr+0tDTNtLAo787T0phHU+TT2t5GjZN8tS/vYandnai
p8akBE/CA4bn5rR/6D9l5fRj9nX6qvxX+uTUT/S+8T29Pfprsjd8Tq+fK6V9
Fz+k4Kz3afPFs7Q6+W1arE4Iloc/703B+5icc0jwOsY49grWCF3eQX1ubqHu
1zdSh9Dz1NJeTcm5ywV7oVrac/RnyjNU5nuCPjVnkf6u6GSOj47FJ1IodDft
zR9H2wvG0CZrJG3IvI1WeYdRXuYQ0t++zMlzo256OjqAcjL1HJ1FZIUGUq41
iJZagykvewgtdw2lvNAQ+a9lHHomg2Q+f9Kh53dLz+0lA+iZiKIFPj0f+wcK
VsyzTg/l5LtpttWX7o/2pHFmGg0ucAofX9eCZOqU04g6RxpRt7Qm1CcllYZE
nTQuO43uj/Sk2WZfeip7AM1NUjLennD2Jy1T0kPOW2ma9xZJD0dvpccLM8gy
B9LalBG0I+l24SoMBe6mw4Es0mOf9obG0ZaU0bQyY5isN3rtpen5vWhyQQ/S
ayjdXdZVP+Ouwj04PqML3RHpTKOzO9LQ7Lay3vUINaV2Xgc1K61NdUPVKTFQ
lf6J/KP+CN4Qzr8/zBvqhu+m+tf8Vxm+KpSQYwifoByzdcrTqUCnkEFaxiDD
W4X+dv6jrgf+Uj84r0MmV++Z3wn3oJbD1KrQafWE85jw2A1z7VI9AptUamCV
qhlZJBijWm5UW83ROk9/NSTiVMAeBX4b9FLIKrArQy4H5wW40eF7Dbxx+F/D
P1vLx8fAdwIZBXt28C/GfhFkbdjOsQcNWyzsiZCB3rDuEfsG7DzQ46GfQ7fV
64lgdBcbn7u/Na65q0aqKGBnN7VqK73OCT+vXgPV75G/3HHzT/evkT8E9xaY
Zd1jTYQnbo7ZX22OjVSF5kSl9Rel5WBVHJmk9sTuUCudw5QeN2p8JE25Yy2V
lrFUqlVX7hf4o9WdCSpm/Sp6kpZxRV+BXAZfbGCzA38XsRNa1ypG3AnwrcCv
FLeeFhzVDP82e4J3n8RRr3WdsbWcaoeDX9ingl/Z70S/sc/6rtglwW/sc6Fv
7YvWD/bnrl/s78xr9m/RP22tW9jV4obg94F/KsEy+HfHDfvz6M922PzCfiH4
nsQhIv6+d3CL3cq1xtbrrd00sELwClzezYKniFg4YAvgeoLfkpgmYMoCUxPx
IMBqBEcdMJPh5471GPIlfOUhv+r32h9c6pBXIWdCpwQXYbqvieCrdjeaKv0+
Vcj8WGwtsK3jXQPHfryxrwi641vGV0VfGfGi2laixEAAtw24F+AABB7u2+YD
gssAzH+tgwiHGeLxwDuS5l0vGAydQuvsnvFNwnWFWETEriNWdYfrPXu/76J9
IH5ROKnWGmfsOf5jElPfL7pVMB1qOhYLhn4Nc5HorsBnAA7CUN9Oe2hop+RD
3N1fzvn24WCW/Yizr3B6ICaoqtMQrhtwNgAzFdh3wHBD3Bownj+LzLKLfJPs
tc4Rgq8BvDr9nQpus34GxcDO72e0EJ6QiG+KxNXptV/wXcFHlxHYJjGIiCsE
jxlwJPT3aA+MvWDf7Twgse6bgmftI7FPbF2nXeb9DzDV7UR/Vdb6Nyd5q3FN
RzWukZfANbw6ZScwMCWTgtW4dn4i182pruWKGlw/vwbXcVXnmvEENrKr8M+O
P0SeOuP8BtxZ9l7vBTsYeN9e5npLYlSBzwBOknTfRjvFv9I2/AsFexHxbuCz
QEwaYsme8g2w9dpvP25l2NODveysYDdb6+nCFwjeP/CnDA22tW+LtNdjtYuM
vcUx097mHCM2BMTngfMLWB11HEuE36KGtUgwNoHjCbzEV2J3Cn8HeFoQI4cY
t+m+XhJ3hucNjBTgOr5ojAU3COJWsA/uzjZfd38Q+R77Vaqfs4WaYHURvWi9
cZvSMoVwSYK/u3l0peoSW6/SQxtVZ8d61Ty2UlVxLlRa3xIc+iZGbQW7Feyu
sCfA/wFznB7nEuuCWJt8a1Sx/uZFn0SMGPgXV5hDJd7wX98Cu1EwT+YE3ZZd
P7TUBibkh8bDwpsGjFd8B9PMW/6Hz5Ljc9uLjUG21kmE/yPXHCT8ZZDBgM86
2uoosXaIr/NZPe1nnCQ8M8ArfDc2zdZ9E767aq7nJA4U80LbyFr7luhmwR8E
RgbwFBDbDu67E/Ev7dLgT/ZPzt/tcu/ftpFVhROyDE7wGlw1VoWruKqwYepj
UhVO9FblOiWJrL9f1nIbdyltzLeUNeO+gVTOCLbgvoWpfGsshXt4m3JaYWNu
n9GQnVkNJG9rb31um+RgvW5w96SmghOakd+CqbwVD4q14cF+J5uhNqwyW3Hf
vFTuGWvKXWK6DqMhty9xcDvLwR0KGnLneCPu4kzmbrFkTs9rwt3LmnB6jj7G
9TG/CffIbMpaH+W+mamsQq1Y6518u7cTZ2V348mFPVi/V348L4O1DMtap5Q0
N0XxvHzFC4IezvUO4jX+4bwpNJJf8N7OO11e3pWtk9fLO8vH8lbvaF5bNpyt
7IHs9/bjB7JcfKezK4/J6MS3xdvz0EBb1nIfDzPa8fCsdjzE0ZY9ZmvuXdic
0/Iaa/m/DtdKS9Q6xg37cuhn4VEs9H1mvxK9ZB+I6PnMcUnPRaX24UCp4LRu
c50XfkPEYyMO+WbwWS2rjxEuIthBEHsHrGNgD3U0GhXDvgT8c/CXwh6GvQnY
c3+L/Il9SqV1UZHL9byr2roC6tZIvhoQ2q4GOl9UQ4ydIqcPD+xSY6J7lJ5v
1QOhkHo8VKhyfSfUlui7Sq8D6qQ/pkr9P6kfA9fVP45/Va3SatS4PIlaZNSj
tk4HdXM1IZevGfVztaCB8dZ0m6uD8Ko/mNSLnna6aXnpENGbCzLH0+uOe6g4
7T6KhKbQW0n302nXA3Sm/AF61/UgveefTrr/FAreTQvyPdStNJke9xWqyeYh
N2J/O3kbsdYP+BZXPs+w3+A1wbd5+/bzvHXSOV6pTvPcU8U84403eHroMM8u
PMrPnTvOW7ef4zfrfsYXrDL+Jv03/m70Nf4w4wc+OP8SPz60kLtE1nOo4G6Z
PxE/DP+CqO8hpXVR4Sf+LHpVXYr8oE75v1IngzH1ke9H9U/0H9UiXpc8Ba1F
h9FjQ+Tg/NAoWhUaRo8lZVCmrz0lZ9WiN43P1PDgLlVkTgI/s/jn6XlTMKAQ
x3pvMN0G3yA4nXaZXls/J5lrgSFaaH4GXhHwoR3DHi/WXewhwDcZ+8rgWAPO
FPj2wsHJdkpgpWD9+MxXBe8A2MQl1jd2UkE19mS25kVBky+VPsyps1bx7QV7
eXHKCT5y8RP+8uovrN8r1yxPCNdKSAwnHq4a/rPkBl+2f+bjri95t/kBr0w5
zXqN4odSXud7px3kUYl7uH9kG7fpsJb/NRfwQd+dfHuoE19y/ihYTYjzfDDy
mvu4c4oa7AuqhZGw2uQ9q1ZZp4WD+dZovuDvg1sYtmjESX1o/FCE+FXEB2PO
RDz/Bv87tpZV7LTsxpxlduPc4CBpS8sxfMV6jP9MeoYThlpc/epzXMO/iKtf
fI6rOi3+I2ue6NPvZjzIr2bczevMTH7C1Z+zMrvxoEgbdmU1Y60vyJzVubQR
94w05X7lqWz62/Bwqx2PcFV82yq/FbsCzbhdpoMbG7VkzYUufSN4067iqMLV
jQSua1ZnR35NrpdWgxP8Bn/iuGpv8p21BzpetF9zZtngaWlgLOsfNN93+81+
6lfn06pdMKAGRl5Q+n0Kv8D9Rkg9Gj2qljnfUi87PxTb2w3zpmpUkER6DiU9
v5EnrzXpb5oGxlpT/7IW1MuXQnpepM7RRpQWbEy3pKQIx/lkfw9aZJr0ivMu
+iI4m7ROTs5ZaynDt41uL9xLD0Zfo3kHbXreUUL7bn5IJ+fH6PKGn+n3ujco
cWhVT9Lwap6E/Ybnu/nX6JX4JZroeIV+SJtDv8X/VLB5an2Evyn182h7D6+Z
9TYf9X7KJb5v+L3R3/GFzDLWegj/FfubG41LCvd4oWnYe3vn8GO9MsJr5g0P
v9h7bFjPq+F1QzPDjyVmhLXeEa7zdWL4hcz3OG30en6yvD8DQ2i4uas41VdX
tXGtVeujJepj50+Q1UmvNbo/3WltdDidd06npJzF1OngOvLkvECjHHtoTGwP
DUvaRbe6tlCKvZKuFeSQHi8yFzlzGlA48IUa7tul3ooBr7+6go8CuJxh+/Wa
Lxd3j2wUjh7oLJ1jjVTD6DLhudDvnfoGU2m8swvdHelKw9LakV6n6AfjOuxc
qqNrnTrgvFN5fK3Vn5EbbvBgY+8JthL4gIKvENgFkeCXti/Uk68Fc3jorJ28
KnCaz2V+y/+u+pcds2uGm1+uE27etG64saoVrlU/MazHAH9Z91c+U/I1HzZL
eWf0fV5/pYSXZp3kp+wifiAY4kzvS9zx+vNiS9rsGMW9ClJ4q/+cXRybBJ44
xGW7IQ8Z5kKlZWLldu0QjpLW5hqtb85X6yOZgk/dxliLfdBj4IlEbD4w2oGX
NsgRFFxk2IuAlbPZ9a69N3TBPuL41H7X+a39XfCarfVT1muCfE9Yj/uVpHLv
UHPumpnMzZx1RK44H/9Wz3FRqQPYNeDcvWHdtHuWNeWZzj58MOtO/jEwhxte
XMad09Zzv8hWNme9yEOSdvIgV5Ap7QXOyN7Gt5blc0/nZu5+dSOnj97Iel7k
zinrue3Vtdwkvpz1+sgXAtn8fMkIHhFpx78E/xCckklWdxsx02OMvW6t+wOP
W3WPblSj4ruVXlfVVNdrapr/NTXR9Yry+l9Wei5Vva0twAcWfpIa3kXqe+cT
qth5n1phDVW3BzuBd0NhL1GPG4nTgu8W9qOwLwa/EuzVOn0N1Juxe1Vfc6va
7HhXNQol0Z2urmJDAZ5lA7WMusc30m2O3TT1eoie6c20/moJ7Z9zkU7EvqSP
Yz/Szyl/UNXvqnjqfJToady0lqd5y7qeFp3qeZrVruOpfTjR86P3OhUUfkgT
pu2jLwKzqdz3t0IsLeS9k34fD7u+kzf3fpdLh/7ECblGuKFKCrdcWi/cvlPD
cJfE5HCPCU3Dt0ZTwv1LWoQHnmwdHtKpbXjYp23Dgy63CfepkRpu+0eDcOKs
quHjN7/gGflvcIOypTyt8BYG5y+4JQ4F71I7IudVw4wk0jo/3W5WYAPruZS0
nEidQo3EXq11dmrsrEXNS+pQuxwHpZtN6Na05tSnpDnd4kihTvmNKDmnFv0d
ualKvN+o/NC76jFHoV4nDop8ku17Xa3zl6gLoTKF9VXrG7TEGCyyRJWUhbre
ldQtcSP1zt8ic0DnjPXU8OoyuuJ/jDYFRtLAlDZ0NnBFNfWuUNjbvWo9WVwc
mSQ4Yomhqjw23om3hkbzj5lzuPX8NTwyuJtzfMWs9Sb+wFXG5XP+5tpFieHk
vbXCKZl1wlq/Dtcelxi+PucvPpt/hbc5zvPDzjc4I7SNa+/O5bfiPpE3+7ta
cmKwKh8MXBJuyxRrpfDQQa4HljrwEhCjD59q+IphrxWxMfALxH4QuDeBtQG8
Q+D67It/aH/ljNtGoApXixp83fsXOBHtTaGzgjUHPPBca5DwFwLLADHj8PWC
Dwf8cBCDgT1WxOAHrBGCVwldFvov+O6AyTjYCtpB7/t2zYxqfFtaB/meLuc8
wo1bLud+8a2cFTzAT148xivTT/O2yDnelR/lFzu8z5uGnuUlzpP8uLeQ7805
yIO3B7mTtY7rlOXyV+WPcijnbl4Q8PCYko6s53g+FfjKvt3ca7/sHG9jbxC+
0dj713Ow+tL5qGpprQb3lert3SJcQh/HZojccMy4LPvAwCbItF4qBl8fuBkb
BZNs8N6HzS+K7zUPFmv9D9yCRdjfRSymlkEQn6H2RO5QdWK5aqS1W63wn1Ja
fla18xKpu6spafmeHk3pR4GsEXQocBedzZlGXyY9Sj+XPUnXg3Ppz/g8up41
l+KBp+mXvKfo5/In6afYHPrF9xT9kTOPEvwW1c9eSq2iq6nn9U00+GCQsgoO
0OyDRyn34AnaUvcc7Uu5SK/HS+nVlh/Ttozz9NToIsGSLst5gvqUNqcDsQla
/r7Ldpe35P+U5vDg3CA/UVbIq0tP87qcEl4ee4vnFdhaL3mTZ885yvNMm9c7
3+Ei72X+vuQaJ+2tFk5ZUSfcelX9cMq8OuHENVXD7ziu8JMdirjJueU8LfsW
9gZehh5f9FNkjtrjuAB+CUrOrEV4Dt8a19Qh/0dKv0u9TrLaHD2rPgr8qFIz
69LYaCfKDQ2iw/4s+iD+EMWyHqXPSx+hs/nT6EDZBFriHEwTU7pT7+zm1Mib
RNd85epD1w/qfcf3SusxysivQq1K6tGgeBualdWHtmaNplOF99MPzjlkZC+k
apctumHNp0/KZ9Lu0B10f3lPahitSbN9R9XDRm8F7NYMXwu7nT8gWG3fROLA
fdEyaQv2eXvy2vhwfic2lWt2WMw9e2/miSUHecmVE6znVD7t+Bpc8fxR7o9c
Mv8b1noX5214iyf5XtH65UaukryQ9/sn8GSrB7cpqc9a97H1vC1cd3c4CwQT
qpux0W5irBD80gLfeMG7KbIuC+4I9nDhsw3fA9hF9TcsXDG9zeb2PucEwWXq
Ft1gZ1jbhNuhmWOlfSn2sH23sxsw5oSvEftmrWL11B5jnKoWtVRL72rZmzW8
C9VOp1fscWMie+DXOwAcWA0jNe0dztvtRoE8wfQCd8iv8T/sdj4H35GUxkuS
BrPuG/8emcvNrq/gXrvzeVTdPTzlyiGelXOEH4u8ybNyj/DkVYf4tosvcffe
m7hByjL+JuLnl8vHsb+gH2u5U9b4z2JX7Y3Os/a4QIHwE4D/+Ir5W/FtRodi
+M6Cv2aB6VH/ieTI2gketqHWTtXXt1U1dixX54IPqgeNXloeqSLcb/CDg18m
/CA7R9a5j0U+cw8wW6r9vgmqsbFcjY8VQEdQ78e/U4lmVWrpr0e3RJvRIKeT
bs/pJLb3qaUumhXqIzjNy8oHC858gXc8HS28l05k+OjtwgfotPMBOh6dTEei
99C+6HjBsg8ER8i+8Kr8YbQ1MJoO52SRfhdkTFtIqfYqGpC3nSZlv0ILS8MU
LHyfTpR/SV9k/kK/O25QVafhqZpseH5N/5NOn/uKFg2NUOek9TQ71Fev21PU
rY4t0Ou4X/I2Xjr0JIfsj/lY3cu8J/ECW6OPc5b3AGfkbOOuGzawzssTgvt4
uesUl+R+w1VPVgknF9QKp26vG27wXo3wlezfeOXFU9yiw2oe5mjH4HJ8Lzhd
JWfXooWOgXTYm0WvJ91DazKH07icNGpQXoP0miV4zu2sgOoUWKfuiL8sz/Fz
5y+qcWkS9bJSaGSoA02J96Dpeb1oZrw3zSzpTdP8t9DUmIsm+bvTpMLuFXsZ
SWmk9Tu6JyVdcLDXOkbQiegU+jvtWWo5azUNyN9O49U+eijpdXr03FGa7j9M
Y+J7qP31AF30Pyx8BbP8RxTih2FbfdX1MWyt/HBab15ROJS3lY7m3f47+LXS
u/ls3jT+LS2HG1/N41t7b+E7jf08541jvGb72/xi5D0OWu/zBvMdnltWzOOs
Au4Yf55/cM3h1RnDuX9GS/7Rui64fwO82+3mRoUtrqex2b4zuk/wRF9yfmBj
zcH6+Wf8BvCdGLrcNW85+Gbsg8FLggGoZUwbfHDAndL1AOv5GOIy4Qf3r/Wv
u48zVc2x+st+A7gftL6r2PWFahCpQWS0pmnWLbQg6BH/g5ygm8ZH0qiJUZtW
GqfVhuBt4N7qv8o3zJ7rtMHfy8NS2vHjBRm8LjuT95WO1wr8ffxhSTb/7HyK
a5Yu4uZXV3J61kZWmTt4eP4uHunfzcPKd3Lf/K3s9K/laucsPpnj43k+xVqm
Yq2bCH4r7OrAcJ5u9bKdwQb2Feu3YnATgesJXDIOqyawmI7Bnop9mlsj+e4c
q9h92Cp1f2pdlXt1BGsqrWMKt+W8oFIcuU/2evs4topMtt08ry5YZaq6K4E6
ZTaiTLM9zUzqQ6uN4aT1b/qg7CH6OfIkVb2+UPTR2r5cqpm8mKqWLSQth9OV
nMfoo7wZdNY3TfYa2TGZ7IL76HjJZDpp+ehMxlR6z5pOl1JmyDrzffxxKs98
hmqVLqYWyaup16p8Gpv8Mj3mKqT8Ve/SW+Ux+tX5J9XdX93TelF9T1p+Y0+n
6Y08zS/W8Vyf/xdpWZhaXVlN+A7gk/SIqy8Pi+zkw7mlXB7SMt6mxHCN/Qnh
H+3rXLTqMq944xRnm69z1rQDPNl/iOc6bH7x5nv89sGv+ZtTcf4pcp21jsov
qw958sFDbFgLWcsRDF5b+OE0yksiPT7p87JHyLAXkpGzkL7O9NO+jAk0PdSL
2jgaUHHkshru36U+Cs5Q4JbD3hbmQa3LC4/ILO8R9W30N9UnLZWeiSoKZ06m
8tAzgqPfNr6W0jLXU+e666l9h+epdXANtbiyilqkr6b2FwPUKzefbkvaLbq/
tf04bS47SzszorR9znlafD1Cd6r9et1fLv4yW4xzCvFHWaEDttZxOJr3EDed
tYJviW9mNXoHu2Pb+dZT+ZyWt57bqLXcMnM1t8xfzc7gWu6Yvo67zt/A3co2
cKecddzi+ipOshfz134/74uPFz3PldOM/wjdAD+4fb8jZJvBF213fLvw3ACD
N+L70q6ZVI1dvmZ8T6Sb2Gy3m2P41aS7+YjzXt7nmsArHcN4Ynk6p2TX4UDg
DHiQgXVZNCbSUY11vqy+jPyiOpc1orElnSjbeys9VTiAFpZ4aEnpIFplDaON
JbfRiylj6UB0Ar1elkWHzSzaXXAH5WYNIq+3M9UwE2ict0B9Z12DT2bxXYH9
dtOC2vxEaYb4m1z1PcnVyi2uMX8RV21p8bW8HP7cMZvfKZ3Kb6ZN5APGnbwz
Ppbzc0axnit5sWsQzwn15ymunjws1pY7Go3Evv5WLCa4xHrsafllhf2d73HB
JgSHYIk5Vcs1ftmTSQoslv2EerEl9j/GAjtqPWSv8Q23XWYzYBELLhhiI7Ss
oS76HlZanld6HlPVHQnUqzCFJuf1oOdSTNoRH0NHffeS7iddLniEfos+TdVK
LKrXcik1ca0gPc9RSmglJW9fTvWSllLi7ufk+/yybDaVZE4lLbtTMHOs2DrX
xzJpS9Jo0vIIhXx3UyR7CkWzH6KvUvz0n6S5lDjrOWqYkkftHc+TO3EH3Vt4
kBaWh2lf4kX9Hf9IxuQqnuTCWp7ONxp5+nRI9bj7tvL0K0v1dPA29FQ1DM92
73lqlrSSPnf8ovBMPvLO4FUTTnONBQlh16Jm4UF/tAnr+T7c5mR90b/2RD7g
yQWHOH3CRm6cspyTNyznLlfW8/DgLvZteJVnBN/g+5yHOGPWNtY6EE8o6MLA
YYestd1/Xk0sTadwwWS6njeX9DOmL0tm04vR2+m2lA4U9X+vdf0lCr7d0NWA
twisTdjotVxmvx7LAs5xMfzPe5ibVDNHHdrl81KT68vpzsT9pOcPOjy6lN7p
fYUu5JXR+di3dLzDl3Tw4CXa4jhHedZbtGB0mOYqW/R/a8Nxys0+Qc9Fj9Nj
N9+kcaMLxIZ3rGQiOXw1CTxHwN535TXjS84Z3DVnA48vKeCprtfYd/BVHr1h
D/c8tYnrTlvCH5Zlsx7v7MvsyX19qQwuuH99/9pf+H6x33d9b5/zf2t/6rtq
/+n6G3ugeo1pwqOzO/Kj8b68zpfJrxlZfN41nb81Huc/S+dxwnyLa8YWca3e
uVynNJfrjl7CddKWiL5bo3AR3wjN54+yZ/D2/DE8Oqsjn/J+JXt6M40j7uXO
Uwr2s09zZlHb62tp+IZddO/ug6TnVJEfPJkvUNvIWqrSeyEdT5tCS8oG0RhH
J2rlqi+2tv3Bi8JPAduN1pWhBwyoGqtiJ/uW23uDF+wm0VqsZRp+3J/By8oG
8/L4ENZrL2fldeNbXCmwcbPt+1ywxsEZWDO6yP4kMlN8ni+bj8j+NPalwel1
wLhk/xr9w07Nq8vK24rvKe8mz+QZg3h+doX/FeagAb6W3CCppp4XPrfvMAoE
bxS4kTWNasWQaRv5ktSJyBRwc6odjvdUtRKDVF4rejrNrfW/LPqh5AmqbeVS
auYqatsyQG07BCjVu4pqF+SKTlmUN4m0nEDTsm6hkYEO5MluTWZ+G9HBsv23
0vLYENJ6Il0sfJj+sOZRTedicmQvo6b+FTL/twsEqKtvA91alk+eoS/QqNLd
NPHmQeH7yX3jBO1o+R69efVT+iCljH7cfZ2MGVU8tSclehrdleRJya/jaTmj
nqdFej1Pkyu1PNWvV/Vc8JbRvByb9PxHp+NfKXBIRDKn8KJJEU7cWzV8q6N5
eETL9uGBzjZhrT+FsY/w6PWjXLPlYp7p6MMJmQYfiX4Czkm7a0Ey53jdHCmY
wr9YT/Fvjhw+E3+A/Tn9+I/ADfv72OPglh2AOU1/I6rU+5P60PhBLY5E1M3g
swqxCcrcUfyZ8xHBYdb6pf2HecP+NvKb/aLrfbtLbL3W02qDwx3xKapZvLbo
p+3LA+Tf8CYVHvyMdDvUaE2Sp22sgafTXY08beMNPMneWh5jfhXPhTfKaNfo
KD1xvVA4j9JHb6Smc1ZQrcRcSsi26PeMeVSaM5P25owTDhjotnp9UODKBO5/
VyuZ1+QM57PWNL4cfITPxB7gtSXDeUhSW/4i9Iv4jkw3e9la5xO9T68bRZjL
4ef8uJlhD3Pusn9wXLfvyunKWibiRr48HjwtyDMzjvCaN95mPZdyseNzPrkq
xpz+Bb968SPWuiprmZKzhh7gXna+fJvvJE1jLTNwemETPu36WjCNm0Rq2Yjh
uxJ8TJ2Jf628wc5UVDCJ6g5dovWrzcJXNfb6Xhp2cSd16b2BqpYspD3OcTQ4
6NRy2hXx80sPNlGIvwOnKfzP4WfS1Kot/NQVMZfrJA7jjPGNxA4UmZclBgQ2
WOADIZ4LsWfA1UL8I2LEgR3Z19pafIszRbCB74zvsyPeL+3knFp8m6sDPxsj
PpRzF39WOourvLOA69pLuFFuHjuCy7h63UX8VexR3u29g+8KdeW/4zcFH7p2
MBH77e5NvpFqvGufOuX7StUpSRS7JPwR9fdN7khL8U92FTQj/ZyoS0oydXY1
ps6ljaijoxG18zsIto86ZYn0m6NcnXd9p16Lf6wOmpfUSTOm/or+rTplNxJ9
Cr6+V0NPUou6q2lg9AWavPsQzU20aY39Nr1Q8B69nPYhHbhyUct/F2m3/wPa
FjtHz189Q8tavkXWweO0YGhYyythWlJygtaE3qbtE87TwdxLZOd/TudWfUuf
qZ/lW72e/xddm1ROn129SgW+D0nrOPRWyv3k9b2s0kLr7Y98M3jBhDDHh/7J
zUvqhNskNAjX+Sgx/FY8xvdED/DHxkxOCdThDsHn7SERJ3iq7fbxgP1T7Lo9
M9qbLxc+winbV3LPkk3cs2wTp+au0nrFHNmHaxKvxeDQuM/oAT8E4RmHf7zD
WibvDnvXU1yvyv62/m7tk8GYYL8D4/qzyNVixHqBU6+JqzYF/WMpJbiSHpgW
opdLL9BXjjjVLEnwNCmt5Wneu64nOU/PPXUTPF/M+oX22hdoRuEbdMupzXTT
epYO5t9J84NEM8t7U06emzbHRso4vpj3MH2aOYveivqEA8+d1orAqxe0xir4
rU3z3WJ3j2y0Z/uOir43Kr5bsLJxfrt1XrijXzY+LMqyuhVjbV8bGW6PjxTY
ev7mR8v78g+lT4h+qtcS+Q4/2v0jl4/+m6snJ4S1Pheu4UsI/x25yZ9n/MJH
Cz5l/W55XKCAUzes4lOh+/m+WHc2QlV4puuI/Z9Yjq47DVyxgn8LrFPE5IDf
umFsmdL6ruy7U3kr8vl60qyCPvSA10VmoA3VM2rQzvj7qpVzjRpqtlWIJWxo
5BUBoxaxJ7Ahg4u+XnyJ2uY8rxqW1KTMrPY0q7APPRsnerpsgOj5PTOa0dXg
72pW8IjS85VCbNce40JRW6dDOID1efv9+HfyHepvhScmdec5hf05L2sIby4b
yTvTvLw3NI73xO7grYHRnJc5hGeYvXlIiZMb+ZMY+0UU2SE+ReDKRbws5HXI
Vb7Aq3odeV/22UuC38g3NSdwTHWOrlPB4FgFvz9gFwE3JNNqX4yEGJyxRmc3
7MB6DlINYkvVVKfWwaOfq/oFNST2AHEDWn6h7yOPUz3nUkoLrqchZUGaVPAK
zfEf02vnW7Q18xztOfUB7Sv9kPZOuEA7rp+ntdffpgUFYZqVf4TuK3+F7ih9
mUYl7qHRBXvorvz9lJ33Oj0XOU47Tp0njn9OX0Z/ISNbr5uFiZ4G/9bwVOtV
1XNJ/UgLncdF1/3J8buqH6xhP106gIel7+KD0y7xlcLf+Ef/dQ4XfsFPJB3j
lMyVrHVrLWt9J5xHsPHk+0bZmb6X7IR8gx9LyuAv/LM5dcIqzijYxkMP7mRP
6AXuUrKea15dJOuD1vE5xVuHC4Of2Y9Gj9p3GvuFK3eT/6z9reMauDDFV2VS
XneelNWdzaw2XCtejTH+8e0jNiXT+5LqkdOU7ML7qP3lAE0tDdEWdY5Ol39F
X938la5av9O3La/RufxvaU+HC/SE85jwEVa/+Jz4yGYFulHXYDK1LqhPvb3N
SX9PFAyNJb3+UfWkReTYvozqT1pKf0fnSxszU/qIbRfjbqtvtLrd3Iv4P/iU
SlwU/DCB4QRcNqwXwJwot54Bl69wWQwobMkn0nycNms9z7aPcijzY/4+6T+c
lFMt3ORmrXDqU3XDzS7WDte9t3r49yt/8en0r3lNwds8vsM+blq4gsOByVqn
78GNS5JEVt3ge0f4RQ4FP7Jh68S+UJOSWqxlB64RTGDseYKHAT4pek0r1n09
NszYhb0I4TXrZjRRl4wfpb/AKdFygMR0VTGq9EMcK2Jt7nMdUtXTEmhyYQ+x
j/xa+hTV9uZS/dFLqarTonPBB+kZB1HzWB3CeoV1E7FVnfzr7EjoS9FF+0VS
eUjUySq7FXdxJXO90upc6vtJfCZgAwavPHwdoUsuNAYKX1h9s4bMbXp+AGcq
MLb7Y91FrO5u6wP3Tesfd4qvjvjI1vfVUIhrRBw45GzYsXcY7xUPi7S1D0Qm
2L8759kJPsvWspmt50g7w9wmfMJ6nVWjorvVV664gk9QTo6bXi29iz4umUG/
OXNEjoBuWL3DIqqRt4hqlS2meteXUPKq5dQ6bw11HbqBeoe20MDrL9DIobtp
XEEBZR08QFq3E47Ex32FwgO57o0S0vMEvRu/Qj+n/0FJE6p5moZre1qPrO9p
fq2Op8b0BM/pDl8Lv+XJQh/pb0EB7/8xVwa3zl3Dk/Jf4Ucz3pR10Gmt5ZfT
xnP1aFUGXwF4nydY+8QnGPgF4DjWsrh9NPipPSDUktdlZvInpTO5euIiblSY
x8nzl3O9lKVs5C/kL8tnS9xG0DuW14SG88roUM7PGsWvu+7hj2Mz+Gbes1w7
pPUmawlXLV3I5wIP8tyIm+s5a3ArxxobfrmYyzBPBwIj6N/gAuq6fQNlvvES
ZY0+oL+vAzTKuYduvZxPjWblUWn+TFoeHUID8lrSz7Hf1aJQROnxqHoHt6i7
fPvVLjOqagQSKNPfnlanDBde1+rpi6hV7zWUvnsjuXZvpi5pG6hZ6QoqL3yG
jpr3io23U14jOh//Vj3gD6l6sSVqS2SU6htMVYg5xd62/g6L2hoOW49pPc5u
2k+k9OdrhTkyN+l3xFrO4eL4ZT6d9DXbwc/5pctRnm8yj1J7WOv1YudFmVuT
mnODSA3xc00trMv6/nleluIjkXtYf+/c+HIed+6wnvuc28IZhdu415x8bp/4
PNeLLuErBY+xHov8SFpf7hVI4WuBcuHn6ebYaBc777MHBFtifwj+osXYK0Fs
ehtnA+Ep7O3bopa53pJ9KcRYNTVrU/NoHaqbXZ0+DVwV33ktx6tZ1hHE5xc/
FRxgO31r7Wne14SLBpw3Uxyv2k3iy4Uj4S3j/mLYt31mT1UvskRNMPep+QFW
q7yn1VLfSfWI86jK8G3TbT2n19ZhqoWznnBuAwsIWOvAuMd+5drI24LhP8TY
KVj1va3mwNFHTGB/YABB3kacPWLGo9b3wE5ROw2v0nKXmuR9Rb0cvaCuBn5X
Ws+nnq5mNLjQSbeVtacRpe0kDqGzozE1iNWgXx1/qjPRr9Uh8yNVEPpQcexz
VRb6j9Lrh9jrl6QMprdc91PVyEJymmvJs+EF2QvJ2VBMGzLfoVduXqLTV7+i
z1w/068t/6R/R/+r9fYqnt/O/UnvlH1DS4MnqfvVjfRckklp/vVqYcRjw2/0
u+DjnJa/nvvX3c7t1fP8ccZM7hNvznqc24hFfipYpJzZDWhiWTo9XHorjSnr
SA3jNenpaJEa5ewI3b8YnHw18hN4VnYf1ro1G9MWcpO0FeyctJbblq/lVN8q
ru/X32PuQv425XH+ICmb34lP5ZLgVH435UEuMafy6xn38BprOHtDnRm2Dy1r
2J8bs4ufjgxQ2DtRZit6vnwEnUmaSlpOJj13yN4S1kb4/CCW4LL1SPHnkUfs
6f7D9o7oefGzBTcN1m5gwOf6Bsn3qPVout/poq15o+ntggfo+7QnyPAtpKTA
YqrTcgklFS4mY+hC+tr00xs591COz009Ak3pSOwT4dqEHrUx8k4xeFww9n4x
/7BbZNSTb2dIWlseW9IJtmaeFOrOE43urHU59gRbc5doY65hJfAJV0z2PuBv
rnVI4VmELwFsICuCp8SPYHigndh7vsiczQ1debJvOkK9JDZv39BXeUr8EN95
dR8PUTs53dzIDVou46/S/KzHHk9J6cmtffUZcQ+QV+Dr3zHSEPxuxa0iq4Uj
QuvvxeDlWGMOt/VaZ4+N7BUur7PmFYmDgJ+sw6rJDcpqSMzaP9F/7I+CP9p7
zQvCk5ccWi58JtOs14qBu49YWC33q2pxS2UEt6kpkUNqduCoesj1uhoV2a30
GFBHffcql6+Zgr4JDL7/GH8h/kFiiF83PineGXkf/kDFy4wh8LPMAP4K9NSZ
zj7qqvmk6m1uUU9GjqljjssSmwP9D/4qw7PaEfTlcQVpNKa0I1FZK+pY1pAS
C6pSJPCl8vve1Gvo8+q8c7paYHnUxFi6mhnprfY5J6g6kVx1R+xlddC6pLRe
SkML24pt+k3nRLqa8yTVcS2hVi49N+dspL67t5IK7ajg7t3+ovD4DkoM0pAr
QcrMfonuqFtAeh6gB8teo6lJr9HY9Jf/j6czgbNqfv94p5L23BaViKNEkRqK
ZuY+Xx2ESpiyFeHKVtZByNqJaBFuVKLUpZB9EGrO93IQv+xj52c7/PDLPvZ+
P/z+z/sZ8+/1uq/bzNx7lu95vs/6eZ6P263TYvd1Ybqb1LCb+Q4S901uatjo
T9g4pJxOPaH82ejacrJxcvmI0qAyvSXkHQ4J75KRm7d3DzcebfneVqNj90Vw
nrstPcTtlW3jNL4XZmWQh23bu3V56eiDy6rjyvtNLpVP9Y8YRoYaXWHcQ+V8
cFtZ5bpcmnhYmfzksvRl36oUs/fh3Uuope0UL7QecHq66cc+MagzbD01Nmbh
kC84INtRzk1HyKGFnYX5B8wUIG7csnClX5jb6Fu+16KsPkm5b0WX8nfhb8aJ
WBlt65knU1O6W+iJpUcNTEHnt652Pe+fb1zBGpc63f9ubmF/t19N6L4JfpVD
6+6Sc8NKYcYRvfa6t/2zWcHq2wOLNxnHJzxObRpmGW6H/oaBhe7+r+B/1rPO
fZCHPyhYlfw3viwZFe+YwCk/ItjW8Nn0vuJ3zY9HGefV5/GPntzoPenh5RY7
zSzvNH1heeS3K8qHbLqzPK7uzvI+968o71S3sNxqclxeG08qT5lbYT7oPemb
flztnYY9YB3gkKqJ7jaOvQ8avvXdiu3Key/tUz463E1jiqqynq98y3sHG559
VTi+vDI9tHzTxtHleOnI8tQZw8oHN+5U3rWuh+Fan23MjEvNBSv8FrWz/C3B
OOtpeSL4IBkY3ZQsDsbCfWNcIuqPGz/LNfEzCbw6hdJQ44ptVRf7/lnROLbI
o25XuM6/nU6zPgZ67VvoP12X/MxsH9kxV5RLil5eSP8lW8xt6bZb09nt3rC1
1SsqpvYy/0PvWeOEP+Xphk/k8oonxWW3SYdotrxXOEOeDU+UDwtnyVa5OTKq
7na5LntOPgl+EHBmGuO4cxr2djfOHe3qJh7tntt4ovk9b/ae5hri05zaAPeP
jVPcM1HB6tj4h9QY34inGn/0z5tmuFYLYtdh1GzXbdxct23DAqf35QZPbtqT
o2bc7o444h7jFj/TP2b5iGPW3O/y7y13nYpXuxWFQ137za3dHVGNMJMA7s6O
lW3KQwo9zcd5sPYd459i/qH66PJslsmgtLs7dOrObnzFQDek1NN9XPu9DE2X
CPNAVNcl+1aUmMVRnlY5vKz7sNzyrZnlHn5eeZvcgvJWlXPKP+cuLq+dOKl8
WuWw8taVHcoLg41+69x84546Ih5kL/U7fFY4x++QXu9H1dxufWXjCneajMPZ
C7+T+slw29Qzw4z5R8zrgmNlULDIsNlqv/3eNbcaT9yBtXdg54xniVkc9wVH
yuKKF6VfMec0DnArokPdE7lj3braY53KoNP41h04o59rt7S1u77meVFdJ+Q4
mIsF17L6Ncm0YG1ybPBA8lwwJWH/MMvrvvSt/LC0t9TGI2ROup+cG1TK0LCX
4J8zd4kZmcRZavuSV4JTbVbGntFS40VijgS9NuwX+FA/bfzBU5udWhpWXtYw
rpzWnlB+Y/TU8mubTi0nmyaXl6wbWz61uGd5zxm9wTH7W6OX/VG19/o9ck28
voc13GVciR+XvvfqS5YnRAPL8eiR5bvWTSg/s7Rg2NN3K84oq7yVn5xxfHnV
ezXlWenI8qTKweU9GntZv9arhS/9wnCj8b3C3UsP9h7hUuOvAzfOMyF2h29W
4xDj0dunuMLvkd7sVS/YfJZuNXN9+4arjMdtU+l8/3RQ8HE00g8Ke8BPmLwe
bKpndttr6Zf5s0t7y+fxudKvtiij61bJlJo60c/YnprV8JTMyT1LvsewzreW
XpY76hrk7uwN4xFfmb0qi4MXpVj8h6hMybKKV2Rt4X3ba1v1buv2quxjPbnX
9j7APbZpkvUM/zL6YhfUzXTB2pmGl9OYyOnauNUzxlusMn10lTurcS933oxK
p7rALQsOcRozue/rLnRdZl/jBgy+0Y1ot8wdNHyVOzy4x2K/aX8+6s5bu85d
sty7WR8+5a6qfNpdeVnqLti83h1dcZ/1Mn9busB6e9lP4woDhNkiYe0NflbW
xNcKD/TK9FV6OfMHZ6ulY9jGqe/urlm6n1uydKybW7O/K0wc6nZo7OJuaHxe
Louc0Nf4Q3ah3xj9yx+wccfybeGh5S/anVfuUJpd7ubnljtunm39+6uymvKh
xZ3LP2RNeOObwjEefm+N85Lf4ksScNXMQ4F37anseN8mneV7pfON42+LeJZh
ybL4HL8pOt+3K1xlPNT0lcKhST4HX+j9im/92vh9f3pprf8rvMJrDEauPf9G
aarcWNgouZq2bv+KHd0JlUPdScEe5qPgR/6c+w9rIW2zK2XnUjd65JhzmKj/
lcCB9nv63+TS1FtPEXMiybc9HEy0Po249JRo3Cuvxl/Kc8Fn1lt8enGt9E+L
UhcdLf1KORkX32mzG5mVMy0YnqBDgriFPyEdQg7aeh3hHF4XfeC/Lv6i/kBQ
br05KH9f+5t/quIT4+qsCpb7L7JzjcNut7SH7xl3UH91e8O1gZe9sLbef5pr
9Lv07l4+pji4fHW4X/nubILh2p5fOqWsOr6cpJPLqwaOL185MSofFw4pD5+x
Tblz1qb8Rt0mv7TwkvFwUsuHDxq+TThVHw3ft37LzhvblHdMtyrvXtmzPLSy
V3nQxu5l9ffKW0QtwXYYbghOz5HBSt+9Ya7XWN5q8HCvwx+nfmJyUzBG/cgW
8MVXgzVlxtK/05/yuaitbB12kLZha+pXefU9bTaUylRefV6NFQfJw9nRkivM
kQnxGlkavyQf130vuaVt3dB2vdzYGTu5KcUKd0FWZfHUvIFNs0bopQfTwPyS
8zdWumkbh7mTNlXYsz9r0142PwVcm66R+7Si1rVaGrvum+e6flOLKhdLXOWo
Zc7lVriR761w7s/bXPXy5a7y/mWuetRyp36A+ZkHD7/THf3evW7K8jp3ljzu
ZtyfOPV1dN8+6c4bvc4dPfw+t0enpa7VuNjdtvkQN7xuG3d3xZvSvmK2HBrv
bL0FFwTV0q+mKI82vCeDcj3c9Noqd8/AI8zu+tHH2ayUY2YMdm2zVm5MwypB
Z2EH4L68P3rbdxvdznoOR9f1L+//XljedUaPcutcy/Kd4RvGD4rvsX2pC9yw
yZHpPYmPP9L3Qf5/8RXG0U0Ngl6DboV29kzJR6tf4Z8OM4unwDIOKSwxPs4+
pQXWp6txgXG83ljc6G+vaPC31r1sMkjM9Hh8jF8Xf5AQkz8ffZZflo2Tro1z
RH0ewymDc7y/dKR0DrYU5kfeHjTUw7PXK+1gHIlwJXaL2xEDEcvUMx8Lf3dz
6VIZW7da5qXPyiOF90T3hui1i/q7ckzd/bJ1Ok8Wp2M0JmxBH3+e2UDwoKl9
rqcPW31r40ZT/9l6vOn3Zg4Vs6cWBqOTTtHVxtFHDHVy9HByXPCgYb/Zr+cE
TyT3Rm8lrYOW1sd7f3yk3yq9xvhd4QB+NfrSetW37d3Z+i/3yPUuV9T0Ku9a
6FEO525V7jG3fbntplblr7Kf/YbaT/2duTf84tyLHj/ktsZXrO8RHba58Ifv
VNOm3Htdx/Iuld3Lw2u2Kecr+pZdu+3Le7XrU955Tbdy197tyj+mvxsWCI7j
Y3MP+L1Lt/ru4Ty/Ob7Uv56e5u+NjvA3lkb7K0r7eNX5hp/dNwh9vzjn0T3M
m2LO1aPBpGTroEOCfwH/GvN4VbcyJyw/LRsmn5VqZa/0FtEYRuprNc6r/VN6
bezgBi7tbj1Wwxp7u6FpT8ubbD+3i+uVdXA91rV3vQZ2dHout1e6jVM5d2fX
NOEiHylNNMzjTzUzLM+pa+66Dp5rmJqtw/lNr07zXY9R81z3z+e67sPnuV7f
znd9N1zn+lcudLttt9jt1XCLi2pXuoMH6t7bcK87qaHO1U58wl1ymXezFz3t
5vXe4K4e/IybMTVxJwQPuWjUStdn3QL37+B8m1V0SLiz6xa1cxovyUvp5wL+
eud13dxxFUOcrplb33uye3Xpqe6Vjae4tcVJbm60vxuzsb/7X83/RI8ns6N9
hXkNQTQz2SvoY3ynYJHUX7X+cPVv/aRwsEdWmP/F3LHTgmGJyluisovfZv3J
9PfDG00fCjMPvi/8ZrgTH31kXNpqN4zXFjzT/dGR/sXSyb5j42zrY4Qbmpjk
P41/+I4NW5Q7FLYo/9j4u6+L3vWTKu73X8fT/Q5ZF888NHpuBqQLbSYicy6Z
371l3Cq5JPbwKJoPTK90u9qrvPqG/q/scq9y4feLQnL5zHWoV59Y5aK7LA7H
yr/T88CqSq/gWtGYRtYHk8WF24PxZKYe8+rqyZ9/FfxiPITMIme2JnMW/x38
zBxiyYd9DcOnnxPmFDL/E36DkcEOcPPZPtU9t35l8No6cg/6+3XMkbs0KNdf
HEhSEd2cbIg/TfYs9fZXpZF/sXCybx3O8r1L13rVF8ZZzOwEjd/98Npb/N7F
W32+YbnleA6sucPyK3BDXxjVG0f6vXVveeobH0ff+8bS7/7Pur98y4YW5Ra9
W5R/Tf/jP6z9zj8Zf+yXRi/588P1ZiPz4W1+cHGx36lmoe/beJ3Fm6rH/U61
TTzIYd0NvmfNfIv74OOF47Ym3kX1xpb+kfg9MBBJqzhO8MuZH8KMdWa6Mt8R
fPslscgn2dmyY+MN5GjkrIrH5fLwSVF/QC6p8XJRVi8XpfVyWV1THvXOijdE
dbbh+4KohfUS7dbYw+3fbkezH2ev29up7XdLSwe7R+omuteyU92/253vfq+4
1LX46goXzJ5p2KI/Nl/mfg4vtnzLNxUXuF83X+xaFWPX+b2rXZ/JC9yu0SJX
XVzuxhZXu4ml+5zqS3f2gsfdJXO9m/PtM664+h9OfWV37fDn3CWjvSsUH3L7
Nqx02/RY4P655kybD7Pr6B5O/Qr5R8W/bJ6XTO3rbqoc437NLnaDPrzJjbv/
TnfChgfd8VMfdGOnr3YDPlzodI85jUvcSxVfyBPhscK8cObv0Y9H/4/6Z/7M
+LGEvh29xjz1XvCi2xevl73jW2VQuEj+jC8XajDMJ4Xns3/Y1bcMY39C44P+
jmKDzYB6K/qK+U7GdU8+AQwbfMn0Eb8Y6x4Mr/ZV4XJ/cZaY3v6i8Uf/Z/yX
Jyf3ec2Pfn3wodUXt87m2XyI94Nvk4PT1TZHkJ4j8HFqD/30wnr/em6T7xq2
Kw+s7V4eXNq6vN3EzmX1N/2imheMH7umsAs5lYT5jTOiBK5E6ZhuIcyrJLaj
5gvGR7/r10SH+zaNs3yfeIHFQNwXs1iYywLuAM6HKF6ZV19Azi7sLRpX2Gy8
8eku8nO62WZQMs9c91ql2sj6q4J9jQv23vgI42gFe6MxY/0BwR3Gg9or6Gg8
r+R0dklvTLgO3evJkGiJzVOEw1Z9eJsfqHozwR/vG3TxZ5b28s+FU/xWuTm2
H0+sqPOXhmU/t/ZZf226wc8uPO3pcyX+Ozi80/pAtm1YYHVfcBO/Bk3c261z
s3zXdI7fsaLo92q8xY+OVvljs/v91NpH/TkVT/izax/3JwUP+7HRatuPzNiA
Wxr/mTmI9D4RB8JvqjpmBHqmidt0KFymVcOCW6rh8WEGru6p/EFhf1mYHiTP
pgX5KDjbYsYPS2cZplT1l/wUz5BONVfbLCGNTWV+zQabDfd1zS/Sbmprt01j
RzdwXXfLkSLvGi+5mtpdrM55Vri34Q0WFA9wy2sPceofOT/1OPfCwJPd2+9N
c1l0jvsuuNDqXeCrNC5yKtdul89vtB6qvefe6vapW+EOrL3DHVp3lztq+r1u
UnC/O2LNPTYbbFh4i9vu5Otcy2yme744xS0pjXVTRlfYPDzmE4xas6NhHTZM
PNF1/vZqVz11uZuyqM5dVio7jQ/d2Wc+7g4cdYfrnLvG+vmDdS3c+9kZovJQ
xXouisf4vaM+/qbghfo90l5yROkeUf3pDqrs7y5cU+3m1u5vs6qOLwxxAwZ2
c0/WfSw7BkX5V9rIPKGEnKHKideY23Sxr/nIrym+6afWPOrbVFzptwk6eXKG
9MMww/b6+Hmb7w4f8aR0N9PDxDAfhN8ZVvObhl98ufEjX1vzhHHGzy+MMp5s
dK/Ku/8gIJ+zyuMj0+fQe2nH8s4zupV3LnQr96ztUCbn/mD8jj+q5l7jgIf7
+4/0z0T3XfJQ8G4CT/YRpUGGrYZPfp94hfVJ3h2+6V/IfW5YEF/7kfXyqq4h
72rzYUrRawlzk5AtuLSYNc18fD3m+h2CG5LtCp1thglzS5iXgv2Aj95Hx/mj
g908XNnMFy0HH1P7xyYyh6WKviowAfAs6zETtdfJ0em9CXUR+o/CaCs/oTDQ
z8n2808Ex9rsHrU9lsPN1c7xnRuvtlwJmDJyb3C3w61+Y2G0zV54LDzGbNim
+Hyrj2DTmnHXPWrn2Twfcgk8w71rbzXbCLasOlruB5cW++7BPOOxvzk82Ga2
wDsOdnxWkCbnxeuSc4N1Nv/0lvQlyxfzgsObOagtgzjZIm5p8QT8BPj2R0X3
2tzjJP0w/3L0Rf6f0bf5/wR/5tunrWWPoLecFO5hftrjpWPkzXSqtM+ukqHZ
EpnUeJ9c3JiIflfuC9+2GOLd3Dfyc+Nmad9uC7dNZSe3W25rV123nRtXGOAm
L93dqb5yl0XOYkps553tJtjMM42r3NObTnDPvXeie3Xqqe7dyjPcl0vPc5tn
XOravnWl63HZPNd/4EI3fOItbtTJt7vD5G535KZ73ITSGndApzvcHoOXqk64
1v1v7hXu5fgUd1vloe6SdeKmpcMsT3Pd5gOcPgvXsnGm67e06KKale6IUfe4
YxvvdxOWrnGql1yf5QvcF+F5No+TGQf18YeWF9Xrk4uzvOj3ZVjFLbIqa5Ct
BrY13xfc8IPxUS5deoJ7YuCxTuXQnbB5iOuatXXTGh6VUaUdBf3OLCdy6cyH
2ida4TvUzvbHZbt7sIzU3M4JR1iOUnW/dK2YK6oDZFr6KHjFZHZpXz+2sNqv
rX3fb47URx3YptxpaZtyi9f/51+t/dJf1/Cc11jObCQzpJgR9G54ht+iZpYf
WHuT5SGuqXvG5jF+XvrRt8laWgzVt3eXMnlFjRXLbXKtyp8VGj3YYuZDXZRL
/InZQ+ababznT8rqvPoH/tbiy35t3fv+mdrMP1OT2TyZRcUX/LnhOstXYl/6
Nlznt2q8xms84jtms32uOMf3apzvt4uuM3vK/KDP4lp/e1Djp8QVNnPpy/in
hP2M/DL/V/VTsjD9R0JNgBm/70XfJK+kXyTEwtRxwMldHTxj83fvit9Qn+9f
ieq/RP0fiyvbFVr7TnEbvYY2tj86Z20sDu5d6qhxdydfUerl1aeh78RLqa+f
FAz2h2cD/THxYLsm6qrMR7oyimzfrswO9XWlo/1j2SSbXcmMJeZ3qb63+Vwa
KyTqPyb4TNTUqfmRDx4QdvPqf/vjoyFefVN/YKkfuVzP/UyNHjUu+Q+C7zR2
Hgn39//zesE1BVcU9UfmYYJXhTMHjhU4eeGbZB4VM8mZLzeqsKNcnObl0Wyi
qI6Tobmbbb4A83XIsa6teV80xpXnsk/l+eJn8lzuM/KNlmej5+CTxu9tvl/7
YAu33dzObs9ibze62N9Nnri7O2vzXu6SNeLmbNrP3Zw72N1VO8F6G5+ZW3Av
153i3m043fo2Pl93rvt63XT3YzDD/Z5e4v7ofbn7a+Pl7j8DL3M/brzIZXXn
uJeXnuI0xnF3B4c7jZWcyrbNTDyvVOku772PWzxwrHts8yT3fnim+++My1yH
ibNd105zXdfcXNd+u9nu140XuxcnnuxuTscaPpFa6KcNP5jPPrn2ATkyu0dO
r1sri7MX5JXclzYLdGBdd3dA445u0sDBNpt24tLdrG4z4L2u7qfazaLxofQs
zhe1CYIuhNMJvvnxwcAETCZ+Gpxk8Dkwa4P5dLtGPSQsbcU8xbzGHuTWmNFe
T65j15La8GiM5VfpFwBLpf6y6fSuwVwfFGf6n6IZ/qfCDJvf1j6cbXPlsLv0
wjMrjb6Bqyqe9osbXvCl2tfMflPLebz2n4ZR1mfo9Vn6Zxsycr8+yX3knwg/
8GtL7/sHa97xdbXv+sca3/fl7COre28ofGo5qAfSt73GNn5p3Ut+XsOz/oKw
3mreE+I1fv/c7T5fcZuvLCzzIxpvNdsD5mbn0o1+u/g687PZ08wAozfom3S6
/2fhTJtf90R6jF9TOtzm1p2fVvpCNNRPiAb6w8JdPL1pJ4RDveo4f0W8j6cX
8dZ4nMbXR/vnC1P8K8Gp4Ob9w+nR/obsQPs+OBfmvfE6pjDYn5AN8epn+0sK
4ouFg6xmeEdc4+kJuCU92M9L97fvHV8aYvPMqC8Rc5OniaIdwDr5fdMd/H6l
0HK9ul/8gVE/r3bJfAHyx2eX9rZ6q+45+/4uQXe14y38ncEbySHpncm7wRlW
b1UdaXkwZtWeH1TVdwyurnfBivrTgkcNR6h+ss3sJjd2TjCiin0NfxQ8M/Bb
wHHwQvqvPPMm1QbLqfGeomsidYWjpSE6TVRuRI8t/ytcYb0Hv8QXyy+li+X7
0oXSWLhINkeX2mxNerX1Gcnh4T2GIVoYbpR70jflqfRj62F+P/xWY97v5ePS
96K+nM2YIp7dFP2sx/ld/iz8ZX34nda1cT1ndHDb13VxA6d2d3ts6uVkTV83
ekZ/mzF6fHGIxYrn9q50F5aq3aW9nc3InjpxmBsfDnQj3uvjtos6O9W77pOK
H+TZ3KfycO490RhF3qr7ynrDyAkxr+u03sOsDnNduwNt5oHGRe70muFO9aL1
6X9WapT5xQ0yIrsVzItML1RZXf7MaC+bscc8jaMb7hW1UfLP0rdgB90ODV1c
//dyrkehvdrvn2Ru6VnReE9UbgQeYOarz4822HzIgXF3/0v8H3J0huuFW/Wt
+Kv86FJ/mRPsL8vjQ2ReMErUFjAf1biEnwo+qfoiOC9pV2ptcwPZB/tnJX98
7YPWV3h4tsarD+rb52b7x6Nj/CnpHmbTWqeB5zvYiEsDZzZ5QMNCleUH/S25
l73qJ/9jbrNvPbBluU3YqqwxuNUMk8YP/U2NG/05uSf8+NwaL3W3Wd0Ov+Gw
7C5/es1aP7fmWcOrPFn42L8RbfKfhD9Y7Kx6XO3/F56+F2z1JZG3muKwbKnl
v1Qv+89Ktf7f6Xm+RTjT9yzN9xXFm9UO3uVPSx/xF1UkfkacWN2HmQ3kqulV
eik4xeI9bOPYwk5m0/DZ2ZPUJu4vHOmfDU/0Grv5TYXzTTdQ/321dKrphhXR
of7KUuR1zW1/geNkvqnKkV+cjrE5otS+uhSv8duVrvP9KxbaDE3ywj+EF1ne
/YKsyu9Z6O1/TH9PVkevm/2fF2xI1kbvJ/RmVcS9/LRwuF+V1liO4cv4PLsO
cJZgLBaVxph975V18PgM4HNujEcn6vcbRwJ5ReJYuAvOjh9PdC8lHwXfJ78G
/zV+AGz6CemDiepCjVuOTjSOSuBgoAeFPQ5nHlwScJTBZ8dM262CtlUjgx1M
P2BH1LajO9ZTj4cLDQ6fveNbjcsETg58b+Ljt6Kv8mqf8+T86T2Cv4V4DcwJ
c1OZZQY3RodSky3Kp9tJTbyLnBrtKZfFTuZG+8vV4X4yI8rLcenuojpPdgm7
i8ZkNtN/fLaLnF4YLupfyl3xBIu5VTZEfTXZIbxBNM6QPXJLZc9i06ui5mab
wb594XpRORKNdQzn3yW6RnrG86V/Y1FGNNwqY6PVMjl6QFR+5LzadXJuwxNy
UmOd5dz2jJbajJUOpdnSqjaWP7LLZHN8qfwnuEyC0kxpm7tKuhXnSq/wWsuH
dg/nSafC1dIyF8tX6fmyITpRiqWD5OhwNyHv8lv83zz4Z7CJvH8e/2j1RNVp
ltdhli/zdolx4aKBEwh+K/jgyA/C4wmvBtwL9B8cHAwwjove0bUJc17w5+Bv
eCbOkq+jX5ItS608dRXVdX6XtJvt66i0g59QGuhroxH+6mA/r/pDY92jrJ//
zXCaySDzOpmTs0N2vdV0Ds7d6afU1lm+9Ko09fNyG/yc8Fkf1z1lMzRPDOt8
TXy32ePqwnI/IrfMdMCYitVe15bZNdSf/JLii3518XXzCx4svuPvrnjT3xa+
ajNrZ2ZPGk7p6Oxem3E7pG6J71co+j41C6wOzBx29Sn9rnWLbK7vmHC1P6Jw
j+6P+/2k8H6rB48urvIqmz6Mb/Ad4tl2L8zqujub4DXO8TdnY/2d6XjDv9Lb
SJ24a8Mcy93uVFjoB+Ru9OCMu9Wqz1Oa6d8pnW42nu+CT2LO69TCMF2Haj8r
G2lrhx7gc+AMvo8u9J+GtTa7v5wdp3Z4guWn6QPaM+7tmUXSImjh1QdLfg/+
SPD3dyp0Nd1EXoyaDf2yT2cn2HHvTid49ZH9yHR7j29+efAk+zdZEo9N8PVU
t1kNZ9t0gdWr0BHMwtyi0FJj7vZ+h7SL75/m9P46m15njhG5Lz5LH1m76Cqr
S6hvm9THkxON/5nHlwyMb7J5b4PSmwwPD28Kf1d5SVQfMcvEZprQR0O+gVn4
1BOejD9O0HX4IF9GP9ksBf6mPkXyR3A5eK9q+BbhkCN/uSoYb/Ma4Z8BV0Mu
nDwI2KmX4y+Sz+LGRH0Dw/5qfJnoPdXDmQgmn/qxns/qxXApMQMSf2VksJIY
pJ48C+cFO8dcXNaLmaB6f+vh56S3Dt8Z/Nz30W/5VnEgumes9nxQeodxj8Nx
ukOw1Xp6t04JHqnnHlQ3roejGO5B+MTgjaqL37XZLqpz81+kP+bZwxqn5Jel
L5supAcCLi84zeDNg28RPhS4dpr5fNnb9BLAZ0rfATOu6KlmhtoLweemM+A5
YiZ4r3S+YY+4Dmos5GtZO43xktXxeONqIU6/LTg0AV+nfg49IeRtDScNXyIz
r5h1BZclPK29go7MvKb3zDCgDwTvJJvin5M2aUv1pTur3e2gsUA7k134aKjp
U9+alN5nfDPwzNCH8UrwZaIxf9Iz6uCHF7bxh4Q721zki0Pxswv7etXxXuXX
6iHMx7k8czYb+tyg0vzZc7MR/szCXmrPh/tTsj0sZmXmL7M/F5TUD4/G+VVZ
jV+WjbOfqXGCiyD+JSZW/85yXeQqmCfMcZkNzNzky0rOfsZn1nUxP/+owq5N
GLDCID+xsJv9fHg4yB+W7uzHlQY0+eWF0OLg0YX+NteZvx0Z7mq5xAPCfr4q
29bqD7qGvlOhDRgOD08Pe+Cj9Lvk3fRre2dtvgl+TZhrhn1WmfOtCoH57Kzr
f4I/k5+izcmf0V8Jc7fbZ61997C975t2Nt9+SNTT7xn19oOCHuYT8Hn1y40/
iDwE9X1mNartSObHG5jtlXwb/ZrAUwVmZNu0k9UDwsJWfpuso+8cbunV/iRP
p58YBhPfBJ6jM6PHLKfBi7nSZwSPJdPSR5Ozo8cNN8bz5vjMZOLFzGd+p3sk
OTi4M+kfLEyoj2pcnWgsoPt2XkKfCDUv5GZhsNHmvKpPkFD7H5musDxfEhyX
gJHRe7X+vIeCd21+Ov3iYHX12SVr40l2TM4BppR6PTOkiGOjaKWdl2Ow16mP
kB9lhjv8VmDhNE6Gy2r9tGBt/SWxJPRLwQFFnUJ9t+Sd+PRE9ZMdo3/QFT4l
4x0iR6u6bv1hwS7rVYevZ1Y8fhJ/g9NKn4HVPcET9I47oqts36kesJoJdVS1
zZXkSOBVthmEQWY8v2objSuZa1N9wnnqBwQ32vew9eAXVEfaueDWQifRn8T9
wMXMbEU4TulZpmYBhyj7Gr5keLvh6yK2I+4jR0/dg/oX18tMel7vBt+Yv0ct
knujHoK+4DUneBb9VKlxxTqNC9fng77GdaA+pPE9cVy4oMBY8M7vuNabgjHG
/8WscOoqrJse5wn4nPT46/ArmVeuz6OenJLqPdPzbwbTkp/iGbofLkvUz0s0
dk7A1arNtLWmxkw/uOrL5rn9FsvCEaZrYzkQMB3Uzj4IzrKcFf0Lz8QF04nU
kOGyAtPF8/ox2GzfBQMPv9UeQW+zrbPjfY1LjBrY/fGRup8mJ+XgeHvn99jh
64IDE+YEonefCI41GX44mGh4pzgeyewR67Hh/fJgH+OM4R7x2xrji6ynVf1R
y9nvmN5gcg0OnD5Q1gCeM+YU1sYjkgPjfkl1vF3SL86pzG5tdhh8/oL4APMD
uDaN/wxDTu0enKfGk3Z9aq8S7k9jtvohcU/77tR4mNlI3rHlaiOMN03X1mwI
9T31W/Ras3qVV3uRK6Anh5nEyDhrCG8b9kdjI3tWrAvrzPdVJvFzyHfWg6dn
T6psrIMnHvsHbzk5Q+bBqW9bqfKxHi45jUfgkKvnuxonJfi6PFfWQGPihHrH
scED9vyRL5WlKjjk4RRH7uHO0/1kfOz6Gfi/q+DjAzerz8nyIarXwCeYTDHr
Fi477CC8Dypb7AHDH9CvAg+eyl+V2shqsEXgGrDh8IpjU5v51MmHwpmuesP+
zrvqgGr4dOFg3ivoY3VW+JDhQtPzYd+NL5zPqU6vbhe3NswgPCPNXMv6zG1P
qx43Hmh4spnxCE80nBzUkbDnzAvAr4JfFw5W+NXgXIWrtZlnlbwgHLvkEtT3
N75e+ICZ7asxmfE+E3Pgm8G/DCcyXMSLg7F55nw9Fhxj3LDwqtJ3Cm6B3mpe
zFnnmHANU6PTfWa80hxPZdc4m+EwBvvFZ+HNZfYm2BSNY4wDEQ4U6tHwncKD
Cvfq1uk867fMxXPyTXiUm2xOArN5e8fX2u/UtzN+V64J3lnmzsKPyLXAc8zP
vOA4BlcN5wp9vfS+4T8Sp8KZqn6vrncx3z2da5yuXCN9ffRZ4zfBHc1z5Dl9
F/xmPOe8w5cOrzkzbnluYEnhZ+b8XIfuf3s+/Iyv2swZzXrAXQ0vHjzV+H/D
421MXvrEnYwnnOeOPCAv8IKDRUUu8KdZW/qAeVZwN3N8/Ey1e8bNy7PiueN/
8tzB4zDPDP5Ini3PB1nkfOTr4QU/JNjZ+K3htYJPGo7JZv5m1RGW0+c8cGHr
3rdrpuecn5kd3cztB2cEz43nqH6APd9mrlvkh2eAL35jPNrWAR5x7gl+dDjV
4arn/tkzcLfDdQ3vNfzQ3A88v3DmdoqvNtngHHDswrnLzCH1O4zX1qW32Tvc
OsgW/Lnw/+4aL7J4YkR6q9X64b5VHyYPbpcX3LMaY+aPTu9tegVNXLT0GMJH
C5cssxqpbcAdC08Ov+Nz9GuPim83jls4ckdHq2y+B7/n83DVEh9cEvk8tTP6
KeGtXRy8aPXNOH7KjjMmXWXzsqm7wQdMbyTv8A/DycM9w/1bHS+364UPF+7c
/eKS3T/yzH0OC26xdVf7YpzB3CuxCVy+fJY1qI6W27WCF2OeH9y06g/aPasv
YjEJWC7144zzVnWs3QdrxGe4D+tV1L8ZR27cxJHL52emT+bhvjNe2/h547kl
voF7Fu5V+GVvjV62XBGct6wLXLZ8F25d1oo1ZnY0M5OaX5yPa+RcnJcYSf1h
W084gLm209JH8uobG4cT9wcGqJlfWHV3/tToEeOHgOuXe7Lv6nOEZxjO48po
mc2yBlsEJhV9wc9wLas9sHVBPjge3MF896z0MZMHjg0HMc+FdZ0QNfEbcy3I
GnIBfzJcypwLGYFvGT5leA14RsgRfWbwNHP9fA+OKFt3PSf4O2SKdeD8/J/7
gcuYXBJyxefGp3fnmY/KeZBL1oSfkXWuAT5leCWIa/ku8sRz55rhgYanFtkh
BqWPnxiYF3ucfYietvkl8WJ7wTHOtXNe1oNnw7PgePyOvcA6IOesDc+E6+Ka
+B38y3AuX5TW56dHTTKnsYbxG2sckZ8bPWsyxc9z42dthg4zkhenL9g73Mil
uImjGP5fXnAWL49eUbv3iu0zvqMxjB0bGWMNNdYxWeC8nIPjwXcMr7HGv8Zd
DKfwougF4wrmOyemD5kcoGfQL8w0QAfBqQ2PNvzZdp+6piekD5rs8oymxo/a
eiOrk6MHbP2Rl+b1oN+e7zXLD3oHWeP3nI9n18zFja7gZ86FjDXrL/YivNWs
P/fEvaq/b3vm3PQJ02GT4wfsO81c3vtEK0wnwHW+b1AyOUQu2RNwcHM9vJr1
ocYp9nfTs6pb4Btnf2BTOQZrgv5ljiZ6ibVBN/VPi2YXkCnyxcgRHO74BNSf
egXXqh1cYC9sBzYfXYjexnbze+rLcK6jDzvEs/O5aI7JJ5xqHJOfsQ/qW/7/
a/v4ejuv6VXdz1wr14YfgH/R/M6Le+CakX/uC13LZ+ErZ3/Y3tL9yH1yH7zb
PH2VdfYm+gDedPU77bp5Z53RZawlz615b/F3ONvROTwD3pn/C5c614geQGej
G5rPzTNHL2AnsAfYRfw9fCf8K/ycbvHcptkbukexAdhIdBl6jPM289M3ry82
A+ww18P52c9wW6MHkC/2LedFDsmlIWfIEXu2WZ75GXlGxrlX9KrG/La30OnY
F/Yv9oCcHjzc7Oul0Uu25/g93FPwp2M/sAe8w6mOLHMu9h06nD3F/kEm2S/I
sukYXSf0HDoffdNs88BDoruRSZ4nso6fwHNgzyLHrDkvPntAervJt+2zoIm7
nufGXkFf8TMygG7mmbI+/J71af6ZF3uWfc31cd3sUewa68QexJ42ryG2FhvC
2rHP+B0v7pkXOoQ1Rm+xnzV+sr3NOmMX+Q66AjnlvvEBkOPKeJk9S+6Rvd28
Hrwjs8guP7Mm6A1ki2tlj/N/vss+GBIvsX3M/kA28amQf/Yt+xL5QobC6Abz
V5AvZG/76Hp4ekzWmvcwf0POkEW+o/GiybPth7jJ1vI7/s/+wgfi/PhDVUHT
M+T6WXPulzWelN5nMoF88gyQB/SX+Xi6H7FN6GbWhLXhWNwD1815OAfvrAPr
wf3zfWT95Phh83fMVqgOxW9gn2NvOS/ywJrb8VX3cS//v/91zfiZ++Gc/Iy9
4P/oFT7X/Fn2IuvBfsXP4//cN2vAPfMskWHklHPhT5h+UFnnObJXyWkjv/gP
6BQ+3/zi+/i+fIfPsnbIJnKIHeJ+kEP8CmQDWeT+uUfkGV+Cc1MX5FjsH3QU
984641vaXmNv6Wf4e7Mvxb1Qs0Zm4G+i/o2uRo+3Ca403Y1vD+6vS3yN/d30
tn6HmI/YD/nBLmAnkC2OxWct5tAYDlnsGc+3+JDjoP9+iS823UgMsSA+IJ8E
x1kMwme/jy80G/R+cKbFL9Qqfg0usXizWe6ID9vFV5mNwqduPgfXh77le9RK
34lPhyvU9PFLwSnGH0rc81M8I/9XcIXxnf8zPpM+XYvLqPcRT28ZXZlvGcQW
qxMnMy+TnmO+z/H521fBdIvt7w4Ot+8yN4zP8jlicPIAvPMzx/kgOMtiWb5D
boBzMdeB7xLTLYrH/H9MR+zKzKKT4z0shqfeQEwI31ZzTEgMz3c5xovxyVbv
Zc24H87FnDbun7+TN+Dz8+NRxv3OTF7mBxGvEgNzHuLX8cFAezXHs8SnvIj7
+Bx5CvqemYvP8W4Kxlg9CTwtMSdxL+e4JJY8MwuI1TkW+dED434WQ5Ir4TUm
2Mn4Ojk+eVPyJ8TExOX8zIvrYh0OjXe22JRYmfiY2HtwvLXF+cTq/YOu/x+z
885neKfWwnnIe/DOixwL8T75EXK1rC2/4zxcDy/Wf594e8vFcK3wB3Af3A/f
Y+1mBiPtHnlnTZl/Q46B16h4R8sRnROMsPtqXi+eHWvZ/FzJ+ZCjIGbn/sgx
kYMijwEnG30W5KWS4CPLVb8SfGn5qT+CvyzPAY5sm6CT5SmYa0keAZwAv+Nv
5Cr4G9/5KPi++tHgfXuR/1Y9Uk29TuWkWp91ta5htdq2KrC+TwWfVDIXjNyb
2oh15AzBJn0SnFP1UPBuFdhz/n5wMMDyirOCtF7tGP2l61X24Ki0/BFxJJhD
eksfjN4x+0zuR+0k9fT15OjJj5JrpQYBp+2t8Th6FWy2EDlA+GDIheFPYRea
bT26AF+T9abPihyk3ovVLfi+3rf1QakNrp8T7E+/4RMdgzbV1DvBRpK/Q0aQ
S541eQ/WCL5Z3S/V5PiZP09tVK+DvCS5znpqF9QGNLayugK59cOCXaq2DTpX
/xxcbPUFcqDvB9/S60XfSJ7nBveGHpPzVjNvAo5a3U/19P+BA6NmQm4X/K/a
TptZCbacZ8B663VU6/VU6/3YNaoPZ9hPlb9q6gSslcZW668NDqhnziLrp35S
va6f5VepCdB7+Vpw2npyvRpLVel1W40CPIp+v5ocLrJAnlWvz2SBHCzPn9oI
x6cOrPJBn4be991VYFZYK35P3xhywTqzFk8Ex9rx9Bor+S6cLswR4//keVlb
1hHOQLUPNpMETmf1Oe1cNwcv2TvPTtcAfJzlhjm3XtP/v7OWrBW1Ce5d7XQ9
x6b+wf1SU+FzKsvUjcDfVDXlpJ8gb13F3E29j/X6fauV8Hmuj2vhGVNzofbC
dXEM5ILPcL+sC3hcXk17poX1zIHzUf1keXU9ptXB4IeBX4F8NjLz9898vpKe
Au6He6TOpd+1YzLHj94Yzsl6sMdOC4ZZ/QfcoF67rR95e54zsto6mFWvNtXW
gJ4+vkPdTZ+T9fVxPPpu9Lvk/J/Q1zruhzobz5Haml5HPfM+ydfrnjZ55BzU
mPQ4dh5qTf8OzrfzUpOiLqT3YM8YWWMNuYfm+hPnpYbP/5EpanqsIWtMLUr3
na01zxIub3oRmd/K78FOcm2sAbLAs6D2AA8l68Zx/+b9ph5h96LPlP1ptTD2
BffD8ahDcI2sDTURniHH4Rhcj6693tfPul6t0ZHrkHN0n173OuQJGeD4uofs
Gprrcqw560Utg591H1jtskn277b1R8bYq03Xu8P6ZvlkTZqe+VPrVFbgvjbZ
4m+sH2v3d/2uEplB1qhpIsvUWTUOsnfkmpohOuEfwb+q4NhCNyKDfJ56JNzo
yCXv6BfOiVwgt03nmDlCz2E//y0jI3heXDfXwbVxrbw3Xz/rxprxfFhX5g2w
tmCm6PNCBllXdAe6n5oo64d8838+w2eRG+wKMkA9iN9xHD7HuZAndAD7hZoo
187vuB7wJRynWX54DtQpkUt0Cy9kCVngWtBHfz/n+ib98bvJP9eH7PD80AEc
i73EsdDZvGNrkCfVc7YP4WNmT1CPBavC39FF7Bl0sfriVktWX93wfeh9jXlM
7/F5rpE9h1zy3rwfqAlzLI6LfuPz/B9sIHVq7K7Ko+mA7sE8elntnOhV5FH9
U7s2dAJ/Z++iO/gbeETunXvUdTYZQbbQNewbzst+YX353d+2w54Pco/M0K9H
/RDcKzYDPA26Dflj//D3ZhlCNrFl+BDIIXuBvYF95l7Ra6w9dXaeHc+oSYc8
NYJjYZ+oJ+Kz6GfA6oCZrNZnUs0cLq4DWccmoXu5F87P3sW3YV9gf7F96H7q
6qwP9Wp6Qs7K9vKbo0v97o2L/b5hyQ/KLbL5Na+n/2YWWLVL+0rX3FybU8Ps
xMtqy8bbCWesnpO5NNVgLdRf9e9FZ/h+paJ34Qq/X1Tyu4dLDAcPXgb+efY2
+cTRUX+bzc6Mhd/DS+WxbJIckO4o5BFOCR6ppvau9j4B1zK61N94vehNO77u
QX9b1jS/AGzvpMb7/APhUV791WRo2lM0LhT6ddutae2Y5/Zh4TuBt/jlwilC
voB6N/3nQxuWGI6QeUKro9et//XU4iN+23SBn5YO8/B4EeOonyS/RBfb7LnR
hVUyLLxF/kgvk8mF3cFx4iPXg3cFUweOCPysxgZ+UWGMYe3B8fwv/p/VxsF3
sPazgshid/XTNIZrL/D50KdOXpbYAv5oMAXd4rmJfi5RvzWpjz6kB89mQjAn
BvyJzdoPzjK/EZsEzsNmpqWx1VSI66m34vviB3waNNaDGaBX9qjoXuvDgeOX
HhuNvRONL80nBV9AnZ29gi4Fp0sswrXhy+Nrg81l/4D1p+eWeRXMo+U1O37a
5uvo/k4mx7vzO5Nz7Afyqfdaha+k9qgaG4PuRX9RFwcTojGBrRXYBeZ+gzkG
ewCupcnP6Vr/t00wXYi+4vfMQAU/A14QbMCucY+EWb/4legQdDGcqs0+XbP9
RU8xM199VfOb0Smq420fcl34WegL7C/+RLOfxn4F44ZvgP/aKg6YbwBnInMa
DIOg/qr5FegH1owYBH8bfnA9TjV4Or0m9qphcFgDZoTofdWDEWkfbGH3wfGY
PQpW5IHgHfsc+gP/jf2ta1St92x6gTiG540N5h54juBkwKuAPwBfBNaB6+U5
wzml91nP+bHV6Cn8Y/UnDV+gdg6sJL4ydhNfzY6JXmWt0PFgfMAj4csTF+lz
NT3PO2vL3/D3VbbB/Fn8oGtp5wHXAJ5Bf7YY5G8/UvX3j4YPBCMC3kTl2/qn
wZRwP2BDsJX4kXodhotg7hlzHX4PLjVfHh3Kc8O+8R3WD3m6K56Q0LvKfaPX
0Y3EGfADq42qhueCZ4INIf7h/pC/l4Iv7J5YA2wvOh8dC7aEWIKYAoyJ/r1a
7WoVehjdTh8FNggfnbXnOMzvY62QNfR9U2yxy//HKcQRXA+xFe9gQNQOgpus
xh/hurk+7LrGG2ZHsNeci/2gulv909ftupEj5Imf8VmJcYgx9XlVE0dyz9gR
7Cf4nlHR7TYfix5A8In0GvF/eBXBBr0bnFFN/q5t2kompbsJsz8vjKpln9L2
kkU/WH7s2OCB6sXBi/X/i68wPN/q+PWEORT0CKvutJlyxJX62WriXHLJL0af
58HE6h4xXCx5PnIr6ofzTOrpJ7gm3s+wR/OCUYnqImYA8ExMnuhBA9emfqHh
csDjLAw2si8snwKeAjwCWNfN8aWWnyMfim0gj8bfyDHw/Njz9KuNjXeyewZj
hF1ClvEJmGtC7orc7aWpz8NhC08bdWX0O/UouGPBbdDngM/Js0J+5gUbLE4l
pkZHEGcj89hxcINgLsgxkWsk37siepV42rC+apfzS+IXrQYA1gLcDjoV/+qQ
YOfk9qDGsGFgmPDN8BfIG/03vszqQsxbY9bVyvRVy92C2bgneKsaWUafgfsj
7kAeVHdXk4MjH0munJw19QiePbnQlunMPLNpyAeRp1K5tPgcGcXXQI7xU8Al
sQ73BEdYzQwebOrlN8YbmcNitRnytOQv4UhQ/4t8he0/9g16DD9e9Ww1eBby
+tR2qd3XRe/aPfF/6g/UCMizgnfhWaqeMp2Ib6dyazEtftvbwdfVYJbIE9+S
vpT/NP0h/0v8H1sb1nyLaJbhXNDRxAD44sQf7G/yU+QTwf5Q5yHnQ40WmaUG
DH6A48JnRZ4siFsgD/SoVuFv4zcgQ6wNeCpqZNR1u5S2tD5V+t3ULxOVN2E2
C8+b54QfCQ4ODB32gDgY3U9Ok/rTr+l/8ntl28jh4SA5Ka2Qk0t7iO5fGZr1
lM3RH3nVs4bL4d55Pvi1+Lj0zpLHpGbLMXZPm/juBoU95Lfov7bWrPvfuRyz
qcgJOujvPAMxqPn32EL2NfqIdQY3RK2e2gj1OWpi5IP189Ufx2cb3vvEsKKp
PzGsMkxzq4g5NQ9UP5H+Mz8lqrDZva1qYlEZlpfCU+S8UqW0D7cQ6hX0E+GL
MKMAnYpOQGfjb/Cc2NPULFV35b9Lf7W+fXpg1DcwvDz7lHwYnwcPypxvdAw6
H5wgPhT1/9ZpoOfrpb5vP5FCX+kRt5d18QemO9Ar6FLw9OSR1Hc0XB4YOnL2
V6VpnvWnt6g63k5Up8juYU+hD4DaxAfBd9jver0209focPx9jksthD6m7mF7
2TbtZPf9j/Qzw1tQAyDnjk/WId4ij39BPhh8FBg7cv3sNeqcr0Zf5oNSC9my
1Mr6ftAj7DuVQ+pC7P965ivuHvS0HCI+FtiwC+N6+gdsvsEbhamiMZWoHMiP
6UXyWHiMnJPtLcxY0n1l8k/u84/0zzznoW+QeiW5ambV6t+SuDTSZqNsFc7x
WxRnWd+Jy/oyOzdp0jun5X9Mf89flFXLS+nJ8l12gfV1vlWaZj3/Vdm2cKda
rh5fjtwpWGr1ATRmqAbLS8xZjW4Ev8HMD7X7wrNnb6Of1dez+TbUgtGtYCvY
f8QfYGeob14S+/z8aINhNcBugB2iDkydCWyaxr/V+FPgV5EXMJ34EOjENdGb
eeYLDix0F/XfZPuoi3HslqLXTH+qjrd8PT4hdga/hv46fD/8QXL41EjbZq1M
D6wtTRLdM9bftTQ+WA7LdpYvo5+sZkUuFJ8QjO+W8ZXofMP8EhOQL6WuMz/e
YDK0ZdRKOkVt9Bm2FJU5q31TGwYPga2hjk+dCWwCNWzsGvei+9j4osrpR/mn
009M56qsGYYFbAg1w6/j6VYrwLfFbwRfSt0EHAB7hLogsR91PvYc56SuRs0O
/NlnUWO+XaG1dCq1kR/S30wns9bUxrCz6g9ZXZLa59NBxiwiUR0i/dOc7cXP
ox/tPol9qOOBowRPABbMOECytsz1FeaKqc4VZgK0i1pL17StwEPQr5Czv3FM
1mlt/L7pdnCU7Gf8VzDWuk6Gdwa3D04Z/5jaaKdCG4FPpDG6yPoDq8LlUtW4
TPpEC8QXjhM4SbCR/whOSuiPggdkQXSAH5H1gRM3IR5AH9wXHmm9uRMKa0T1
rqiMGU/WoIpForpbJhZ2E2yM+nPkw+u5DmbrufQ20134lGCDqUkyu5uZ66cW
9pRrSvvJVVkkas/lv9GfhifAJhOTEfvgI9LzMCkYbDEgOHji+gnxGpsXz5yJ
zsGW1t83JO7pP4y+S9TWJvgx9HNSh8Vv6xa1ky0LreC6MCwWOlHPkeybrkxu
S1+xGFF1XrJPvH2CXabmBR6hIfp3foesi4wPBsp14YGShMfJV+F042hQP026
1F0jqi/kncLpMj8aZXr02TSzOje1PupLf8aXm67tWegghXioLAxGC/MgT4+H
C3qfWpzKR3JteIDNEZ8bPeufrPnYP1PI/LWNG4w/Qo+ZUIt9NTpVTq9ZK/V1
H8oLuc9lWe4V0XuQ67ID6NGkfpYwq5WZGFNKFV7vx7gGVV8k8EcQF7H/kHP6
pJmX/GlQK+qfqu5fIjs0XC9Z6RybjUtdm74s8Pz0rDAzGLw/vhuYBXqxmF/Z
Mm0hYFjYZ+QRmaXIXCzyefiM1Mg7FLaQken2sn+4o/QpdJI74gbz06iLtQ9m
41dZvpRYhXiJuqJxI6r/CxaEGdc8P/UvzI/A/h5fGKL3voNorC3g26hn409r
7ExN6wlia/wacmbE9tSaqP9i77HhH0ff5zUeY16f8RmDN7B+uHhXw5RvF3c2
HDK1W2ThmTiz2WPscfrclsYvmb6gXkVNgfoOtSNym/gu1O+xOceGu4vKrhQL
B8mppT1F7aLpXPCC1NNUhonLqtnTbwenW50f7CB+I3KDDeuctjE9sVOpqzAP
9pvgV9OTnENjyGr6D+iZQIbJUej5K8EdY5MrC9tKoTRUxocDZdusk2AzwBsz
g1Z9WauFqf9WTS4FvBW4GnwusAnUtfEFiV+x4+xNsAhcl8a8+e0LXaR/lpOu
QTtRX8cwItR4eabku3me9PnhS2Kz2X/YugXRc4anMQxtUM/8cuOS/iv9K6/y
a/YamcKfx9+gNwBflbwe+SSuDQzUQ+k7hpsFWwTWgJo5db5x8QCLc8BaYC+I
K7CpYBjBp4APwj9nbYntWhUCUZ9PeF4b4k8N70ENn/ouc1ywf+pnW5+RxnyG
5WD+HDqca6UPHBsFdoB6I/dN/ZVYBVwF+Cp9zvkehfbCbLBdSz2MP4leRnA+
+PTUAIkZ8VvJGxCv4v/DI35YurPsm+0gGmvKvfFbhgvU9ba+TGo+5KHJ51Pr
43zgXL9Kf87Dv3hotLMgg+hYfCIff2TYC/oz6JvEb+ad2TX4L2CImHPRLW4n
g6OtjdNnRLit7JVuI3DJqC8myOOr8ZcWU2IL1QaYvaf3UvegzTgGr05tGPuM
zO5XCkV1h/n9XBu4H2r6xKHsd/oqtkmvNUwV9hv7Bc4DLALHIkfV3MuC3vgx
mGGYWHxGdEMYbSXqv8DLYvsEu4WfytxAcuQaq1ofHfkIuMzBsWyM/2X6fc+o
t1REvaRX2FHwSZBVYj98DvTXnenr+ST4KL82et9weeB8iNXBGiBr9FW0T68y
/Cvr8mf0V54ZvPiarBG4mXzQ13AErDH3jm2Br2ZhOFoWRWNsjg0zCPFL0D3E
YdRyiH+JNannkKsl50IemOv6IvhJfbf+op9R/3uKPJUebzYVfwE8JDNx2sWt
bVYos5foV9T1TVTemMFajU/CvmPeFfZL4xLZWDpJHk6PltOyPW0WNTadGSqN
8e/MXPDqsyaPx8fQS2VzqzWuN3/4n/GZclW4rzAfBdwg+S76o5nXoDGB+SXE
nGAYyd/DdcLMlC+j8+SB7EiTT+JV4gTia3g2ZkdPW36Z3DC5t8nx7jZjQd/l
jlKN3FWaINPSYTY7m32OzuN64Sdn77LmYAvon1B/zjAH6Dv1X8BZ5D+MzzKs
N74jM9SwBWDEwDKQB14ffFhPrpNnQE8IMXT7rLXJC/MYOodbCnMKwBuRD6KH
T+Mz42qlBkZuDDwJfUfEXOC8wJqBxaOvAbwiPi59I+whYvmmua8jsCGVGrOq
Hj3Y9Bg4bXqsifuIMbGNYHLBuREb4INiK4mtiG3ZW2AdyBXw0u9YzoN+S/YP
+wo7gC7j2C/HX+SJq5mT1DIMhNiUfAEYHb0f9KD1jFIXpwcM24G+QY405rY8
KbLJenNc8HOvpF+oXW5vuoOZdMQO7C18TuSBHJz6wB4+UDhY9fj0N67HXvSL
crIsPMTmLzNv94HgKNkvCoX7JzYlPmHmg+4Dm7k5K4iIM0aA7yFXgh+GrPBM
6eFo7nWYlz5rf0MvgQ8Fg4Z+wW9ANjTerIYLFr8NjCCfQbY4BvUQ8J/o89/i
SwxPhT6iZkx8rO/kUlgX+w7xAz49MfJ/4z/NzyAvRf6dXko9p/XxkhsFj7Qo
fsFmk6pOkerSdqYnwfLxzDQOtRwc97BN2ElOC4bJBWG1UGPCXvGM1B9L1K9K
qBXRI4n/pv5IHn+DeGJCYaBcEe0j90ZHWP2poXCa3JceIZPCwcZJiM3EF8M3
ZsYC/jH1F2JA+pDA4+4Wbm25Dvz2qYVhckDYT7BrPK9dsm4yIOtq+RnWDX+M
Ogu8v/vEK6ynlfoIskt8pLGYPBdOsRj+7nSCHBLuLOvTDwyn12RH/234HbB4
9FqRGwOXRg6NHDRxJn4+mHbklbVTv1duTsfK6tJ4O776LFKM/mG4Mmqd1ANU
LzBX3XQKzw29AP6M2BWbwV7oE3UyW7JvEEpltK0MSLtKq1IAH5rFyzxHsFoc
g5qXxlTJqmA882KrsL9nR3uLxnvG85QrzbE1x38Ew8bzJm/MXkePgil9Kv3Y
+jTAf9JDRx2YGgQ1vSPDXdU/mSUut0L2qV1hx+0ZdaDWSf7P3xKOszkbu2U9
PP224Pr1/mz+Ssfc1aKyKsX4IPNxwHySE/i7JlsNlpE8HfaSvMDehT42Iw27
AL5LfX50AnkZqyPgD5FnRmfhC4Jpx46SRzo9Gi5rCofbzOHvggvln6UzZVFh
jNkjcKFgMciJ6B6zOiozAFQfMtdyPf0jzHLqEc+T/WpLcljjXTKi8VZRXSZz
S/tbroJcLHECOWr1S4lFrF5E7zO2kT5TZIeZmPi72ETWbYvSLClnx8mQqKdg
I+CgnhLVJbrfzDaSIwT/iC8HJwG6RvenLEvHyQnhUOmbdpZ3oq8NZ24Y2CBH
zGyYKjBgxHnocfToVumWgs+Gz4Qu5b6QXeqWR8SDyI8mqvet5xk7B8aRvAX2
BJmZme4j54dVcmhpZ+lT6iSq50x3kQslj01cRX2MXm71r6x2Sn2RHJ9h4sMK
qwcPCG+UHbMb5OtouqhNNb5eeiepc4FtIAcNlpq8wtHZrjZzaEYpL2dkw2Vs
YSfj7dgU/Ww+FjaAeo7KS6J6MdH7NT40ngc5iQFhNzmiNEimBcNF/Svjyqop
7CLkH8ixEA8QR6o+S5gBy1yq97Mz/Iw4z0xbai7V2Am1k9Ixmy1b1l5p/Ajs
Z/I42BmNeeo1Bk5K8WvJ1ll7f1DWz+YzMs+qT9zJeN/AU4Ahxz4zmw2OkofC
o+XKOLI4BVw9OXfmLewe9rQc70Fhf6/61eY5Mu8E/5qYVvW41X/oscSPp35D
/EN+kxwTvVTk3sA9ExuRx8dXoCZILzjxoNr/KtXX1eqnVeuxDCeBfmBmLfoU
jDN9HeQWmUlIzEP8Sf3tkXhi0j2da/3z+PngV8Hdk/8Drw9WkhqyxqAJPDIa
O1k9i1kncDNtiD7NI4MD4+4CdyvxHn3s3DszuJl9ySwu5t3wHebKgy8jP85+
p9ZAjImtIc7eO+ojzGChP5V6JXPSpheqjIOYebZ94gUJPg42Gx11RuNaqS4s
F/07/JP0jSUbCif6bSoW+Dbhlf7EbKgHc4qOwY59XZhu86NXpTXGG08fAOsF
16rGockW8awEDll4P9QfT3SP2x4mP8zeYKaWrpWsiA6VmmgXIT+Kz0dMou+G
VWC/UL/BH0PftghbCDUa7D2zpJjL0SXe0uaCgHGg9k9eFDlkX9ZGIyxuQyaY
wwB3F3Oldsy28swg0VjI8sXgE4hpqBuhL4nPsDfkr8jNUmvFV8Afo4+duBU9
TL6BOAdcKnMp4BXVmDyBBwSdARchM4jAtlFj4BlRc8Ov/BvrvJ56m8qF1dvA
BCJ71BPp+YMPC9+T/mX8VbA94KbAGxFPoovIR1BDJ3+nfrU/MR3qjykN9ioT
/u3gdGY358lr4n/MLu0rB6X9BJlkdg+zTJhj83LpFP+P8CSbFfXP6FubAQK2
m5j/+fgzqxVSB8BvJF4kT3hO+niya7SIGe3kitexP5A1fCx0LHqLWQfkWMBZ
gTdD/1LrKcRDE3ib1Pf0B8b9bL4Lvgv+KDk2ZqX9VJohT8bHW16VOgi15B/S
C31Uu9JH0Ur/aXaO8avz7JCl6aUqq1fB90hvu82+SD+w2U5q82wmCnUkdAp2
kPUk383MJvKnzKfdHP9hsQ91Q2og+PLEi8S8yAn4BzAO2GPyQfcEb+XJoRNv
0teAX8l8DGQReadGDVcMPgP9UPjX6CGbHRC0rWL2BTJOvEbtBFw9tWBkhLoy
+xDfG79M4yvT7cRc9IaSl8aGMPMK/plXwlONS+WRaKLN5yEm4bNw0/6czRCV
G7kxGm25KI1B8YVshvUP6W+mG9R/SZr2x3XM4wOjWk2vB3k0ifsKHH/M3j8l
3UO2STsKug1fD/yLxomGL1GfG2xgFX3/1AHwn8nLkzPCT+K8VpMLjq3WPWW2
nz46/By1CebvPBb803rhyD0To5OjIlZCP5ATIn4CQwReAiwfc2CI+6jJqt21
vBi9fsQRcMKQa1AdIe1KrdXH+c2OwTHJUyGn7EFy13DQk5uHNwC9Su8Az2Hr
oINcUdpHdH/IB9mZ8lB2lM3KpO4HXl3lwmasqz/tNU63mcgj0lup5awnP67P
SF6OTjGfcovCLGmIT5OTsgrLO+uxyb9ZvhadNz5YY/kY7Cd131lBanP1WEfj
ctf1o5+BPgC+S/8PsTs5OnJxzBJvF7cW/DtqUKw5uoN+GmIcbC29T/SCjUxX
mM0gv4He43jUAcF8kSvbFP+cb50FlhOh5kK8AzYRzOXfc1eryI/Qm0NNn9iT
2IzekiZ8yTnWUwBWgZwu9ph8AH025NCoGRFz0ENIfqVp3sXzhjEEH8t3wD+C
XyQ/y7PivpnHBi4RrAv1fH63PphsPfnds3YC7xI4wN5RR3i3LDbR+I0aeULe
XtcvISei95WoLCXkANR/zDfGv9M7Y1wJ4BLfD8+UJaWx5ofQw0fsoH6hYd4e
Td+zPa57kHew7vnro+fz5AqJtZgNyWzTNmErIZ9EDUN1p+U1yIkRt+paG86E
2JgeIeZd4HPTU0iunV4n6uU8H3x3dAM1Q2aykc99L/7G6rmqu2RkuIPlN3he
8HEya4J1xG4x34bZOeTRsEH0nBEv4eMTa1FfxO8lV0aNm31HvpJc4PR4fR7O
eDA1zMz8KP3OfB9qP9SQe5Y6GG9jh2gL+AMNG0AOGL1Bj/Sa+M08eTo4Hpkr
q7bQ5mWqrTUfh742sCHoOHqvwHNwLeQ/V0fjRe2S7bkXSyfLTdlo0TUU1bEC
5oMeXupFyDL1iS3jVmbbro8OlDeiqcYj3KEw2/iWmbu5JBorurct90Qel5wD
/ZXkAJnhQLxPzh4bQixKLJarnSP94qKExRukQ81soZ5zaSayR9ZLwF4yp5q+
YHQhMf3s+GnLS5E/gAOOGlRaOkE+i2rlp2iGfFw6W1Q/y/SoSvSZyPvpN5Zf
oweYnDS5THK408LhxnXyWHCM4VqXFw6RS1OB589mkO5Z6i3wZyJvYDWGlHrK
oKCH9A+7ypBCT8N83BAeJJ+GtdKrYb6u9802F7Rv7nr5tnCBwGPNNVIDpI5K
Pys4KZ51r6yD1T0eDifKr9nF0jm8Rno1zrd5pKzpm9lUmZftL+ozi/pUlien
PkMuHj/whHSIqB4VHx9H7GbXj29/VNS09s02kFowOgvZXRAfIC9kJ1ktC+5D
Yjn2EDgWvoMuIp7Dx+8bdjH/9vjSEDk/rZQL0iqbW6y+mKiPbWuALFD//Sna
bDl8/GpwLDdkB8qd6XjzOcl9EjuS6yaGIBYjH4dvxExEeExPjvaQuYX9ZV10
rLwYnWx2VH0BffbTTSaXFMZarp96OLkA+kbptaIeBC4CWZ0QDZTVhfHGu8L3
Xg+nWg55TLCTYSjIa+E/sLfAzFxWcMYd+GYwTd6LzjDb8WTpeFkZHmYxn9pX
i/V+ijfnn4kyq6V/Gf9kc66pOUyNh9l6wyPxdjZN1MeFY9102quFU+XOcILl
Wc7NRthsWnis+Q52/bhwiBCPosOof8G3rfrd7FbP0nzbCwNyGqdWFI3bkFww
PgE4FPYkdoB6BOuJXJLvJT6sypbJMaX7ZVpurdq+Ojkou8OOhU8yPx5l31dd
ZbkJZmzg3/BcuKb60mRpWRGrHi6KyqqMqVgtY7JVonpbts7NN+7gOeH+5GlM
prcK28q2YWfZPwvl8mAf2398v2/F9TIkWmLzdgcWbpKtK+bLH+HlsqF0osnr
WeHeMq40wI6DDOMrcWzyMWF8g3FGbB9fL50brrb54GCINOazeeKPx8fo9Z8i
nxVqZXPhUuPu6FE3T8K6G2RQdpPs1rBIn1nRfIA/C5dbHm9NdLjtQ3IwxPvq
t1vcWx9Ntpm9vQvXym7hYt1ny+y+4YMaWHeTcQaSL0A+2CfUp9kDhWioHFEY
ZPsMfnL2BvKJ/LQqxbJ93fUyLLhFbcVKOxbcBWF0g+VrwIRclUZmN8kLUmPZ
rxDKrHSkYUZy0RypKN0sB9beoTr4TuNn3qvhFuNkV39Ani9MsbhR7ZgcmQ4y
PUzucmY40o4Nx1BlzTKZlN2n6/y4nBetk6nFR2V8uMb4FbsV5sqm0vnyVHiC
rekL6UmG00LvHhDcIadkD1OzlqtyT8sVdU/KeTXrpFB8SI4q3Kux491yWO5u
+LF0P98lY8LVeu0lm5M8uLjY5AYsBOs/tGGJ5LPluk9WSr7iNpOFXXI3yU6F
hTK4ZrGofyBja1bDTyBHxffKoaW7ROpus890zebYjHj2kOnldJLAJ9S24UrZ
ufZGkeg22TdXkn2iFTK89hbZLV0kO4ZFUX9atsmutVfv2mstX9YxvNr4I34p
XCwfR2fLxsJJhs+5JzjCnj+6You6WTbvmfPX1N0txzU+IMdHD8rE2vtsD3B/
25eul7YVV8m/wnNtneEYeyo7Xj4vnWuyVlF3s+XlTml8WDRekzPrHpPJhQdk
34aVhiH4MdAYKzre9M0/sinS4ukrpF+xKAfW3SFTC4/KlTWpXFfxvL0uzbyc
mD0k+9WUbL061M2W/5Yus96L1g2xdKuda3tkZLbC9vqFNfVyfd3zckexQe7L
3hI4RG9pfEn17tNyWsWjAqe7+nf2DIbULrHc4f5ZSSYU18gJuYdkas2jMrX0
qD37QvSQ/e6Uikfk7OLjJgvw36ofZHxyhVivq1iS/g1Fw3r8K6uVZ0oFeSE4
WZ7OTjCdzVpzz/mG5TKlWGf3A1cy3Dqsicaesm3uOtOV5CHJSatvL3DGXBTm
4f2Ucni81TeCmpmisYl0qblGtgkX2N7iWfevWGiysFuwWAbXLpZdKm6SvsH1
pitbNsyULwvnWb2unB4naeEEeSYqmC74uHC2/BjOkM7Z1TKgcaGtsfpiclb2
mJxXXGfyrn6yrc1ejbdI79K10uLTK+x7YNqwmxp32nPYquEa6RuqrqtbIurj
y2HZXXJs4/1yWuMjck72uEwvrBf160RjKjkhfMj2D5/bLbfYeOfQW90r5knv
+FpRv0B2iheavuQZ7V1zq+FXxuRWy4TaNaJxmkyueUBOy+mzqnvUnuuJDQ/Z
36R0m/FTw1H8eXSu6eF1hWPlmbggH6RnSouKmbYXNH6V0TWrZHLdA/Z98DLM
Mp+U3ifjCnfKPsUVpj/R1xo3G/4Fu4hv83t2ic053z7S+61ZYnaG87r0NsNN
7R2pngtvlp3qFkrvmmuNw5Z1Q25bh7OkazhXdmi8XgblFklF8WbjDbV93LhS
Dmq4Q/XYHaYvR1Qsk91zSySsvcFsDnuTvfN+cKbtXWoi5NCZ7Q5/PbKwW7ZI
9mjQY1bcSn1V45LbTTcdFK4inyFVFcuN96hvw3WicZj5BbcE4wyrB2aG+AEc
yPzCKHkuO1E6Nsy2+fCHNNxpz216cb3GpU/KlXWpXFzh7XfUG7arvc56ovC/
bkgPNI51/Dns/cLsINkYnWT2fKfSQtMth+TukiPDe43/7YjoHhmTrpLK0jKz
W72y+U04zewiqxc/X5pivhC1YDgcsC8r00NNfyDLL8enGM/cr+ElxrfJzHp8
Tuxmn+IC0/MaW5gf9GThePNT8Nvwu4ldwZLg45HP3TprbzXIQ7IBqneG2rqQ
776yEJmdhMv7jHAvszdRaQeLQ8BbUBch7wEOkxiB2JI5S+QSiDeIr8DNUIsl
fsBnY2YIvge5XbAtxM/U0sl9gYEhriGHy4xG6t3Uq4kHqRmTK6CfkPwQeV/6
66i9kN8jhgNnwjmoU1E3oj7E9cAnTd6Wuju9GNRIyGWMCLa1V4+4PXkoi7Wb
Znu+Rv9zNbhr4iVyoMw/KMRDDRv7bvCN4YXJwZKrBJfNd8GLkN+gf5L8Ij0p
9AiAj6fXAdwCPT/UHqlng2n5uz/f+n3pBQevTR2DvBi4lea+EWJ7+jOYQ0u+
H8wvPUHMQAWry/xUsNzkJ7kWeqHJoYGz1nswjCD5UWojzEgGc0r/E7lUcNjg
JZklTL8oL+aZ06vGTHdys9Q2noyPJ3eWcA3kG6nV0XNFDxy5AvID4Kp5ZuRV
mMdAPRfMIT1SYB6YfUysTM8mf+f5McPiuWCK9Swwg4b8HbEeNVUwpeQwwL9Q
+6bmQR6GGjr5WubNkPMCtwSe+e30K8Myk9s/KOunNm0P25fYFT2f+eHgK4lj
ZmUj5frCgYbTwLdMssmyoXCi+WHw1hB34Gu+WDjZ9tu76em2N/XZWt2Q/YqO
wo5U1i0zn2hKVKfneUIuDr3MzJ601xWFJ+XsuscF/rSTax+WU+seMXszozaR
qxueVn/uJeObS+NPqKXJt9Gv8mf8l7TOtXRt01ZOZdV13tTG5da0dd3WtXM9
ovau98SOrm+7Lm5ArpsbmuvlKqdu66J1O7iDevd346IB7rDcLm5CcaA7om6Q
O/q9Xd2xjYPdlJoKd3ppuLsgV21c6NdWHuBu3jTWldYc5u7ufbi7t3CE0zjC
raw4zC0pjnULlh7gZm0e6aaXqtzUmmHuuE27u6MH7uaO3DTIHVW7q5tY2M0d
17i7O3nGHk71gzsvqnTTR1e588Mqd25Y6c7ovZdTveomLB3oNI50O0fdXMt2
gXug4W3zW7rUXiOLSmNku1JnYZYXmDdwa9RZiYewiceXHpR5Dc/KopoX5Iro
SRlVvN3yFOQZVaao0yXwH8CJoPrO+KjgbVD75y8OxDMnXX1g8v02y5iZwx3i
2caH8kX6Y6JxoJ8WDDdOwxfCk/3nhXP9t/EF/ptsuv8uuND/mF7kfyrN8L+V
LvEq08aFrHbI+GE0trMawIi0j28TtPJgbuFKoxbBzPDO6dWGOaDmANaXudL0
itLrRf8Qe4D+RPpVyPGhc+jJIUdF3pycHbmyfcPQMEjgEvR4xpHet/E683e7
1cw1O0se5q7CBKsxwidC3A4H0BnBXhaDq+6UzrlrZFDjTeaTjg/WyFG192oc
c4/FiMMamrhMiN9ez06TFfGhFpuOSfurjc2Zrkdfk0NkD9KTBdaKOgR4GubC
gJWkH5jeVvrf0YenBHsmPKN7grcSjRVtbv/DwUSvNt13T+d69YX8yMYmHqBJ
Dfd59bv9SWmdPy17xJ+RrjUevhlR4uPCU35+3Qa/KH7Bq37295fe9qrb/CsV
X/pP0u/998XfjJcZ3iH4BHNz25Z1n5R7TG1fztW2Lbff2LocrGtRVpvnP2r4
zr+Wfmn8YXATrav5wCfZhz4tfeKfy33mX0m/8G+GX/m36r6CE8O/WPu5L4cf
GwdZqfiav770vL+spuxVhuxa4ZU9svEeP77xbn9ww2qv/od3DbcZh/ewdKlX
f8Y4ZtV39dtWXGecwRrPGX8gNT9e6jN59QG8+oO+R1FfdfMM3wx3psanftts
gVef2qvP0fQqXmf8i3DcwmEGj6nqSL9nYanfK7zVuFbgUDwue8DX1j7hZzU+
ZRxMGhf4mxtfNP7iS0ren114HB5vP6VUZ3y4p4SPeNW//qKGej+/ZoNxoMIl
/2bFV/7fFT/7Hxp+M46nbyp+9f9qbARXbpyNz1V85utrP/QPNb7zf0Tdebxt
c/0/8Lb5utdwzFfCzizUQYS7rlYyKx1DZUq7EhrkZEpUFiGiHFOueXNNCZ3M
7M/OQiLCIZljG5PxyJDp2+/zfG+73x+fxz5nD2v4rM/wHl7v1ytd3Ls/zZ6c
SGcP35POKe9J7eredNHY/emqiYdTd+If6c8jT6e7hp8LHdSJsX/GM6Svfe3I
o6k9cm86pro17Tt5bdpl5LK0xdDstP74GSn75yn7l9Fn08vjos/04dITx6Ul
mr9M2e5P87aOSPJWd9V7pN/VO6ajep8LbaZ16+mRo5PDOrq8JXKG6qDvr/bu
HFzNCDyQfKY6JLkcMXF7GtwpLIC9HkYaHt3cVPMijsfGgB8St2dPRZy2nBp+
/Rr14hEnXLVeNPJq8jhiuNPb04qVykWKdZtLF2W5fGBQxYLEm86rvxR7j5jD
4iPHFqtPnFxsNH5WscXw7GLHkd8Wu49fEb5JnmPx9/bjl4TdvtXk7L7fOnxF
9qGuC1/tjPKvxfWjj6kbKay5i602/8wV66GZn6qXnPmZ1ZaZOfOFZWfOrJed
ueHEMjPXHp4+c5Vq0ZnTx6bNnHrM3DPfn/ygeK7x7+LBsRfznvdi8ez468X7
zf8rpvXmnrlsveDMtRpLzpw5vNzMbR5eaeb2l+Q9ZmT1mdtNrBp7T7ZjZq74
wtDMaRNzz6RndmLjjogR5HW1yHZa5LLUo7I95qkPD40ZuXf5NbWAdJ3Eieyr
2XYq1u3NCsxDXjcKtfJqHPI6mA4cujG02FduLtrNv+luNmWF7kaXfKz78Xrh
7tsj76Uzh+9Om4y2o3bpV83N087NNdNurbXSsc1N09PlaPpEdUr6wci1of1J
4/ejOy3QXac9vZttuu4XH165u+2sVbpbTa7Y3Xin5UJ7e8lqavfdoQ+i9uD4
8raU7Z+0dnNWymtxmmOoCk6GbHeFNmj2RdPGo+eE1mi2B2Idyz5bynZp2mby
grR2fVpoCGX/Kp3T2jZ0Ouet5kz0M05tbM0uuxEfkxpQOYb7yxeiJmqBap7i
v9V/A8MjbwevBB+d7byNYG7gquUJ1dDBcquhYbff1dujyHtR+F5F6+zwXdYe
nhX+cqM8LOpdxLDWbC2R/b2XAs/HFnug+k7UQ+L5Nu5PaGwRvOlyDnCW6iBg
DuEG1WjJXcE54JuHN8TtT/dnpfYioeuSbafQQ1t14qSUzx8ac6s3TklL944L
/W77LH0k+sO0Jmks0Q+m2fil4YvTPkPXpl+Wf0rnTdybrh17NN0x+kx6bOLl
WJdeH34nvTX8Xnqr+V6aHP9P+mfzjfTo6MvpjpFn0tXlI6E5ecLEn9MRZZ0O
Hu+kg0ZvTIeMp3TEWB06zLPKu9K5E/ekC9r3pQvr+9L5rYl02sSdoWXl+3uX
V6UvD12atmzNDk3JtYdmpVWbJ6dlJo9PQyO/SHlsphdbB6RsJ6YrWl9JeCto
ysDx0HSnu5p9uHz87dIt7VbeY76d8p6d/tb4Trq89+XQmdymuXL6eGMoOCjo
qdJdgb+hC/N0OUnnPbFXdqvWCj3OS9s75j1w9/SX3rfSvb0904Ot76bHmvuk
XrVv6rX3jX7slfuGXtwbzR+HLvoHrZ+mxuhhKftooZ+34sRYyv5x6OXh1Pjp
RDedOHl7umj8/thfaW3eM/J8umvy2ZTa/0jj5UN0qtNZ1d1p1uhd6eyh3Get
+9L42EPpT2NPpcdHXolnMN/EnN2hWfN1lxqe1l2mt0B3uXKhbrZ9ustusFB3
2TsW7C7dXKC75PjU7uKt+buL7j2lu0ij37KNG79beCi3h+ftLrzafN1sW3SX
mD61O/2YfKx6ge7HygXjeM3rF+6ueMdQ9+MvLNxdfmKh7jKT+ZgHT+0uMmVK
d8HJebpTDp6rO2e70c0+Tvf9+oP09vh76bWh/8Te9WL7zfRi+WbKflT6V++N
9NzE63nsTcrNpyeqV9MTo6+mJ3v5dexVOI304OiL6f7qhXTf8AuxX93Reibd
1HsiXV89FprBlzcfTNkXDl3w8ZGH0rXVoymN9fc6/ZfX0uibJ9qvxjmeHHot
PTb0Snpo6KU8Bv4Vmod3Tz6X7hx/Ntuhz8brX8eei3M+PPZS+kfvlfTM0Ouh
Xf7G0Lvpg/L/0hwTH+nOMT3f3+RHunnM0CBPbw29l/7VfDM9OfFqHNdxbms+
nf7UfirdPvxM2DMPjudrqV7J6+Bker717/TP+t/p6WoyPTLxUlxDtqvTHyYe
inl2YvOOvI/enA6dSKHhuu/EtTEPv19ek74zfHXKe1HYGLhd2EA0k61xXxi7
MH2q/k1asXli7NFsvYVaR6eFqqPz2DgiZf8p9+v3Q8eQphndNfpmB1Qbht5S
XotT9gvyOJ0rr+HvhFYy3VK494OrTugKwSjCaqlTs69nf7Czan1S+KnZv4Z5
k9feSD7X3iH/hpsUL6taQbW84gNs7UZ1WNQgWr+sffAEMGc0DOnyLd2bVmzQ
XqZotT5V5D2kuLrcOfwQ8f58f8VaE6eGxqcmfiVOKS7zZP2D4pJqh/A91XjI
x25cLhfx++wDRLxy05Hzwhe8tHyguKf1fPHs2OtFHqPFU73Xirx+FReM3Bcx
3i0mzy8+On585HL4pXmdiZgQu188X92t2N0647OKLzYvKr41/IfwRfdrXx8x
SVqG2W6MfJVaMzEWsYLdqss7azSXiDX6D82dgr+Hjp2+36g6K2qrcfqpebIn
qemAL8LpQJfqvOZI6IDaTy8deSD9bahvK1qDjW+285m9v6YDJ25I2UdOazdm
hQ27aHlMWmzymPTR8vjYMzcaOyt9aejisEEPHc7r0NAdsRZfXT2SbhrOtvnE
Uymviena8UdDJ3Csuj0dNHZjjL2NRs6K47zb/En6S2OPlPs8nVBvnqrysyn7
r/3W2jB0wg5uzYja9dHWZ0JfM+9voeubn29oX9Heg6OjOyVuIuYEw8/PURcC
c6r+WD25/BnsO9w2/DVMBuwBjsx/Nt4IXPrnGs3AXOB4Fd9QlyX2plZIDphd
CA8Kb6rOJfsmwSVvrOKoxdlAk068i20grpP93+DdoV2nppTOJ7wiHPmtjW+E
ppAYDxwhnS1aP8dXt+XvvN5ZvbdY2qO1djq3+aWYg3OPH56mjx4XXFCr906O
tkp1UlphbCx0nGkgTi2PjPpv/FBzllWar/nzeH7ZD01rTJySivbZsYe0xn+f
fti4Pv2k1U0/H7o5HTlyczqs/mPaf+L61Br5fWhFrlPNCj8o23/ppeaB2Rfb
M69R38z2+TdD5/SJ1g9CI/WD6qdp3rEj0jyTh6fGyGHp9d6PgrOK/3h8tVno
v326vXSarzendTg01ulcqvn9T+PQTl19PbQL1Wbiz8K1QeeU9hCuIhpPODjh
3s0DeDn1GzhO1NPhNx1oncDoiQWqS4ThmasxR/AywFHCscJwscFwd8Fb93kK
j70Rvgu/UbbrO9nW6Xyj/n1om9FercsnQ4sTT8vv6gdizOFbgU+6pvFo5636
XVpn6Wv1Wums8osprzdpgeqo8CfpW3596Pdpn/qavGbekPbvXZ9+MHpt+M15
PqftRy9JW5azU7a9Uzl2bsprR9qud3FqVb/P8+CGdHzrttDXvG3yqfT0yGTs
HXMfM0d3gfY83YWnz9ddaKd5ux95/b/pzdF3s13xYrpx7PF0zug96Zdj2R4a
6aQfjOc9YOyaPIeuSz+r/phOnfxLuqz193Rz78k0MfLPbIe8knpjeS8deTX2
ztsnn05XDT+Szqj+GlqeeT0KPd5sjwaH2UfHjk+L9fIeMXJ06BFn/yzPxRPS
J0ZOCTtxZu/stGmVfdrygrRFM9/XeDt0RFcbPTktWf4y5XU4Zfs33VDvmn7T
3jr0iWmY7lOvlw5uz4ja7Qta24XupjFEi3POqkoLjByVFiqPTgsOH53y2t8f
a+Vh6d3GT9Jk+aP0r3r/9Gp1UHq3PjTNOVKlaZNHpkVbx4R+eN5rwt9m629T
X5D3rd+m3cYuj/XLHsmH1jf2z+Mm/hTr1Sljfwmt8rPG7k7nTt6Tzh+dSBeM
35curu9PF43en3479EC6rPp7+NFXjj6crqkfSTe2Hk+p+ke6aeKJdPNwL9ZB
9sftzWfi+elztkYeM+nyyb+n2RMTadbYXdmmvD0d2boZjjztN3p92qd3Tdpr
+KrwSb7WvCLtOnR52mn0d2HXbj92SfrC+IVp8/L8NKOZ7duJ08K+FbPwXLIP
FvPvvt5e6fpy19BXPLxZJnx0dA7hOukQ5jUs5bUt1hn6nOoYetVrnUfql8SN
O3lt61xXP9rJ/mlnz/LKDoy2+SiOLRYO9yqGDE9OSwkmC+YL5w09uz7v6GnB
yQTfLMYkjs73gfuG5xI7/lv9Qvg/aipnNpeLOhX+zYK9eQq4KjgrdbI0Qfgx
an9/UnYD2wZLJY48d2uO+P3e5bpR7wCX+Ew9WrzdPqRYYPyowOrADkxp/zzy
yKfX20Qt8cdaCxYfufm/M96p3g+/Le8pxc6NNYvr6l2iLv5zzXbEgAe51exD
xT6d14Zi+/KS4rPD5xar1ydHjA8WJNsjRfZXi42rcyKHmPe7Yrf25cXurSuK
70xeVRzUurH4ea+GNca1UbRb9xaXjj1Q/KHxcHH16CPFH3oPFb+d+Fvxm/E7
iyPadfHd8auLr9aXFpu2zotc8DojsyJ/t2F9ZvGZ5pnFuvWsyEkt0Tu2mGz/
qDiv96XAg+FhkbuBW4NxVH+lZhzXERwDvWbx9t3LTwY2SrzQvodHaYPqTLH/
dEhZhL7u/e29Y5++tLVj8A1+qrlUooNJpxJ20LiAfT60TuELfbw5FBrbJ1Vb
hv9EB3vO8SrWC/Gfj7aPDz9yqP2LeJ9Wd7bR0pHl59JIe9X08Xrh7G9PRhzy
F41bQyuX1q2YLdzywr150wqtofCvVmkvmrJ9FNqX1uQvVBd2si/cmbuaQ75I
jVTEg+wLeC7UPdAGwNcEB6lOOtvUM9TlaLhkjDnYKvihF6s3g9dGzV++rsAn
wamJ08o/GGPwMnKf844fEbgReKjsywXO64rqK5EzV2f2o3qjYrT9mbAn4WrE
ksR9cSjw/fdprF98v7Ve8a3m2sVO5RpRv6LGVO37Wr0lIo/n+vKaE7gsnPt4
2WHLYW7hOXEG4C+AP8ZHpp4DX4lcE944fJ44suat5ox8GrtjotpLrVXsxz+u
O7G/0R6evzl3flYLpE9Ui6e1e0ul9eqlo8/FCBarp2Sf/yPJOpHnYNj68OQ7
Ny6LmPoOjd9GjUa+ntA0zb5WR0zvwfLFTq98LTRU1Rrkcdc5qLwxxo/YOww8
nh7PTu5NzQ1NTbho8XZ5BHhYdd9qHXF44vOBHaXxq+YMt7paVvoKNDPwnagF
h33zHOHi2XMwlWrmX63eDn4Nmud5HkYdkzVGHaO6CrlO+Gt5T3g09YzWC3UX
crI4KGD+1EnSTIebhEnHl8IGx9XCDlHrJ7+Iq4puZp+38bTg/8X/N+BOVMsA
l79wY77Qc7yvsXfoN+OCZIvQmF2tWiy0a7/b+nT6aWPj9It6k5Rt/HR4owyb
ec/WOhFHo3G7afXxqDOiFb5XY92ItV5a7pj9y73Sm9WP0/xDR6ZFho9JS479
MuanPX3+5pHp/cZPI/5mDl9RfiWd1fpiyjZ2OrrcJB1efzb9ordJOrW5dTq7
98V0abVjura1S0rl19ItZSt+c221S/gnzveL5udTHvvpkFYReZg8ttOKvaFE
N3ue3hwxlhYtp6Tl2gulVVqLppWqRdIS9fyhaztUzZemVnNHY+/fWT3bUYeT
bdXIDeHsxLWJT4XNlvcY3ClRT/vJ6jdRe0IHGxeM9cpntI6/Vl/eyXZAaOza
3+jeHlPe2jmh/nP4rNYztb0+p6MrN4XX89j61qgJsDeqC5lSzZVWbCyS1i8/
mj7XWz5qsfI6ke2flUIPHFepOgr2r/i2HNQmZTPt1F4j/aBcP/pGH15Z7ZT+
WO6e7mnvGXbPw63vpTx/U7ZHw/fu1LulK9s7hcb75Y2vxHrs72uau0Sdyp+q
b6TsR6fH6u9HbkyM6/XmwXmP/1Fomud9L0209kq31q10XXPXiEnRb7bu8rm+
01s37VmuEz4WzeXdyrXSV9qfSDvUqwVX7CbtfB+tZUP/HM/OAuU86ZXG21Er
ktekWKPzHtkZra4LnW91HmV1bjwDdaXix8Yyvj/4fnlm/MNseXzT6mBpiOJ/
UuvNhsCDj0dHDh5Hs9rXDzmog++DDqV6EHqVea0IHRo1V7g1aAaoIRUvoGch
RgqLj5vE2iluANsNE2G+8+PUAdIRh/nFhaX+GQ4ZNwcsMw0jHCHZXpqhvvxj
5YKBn4ajheFWnwp3mcd5YEhhDvM4CE4dOGAYTNy08qg4z2CXf974XPB95WsM
jKTcnnwCrJQGZwTTJv7wTnloYBzhxrO/FPXGt7RageWCgVynPSswZKPldcWx
vVuL03p3FmeM/bU4cfL24pAqhd2SbfNinbFZxSojJ0Vdb7bLiw1GzwwMDYxR
3gOK40dvK85q3x22yO+HHiquaD1Y5P24mN24r8jrY3FS+47il+0/FT8b+2Oc
6+uTVxTbty/J+9nsiJHAQsEq5T2gOLq8pTi3vqe4ZvKR4i/NZ4uHR18qnhx6
rchzJ9tpzxSzh+8LvNqWY7MDs5TXwuLvje8G3gw/3cvtA4sFxo4qVmufHHi2
vLcUea4Hdkh96NutQ4pZ5TbF5u0VgoPNGqxWQ50YfP605jzFmtUSgd3Ejwyj
jQsLBkFtAW4X9RRqQ+WV8n0GNgQuBEetGmO+Iv5I9en4W2FE1FvYa+2zuG7x
V+ICVj+5Z7VOcGmyRWAy1DThWsVFhpPSum98qxVRc6POgQ4MfkV1KfA0eCZw
H+DbxPWR7dPgO2A34/qSf7cHqRFapzU9clTZBoh8Mp4iOHE1hDiGDuxtGHnp
M6ovFL/t7RB2yQ3N3aLd2NotYmRX9XYqrqp3inz+bY1vFk9UPyjeqn8cOKzF
W8cGhmrN1ql9rPPECTHe4Niyv1X8q7d/8XQ1GhxSee8N/CSeKfkh2FCY4Seb
+wbGTf4bljWvV4H5u6G3a3BJZb+vyHtX2EAwuzDweV2NGiUxGLX98Ef2Xzk8
WG85EPWceNSynRfzVq0yjBMONHXS8iJqE9Wsq0vV5EnU48uV0L8RD8L1CJ9E
3wRXj3gku0L8DG+OvH+2QYN3E/cWDAAODrwGng0+ioE+rliE+APujgF/h8/Y
JmokXRMeQRwTdIvEjuhoyavRbcLPIFaFZ0INBL6Wgb7mtdWjYauo6cv+Gt1a
Y6XI+2PgvPGhwb3LY+K4XL5eqFihGoraf9wG8PTGS77O6GPjZLPGCsVWzZWK
bXorBX8BuxQngjmzYb1M1FXgzIHVwb+D502u1DrGh1LjvVRjWnAozd2eo8Cn
qkaO9pvcK20yddrq92jXWadxduCkwvFCz2u9xhlRE6Sey9yAIftCtXJwftm3
P984r8M3yceI2BDtaBy1MFh0FeDB1Fd1Gv+4UbwNJwUb4NBGt5P7rPNk/Won
z5c0rTd3WraxUMp7S8rXml5vvBN+yw2NxzuXVg90Dqhu6GxXXxw19fasF6sD
OmpGcQA6P5vjnPIeeejg2MSr2SwXjmMuVM4rPt85s/5r1K9l2y7wLPxmuuHq
juC0Lmxs38k+VcS+3M8yjb7WN/4rGIwVyrFO3gdCP1z+Gz5FbDDbu8HFSPMb
Howtjy9UDeyH3Pqhh+199ao4ctj4YmvWIPuvmLv/6YSr71u0mtLBfcrmtDap
oc62aOjKqw/DAa/+Dx7HteOHUP+rFl6sTG5ezfDb1SGdecsjOnkP7yxcH91Z
rHFsRz21e6Bd7n9cJ2op8Ses3DgpamXVBeLV+HLj0qgPzvZ9J6/NUQ+effvA
/rzReLfzdvlexNmeL//tejt5n+7k8RU+Rp4nYQdW1U1i4MGHrJYNrwQ7ctV6
0eBnWbexdBoul0p45b2vxtOzZ8tlP6Hzs/KPwY+vjleO9/D6png/2wW5356I
PB+uzVvKXufa8tHwObPtED7MVvXseHaeKV15Mfe8dsQzsO7TesdxRv9cvhX/
Nr5s/em7fc6d6R0Ywez3hg4KnCE+bPYRLg37VF/v4FOhUSAXz6fI3wm8ovpP
HNvsqGy/b4SvEyZTra79So2u2mBcD+r71IWrSTUvYUDxSeGDo5Enb4y/S7yc
bYUbGHcmvh95ZP6RWikcn7jt6vLJqLvBR2bfxQ+qZsha/UH1fzPU9fC51Oet
1l4s9qtsKwcGSv0OTCv8FK5rHHkwGTAafjdn2SjwNKnLm9lbNuo6Dm3OLE6q
tizyWhw1AnDUcP44Mi5vfqWY1d4m2yibRo1uXm+jVgxvDKysGhh22qn1VkWe
i5FnyTZ24KlgdeHZ1QipOYFpgJGeMvbzqPX6oP3T4qXeAcUD5XciL5Tt6OB+
Uh/nvNlODy6Y56v9ineqQwPjLjYw98jhgQkTL3Ds5+ofFk/V+8YrnLrvZV8s
9lqYisXbx0ZMafHRY4uFyqMDx/5yeWCRfYLi9sa3Ym+VW3qy94Pi3d6hRX7m
sUfDYnx24pyoSfnSxEVh131+sl2sO3R6YM8XGjs69uyHmt+Le1Z7d3W1c3Fr
4xvBdRIY9PLYvN7/pths6Pxi54nf9XGQ2Zb7/tg1xR7jfyhGRi+OWiP4ZX3E
Xsg+TNQ0wiGf0NiiOL8ciTiaPsU3+UH50+xvV8Vcw4cHdu3d5k+KF6r9437E
StQLndccKY7rbRrxkeDvaA1FnkUdplrnbJsGfwncAzuc/y1mp64J9xbOobK1
fNh78jT2SGMVD5oaW1pr7AB5HjEh9bs4LmFa1ZLDQKulFl/Bb4obg64wneGB
pjV9YrhlNV1wrmw29bS08fJ4CM69/Lxiz8OPldeNGe6BHgU8Ef6WdXvTo77L
nprXokL93lL11EJd9aKtKYE94lvgYLVny0Xin8KPDJuDy1NNJo4VtXjqIvOe
Gc8RNjb74eEjXF5/uTij/EJxXHOzwIbjflDXtle9TtRTwr+bC3n9CRv6onL7
4or2V8ImS+2v9e24PJ4d17HOr0bie2w1dUzqQNQDZpuq+FJz1bAd1Ivh0YXV
x5G9W3ut4AyFt9ey7RVcTQM+QDWf7lW8F+cc7gC1uLAzuATk7cRkrDfZ7w7+
w+xnRo08fnC8SHhhfC7WI65Hl5w2Mtyx52Rto91ILy7vxYERx3snP6p+GA87
v9Aa5/u4lQd6r7RF8XtYE62NdCjnrg4P7gd13p63MZDX/dCqXLL8Zeibwj6z
a+CeYeXVQhpD/A7cv4PYknGNR1qeMnTa85jBoWyddZ/8UOuq9VTfiEFlW2YG
/k68BfgBjBl+JS43HCxq/PFXsQ3FvfCEioGJb6kL1n5XPyBXGefHsY+TAFeK
Omp4bvOATYobhg9tfuBkwxmIQ1/cEc8YO7jP8/cZ+io3sEPodoklw8ziirFP
wZ2z6+xbtKLk3fhbcOa/rDYNOyv7FJ38DMI+yH0ZdkX2J4KDgC24amOxDj5d
sTH123Qs7J15/oV9RNtlleqk4Ncty3M72caMfRkPCF42Nsfi1bGBZ5N7hfWV
X2TXsHFw5wanbqPZ+Vrjk3Fd/DjX8Hi1TyevVx1cFvK4dBbkK9lj9nR4Yboo
uC3YUXQx6FLYx9lk/sept2/juhtpt+Dcwmsor+mcdAXosXysWjC4RnD54CzD
54AjB38f7il8W/qXBhN+HvwSVzUeCQ0O3PVw/2wJfDjymbhU2CHuZ/Nqhbg3
33M+95vnI76X8Fnhrt0PrQq2SfbRIl/Npsl+YNii6vtp5OjbbcuLOnl+RNw9
+y3RxJHzfOlsUrY7m9V9mx1fY54P8SzwN+a5FXFi72WbIn4nBpd9nrABxdzY
z3n+xLHo3sjxr1KeFLxw/2oc0Mnrediyee2L8cHO9Rw9Tzx6xgXMqPvSB2xm
fYuXQz6KfornozYCf4NXeWA8XJraEBpb2R6MeIBcvudIQ0ucVsz2Qy260KHC
7yCGRVMKr+AAj4p/A0cOHx4HLV2QyxsPRs0KPiMYBE0OG689TQm+Iz8S3xuu
WHqoeHX5/vRyV6tOjhiWWJf6YvU8ai/wd1mHxLryfhr7El1LNT00puXQ+Mh4
NnAr/bF8IvIJavTxhVu78EnSk8URxoeG9b+wcX/gIBZpTok669V7i0U9LF4N
64rf4x7mv+EJu7LaKXg0aBRbi8XGc9+HvYebi6YJzkucIXja1PjjHIDZ4BvD
ZvAD8XRYk/EBPF6+EvwM9hgcY/u1Nihy/wTXg1pzcR+cVvJc8oSaffz46rbw
l+0t+LlgfnHE4bCw37oH/rOYPltVvgfHHY4UvIeuD9c37lf7Lk6zrXorhm8M
Z4R3wB7ND164N2/wCGbfMnI2/Obt6lUjDoPD/OLmDlHTr75RjcD17V0jF4lL
RS5OHYyaLVxNi7anxPXxs+WB1MLgoVNTxm6aZ/iIyDd+bPxXkX9UY5f9r8AW
qadkfx3eLKO/5fqC16zeKDgk/t78bjHHUBW1t3ncRDxQneBnJ88pypFzI3/J
vvvU8Gm4y7IdMlYsP3RC1IurDWy2TihWGjuxyGMwOBTUFeZ53K+BrC4Jm1EN
ZF7fIzaYffzgXZfHHG6dFvwLuB/Yy/BWcly4FLN/U8BvseN+XW1ePNfcr1h+
+ISoJdll/LJi99ErirxWRA2wOChMNr46XCBicfwrPrY6MXuP+BruATy1+Ipx
EOoPOiDismJn7DPcpGJu/Cc5MuuI9W6dalbsI/IH6qrsN9aAvA9thEsVvxGu
VbwG7BG6CPZ9uHOauY6nfsR6/t3q04Ft2a/aAN87P9maEnop6t5w5h5Sppib
9nAcrXylvD8W8uPsI7zduHnzvcY51Vyp2cNfAiMnlgLnLjYG1w4Dh1dXrE2N
qNykfofxhjW+pL1DcVT9uRgf6tPxJLNJjUG8keoI5TvxLLAH2eq4MmCU1V4u
PHl0seDkUcUczap4tvphcXOzFd9VI79Ha+3ii/XKYbfm/op5tEr7Q52O9krh
w422PlPktTr4SfhiJ7W3DHv2oNZGwcf/mfqjwXXBzpGjjrxadVbog7PBcECz
T+AA9Z+YEl1g3JVw1bhT8ICz49jj4k6eGZ5yObm+dvBngxeWXosaObzP6gro
RfGraUTJNeBIx6/5k2pm6IvjW/I/Tix6KLBI/HKct3h6HIuN09eBWXhDds+6
jdNDp4wuCr+D7YjTiB/hfvC0w27TqcADiQ/Hbwfag7gu7R/2BVzhOPpxrKvR
hO+G65bzx+GNe4xdRh/pQ67E0Dej06gOUh4FZyGON/pBNHfw+uo7Y8t+EdzX
jd3pIMktbyiPzO7K+1HE4GDW6JoYy3iQ5q7mCG08/s8ny99Ef7MXxVfhtGid
+S6bJz+DbC99P+wq9Y5qrthB6iDp74hlie3h61Wfab9VZ0kz03Xg6mY74irM
dmUnn6eT96vOxuU5YZfI8eFczntQ5E9xMcOZmX9sSfFDjb2EXypfd9ib4m7w
qXnc5Gv8c+fbjSsjJiT3B78qHpSfQeQfaauI2dHiyj5Ah75OvtbgvBOrY2PO
1/h52DnZRoi8pTjSXfWzkf+GvbmjeiZwZPKRK9cnRh48P4/Qrj6y+lzYYmwa
tqhcvbik65Nzl1vP4yQ4EOUq8QjDgdIczOMjfifPL9+vBjWvhzfmcR/1pOy+
PJbjvnG/it2xi8U5XQPbz3NmF6svVcdqbezbs0uFHutA89ZzYu/TMjXO2E7s
3F81/hzadfTgxBTFtdhWNMdwL3muxje8ZH4+oUmd7ZB4/TDGThvvM3jM5Fno
k9JaYxvnc0a+RR7RuYztvtbfsqEnKm6GK4vmOJ49dcmulX6vmljjhw3uvsQ6
1RWxy+lLsLfpyJo7OLQHcTd6y3RKHcs1scXl69ni8kXscr8zX8Xd8OnBKVhD
aH5ab7I/F3OYLWj+uV/8V/QkcQLDocJR0WCXL6ARz0+V5zRPsz8SGg/Zd4n8
hvlm/7imsUvofOHRwyUM/wCDIFfEthqtrgt7jJYLv1nOE65KPYgc6M8bN0es
g2/K35RXgb3CZQw/y1bEy4Mnih/pVcyPHyoXSrPUXgUjq7H3NDaUWhg81mxP
fjofnl3Gr5fPkNex59H2odUll6DhLrMP4kTi99KnwVXHHoRv+mp96Yw816OW
nL1HW8g94EJ/sHpxBq5jmiVyIGojgwsnXydeK7gxnEvuH+8aXJC6dDFPNgPu
fvxPsEJ8Y7EkORZ1YjMby0Uukd6UuksxSfaeWld6UDgiaerQ7rF+Zp8gbFs8
7fpQXEvO+OzmthGzzHZ65HFn90aCd1Z8CD+lWJeYwi1VK/YKXHXiG3QN8OOo
/RRfe7k6sHi1PKh4vLVP5PPwD+GaEVd5uXwrNDTYwLi1xFPtw2IzYkJ4tIIr
uPxycX5rJDg9xHfYjmqx926vW+xWrlV8pf2JyFfLJ9IuEUdig/+4NyNyi6f3
tonrh6HHVXlub9vgF8O16Fh5fQ++AnlxNp/fHVt/PnDx4oR/Lr9Z3NPeM7gY
8DTIbZ/c3Ko4ol2GPfCzauPg6sTNKm+I70Ic9o364OLN9o/DvqHjw77WL2JT
eMEWq6dEvtc4nN6aFnmxVcpFC3y/eMfZ8bgU5O/Fktno2YeJc9GjhY8TTxF7
xJWQ97/QnaArRDcP7pHPRTeM7UYLjJ/BVzJucS6KJcEo8O3wH8MA4UKkr/ah
rvX1dDXpVlkT7Lf0W/iA8pTiVfj8rQXyiWp44cxh/T/k3A8ubDYHjgKNHoZ1
ypqlztd58TfmvXdGXtMjl5zt0bAV+GxiOnKh8qB4+dhHMFfyBfxYGi18WjYM
vko8zDR3ccyzn43V3B8xx80/fFdir3KZuCVxg+KszeNjRt7bQpcl25OR9+Y7
yhOK4/FH8drW1ZOx9shzyyPyMeHscU7ITfAL5SbUuMHrq7HDRazR4vNKe4Od
5G9zCHepPsQtnPfE4ESVv7UWW5vpO7k3Prv+kjfJfR8anp6RPQvPdt5vo7FT
xA7sKfYCfd5f/28KfVuxMLhX+ww+ZXlJsQr4dk1NgLoFNQB4teWK+C5ycmIV
bC1aRPJ0OBny8Tr5Wm6Uk7OP4xcV2xHjYCfwL3AFi3v8sLFBNPaR2Idj2jtx
ativXDeN3S82Lor4hvzfc41/4/SNOBsbQb2n5prsjzSwxEHETcRB2JW0zY07
ODY5WLqw+gK/r/gUrgs8FOJT4nauQ9zLHi4G4zrozX7IAz/QjA/9dzYgewK2
Ql5sjcYSYc/gyaAHzN9zvXgx9AtuEPlf8R04QueFBZV/k1sT/2Lv4RrP4zxy
mnAZOMEvrXaMnKx87buNn4TOcrbNw44S93urcUgnj9WI/z3T+GGHxuIgJvh0
NRo2VF6H41XzXh538ZtsM0VsUj7Uqzin+CbcpdwubTn6ZWw8zxmvvvtlo+T+
DF4Oto9YH/w1u5etvF1jtdAV+2Y13NmpWiPuD5e8fqBbSrdAjAq3CXsKtoqm
LwyL8a3BWMJRitHya9ktfCIYFzws7BP2ijoZax8/OdvgwSlg/tLOsf6px6Lv
xTezh8olwh3bv/g4dJ7ErsTQ5Vnw0eKYYY+IL+GXgeewT+V5GdhcXIUwD9Ze
ehX4M+EE+Dl+Ry8BBsI6K3ZAI83eqL6bPZHHQNga7AT1PPKX1hkxeXFufJuw
CmG/NOcLzTo+tlg7m0c8nG+l0SdRi0a7gm8kTm+tw9FHA1EuCreheDtNruvL
x2bQWbBf46t1DL+Rk4A7Y3PAlOFpgPPAq2GvUENMl4oGsL0KtsJ1iV/BVFgH
5Sf4eWJs7D21cWy7o8tb6ARm/2veyCmxST7dWjryrbgDxfCsr/QZ3Q+bCd+n
PmE7idVZe3FZ0AAI7vps74hv5blX0M3A8zlo8rFsqoHuFL11mgvwtI/VL0e+
gq2Fb1yei50UHPu9dSMW9dPmxhErgJfbp14vcsH01ey5sHLwJNPquQvXsmQ1
Nc4P24TPz/er1meLUxtbx74tdyWXi38Jh7r4gxzihs2PRf5MXEPuDQe82IY4
3l7NdYPjT44s+xeRy4Whxwl1SLuImJnrxX+IR1MsQ26aVia82dfqtcKW+Vmr
n0PDL+q3eCLxTLEp2Dm0fuDyxTRcu9+J98EH7txbIzit2EV4bhxD7poNkveI
yCuL5bF7Tq63LI5vb1bQmHCPcto43d0D7KFYj+/SHYDpooGkX37d3jxirrvW
axbq9umO0gaRM4Irh0UUi/1Ba/247t/WO0RsUv4Pn6Jz4n/8RGvxbGu+JTYR
drc5LkYsJiPOkn290IBla4mvGjPGjtymOWaO8znYQ7CZdF3Ee8VDrC04m9Sk
i3/QsmDz0EuBj8NVBasgVmJNseeLs6lbEC+nWTOor6cRTrfAuic2D7+nLtB6
x25j19BWgtsSv2HLeGUX0Irjf9HcYhvA37Gx4C8+xKJeR0vd32Ie1k6YdDFr
uUUYU3NT7EP+jC4z/Ck7i08HW8Z+ZEtZi+mz5301sID8PXX7tEXx4fNBxPj5
EmoX5OFg2/mDcGSwbGJQXvG7sN0OqYoZNJRnVdsExgPPPy5oeDO/Y/f5jT7H
5wRDq8/FK8WxaDzwV2Hfsq1CPzdsIH/TYmcH+szeID7lc7UHbCSaEGwAdg8c
pT2M30/DlaYgDVl+cl5vYn+mfwR7ZI/DY2W/5tfTGhZXkqNif+D9EK+Q4xEb
ETsSY8l+QuzZeLLs4XQD7eviJmJT4j1qLcV11Fvaw+3v9l7cQnlPiv13zqqK
+JHviEmJs9jbYZv8Xr4Jvkl8R4wEvmmB6ih6lpGPwh1kn5+rrgKv9kbjx9H8
TqM/5Lfsifeqn8T3fc9v2BpiR3JsvutaXaPzy3GJJ7ElBn/TXMl+wv9+73qy
bxnaEtkWjjwoO8R5fM9v3Jdc2TWNXQKbJJ8JC+b+YFQdW9/kOUbHKfqFjUK7
I+/n8Z57FefCS0bLQt6NrZltgYgTwbSJGbkXMS9xNDXe2WeNludCZ6Hy6Lg3
uu9sLzavZ80uhGejk6FeFlaK/Slvh5Offqqx4D22nHiU77Fz2JBsbLm6D7G1
N2bbJDSR6AewLdVW5GsKXcJBLLU/lw8LTURxevaPeC/9bLWl1gvxG3YQm8gY
Ny9wtls/8jVHzo6PlveAyNHBc/JJ8JHLu1kL5ODk02gQqQXZv7EhTvXgMecD
8VXonoo1WEPhANgNeIzFX/iU8vVwoOwOvhY+cXgFe78YuPVG3iG0XuqHIt8m
hwX7DBsgf0C/VH08rWY2EU2bbP/HmiJuJEbBT3JcNha/DS5BfR6cMX9WDTQc
i2OL+9DjwH2V17Cozbcew1OIR1nz2HvwrHjf4B1wYt9VPxs2iniQuIRcBp54
fP40DeTs5DFgENh9MBBw9+w196dmkB+oL8T1YUjZU94X+9FvcGdyerDD4km4
r9khYkJwD+oH/Y4Gopg33n/2GMxt9jXCblT7JQfovsWxxJDgXiMfk9+bs2oU
7LRe+VrU1dnb9K2/9f8gnoVzHx5p/eqjgc/euLVc2A95XQtd5OzHRZxLbZLa
M/bss9XrkYv0HnuWHYb30e/ZHbAzI+1VI8ZDN51t8ul2HzMXx2vOHxrMrl88
otHq17expehDsunkNOUu6dHD/2o4I9lfoUHZXjb0tdVKwZKw7cSP3BfNXP3A
/hNHWaO3eGi9sS3KavngFnfPbDiYP33Ppsx7XNRKqbvyXNgT+PbZdIN8Krwx
Gw1GGfeSelC2hGNFjLE9LTBfuOfYdoM+lQf2XfkluVqaktvUK0UuERZpl3LN
0FWDe8JRhF8Qlzbbiy1GawzPt9zg96v1wj79RW+TyEnhR7+0tWPgDNutL0Uu
ly4Cew5O2rlD7wdnRL4W54Njp2N5VvnFsCvhsS7sbRfYOHWArsvz1z90C64t
Hw1skLoF+tLPNF6PukTzFg5STlm+Er7beDZGrqweDp/C2DXX5P3lpsR36Hux
Zbxao+z5bAMxZHMdVs36I+bDfhIbovma+3NDPn3ejyKujlOCP03TwR7NF817
QsQQrLNi5bDa8jq+L8YvhwNnMa0xT6zf9m9+KpyJmAf8MQyxPVp8wj7ArxeL
ZzewF+QZBvyY2tcaV9x4YuOO0D9lV8ABOT5NVHhn8X82RrbJIu7PNmP3yR9Y
2+UU4GLlGeTR8IbltX8D8fx+jmGvsF/kzOA34JpgNtQU0uOVT4PXYCPJzann
o7nHJsKTxRai4cLHFvOn9Qv3gXeAHpG4npoCn8HmismpcXSt9Chpo8pbiHuI
Ickv+L9fJ7hUaFaqlVIbmZ9f4L7ZVuIf4iLiGuonxYLkmmGMxQXgfvwP10OH
S4yI9ik9QzaNvBh89jL18R26Ofgn1q/OCFw2jE/2/zublufF3+q5YKl8DpNP
qxl+BzZHng2OR/2dvJtaUDieb9XjUZcnZwXzg9NN3Z18V16DA+MDJ+T4ed8J
Pka6jUuWvwz8PZtE/AR+HJYcNgwOCEcDuyL7IGGbsCvcF1tEXktfiBGxH40t
OT/9ITbGfjT+5OfYerBc8E7y/vpPbEWMSt6KbcFuxY+Kz1bfG5vGKC5WHK/G
uFiMvnYO8Sn2jBihMSkPLLaVx76aoQ09d/4JX0JNvNyWvJjYGu15uC/npRGl
hneQV3Kc/rEOy2N8efaM8buh2hS4b/g7NXJyvHJ0cqX0d9lBuGLz72Iuic3J
3ZkD5oO6JtwY8OLGs3Gc7TPjVs5Z7OgGfLfw6HKw4sry4+aRmCmODXq/fAm+
G//JvKH9KH4kTs1voO2inibP/6jbpUkH+4RDgA1l7RJTYteozYJLF9el6cPf
oVUlNq7e2Rzkn/EZafvxm8TnaVnR3YGNUE/DD+ODwQnQ/hGToicllyKepC6F
H8tek6vJcyV06fK9Bk6YVjbso3iV2AsbwrospiHmBLsEoyn+IhbGtqPFas6L
K9PyFb+XE2enwKvCXtkH2WdsBHXdNEB8xqZxjdZyPpy1HKcJn44eDLwHHIT8
G3wnG4H9IPc0dzlHQW9bTg3mFI+SvoQF07di7/xH7/Er8SvRSXJPdHLEW+TL
vNp36D+z1difsKn6Vf0OvKscJEw1viZ9qOYKfsXx6FmzOdie4kM02+Vh2GRi
fLio4Vth1+ADXBdfn4/qvmEHXBuNNfUE+ppmjriNGNKqzcUiTidHKZcphuV+
4GCMmdDpzHad2BpMMDyx/nZP9k+4KvUEMOJyhOKH2lt1HzsLP8Negdtm89As
Pqq+OeKIYh00tT0HOsXsTvUP9mSYbtomdKf37a1f7FmuE7bax3sLF/qYTav/
3K/aM42Pnv3JGXmdDHsfDmpG72PF9u3VAiMjTxgY6/Ynwi5jN/EJcC/b8+H1
HMNYkQsWE8zrdeCm2X5wQPBqX+utFdcj5oRnA77MOITvk5sRR6HJJgbCVsjr
YeAJxUrFHR2LhmjYbL2lw3bEicAXoCtO04nfIB8jZsOuYG+4LrlLPpF4r1o2
9rW8pD6Tm2OXep7qavWlvJH4pHitvjaH4R3laPFJ02AyzugKOQ67MupLenPF
vBQvxMFofg6eq7is2kF5VRy5/qY9/mL5Zmg30aXyGxhqc8lxvBq3MYbZX60F
Ig4J4+cc03pzh30t5oVblN3GJlN/SguNPwKfpn7AnJTTksM21+WJ6ffIQ5sP
xrq4rDgs7Do8prFsPRSzyftKxN1/1/hyzD/5ZLWD7zZ+EnH37K/3c2JVP95E
2xcex5oufvMhhiHW8V0bawV+Va7F3qGGiDYz+0huAB5B3s8ayyaCZ5LzyXMj
2x2LB7YYvlZNmfiLmMLW1UqhOWd/lANiR9rv7HU0yfjf7ER5H/YI7LV4BftD
jEJsQixBTgtuxJ6IQ4Z9lPecDbKdGT573vMG2q9h9+FTh99gD2r+ZhfZA2Gm
5eHUj8OA6AM+vhghW9fex24TL4TzgPdQmyufBXeUzx3NHi3/Z88TT8QnrzZd
nADuV+0VDlr5E8dxvfr2wz36Bjap3OGH3FWRP6ObCxvI1oZV7PNAfOQzfksv
ENc0W1BuUS5HjCzbDqEdOcDTyK1lGzPshJcaB9KovnGJxi9vzOtM1DLjoYe/
kUdiV/utV8div/jdAOvMtnd8eBqcPWzxbPNG3o4tL17HLmGHi7Goefa77zWu
iecAOyM3Jd/mOchfskn5D+r8cZJkez3sDraU3Lc8IcyQY7F35LdcBzsI9/Yg
v6o2GyaPHaxfYHpocHtW+navxrqBw2HbyGnqW+eDCaULmu2HsMf7nNfXwHhu
lPuJrir7ZQPjCTYfd7++1peOma/D+SIvL9cv5gMvp5bXK1tHnpyt43O2Ey15
+X2YwnwdMf77Gts/3CivfYEbpUUn9i32AyPilY1jfqtBNm/NP3aZY9KsZj9l
3ytsHzaT89PTtfbDhsNri4njChTP8X5f03la8MOIWzmOccquE89Sk6HGXOyX
biuMkTom64pjwCzk5xO6Cmqa8/iUo4rf9LW0H9lIHj37/FFTDdPod3Tl1QzK
CaoZsUZ5D/bS9bEb2GvwAHxRaxxdCP7ob6qtA59JD1fs2jWIo9mj7He4Hdgh
cgi0KNV24XqAeWKL0H93/ewTOX+/Z1OwI62Z4nNyD2Jo7AzaEzA+bDv5L3E2
WEqckvTwojY525HWVzVEjgdTgFcJPpLWHtyvmJQ4l2uCO7U/i2nJ1bEVPB9x
MXj+7I+GRoV4vPuFh4C/gE9Q/68v9At8l9j9ZdWXA9/FtpR/ZZuytdWVw4Pw
82lV0ruAacAtzCZnv3ouxgn72nm3aqwU8QCxf7/1XP3tGdJ19blzyA+wA9T5
0FqFsR7kZNiT6p/Y25p8BftW/+sXfeS+YPhdG33gpRsLxPHZPMY//Jp9C5bD
Ps9+FMOUTzJGxCmcM9u44ZfIl/Cf4TPkSuyHctD6Vd2Cmgg2vVwJO18sVizS
Ped9XKwy8i7yLfk7sQ7wzc1peRe4OuOCnQ+nxaaU4xLbZAdlPzH6RR6cD2+/
5HPltW0jusP6zfiFZ+GDyDfjn/T81WdkXzbmJH1iGBzPR4Pz0f95Pw3b3LWr
15Cb5QvwK/gp08vjwrbD+eQ85poxw9ZiX8mPsZXwmrh2dp06ReNy9/KKGKd0
To13cU+vbKldqstC44/GXO7fwFCLC3uWdzf2jDFvHrkv/bBhfWbYwfCEbG91
beLVatlg6eTp+RfGrNwe/8Vzh2Mypx+uvhcxZvY6rDY7H5aPvec6Nq/ODzve
nD+1sXXuw1UjF5fX8uCCsi7qN5wO5oo5DV/kWeHadkx5M9cP18SXyz5E+LfW
UzhMeG7rJxtV36np85yNQXhJ+AIxNfZ94ALLsdD/tE7Rg2XXGn9478TxjZ3X
GwfHc2bjs/1oQMIysPkGOXfPxjgwtvWHezA32dri+Mauvv1Z+cfQ0YR7yrZQ
rCe7lJfFXJH7FGe3VlsfB8/GGiiHYA2Cq2STszPhE/gv1jfjgh0uJ8GfhkfD
f+IZWY/lHOHY1BCw0cWx1Q6qkaBl6BrkNM1P1wyHrn/lNa1F1gf4eHU7crbG
K9+bf2P9tjaYR+al9c8+B2s1yCWKC7DJ5HHVReDxP77aLNZyv7XmWMv55KtU
i4rVx75oLrLLst26of3XXkvPft3G0oFRU9+pf12T5+09z868E/fko9PSXavR
z0FbD6yL1j3jxNy2Zpm/aps8P2ujPdN3PEdrMz/ftVnXYevkfOx9+D3krY0z
eVz7IDve2uycNI/UF8ASqlGF3f1mOR71x2pgYW81uFz5C9iXbauLAmtjTDqP
5j7tt8arsQAnq3aajwOfgh9HLgfn2W31U4GtgfUfaGvbj+1Rrl2swTWrMbCO
8EnUioo7GNuDMa0+1n0ZP/YY44BNgL9GXl3swpiwlniG6gzUa2iOz//3TI0n
z0V/2jNovtvP2FZTq7ln0M82HhzP2FHLbS8RFxnkvO1Nrt3+xMbwzI07OtHO
a+7hPGAveZZiIgNstf1VX/qO9YN9wS5QRyL3pOH4F3uBA7JniSOZs+IN7kcf
wjmJh8jp2QdgicWX5Ois4eYY/JM1Xi7PmmvfU7/DToh4Ve4XtX76hk1nn4Tx
ERfyHdfn++wg6+2W1ewZ29UXx5gwR8Uo2F7el9vyjMTD1CVbPxzP567FnmmN
Uz9j/7CO0FFXM23csqfYIwP8gLoX/Wy8a3xTuAPzCQbB8xusCWxja7c9XNwc
TsIaDu+AJ9Se7BmzXdgZjjF4ltZm80m+lB3rmcM5mIvmGxynWhnPznpG58az
1scRL8j3IGbg1T362/OAP6OLo+kP9Vs4vuRexa8OrG+Imhp1MPYUdUNsRX1m
D/Ac2I3yp/KVsDBiEXgwYFXNKbVgnoPnZOzBoeKftO5p5pkxj8fcuGHDGgua
v9kyxhUcnfXTs7L2sQfFKP2e/eSVPcDmNvfFH33XM7ZXDxrcjGdpDrDL3Qd7
gc3GrtUnxqN4obXAdbB52WLipmxnfgEdec/FPm4fZBsY+/C7+lGf2DfZFnmv
jefh+chB8bms03wP/rL4r/gw20x9kLXBM/FbuLioR83Hdm/iu/YKORR+G+7Z
9RpnxB4hdsxvcn36x/wwF8SIBnhh/cEWcBzj07gRK+N72Zuc1zxif3j2eN/Y
/huX54RfIS9uvVefy5awX4hxs+WsWdYb/W+usH2d64iqjLXdHmVf44eK98vj
iLvzPfmD1jpjnh2nD8Kezs/HOsW+4XsN4tH2CHsau9oc4SOI97ArxGfFmsSZ
xJVgELWJ6p+xd8Bks0v4OLCGcIny8WKocoliYGJ5YsiwWrCMb1bvBiZTnh62
y1iXb8SNoZ/U2oqxioHymWC7jH17BZvTWLZm4cHM/nCsHWxCe6k1mB1oDXMc
tqMYqxpevhPbyxqqpticsbeY83gb9K8YF1uGfW1dVh8ofup6xVrhR+EucSmw
Ca3J+BrEI/lgrsNebn21Dtjj3IP5C48qdiemyS5kN9hX+Eh8b2MA94Gxyw9z
PPlUfqH9Xr5AjI6tM4jNsmO8Oqfr8Jzt8+LU/AT9FVrP2UY37lyTfcZ1m5di
q2xvvAx8Un0uTirOK2/s+eCXYDPCkMRzaHRiHbJXDepE2Qb2LXuQeWt+8HfY
4fY2cw9mw/pjLzSmzRXz2HMz/wf3IfZsn+JT20sGe4e9ROMf2/+sP+ob9Qu7
3HHNO/68+2LzW289K/usMao+yXgVL4ZrVaO0T31NcLrCbpjj6n74NbAgntVx
9Z+iP1LVt33lIfxtHLCh3Stf0V7B3mCrweyJvRij9o4B/4fjytd4NvrD+/rQ
em49cP/6gh3PbmMLmqvWA76P9Z1vYn217+gLe1D2HaPfPVdrC9/ZuMFBM8AI
GevaQM/HXOdPszvZWcYj+8bv7At8Jf6H+xL7UEfKjuQfWlv4wOL6cnTqy4xZ
tvvAzvM8PAu2nvvkm7FXrL1iMQM7mM1tn7bvs1+Ndc+djcG3sN4av7Sj7AXG
HTvFPetbfQELzl8x78S9xKztp7gJ1KDxI48vbwtMkDFsXRAT5x86D1vTdVkv
rQv2P2ul/J39ku1jjMD4RAw++y04e6yP9nhjhj3ATraX2jvYM9YnOHbj3jyz
dvHh2YHWBvuJGhdYafkVe7u929g3poxnc3rAk2Lftq+yrexl5jJ/3ngyf/3t
fjYozwz/1Xmtlfx/YywwpHW/b/j/nonv25/FBuxPA7yU6+PLWzc8D8fge5mf
xomx4T3XM6iRhu+ydpvvMOn8Xn3jnu2F5qVYG/001xI2RLYFND4gvgnHch+e
jTVYzMzaD0fl/UH+1bNnTzqe4+o/OHrntT6Zy+xT96of1OFZP7xnLPFJ+Sns
M/Pc76wZ+rZZnhD7ANvbfuEc+spv3Yt7Yv/aTzwHcQ4+dsRD8t/mtvUVv49z
Ru1fvg6+Ntvc8zKenNcY0u/WH7a2+zdfjDk2vPNYt/3O/VlXncd3XavjGjfB
85jtHM9Nfs2Yci2uUf+4fut0zJlG328wP9mh7E/xFfYGnwXu0B5jrzH+/E7M
SCzEemmf1seuz/oMp2dcWNPFz9ilYmXGr/3IdbqWge9jTbbf+1+/Dea1vjI2
2GjWMb6o5nlYJ611xsiAj3cwjsP2zuuhcWHch22e9wzHchzja7BX2FvcE3/I
vXsm61Szoo8cW5+4H2sejKV+EK+2Noml8f+sCzRpfZc9axw7tjXUGm5dtcby
Y/iU/I1fVpuGH2xNZmezNfSZWKP9kN1u3ba+28+sv47HpvFM2JfWb2vlwF9l
41pLHVd8RN/bRwcxXeuruCD+Ues0TLY8gzgsuwO+nE/Flva5GBhc0luN98K3
Evd9qfFW5AYch63qNzATvs/HUjfofXbkAOduX2BD2xPEhcVw7GnWRffBR7Y+
8s3Yu65J3Mi9qWXGyc6eh4PP4yJic46FZ42f5rx8+Gcar2+0SGNK3Kt90ufO
z4bnB4j58BHgSfA7s/P9L6/C7hf3Y0t7zbZPxH1w7UxrzBN5ODkWfoH8pWty
TjgMx3ed6hb5HLC+6s3lPeX91HWzxekgiw+6B684qOG71mr8JmoD5T0cl78q
ZqTP8zHCB1GLOYhViA+LVbD92eli2J6fvI9Ys7jGfY0XNnqs8Uro1ng2PmPX
e/W/7zku/Jhji1OzN2FfxL5h0bw6lzgLTgmf4ck3DjwD40S8RA7A+cX65ffl
rDx//gTcH7uFr2Iu2I/ZQca1eRL+YV5/vA5wzfYQ85iPyoaxB9qv+IJsYDYH
G519DVNgPnqfr8VXMfftefzq4JnM89/6Zj7ZN/lP5q/YL/tMnJuNJgYh7uh7
1gO2rPOLudqrxe2t1Xw4+zQ/BfaDPc83UOsNpwNPbM21B4qRWcvEyu3vhzf6
ticMAlwBLIh4GSwwnqML6/siPySuxjYRh2OnsDv5C+KmalbVpanz5ovBArBp
8IvjFvc5/AbtKLVe7FT8NHDDYq5ixr6jDt+1i/fBSMOF3lg+Hr4YzIC6NfVx
MN18N7VdsEjBk1y/8D/7F84aplgsFy4argWfCmzLoDkGHRTcvXAQcA1qg2CX
cfzmsRS44uVaCxVLNxeIOmoYGtgItT6BlWjPG9jwqP1vLRi4YDxLn2wvGbVi
aozghHEIr9hcpFipvUgcb8Ad7Fy4f9Ssex9mRu2Q38ED02LDFwinjOMaVhje
FoZWPTeu4+AcaPfPjcMGXganKEwz7Q44GHX7MMpqw2c0ly3yvAjMMdwwfBEM
Mzw1DI7zwiDju4J7gXdepbXo/+5tzbJfX+dYeW4Fb7Lju07Hokmj9m7ZxkLB
YwM3HnWGH+KsvA/bnO3qYuXeInEv8DrwTWq04M3jnnKfBLdCOTUw+OrLHc9z
mlrOHdzPczXnCAyN2kfYb9imAbZmwCWlf2HJ4bphWTwD94Jnp1kuHN+bq26E
hjQeLHgYvNHquHAD6dPh9lKB2V67Xiow5DDn+ATcR/BbVn0dH/Vkee8Krh+v
X2itHP0E160WEJY5OC7zWICN129f7X0i8FNfKFcOTk/PxDOCJ3dO/a1/ov/b
/bGFGytw642PB3+W88B+exaeiXtT+6ev8WLDCMHM0XDDG6Y2wthxD+oOPW/8
C+7PM8Y5Zjzqdzg24xTPV4zXZn/sBvdib55i/nquaHDqg2cAJ6T+zTh337SN
9BE8m3rCwM03l48xA9sGP/7pcum4P30D9w5z5Dod17nNO8/T/Ti3cQEXr6ZP
v3rGxg7OJef0DM0R3GfGk/EzwB1aR/BvqPsUD6J1Ir5vnRFHgpeCM3y3fj84
1MSGxIjgBeUU1AM82Xgt+5GvRF2HGggYJ3Uo6mvVU8hlqf9QTyuHIEZhbcY7
KW4qNuX7cgpqYK15fmv983t1KPxA9jefhb8vP7JneeX/+GDZuXwg67JzOI71
l6aDuIiYSPCF5vXd39Zra3nUlGQ7WdwXd7w8mdiD8wbfetmvWcFpDKcf91g9
E/yz8jHuVZMj02dwXdZdsTdrPL4u67HfwWbSG8p2QtTGwo1Ze9V6eBbqJHCl
qP0198xx48zchwu0dkxpzRU5HLozcG/idDCM1gA4UONFM96NAbg1xxhwy6ol
jvWgN3+sAdZqc9f6Zp4Yk9a9jVofizVQfYi1FuYv6l9b/flhjKq3sBargbC+
4nHG3Z9tyGLneo2ouVDvihvWZ2pu8cOqqf1qY41i1+ZaxTfqT4Vu1/fb64U2
Ek6RbCsXh/aK0ANQP4u/WT3GQVW/ea9qf7bI9kXUtp7W3Cb4RvCZ4ZRTq3Fx
b/tidnO74BS+oLVdaG9eWu4YdbE4UurW14ube18PbjS8Zbc1vxntr+W3i3vK
PYu/1XsHx9xEuVfxt97e8Yoz7c5yj+IvzT3iez7Ho4yD+flyv+LF9gHFi60D
gp/P/8+WPyyeao4Wvfa+Ra/KrbVv8Y/ePsVzjf2CE5l2Bb7leceOyGv1UcH5
PL19XNEcOSE49lacGAvO5pVGTwzNhRWbJ+Y5fULw3+Fozv5WMe/IEcH9t9jQ
scUK42PFypMn5j325Lx3nhTfX2X8pCL7Wfl5nV6Uo+cGlx6Njs2Gz89r5nnF
5iPnh16pRlNj45Fz8rM+PTgB1xw/tVht5OQ43hr1KcHd57NsvxUzJ8/Oz/7c
YpORdvH54fOK7PMW2a8PfZHsFxefH8rvNftcghrtDnzSdD62LHMbn11sPXpB
sVU9OxrtkC16/Wuiu0ZbLfvwxWeHzi02mziv2KI+v/jCyIXFtiMXFTtMXlLs
NPq7Yuehy4rsmxe7Dl9efG3oimKX0cviva+MXFrsWP22+NLQxXnsXVxsM5nP
07wg7jnbfHG8Tcf7bfPx/H+zf++f77WLzw3lNnFu6G9/fqId9+W63NcWzdnx
e/ewVeOCYpuhC4ttmhcWW7cuiHuJ+8qfbd4+P5rflO1z8753VvGZoTPjGQyP
nxY6bp+uTi/Wmzg93p/ROyv4EzebPK/YcmR2HG+biQviurepLyi+MNrXjt+i
MTuOqX9mDJ1dbFCdWaw9eVpo2tKh8+xXGsljpXdCXuvH4pXGy8qNk4pPjJ5S
rDlyapHt7TyHT4/nSENuo/KsvF+fE5zhG7fPKWZOnF1s2Dwr9HE/PXZ6se7E
rLje4bHT4vl/cuw3wQs53P6wVfm98d/k/bL//7rDpxfrj51RbNDKxx45K/rR
8y+rc6NtMtouNin7bbP6vLjHLYZnxzMpx86NezdujKGNR88Jbsns8+c98zd5
v++fO/ty2WY4I1r033Aei8PtYouJ8+OZbFteFM8eT/lIK7fxi4vtmpcU249c
Evo43t+2dVGMJa9fGL8w+tuzjWeGAzOf2xif2cj90uo3490Y3mpidrHt+EWh
RfPV4d8Vu4xdVuzSuqzYqfpdjLsvTl4Y35s5fE6x/vgZwZH5qYl87UOnxau+
+nS7/wz01XqTp8c9uc+1e6dFn6833Nf5m9HI11Cfne3Js+M+Nxo9q9iw0X8+
64/k3w71+8H3o5/y8/lE+5SY/yu08xhojsW6YA1ZdejkbEOdWqw9NCvbRWfE
s8HJqc+3m7w45tQu1WXF7uUVMa/c0w7Dvy2+MHZhPJ9i/OwYs8YbPZ5VJ0+K
Y65W9tcbmkLZJ4uxt1z167y3/KpYZrLPUfrxOo/JsbH4zqrNk0PjyJjMPnax
4tCJsebRZ15k8hfF1JEjQ0vvreYhwfGE2+np1mhoNPubNg0OyxfK/YvXegeF
LlKjfVi2gQ8PDlRtvskjiqnjRxYLDh8dx6S3vHTvuGLpxvHBm+pcePYXmfhF
seDQ0cWU6uehEd0YOaz4T31IMVn+qHim+cPgxL+/vXdoEWn3NvcK/tSHq+8F
f7+1/vX6R8U7rXwNrcPy3pzb0GHF+/VPQv/5jeaPQyfQ+v9I73vFXfUexQPV
d6LRAXipeWDxr3r/4qH6u6GNc0vVKm5utIIT317j+/YbugZ/aexRPFh+t3ih
tX/w57tnugLZX497n3v08Gz/H1lMmzwy7gXfvobrNfv1xSvNg4onWj8I3QDa
BVe3dy6u6+0S2gnXlrv0985qx2K8/Gpxfblr8HHp71d6BwbHFq4tOpOv1AfG
PkezSh/QQvhz+5vFjeVuwZ+FSwOfp1pH3BR4OvBU0GL4ZbVpvE/zh2YAjgu8
YfjHfl9/Jeokr27tHDpEdLNpEvnMddm/cVvQL/Kd6xq7Bj+939DQ8r69/9Tm
1sVYe4vimPLzofnwo8aMsCtwhuAgw4OvPnO/coNi/8aGxYF1bs1sW7Q3Cpvj
kKqvFRH2RbV58JixL/CLxHU2vxqcabSU1Iae09q2OKP9heLE5pbF0a1NgseD
vXJAtWHUieLp97pftUFxQHvD4ke9jYqf1jNDK+G4etN+n/Q2Dy4T/Guzqm2C
6/e03tbB6UFD8pRyq+KkcsvixHqLqEvFm6KO9PvlelFvokaEJgCejt3bnwzb
a4fG6sE7snmZfeZGM/wvtce0N7zPTsOBQh/qp72ZxZHl50KP7JCyCG2A3atP
5vVz1ajNHfjB4XuVi4cfyD/D6YxLVz3u4NzqaEPDKfvSfiNeQKNVXY1YCp+C
z4ArRlOLQSOEXcsWfqvxXsQocMiwudUAqVWBZeI3DDRg5T/E5sV+5D1gG+RW
5b5gasUv5bjocovjim/JkcmHwErAJItL+Y18kjiT+C/+M3FTsdS7G88H5los
Th0b/CgeEZxoGlw1LAL9Sd+Bi4ZxwaMBJy3HTydXjE78E94OHhJmRmwVlhOO
T8zLtYobixvCZMOVOqaYptglvKm6vL0a60ZNBzy3OKUYpXOppxOHFFeEvYLF
EocUB8avAocrXuz6xDtxuqrLULOhdhc/mBoBtQXqENX6wtWrU8CruWJjkRvp
mqsnVAuJb9Nv1QCrt1CDu3Pjsqg5oKedz9fJfnlwcqgXUe+L94zmjZoRHKn4
J/DpP9T4XnBL4NfS8FnkNTk0g/C6DrQc894ZXP7qVLNNGhzNuObpDaopzX5c
J4+NznH1n4IflZYQ7Vh6QtkH6zxevhI6x3nMdd6p3u9knzZeJ6v/dOjIvli+
2Xm1fLuT/bTO02VfF/ml+s3O49UrHbq09KKWbE9NK9ZDafPWCmnjarnQRKRb
m/3tRP929XqxlPs+rV99NLRTs/+dsm+elm4ukJarFkprNJdIee6EnmLZWj40
InOfpjyHU14zUvZ/Ul670hHtMuW1M/24npF+2NwgHVBuGH9n3ycd1dwknVBv
nma1tkkXtbdPF5Xbp/HWV0Pbkf5m3jvSffVeobWtPVv9MOV9I/Ta32kfmj7S
OCxa3rPi/39XB6e8P6Tn2/ulx5r7pAfa3wktynuqPdN9jb1TXuNTnjuhs533
utQYOyzNN/TzNLV9ZOhOh7bv2PFp2eavc1+ckLINkFaoxtJK1Ykp7+1phdZY
Wq78dVp++IT0sbFfpeVav07LNH6Vlh86IS038uvUHD8hZR8nrdI6KWV7IDTu
V2qdGH9/fHgsrdjLbTK35olp1cbJadWJk9Inxk5Jnxz5Te7r01O2o9JGY2el
bKelbL+nbCOnTdvnpWzbp+zjpM3Hzg/N7GxzpmzLpM0a+f9W/n84t6H8d7v/
/5at2Snb2in7GinbiqEVvnP9u5TnfvpG7/fpWxPjac/WlaGLvud4fq37r3u3
r0rfGb46fbd9dfp++5o0OnJd+uHQ9emAsRvSQa0b0497nfTToT+mauSm/Exv
SkeM1/n51umnvW46dLibfjzZSQeN3Zj2b96Q9m1eF3rxe1dXpT3LK9Meo39I
3xr6Q9qjnVvrD+nbE39Iew1dlb4/ck3Ka2Dab/z69KNmJ/1s/I/pyNGb07GT
t6ZfTdyWTpj8c/r1yJ/T2NjtKa9D6aTWHemU8b+kU0b+kk4e/ks6fvy2eP/E
ofxZeUc6bPimdMzorakauykd1rwp/XyiTj9v3pyOHr8lHd2+JV5/0bslHTd8
Wxxr1uhd6eze3ems8bvTOSP3RDu3d086b+LedEHrvnRBeV+aPZzbUP/vC8b6
/583eW86e+ieNKt9V/pN+8508mS+hsnb0wmN2+O6f1n+KY//W9MvGrfG38c1
870M53uob4/r9pvTm39NZw7fnc6euDvO2S7vjfOeX02k2c370oWN+9PFQ3/r
67SP/D39vn4wXTn+cLq2ejTdWD2ebmw/nvL6mvK6kOrRJ9NNzSfTH9tPhHZ7
Z+gfqdP8R7qh91i6fvyxdN3ko+ma4UfT1aOPpKsaj6SrR3Jr5b+HHon3rh19
NF03/Fjov3ca/0g3TT6Rbil76c/l0+mOkWfSXRPPprsnnkt5L8lzKrex3Eaf
j/f/Uj+Tbh9+Jt02/HT609hT6dbhp9KfRp5Kt4z20i0jvfSnKr83kV9Hn0q3
NZ5Otw09nW6vn45j397r/33HaD5H79l0b/18nqf/Sg+OvZgeHXk5/WPo1fRU
77XUG3stPVNPpqfHP2zVZHpqMr9fvZaeaL+a/jH8anqs93J6ZDi33kvp4ZGX
0kMTL6a/D72YHhj7V/pb/UK6d+if6e7h59O9vefT3ZP9e7mz3b/+uyafTXcN
P5f+2nouPpsY+2e6f+SF9Pfmi+nh0ZeiPTLxUnps+JX0+Mgr6R+93Bqv9ls+
t+vUnhh7NeU1Nz013G9Pj+XXofw60m/PTObW61+/+4nrr16N9lgjH3v0lfTo
2MvRHhl6OT3YerF/X5Mvxf9PNl9LeX9Mj46/nO6qn033t/J9Nf+ZHh/Lvx1/
JY7bK1+LYz3SeDk9NvFyemL81fT8yL/Tc73X49riXPmYfuM+8p4QffrMRP7t
SL+fXxx9M71cvpVeGH0jvTCe20huY2/Ee681/5Ner/+TJkf/k14deTu92Hoz
vTL5Vsp2T15X30/vD/9ftPdaH6S3Jt5Nb/TeSW+W76b/TLyX3p/4IL03kt+f
fDe93Xov/bv9TvzmP433U97H0n+G30/v9t5Pbw2/l95tfBB/v9vMr0O51e+n
d0beT2+PvpfeLt+LY7/Veze9OZ7PMZyPN5Lfq/Nr9V56b/yD9H9D/03/N/zf
9N/Wf1Oj+ki3cfBHunOONbpzNBrduepGd+5yju48d8zRnbeaszvlmLm680/O
1Z32ztzdhap5uws35usOjea2d25VbtfnNmu+7iJ1bg/3/47PR+brLrzBh9/x
3nhuB+f3evPG5wuN5mNN6f+vLXRJfn1n3v//m2Py8e7Ir5fk1xfm6y46MqW7
2DtTuouPzN9dfKf5u0tM5Fbn9sL83SW3nNpdsjW1u9Q7+XW835aaPq271FBu
q03rTt+y35aeyK/j+fWO3KYs0P3olgt0l94gv16fW3uB7jIP5/bCAt1lX1iw
u+zDC3Y/Nppbe8HuMlPy6/X5vTtym1iwu9zIQt1lh3KbzJ9tkD87JrdZuR3c
f12mzsfbe4H+uSbzOa/vn3OpZm7D0/rXeEm+xjq3O/Lfe0/tLjE9t6H+q/+X
PHhqN9sU3WV7C3aXHOm/v9jw/P0+uCTf9/DU//XBYqvN3130kindRaZM6S56
TO6nh3Orc5ue3997Sr8fj/mwr4fmi75ecIPcGrkN5fbCPN0FH+63Bfaepztt
Yu7u1LG5u/O/MFd3yvVzded7Yc7uvFvO2Z37kjm62dbvznl9ozvnrDxepje6
jfZHuh/ZILeb83gazeOq+d/03tgH6Z3R99ObY++m14ffSdn+Si+33oq580L5
RnpuOM+55r/Ts+P9eZftsPRk79WU7bCY3w9NvpjuH3shTVT/TH8tn0t3jj6b
bp/M62P9VKybfxzN6/hwXsPrvIaPPhZr9h+aD6fLxv6eLm0/kC6q7k+zJyfS
ecMTKdvN6cyJv8aectrEnemU9l/SSe070ljr9nR8+7Z0THVrOmry5nT45E3p
0ImUDh7ppP3a16d9J69N3+tdnfZuXZW+3bgyfWNoPO1eXZF2G7087VZennYZ
vSx9tb407dC7JGyJLzYvSl9sXJS2HrsgbdGcHbbJJmPtVJbnht0yo3dW2mD0
zPTp9ulpndFZabh1Wlpz9NS0Ru+UtPrQKWmV6qS0SnlSWmkk20SNsbT8RLah
mr9K09vHpcXHjk2LVsekhVpHp2nNo1K2ndO8o0ekuRqHp480Dwub7fXej/Ia
dGD6Z3P/9Fxjv7zejaYn6x/kte776f5q73RX89t5j/lmuqm3e7q2vUv6fe8r
oeF+fmskndPeNp3e2yad1tzmfzrwP++VKfvJ6SfVzLBNf9BeP+3ZXie1qk+l
rzbXyPe8atq6WinbXSukz9bLpQ3ay6RPNZdKa5ZLpFV7i6aVykVSngdp6Xpa
vvYpaUo5V5qz3Uh5nITmJ9v7/uqFTn6GnV/Vt3UuLR8IDYa/NJ7t3FQ/0cl+
Suiy46ehscA38PdIdXFnh/qS4KqhWYXLF6/egF8P7w3+wOxnB0/O9tVqoXOA
I2bJamroQtDyUitNf+v3ja9GrTKOHvXgarrVIuPWVRee7ZTAn8DAzNM4Inji
4FmyLxV+HzwGfwweBe6CLwaLDjeMFxJGAh4Lfh0WCwYDJhP2Aj4S1glOAp9/
1PdVl+IgjzwYTKOaL9hlvG7qxeStLqn+Fjz9cnq4aGHA+dByWbjs5bPgAuAc
5KDwJMjxyVvKIYemXGv+/+UUaQjTI5QnxXUlLx95zPZSxTrl9MgPRR69/FhR
VH2eDjxc9ArFH/CUiTloODHkh+kp0eTBgRocXOIHVT9+IJaBr+JbjbWLPaq1
4xVn13fLT4f+Ex0f3KsRX6k3CK76n7RmBqfsEWUZsQz88sdXmxV5vIbGzK9b
m0dcCD+rWArdxLOqLxbnlNvG315xx8+uR4KrCw+qGI+Y0u/qvs5nnhPFePur
oRkq/kQ3m4ZmHiPRxIXEh8Syrqx2iu/gUhWjkneiiy339KfWN+Jv8bcb6l2L
iWqv4MCXV5KH+mN79yL7yHGe+E359YgJ0v28tfmN4qZmPkb5jdACFSO8s5Vb
tUdxe++bwaEvHideeHfv20We1/H57c1vRW7Le85Dg+ruOr9WubW/HbpUNH4e
bH838lpilNn36+tV5e/T9naMOEf+m463WKLmOLS+7+3tGecTO4xW9c93b2Ov
4t56zzin912b6xXjHFwzzffbet/onyf/rY9oi/r8z63+OX3PeWlc+d99+sz3
aZjK5d1U7x66CnX19Yhz6u/I99Vfj/f8LZ5K/zxih/XOxTWNXULnMrTQmztH
3NFzvaqxc5H96uDBjbFQ7Ri5RO3C5vYR/zNe6B7RMhDXFL8TCzTGjDVjzhgc
K7eI96MNeIIbWwS/rnFKkxZnsNym+B6NTXFIsdPs90dM0TgXr6SJgDfZmBe3
jFhga72YH7TVaDQEt12eT/iHaXDSOdilvWbkXXcq1yi+Wn+i2KFeLbgEt61W
CT0tOqqDtk1z5eBQ3rK1YuhDmcewNDj3YGjkheWJaYnjRYbtWLs5PbANsBnw
MrSfYDbkmldvLh74HN/3nnUETzVsBM5C34EPgimBf4GbwD8IVyT3bU3CX2hd
wmc9tT13IVcOj2DNkj9/v/F/kRP3GeyLV7gm/NRwUjgb/Y2DUD2kHLpYpCbO
SGck8vSNN2bgo5G7F4fE7wJfhe8R96W6Gt+/s3o28ACwAKn8R2AnYAPol2r+
hwejtQmLAO+gwaTBhMEqwCeoW4BRg5XQ8MGIc9JEgIdXFwG7piYUTkGdDDw0
bDzMg/oGNSHqsmEhBk1NB/0X9RXqGTT1zRq8HFw6fDJcLyx0/F1fGH/DTtM+
9b99B34aBl1NDOyeOgZ1Xnic1DdEzUfZryP0v1fvwf7CC8INwldrsMb2NXhl
2F4YQDh6GH7/i+f6DM7PezDn8b0P69ngjgPTm9+HSYRD9L4aA1h3eHCYZthF
tXsDPgr/B569PibwiL7jfbhjn8ELq5Ub4PDhe2Hp1bKpXXAcmGTfV38H+6vm
0zXCuLsP31W3pD4DZtGx1APAUMIeq5tQawBH7NgwjXDM/lfzCfccNXr5XK4H
3hu+Un2Y3zq2/8WxNfUPYtkDng3HgeF0Ha5fc8zBMQbfdRzxb9fobzFx76vN
8B3vaXDPfhe1G3W/+RvXk1efw2CLr3tVk+I4tEEG+hy+517Vfrguf8N5qy30
XtQGNT7s56r/fb8f1FOwh9yHfvE7r+5RHaM+ivtt9D/Th2wo59acy6tr8rw0
53Xdvud954AXdw7PxjXpx7iWql+Lq3/0h/pteYSBtsjgOcOGa/oBz4H6PK/+
hw+XZ1AXBCeuht/fcPzqjtl9nqO6Md+FOfe576nxl8MY6AD5rvO5D/3tPd9V
AwCnPnjPtTqO+xncu2t3jd53LtfnfO7D71yLmhHXOBgjag7U2Xgm8MLsVVwl
jqefPCdNDkWdsCan4RqNG7kXfDd4z+CM1VupB3e96ja9L/fiuPI28PF4T5zT
NbkWfake0nnVIePpU2ulLg3uXy2Pz9Xx+F+d1IB7WR+qnRrUsPlbLavvwSs7
p+a61Ra6HnkZvA7qxHzfK2y/61d35HteXbO6Lb/1HbVfcjneV5shp+Oc8Mya
3zie7/m+77oudV/OyR9wTWoD/F6OCMcEPD6cNky0enoYa30AS6/uWh3BoG5M
bkntNKy92gO1XtkOiNwWzXN1DvD83s+2QdQoyHkNeF7wH6i1xnHBT3F8TR22
WrcBJ6F6AN/1W+dSEwDzrzmuz3zPMdQVZBs+xo/6Anwn8nOa+6uqz8Y5nNO1
q5dQ9+Y6XbP79L/npmZD33hmakqNAzUbPlNjoZ/1nxplz0V/Gl+w5Lgk9L1x
BKPuM2PEPFSnbZz63PP1yi/zmbForBpfnq3vORafTa2JMe276mn8D8c+qNfW
fO44cOzGvnnnO2pMjE/H8uo93zWX/N449hufO6f3zAXH8OozzTk1c81nxv5g
TfCez1y/3/jMsfwvV6qpqfM959Mf7sV1mIfO7Xeu1Xe977fqnvWHeWF9Ml+8
535913ec17m85558x/wyx/2tmQPGvvloDvvbd/yveY6Dz12P46opcO5BLY1n
4hmbR8aU1wGHgDFifBln5qOxoobdXPNdY8DfmnFlHBkr5qVzuyZz1pgZjCnX
bC0YrDmu13X4jXmtuUbf0TfGhd/4nt8P6husZbj6XK85bm67Jp+pGXYPxqnv
qKcY8F0M9B7M90FdtffUMpmf5rY5rL5H/YdaEOd0j4474HqUk1aH43/z1Joi
/6y2Wa2KelG1JGqEHIdOBs4itS5qUGgW4nkY8Kioa5G7xmkyrTEP3s2Ig+AS
xP+ghkdMRJ0TTp9Bvc+Ahxa/k9iJfPqAqwk/DM4lehl0Vr33WGOf4PBTu6Pu
B8czTj78An2OgV/gVt6QhmQ+TnAH4iTEmYvvua819dnrc18Hr7JXfHG4bXEG
ynPLcednFpoVctw4r/O5g8/OK844XHM4r3EBy5/jvsZJiEMPNzDtzdxHndyP
Hflw/Il03ml94UykPUqnnb5FXl+Dtxh/MS2LPF5DZwE3MY1UXIsavQa6VNmG
CR0IWsX0KGhD0LfXaE3RJqVdnG3x4ErOdnon90ln4+qczpbl7NBJ/XLj0s4u
5WWd/Bw6e1ZXdn7YuL7zo/rG0Dc9srq5c3R5S76OW0O3PfslnfPLiU72V6Jl
n4UGQyf7NZ1byl7nzvLZ0DO9p3y+80D5r86D1YuRQ8/9EHnzV6u3O2+X73Wy
n9aZq26kuZpzpNw/aUp7rpT9tDTUmi8t2Jw35TGZliynptxnadl6wZTHX8QK
V24umlbvLRYxxC/Vq6R16+lpnXJ6WqO3eMp9mtaul0pFuWzKYzlt1Vsxbd5e
IX2u2Uybtj+etqpXTDu2Vk87N9ZMeS9KO/RWSzs0V0+71mumb/WG07frtdO3
m+tE26uXW2Pd9L360+n75XrpB631o/2w95l0YHOjdHA5I/24WaS8B0f88/De
Z9Mvepuko+rPpWPrz6fjepum4+pN0696m6VftzdPJ7W2TCfWW6ST6y3Tqc2t
02n11invYens3hfT2c1tU95rIsZ6fnskXdjbLnL5v+3tkH7X27Hf6h3Tpe0d
0xWtr6Tf119JV7d3Tlc1c+vtFC2v1emGeteI2cr/a516t/THcveU196U7cZ0
W+8b6bb6Gymv7+m25jfT7fU3U16bo93Z3iPlfSf9tfXtdHev3/LcSnc390z3
NvdK99Z7polyr/S33t7p773vpL83v5sean4vPd7aJz3e7rdee9/0dGs05bmS
XiwPSC+090//ah6Qnm/tl/7V2z/+z75GyjZ0ynZnerU8KL3WOyj+nyx/lLIf
ExiEN1s/Tnm+p2xvR3u/+dP039bPAqfw3/JnfczC6GEp2+vRsr2ex9Hh0bIf
FS1wCa0j09Sx3Eb6bYHxo9K04aPSAu2j0oK93JpHp4XauY0cnYaq/9fVnYBr
cpV1Au/KAmGnFSFskgvDGhYbg6TDLaTYBESgERAcBO4wDA4K2AoIyJICsq+d
jSQayFX2RWhUJp3bH1IgyA4tjsNOLoqgrAFEQJA5v7e+/82d+Z7nPFV1tjpV
36lz3uX/vu+pi517Tl3caP8plW68q12vn7r42bXTFjfZefri59ZOb/PxjJKx
/9ze0xc33Ty98A5Hb56xuPneMxc333/m4pbDWYubr51Z17fozlo0HrOutXN+
dHdmXSu75d6zFrc6dNbi5zfPriNcRFvXFj+/85zFbfads7jd3n1t3p+9+PlD
Zy9utn7G4nb79i1us/+cxT03L17cce/5dd34zOrzlutnFXbizsMFizvvb2nv
BYs77Dq/dAMwF7ffd17l323tovbttPLxgsJQ0B/cfu95izvtvKD0Cne9etYx
3GXlwsJXwF00vrowGHfYef6i8e6Lu+y6cHG3/Rctdq1fvLj7zlcu7jZctGjr
cvV77NDa7Zr7v+O+8wufccc951dfdzl0weKuh+a+77zvgurrzutz/t32XLQ4
ds+FpePQXqLjaOtr1fFcnucOh85b3H7/efU8EpzIHaY2xl3nzcfNfYvb7d+3
WFk/t96f57vdnn2FHVkZzq1Uee3dKYdPgVOBTVH281efXefe823WW9rb/o9d
59R/dEx3bv0vVbbnnMK43HpP++92zunWQ0t7z67/wrn/9Jb7W9pz1uIWm/P/
fvTKmfVf1nw4NM8HR3nm0dFXz+lme86ouXWTlXne3WTX8jidVjibn91z2uJn
Ds3ztebt2jINp9ZcvuE0z+0brJ1c6frTSYvrX92+gf0nLa67+Yr6Pg7fN38z
h+9px0Mt7XrZovHNi8Z7z9/V2lh1Dt87Lg7bOZb+6MebL140fnDxo80XLX40
zek/hhcvfjD90eIHm3P6/vTCSt9df8Hie9MLFt+Z2ne98oLCHF29/vzFl1b2
lv7Jd9/4wsVnVp65aLzo4vPDsxaf23zm4ovrz158afP3Fv88/f6i8aeLqzaf
vfjc9MzFp6Z5vYFL+uzaMxeNrl0cWv/tWqM+vPa0xSc2n15r18fXnr5oNOyi
7ZGLv11/6qLRyosPbD611jvr33s2n7JotOOi0aKLd608ebGx/lu1Zjb6tbBT
kvW08a6Lv1ibj38+PW7x5uGxizesPGbxxuExhbVq/N5ife1Ri1evPXJx2fCI
ReNDSjd26cqvLS5Zf/jikuHhiwvXHra4YOVhi4umhy3O23zIYt/6QxaN9lyc
u/krdX7O8CuL09YeuDhp7f6Lk9ZbGu+/eNnKsGg83uLFa/ddvGTzvosXrK0W
3ste87zNExbPWTlh8dz1E2oPghH7g2F37UnPWrn34nfW77V4RnevRaPf6mgP
e/raLy6etn7PxX/b/IXFU1Z+YfFb63dfNFpj8fjNYxeNNqw98NErLXV3Xjxy
7Y6LR23ecfHI9TsuHj7dfvHQtXn/fPDKvIcOwzGL+3a3WaxOty7sWqMHF/de
u+XiF9dvvmi00uIe480Wd1+52eIew81qj77z+k3ad/yztXcfM92ocG+3Hm+4
aDTQ4ubr129z/nqLm3bXW/zc+nUXPzMdtbjxylFtfh5RtMCR42EL9EGj0doc
+8nB700/5Ne50TzfPfhP3XcOfmH65sFPj18v+uKTw7+IiXrww+OXD75v+NLB
90xX8UN98J3TZw6+Y/rUwdd1nzz4uunvSld4/vjBg+d2Hyia5iXdXx88sXv3
wRdOBw/+0bg4uHe4omKoN7qzaKEnj287+KTubaVHfOj4moMPGv+0YmKc0F1W
2EN0VVujK6aVWGJiZYkjJpaGGOpifNE9iu8lvie6Tux5dF7jNyruqBgUYmiJ
+SmGRKN7KtYqzKTYr2J5inGOvnxR967yj8zXsgSvCXMJm8lnsfgrzvmu5iuZ
r6kd7cffFD/UaF0+EtHL6Gl+sCUxUhrdX36G+Uhmi89Psjh5jvy0sStH0/Mf
wC8BX674CXw/uQLeAw+CZ8F/42/wzpGF4P3IlciLyDLJW8leyZX4+2ATzi8E
3xMSn0h8WLDR5seCfyg22uTYbP3EheITKL5dyMolMnQ+2Pi7JHNnl8e/Ff//
bBnJ7cX2hDfm24o9I10AW8jGj5TtJltmugU2cmIjsp9jS8cO9JjNG5UelB0q
/QZ72NJ9drcsXQi9J5y1GE30JY+Y7tC3b6ow1I/evFPhsZ+wftfZPq67W+lm
6DnFJfofm/eseJN0OPSacOmNziy9jzjdEj3QqdMD+tNXHtQ32rJiNdItnT8+
tPDhcOISnaY4kGJZvnZ8dN9oyMLN00/C9kttfau427D/4jyKqV36tum/lU0c
PaNzerbo7NhB0DXC2n+he3bZZHy9e17ZA7CDYOPw5XG2eWt0YNk3tPW/bzRd
2Wk0Hqr//uYLyxah0XX9f668tOwkfrL2kr4bTuzbN9Mfvn/sGz/Ttz2pb3tS
f+29L+/b99RfZ+8r5rT2iv76h07qb7Dn5L7tb33b7/objaf0jW7rb3zolLKF
u/F0St++x/YftjSeVrZyP7f/9P6m3Rn90TvP7Nv+Wse2//Y3H2ebkMYv9bda
me1VbrV5Vt/2977RZX3b8/tjppZ2ntuvjLNdHluWRleUbc1td862NWyvGh0y
28IcOn+2wdt5QdllHbt2Yd/opP7YfReWbU6jtfpGD/V33XVRf9eVi+a8dn73
Xa+8xs5p52xbdc+VSyr94t5LZjuilYtnG7J27XjPQ+187ZKqW3ZZ++by4zYv
KTui466+Jv3i/pbW536O23lpf9zKpf299s62R46/NF1aNmpsfHJddfbPdeqa
ndKeZd+S8rW5XtmK7VuOd88y7Zttmtz7Xnsune+7a25T99bH8potFHuuew9/
XNdpW+Nr45KfZIzGs5UOLce6Z/kc+y4t26vG+/cn7Lqszste7FA77p3bl93U
Nvupsnlbv7Rs69iqsWFjJ9Xo50r+K+3Y87HLus++y2rs/jc2UY7eM/s5z2Lc
/h92lMrYfrHRMk7/EVs8/4d+dw0X9/cYXlnPXDZ0a/NY7rnrkv4ee15Z86PR
532jref+Vlp/m3Nyzbav8rtX1v/LxsuckFdzcJznHVtQ800q2859F9TR3Lzr
zovKLotNlvnb6P7ZTms5fxudX2NodHx/57X5nTR6vfrWDxuwtpb3jX6fbcHW
zqvjHTbP6xvtXt9JfSvtO2l0e7+y79zZZvVQy98312l0fN/o9rJdrO9t/7n1
nbEP8w36HtmWHXN1S4da6lre2vyN+l6P2Tynb3R73+j3vtHp9R032r6/9djS
vrNn26/pzP6Wa7MNmHTzPcu1YDizv9n+tjZMZ8zHlXY9nlG2Y2zFrB+NPp/X
kpbHXrftYX2jz2udabR6Xde6s7ddd3M++7NGF/SNpq8+Kn//af3O/adWWaPj
+0bX9z+zq+Xta+vXrlPbPnRKf4OxrW17Tqn1zdrGlu2Gh07uGx/bX3/nybUG
Xn9ztvdybPxu3/jesnu73t6WN51U62Wj+6vtUd0r+iPX2to6jX3jY/vr7jyp
v/HVp1Tbo3a9om/0f3/E1WOtwdfa+fL+qOnl/XW7k8o++ch9L+vb3t0fuf6y
ur72+sv7ax2abc7Ub7zEfNw39kdsztdsm7t9bV0/dOJsi7Zvzu/G2U6Ord1h
V59Y+VWvnXf7Tyw7OrZtlde1sr0n9j9de2m/4z0vrT2j0Sr9T9fnoz6qbOey
z33z9U/Hl/aNR+l/uP6ispWzzzi6/uE4J+X/vv5HdbQv/dvwwrL9Y+vWaJX+
O5vP77+3+YKye2PjxybwW8Mf1l72jbXn1d7Hjtve96/dc8se8SvjH/RfG5/b
f3XlOZWfJJ/Nov0x9oBswRt/039xePZ8vvKs/rPjM/vGC/WfX3vWjMUZf6fs
BqVPr/1u2R7+w/SMOv7v9WeUnTqMDXwPrAwsjH3c0f4NUyTJe+/6WuFk2L07
f+/a2oyTGZ4y0wArTy5ckfPF2pP6xh/9P/aBjpXXPbF/5+ZvFjbG8S/Wn1D2
ePBO79h8fGGk3rLyuP5t679RuClxE9nuNf6p7PJfP27DznSPLhtAtMqrVh5Z
tnRwWGiYwmetPaLic0tie7Pte+X6r5Z9oWtYGrZzYmOfPT24sDRoI/G7z9x8
UGFo/mxtT9FIl6w9vOwRX7Fy/8LOKDt7ZYnL6R7anzzdv3wNNH6rf+n4y33j
zco277T1B/YvXxtmrM04Y3DgzF7U3Xe2H+zu0794/b5l5ygut3jg6uwdj+9/
b6XRcpu7i35j7+eevzfdu/+fa8f1v90dV3SfcvGi4NjQf2KBw/DAuBXOrfWB
Jmy8XcVO1/Z/jseV3R/fCU9fn3Fy8HJwP/99ZbYFbLxG/5TNe/SN7yvMz28N
d++f1N2jbzxg/5srd6tzdChfDWKvw+E1vrB/XHfsfJzuUkd062PHu1Rcy8es
zDTsY4e7VAzL8ukw3KF/xOYdCs8H18fXA5wf+vdXx9vPx/Xbz1ii9f9SWEA2
g3Vs+eKrVwzSzduWr5g6X2lpum3/oLXbFk39gGHGEvLnw6/LsHZM+Z7ga4bP
lAdOK2XXWNfDbcqvDz8+v7x+m/IhI5+vGDaL8Edih7JZ5MeCvwvxU9Hx/FuI
zYquLyzT+tEzVqnR/Pzd3H26aeGb+MqQX/5outl/Dz8+/APdbm1nxYuV+DFy
LVYWPzISPgJPAfvkyLcS3zx8fPD5wTcQPBR/HuVjacmP8LnC34oYZhJcJt8g
MFL82cA0saHk44ZfIPFf2V3CRFUc2JauNR1WvoL4GcH7lP+occZFOSb22Ten
76+KR8tXvJjv/zJ+b/VfhhkTxX5TfNLCTU3fKt8vfO7yS+Wc7xN+qPi04hOl
4l3xg9L9a2GlxBMTp1dsBP6u8GqwU4WRGj5TeFU+sP6y+8xWwtfxD/PmcfYN
k7hacK7i00n8b4l9wM8MO1E8IV8vF3Ufrmv+vy4cP1Q+u+Cq+H/BP/I9ip+U
Gt9bfoj5m+ELBt6Kb0v4qudMB7b8IfIZw08x35T4U3aofD0GW8X/JZ+albo3
lS9xOCo+2SW4Kv4i+ZqFreIPjd9Nvsz4R+MjEpaqfEa2BEsFP8U3Jh+LwU1J
fCnCHvHPBgPFPxqf15WGUwojg++Gj4EzCv4GJgbeBa4j2Bn1JPgf/DpcB9wQ
rIw8ybk8WBLYF0eYlMTFgWPRDsYm/cCSwNDAnMAHqQNPowwGSV3XxuU59Amb
A7MA90CfCqfCh7lngI2i36Z7phumX9WXZzAWumy62WBJ6KH5uoV7oYem36Y3
p68ln6CjhjUxBs9mnPqn6ybPgFegE9aXPHp1+np9wIE5h70h56Bfl9yD7pdO
3HjcV33XdNj0xa7pieF1PAPdvf71Q+cOOxS8kGs4BOOC13HtedwLnkBb9bXV
n3bK6fZhG2ALtFNGL+19Ofde9eu96dOzeV/6lDwX7IIyzwEPwMcwHb+xwAyo
F8yBPmGM1IF5Cp7IubFlDP6P4Hvc232M1/3Vle+ZJHXdQ3tJO3XST+6hb/Uc
lXsf+oblSkwFeC5zWIKfS2yR+FJ2hF0y/2DX5MFQaWueKjNOyZzPXIaF0pf7
eP7ESILv08Y7NM/EAHENowjHFtyc5/Y/+R6MN/9PYmSZk8ZkLMahnntLzo3B
ufeRd+KdGoe2ntV3qJ77e379wLJ5X7BezpWrq8/gxDyPvOD9gj3Un2trSfBx
kneuve/fO/Es3p961hdHeLusK/rPuzemYAvh8rST8p8pc2/tvQvXjr5bx9zT
tX69k6xP5oTrzB3PZ/57bvn5P43DeZ4l7X1LvkVHc93c9A3D5kn+X9+3dSnY
HHm+L/9/5rtz35E1wfrjP05cB/WtAbA+vjF95FvwDasbjI0xyPO9WkesN8rg
dIzDGgRj43sni4U/C2bGEXZFftZJaymsCwwKnAicjHNrMBwbnIoEI+NI3guj
ArcCayOukJhNcCnKvSvrsL7EUOA/li9Svs1h2/QP0wInJh9mDFYMjgXGTXwk
deFTGl1YGBQYNP5y+aGV9Avroo9HdHP8GPY2cCv8qsKlwcbwu8D3KcwK7Ip6
/Dywx2GXw++qeCV8qophc63u8JJ3O8K9iKsGE+MINyOuSeIBiEXMXwM/rfzC
vrP7bMX9lt7efar81p7eva8SLIwkzqa4Q/zZwry4FuOv0QGV+JWAicmRnwf1
xRyDh4GZgYPhA4K/XDHLxR9ng9TWlPLxwEeueEiSuJdiUYjvfHH38Dpve1r5
khDnE4ZGXHI+Jlzzlcu3r1iByugKjuluDBPEpmkLa8OHrjjU7RkqBpMEe+Ma
/uYh3WtO+IXu4sLhiIt4Yne/E8TAEE9zR7dDXIyKg97yd7d7VZIHq0N3scTr
HC+OqPw2Bm0OSK3dgWX9A2yyxMBuc65iZEuu6UDaWnClONawPvLb+ym9CLyP
OvLbmCqepNjr4mZrI3+Oy/6cipuqDv2K+J7S47u3XCmWpRiVYlvyp6Gd2JHi
oPKZIe7lD7oft/t/ojBG7MjUFYv1Vt0NE7O+YoCKr02HA4MkvqV+tGn3ujIx
wJWnL2OVb7z6UF88UWX6lfSrPGPSl3P9ew/t/9mKdzo/zwVVJu6rd+Z55enH
ufcp33uT2rtf2sO9/YD4nLBUc3zOo+voPfn/2vuu/6r9rweuwWC9+/g5xitc
1o7jl/+rObK73Q9Wq+aDevLUm49X1bG9B30ccG9xQcVwVWdZT1/HK3Pv5XXd
UzyWzD/3n+eUe12+NQeXY3Lvupekf8lc1I9xpJ68a8Z8+XIe13NesZzLu3Nv
SXzcln9C+4/qO2n/RX0nYq5LxifNdR5S3xSfLb639kz1XcnjA5tPa9+uGDv8
wzjnL6aN+T7in/r2xa19RXf/+7R1tuKwK+NDxhrQ5m2tI/B51gc+Z7w397MW
iL1IHwiXB7Mndqh76Ms6Is67mIrWKH21OVJ9N7ql9Ip8eFvnrFMwfOI5ivnG
jzcfOnxcWyMTH0pcOPEa3dc6pk/3sD7yu/Ob3Vvbs15Z/sH5vWnvvuJJ6UN7
eky+c+gvlVmXHfni4VNbO/Wd88fNb451nP9svr353+ZT25G/bWs9/+r2Bv51
lPGl41o+X9wwj2KV8b8O+2ifcS0GK9tPewkfPNrYb+hR+QOCrbQvwWHy/519
y76UPU59ddXhB15MoMQA5cc7PtzFtFNmv7TXunbOjzxcp/3V0X5pP5UvORdb
S+KbXbl93F5rf4X1dg7XDVNuT1YOZ+oaPhu+2zFYdHhxdAO8NtwtegAG15Ht
Kzwr2gF9oY66cLroDNf4LbyXcrhVuF0YWW3QDOgD/SWOqnJHtIn7oW3guNUz
ttAwwR/DiLufsaIz9I0e4aMf1jf4Ye1c68t4gjOn7/YM7o8/1Fdw68ZiDMGi
qwOnbrzukWfzXOpl3J41GHfjMV5t1FXPOFLHe9Qn2ko99JRyGObQZsalPH26
n/6k4Is9g370qx9jl5TnuSR1Hf2/9P1oPrYEwevDI0vwAOqJG+C9KpPQYOrD
GJsbjvD+aMakxHrLvIIv0A6mmY2BeZh5iZ4TL5mP+8SyTYwsNJ/vwPdhbvN7
n+/C0bUy343vhM2CespgG/jM8t0pd56YuY58aqEvxYr0raZcfzDVjnz5a6+u
71UyNint0LDiMVgf0J3WFeuFtQN9aT1Bk2bNcYSbVi7BZourgCaFvbaG8leG
DjVWthzWBO1+3P1n0aTiGFjPrC3WI1hu6yIfZ3Ae1jX9WqeMwdqmT+nb3Q9q
jbPGwnSjbV1LYh6gk+WJk+BoffSerE+ew1przeWrDF4cNjwYceuztVm/1mNr
sXtbf9HPxqcc7a1MQmdb35PEo5bsB+qf3L23zsUChTX37K7tcfYZ1875aFNf
meR+xq88YxJDwvjtYeJBaC9lz9GHMbyu+2T9D6610VYd/cvXvzLjUT+YeHib
7WMxdnuU/8ZRv8pSxz31kfFJubf7eQZl/nN1/SeSa+/aHMm1ds79J2LjZo90
L+8YXj/xLcw37fE79kn59r7EpZBnrqiHN7Jvmp/6ZRtgTsjDX5nz2plXfCSY
P/owV1NHfbyL+cMmId+ub87cMbe1NQbfhj3VHpkyR7ybue67E48k35Dz8Irm
O3yT9r5NfGFsHezJ9t70oX/frG9XvcRTSbm92rdtPbIG+NasB9vXAuuEZ5DU
dwxvbP1yrY262ce1D9/rPVj7ss55J+6XmODahAawhlmf5DtK7p8y90t7afsa
KbkOPaL/jNc3771ZL9A8eZ+hZZRlHfEe1ffe/JfOve/QSd6796nM/x77EnPE
HDAvrE3mUOaTNcC8NZd9r+blh7ov1/wzr333vh3fmDlufmeeK/d9+r58a74f
37O66EffoDa+JXV8n8rw6PmWrQ/6zzrhe1RXmW87a6TxKDc265dra61vS3vP
5x14h+6HxkbPo3mtlb4Lc9Q78w2gbR/Rvb5oYM/jHXm/vj3PjO4lJzAOz+kb
zbpoPNYP78x78J1Zv+0vvgvv3PprzfDM7qM/64l7uYcxWhPU8435zo3Rc1jL
3c/3ry/fsjz7k/9Ne239v5G3mAPGD2NoDJ7VPEkM2cQ8MrecZ2/N/uyIBjBX
0ba+CXIidGz2dN+KvTCx78iJ0IToWXQFuphtojIptAg6WD22UWRS6Bf2V+gf
KdfoHfQWminxn9F+6DE0F9qR7ZhEvobGJIuj1yAfI6NjdyfFLo9cPfaBZHzk
lWTbZH7kmuSW5JKx0abDie03u2k27nQpid1TuqHutNKdiDUnvhw7fHF04C/F
x2KbL6aOxHaf3xnx+8TwyjW9lHixYp+J5cb/qpjyzsWn4zvgv0/7y78AXZcY
gLCbdGDy6czE6eHDRtxA8cbozsR04MNAHEyxBPm3qdhv0xWlgxNvmr8DsXrU
E7Oh7cUVN7B8I7RzfnD4RqDLO2N4X8U55U+BX5z2rZUOULxeMXmSxPVpc7ri
aL51+IeKtSOmPZ2jOBJ0knSUYjzQU4qtLrXvt+KMOvKrA2tK1/nRYU50op+Z
vl6+I2BPXbe5v9p4zNKdtu+h4vLQrYoLIU635JpfHklcH3Eivj/9qGKy0NfS
5ya1b6viQHRrO/rDNudYEBWfY+Wwvn2Tpe9t39h8XDmidMOwrmKftO+uv9Fw
7TqvGD5rcwyfnx2uU/plMUfoncUY4XtDzAj+NxzpqemnxUW5xXT9ij+irOKP
LPXciUEiwc1Kdb6+s+KR8CUsPo5YJ3x+iA9Er373zZuWbxD694o3sYzJIt4P
fTydvdg+4lHQ4x+/ecs60vPzSyKeCr0/zACMgCM8gbgwMAfOxYqB0+XbhF8T
mAPlD5v+y+wLZZx9oMA4/Mbasf2vr9258BCwEOJZPGm6e8W2eMLajJnQl3p8
Gz137YTCasBxwFkob+tL/8TpbpUP6/EH67urnD+WJ6/dozDAMB/K/nC4T/lf
FhMDvuN3V36psCRwKa75rYYHgXGBO4FLgVv5/ZXd5XOav2s+ZBovV4lvZ3iU
5w4nFMYEToWPav5mYGFgW2BW+H4+ffOB/RnDg8ovtcSHtuvteOOz1h7cn7H+
oBlrMz24fFLzrxR/Nnxmw+Twf3PB5kO38Mn8aLe1sM4d+bq+dPPh5QsHfkcc
D/5zLlt/RP8n06/1jY8tDFD5CV/Z0//x2q+VfyaYIBgheCE+d9aHR/Xr64+a
8c5rj+7bWrvlw0kMkNeuP3o+b3nw0HBH/Pe8YZoxSHBJfD29fv3XC6v0hu4x
lcfvE9wS/LTknA+oN608tvyAl1/y9cfWNb9AVaddv234jf6ta4/b8lWuHt/q
jsr0AR+lvHwLKZ8eV/7O5VV/fJ3rY232N64Mnir3g6tSpq+63ziPpa7bPfeP
sw8q/qiUvaWb+3LuHjWG1odxGPcbx8fM59P8bJ7du4F9qjF1y9gp67/Vv6N7
Qr0775pfdH3WfdsYvUfvWvI+9WN8xqaN8jeuzX6U3Eu+a3h1uDB4sDwjX/L1
H3XbMGPLvv9snOO61PU0H/3/8vVlPvAr7z+H/5JvrOqYS3Bm62uP6l/VzZgz
eDPzjh93c8z8ky5Zf3jhzfhiN1fNYX7aL9p8WB35aYdDq7nNR/va7N/JfD5/
/aFbPp/EqfH9lD+ylV+p76a+sfZ9+p58i74zeLMz1h5U2DX+y05Zf0D5oYdN
O2n9/v3LuqFwZL57fuol8XCsDS/s+vItX9/6uPRr392nvvv69rsTCktmneBD
zVrDJ77zZ3X3nrFlbX3hb+2p467yw/a0tXsWjkycnvIhtTL7mH/i5mzDYP2C
GxO76zfWjy1fUnuGO1WcH/6jrKcP37x9raMPW7l94b0qb7p94cbgw9hKwHbB
evEZZ80unFdbt/maKkxXW8/FVBMvS1wi+K46b0fXjZepOjBe5ed+ZcZ52ScK
27V5i4pDZw/hp8qx0Y2F+YIbE9+MPzs4LPuhuF72J3tNo8XLvxV/VnxV2e/s
e/Bed5luUvsav1b2SXso/1QwXGxH1I+/Kv6txB6zr9p37aliewXzZe8Vs41P
K/742KjAb11r87CtmGWNN6p9nu8q/q3YrIjZx7cV2iC0gms+9WG30BDiTRVd
0a7Zv8B3oT8ktAdcF9sYvq/4BQymSzz18hc4fqNiCfLHL26hmIV8YClzDd8F
2/W3wz8W7kuMQz4Hp2GOkQW3VdfjfA3rJR4iX1hiHSoXB0ye8/KNNX6MrKn8
Y7lGt8F3Vfywlv/K4cNlA7Rv+EBhutB3Ynyh/WC4YLvQgPBd5S+r0Y7wXGJ+
Ja5046UqbjFcF9sidKW4t+KKwXc9o/urol3FOBY30jWsl/jJjuhZ8YjRq+hZ
6b+Ob6324hOI7St2rrriPu8Z31A0b/nimt5SPrbQzMGEuRbHTHxjNLVYt8GF
8b113+lVFZ+64ggvY8KjxfnbksTUZTuFnkfz8yGpTzF5YczEzxUHOHGd40fL
NSwZf1g3GE8ujJVzNlr4iMQDhSWDH6vjEjMWLIcE96Vt/C/BjsT3UnwpwW7E
35RyWK/4pnINiwLvEFwMHAs8CzwRzESwLTAU8ZEEe4Rfgo2IbxYp/lDwVfLj
qwXOAV4C5iF+TGAk8GZ8F+HPJDiJ+I/Bw5Gtk+fzPUOGj7fD75G3O5KrR4Ye
/Qb9Axk5ubhELs6fBx0IfQmMG584YhDTReA9ydGVhQ/Fp5KVwzjgccPPOpLP
RM+D95VHp8M+L/WjA0o+2TA5emRE5DlkPGRM+OnoluI7xLmkTmTi+PDElhAb
Hm9OhkMORiYUuQ++3jX5EL6eTAg/75zcRz11wveTRZAZkCeQ7UmRT5BXuCZ7
IA8iayCPdU4m5F0Zn3GQHZN/kIWQZ5I3uC+5E/kD2Qq5DFnMjm5Hjc84ySr0
T5YSGbe+yXb0Q4ZjHGSOEnkOeYly9clDyCqMmYxHvngg5ChkR+QfZJ7kKWRM
5E2R1ZBpkR05jxybrIb8JnItYzY28isyWn040ofClZDvkFVFXuzcswZvIt94
yHfIkjI28i/11Nk+XnXoaB/Tval0svS8xgzLoo36/LaQjbtHsC1iodAVO+oX
xsUYJfn6oxeOPL2todW/OCvuQQ6mbbAx2sl3vyTttdFX7pU8euLHdW8uf7yO
dMeOnoVOGsYm5cHd0HvzR+OcfE1f7il+NN02jI34L3Th+nEOm8MnjTraiRst
z7X70Fs7JmaMe5GryVPH/fi2cW/98XsDg0O/7rn8D/kv9U9/rv51u5OqjzyX
vsgM4X+Mx3MlprV62rmHep5DGf370d2ZhScyDudwAG09Lh29tp5Hf9rT32sv
aW8c8tz3Vt3Z1Z++9J/6+nPd9pi6v7zcB4bJUYJrun53co3/ht0p9XzqGwcM
ABtl+e6Ze6mvTD+5l/vIT139Gh+7Z33ASEnBPLhf6runvtpeVtgFfTt6H/QQ
MBXwEnAWsBSNr2rz9J6Fw3INV9V44Kp3QfewOrK5hrWAiYDNaOtuYavgqoLZ
cM6HNGwV2S+sFexVW9dOkOCu2hpVqc2Dwn68ofv7wo7Ag7T53uqcW8dgQyT4
LPlSe4bCncBntbXnBDHQnbf9UxygStrCfGj7qO4Nlce/tTz3Oqo7gpwb/sr6
scSGHFNjhgVp69cJ7MyN3TN4Nvbl6oi3zkcTHIr3JqbRjOF4SL0r+CN4rtb2
BNf+T1gU7/6J3d0rZjtMmTH4X/xf+vGOPadyWBj3877h2rzPtkec4D9T7r1L
bb+v/9zcML/4koJp8Qyey308k/9Wvv/Q/+Ya3sX8MP/Ma/NIe/9vsDTmp7lk
bpk/l3ePqvmnLN+he5tr6pqnMC++Zeufo7XAOiY/mBf51p6s5/Ksj64la4X1
3t5At2AdtzaQ9csjx7d22zOs/9Zq9aLztM/YW+gutElSLtl/7JfRI0avaK+l
36Cfuar7du2R8iR7rT3VnglfY691Tj/gnF7Ann7kOOvxDuu62uslezV9EB0B
/Yc93N5KN0feT9/mnE6KvgBdA6+CtoEZoNdHw6CB0D7xW6gOOoiOAJbgMd1d
CmuAfkB38Tn4jG7GKdAHRP6PTpOPnpPHPyFajR4AXQhnAeugf/2Q8aMVyff5
r4MlUZfugN5AWehNNCM6Eo6DT0nYXboBdCnMCh93aFB4XfSqdmlLj+AcbQtH
7BwWGL4Y3Rt8fOhhNDNMcrDfcNB0CWhr2GhY5/gzdQ4PrU58z6LVYbLjWzS4
dPoHPADcPJ0E7HvxE9PLy7aD7wf6Bz55+dCNX178hAQPD0fP927a8cfrGl6e
LqOul+3Lt+80+++Vyvcvn77DK8pWpOos20p89e4cTy09CDsZ/clThtfhvxev
Qz9yi+nMysMnFa80nLHVh/vinbSvvNancn22va3KHG89nr1lm6M/R3oW9jt0
LXguPozZ8NDD0Mcoc83Op/iylvTjyAaIv4xjhwuLp5P40GAXhK9Tfux4Yflb
VofdkDrK9a0tf8l8L7d1p/wWO6oj3z3KvqjVpx8qP8ztHD/pPsauvufwHvw/
3hG9EHsmPKp2/DT7X+mh+GTGv/IZfa/h0nof3p+j+3sP/EjjXT07X87epXdD
18Rewj0cjR/vK994vBfv1f/mmfT/y8OrS19lnOYAewO2UN5z3rnx+c/qv23/
k77jg1qe+2kTeyrPq44x43vNr/iN1o/z6N08G15ZvnNjiB9i/C+bK99H2Ti0
a9+Wo3HGfzH7DPfH//rWfL++U99j7DN8p2ws8s3Gf68jvpjdgDI2IGxLYjtk
PYgtj7XAeoEXzvoR35/skaKbhJezDqnDZip2Avjj6DbjhzN+cek+rWX44eD/
4Mmsc7BzeGe4s/jqjK0XHji4OkdrMB2sfPwzXJw1VB69rfUZRgw/HR5ZsgbT
6cKJWf8drfX83Ep4ZftEsI/ayMf7wUfgua3v1ntrvzr4XRgMemn7TfAReGP6
e7gHGAp7DtwTvhhfic/F3+Kf7VX2LPtZeGL7nH0t/Ke9L7gq2AD7n3x6dXsl
vbpyR3wyftKe6tzeax+29+I/XWtnX7bHy7On27+DmaCXx1dKsVlwjjbA5zkG
50T/j5bAs6Eh8EiOaDk8GfoCHSIfT/fo7o3Fy4W3Q7+gadAu8tA54XvwDugj
tBV+C43nGt2OFhRjRYIdZtuAdkTLwTijGdFp6L7Q3uhPNDa6Dd13p+4mRWej
X9Gu8tGIoRN/0P246Ff2DGhpdCCaGP3MZqGd727zEP1cOG8+luDKxYEpn0vd
jgMpg/me8eA7ljjxqwr/7Rpunv0BPD38Pcw+jD08PvuBRucUph62Hb4+GHt4
d2XawtYXlr793F+79l6rDzFqYN5nTP6OK2Djl7YUypb0/hHeeY2h0Ygb7bk2
Wt8bsPDtuyh8Oqy7sbFvUM6WAY7dc7k/mwC2DewZ2C6wpxAXhx2EfHYG7BPa
e64YouwS2CB4jsLStx97DfcQV7StWRvtvhvtWcsuwrvRJrYPsUOY7Q/OvbLx
Rlc2Om6jzX+xeMqGgb2GozxjMGb15rG9vWwh9KVP18YTOxDvwrn3wgaCrYP3
nnfKJsIY1DE2deQbi2dW15ENhP9jGTOo3tP8n15cdRNHKPYVsw3DL1T//iPv
xHj0Zwzu5Z7y9StlbN7lbPuwo87dbx7zt8s2Qj/t3W6bTyceWB6viB3N/H/M
82S2WThxy1YivnLZOKjjG5jtcM7dsnngXxd/yRevbwuvh4/CK+Iv+eP1HeEp
lbFb8H351tTD4+IN8Y3aOOLptMHvSvIdfaO+YfO3PSPfvsWT+YbxqOw12Brh
x6wT+EdrhG8fHx0+1FohsW2SF/7WmoDXU2bNsYY4x9vHbkodPC07Crwpvt5a
pB5+0dqD53OOz8TL4lnJCaxV+MUZ1zjzgNY5SR3rHVkMmQvZC1kL/pDshz0E
uY4jHpIMxrm6ZDzqW1fxfPhCMrEk+WRW1mUyPeXkS/hI6zTZmaTMER9pXcdD
ktE5l+wB5JXOg7Ej41TfeXB0wd6pG7s3ewe5JsydczItvKT9JjwneSdMHb4S
pk6ZvmLT4V76CyY2OFht1CUnDQYZr0pmG7xa9kF4wuyn9tBg1fCa9lXY42BV
nZMv403xq+S69mC8qGMwpcrs48HTsflQh3zbMTHA0Ank3cE62vMl+7x76A+u
jgxbIi9HR6hLfo0m8Fzqws+xl0T3oIGU6ct+7vnQMfJh3MjF8d/GrF84TTzy
dgwpugQdQp+AHjIm9ArZfuw/HOkH9KEMnWMM9BfoNzw1nYJx0BGgh2KjiedG
LxmLY+6PNkOHOZeHt3bEq+PNE1cAbs+43APtJgW/l2SM6D73UxZ7Fn2lnffl
Xurq1zOFZsyzKI+dizxlZARSnsc5+tB92DM4Jm5CbBgc0Y/yYtOApiVLoN9J
HfICfbm3pFzSr2v0LXsKicxBfmhT9cgsYs9CBmEc2+0v9BFfjfpSj27K/HB/
fcrXBzqdLouNh7z40I9OC93uiI6nz3KMPQrZiLzowmLTg26PHYk6uY+2iX1O
nqMdeQYeAw4Sv8JmRhs8AoylcjwHfRx7G31rl3gedHPwl2xa8BtkM1JskYzH
vWOD7Kg+noMMJ3o9mE7n6qivrbzwNfISc8K1e+N7YiOkD89nbJ7bOL0n/Una
xAYofXo+/5f/xrV3rp2j7yv4U/+Na7pE79JRmbbK/feO8vWlfuYSvsa8M38S
S0CZc2WZq74L36xv3JpAF+jblcL7KMP/4IeUb7d9wSvheegErS3WMTxSbOGy
Xlrv6PysoeR/+JngiK117A3sNfRw8q1j0e+RWdpL7C/q2FPwKtGP2WvsG8FF
29vwIfZIeiv7W2Sn9hPl8hOLAK+Ch5Hsk9GDOY9do4SvkezDyu3TjnQo+iBn
dl/7oz0MTYAuQU+hMb7ePa/2OWNQx76PhkG3oDfIkemSyJydz3lfL1oGj0MW
juaI/Tb7S/QM+gY9gxYig44exDW6RR+zXfa7D6Cx0GTy0VloKnRYYizQcaB5
0D5oMWVsV9Ul+0fHbbf7pl/AS6Gv6CnUj94C3UcPgV50rT/1c45WpHdQz7mj
8tCREroyug4JTTnbyD6+eBj3NBZjas9c+g9l6FV8UOhWPF34nmWciMqb27x9
tzbSrD+Z6zp3f/bssy3xbPeLJnakx1japu+e7X8v3z3ziHM9dKr7oJ9jY7yk
ra+Y6564ezmG4h3Tp3rsgdHgxuQenoNNvnfjnUrelWfHtyYpZ2esPbqcvXFs
8/0vyozJMxmTZ/Fs2poX6cd70i40v/pLO+cDaOTluO4z66ceX8+Ax/B82tHF
6G+29X738e5hbPL9f869W+Nx7f+T3Ft7/33mkGfET7jWp+8BX2Aumpfml2vn
9EPmonPl+IhGn9T3Er2bc0e6ILwFfZXkWt3o8OiZJN+bvBxjZ62t8sgh8A2+
T2W+e++JnMJ3S6ahDH/g3PeNR6Ajc2S/LY9fB3nWCtfqy8NT6M9RPt4CL6Ed
/sc3L4/e07V7GIM8uix56uuXzip6UryLdcQ95TvX1pi1s6bhTchtnH+1e061
wb+Q35Dr0G/RyVq31MWvKLe+4VfotKxreJnwM9v1YNZQx6y71mH8iLVX3azj
rq3dWYujO7O22xfwK3T51m3run60cx9HdbWTH1mWa+uxNTxj8o6tz7Pu/+ZF
U+Md1DMuPJZ7oMHtZ/gIfIl+8WAwFXgSfIV9zv5mD7NnWf/J4/QZTAh5HVqe
fsx91Mcn4ZfgRfAa9lv7q3tpqwxPhO/RDk/hXHv5+Bn7bHyd2HvxI8rxKOSV
aH98jXruwcZHndj66ddROcxLeCDn9vXYBuE3nLNdYt+KD8L/4FUcYyfvHG2A
P4ruD+9kPPgPtKHnREOEl2KXh97IURv18B6hOfxH+KbYpeFZ8EXqxzYPnRK7
XbyNfHloGLSOc0e0DhpHfnBXeCc8Dvs6bfE+SbEbpnt0zU6JjtI1GTHaSNKX
9vLxKehx/Ej4JPxM4q/hlfTpXD5eRF38El4FP4M3kZzjXcK3SPqWH7m6o2dC
V6Gv0e7oZ7Q1OTseCJ9iXOqjNdHi4a/QiuEt1A9PEfoU3Zr4W9qhSyPHDy+A
ZlVHG3Twdl5CXniE7fHiojdQD52ND4g9e/wFhI8JHg89rW7s5PELsZ9XnrrG
ILmnvhKzC/8QO3pHNL6E7ocR1C/dh3b0ItGJKJcnOdfWPeMDIP4Coh8Jn+E5
w6v5b8LbyUfrh/4P3a9uaP3wCf4TbRNLDJ8ZHtZ8SXw9R3wkvjG8rjmFp6YX
of/wf5t3Epxh7OXN3diZ4rGVhWd3D3y2Phz14zsKfhHfHzt+/fkG1DFvtdWf
cUSHIz/6+fii8FzGZn5mjvs2tDV+R++EXt178LxkJ9Yuawke2v+X/9/94gPA
M+GJzA/v0z19w755R8+ovTElhqKxWXc8B5mFd+p/MUf9R+oblz7okuiAwkt5
9+5P7iG53v7fe7a8Y+W+S+/AN+g++W89v+vIFLTH4/HfoD/Je0uMPM8YjKox
4k/NM9+eb9XR/PT+fEO+Re/E0VxN3D33y1xPrMZ8d+okjmPsIn1nvkHfl7q+
Ce3ih4M+0X8j3/+XhP+X7xtTRh+Z2JoSPaV6sBPxBZm28BPy9C253p6i38y1
c3pRPt5gKuhM+VmDJ6a/pZeNH0w4C/7hJDabjnSvdLH0r9HXwlLwNceOE9ZZ
HoxFfBgGjwGjARcNV+EowWDAXNAvKycjocul84bBoHOnn6dnTkxZ9WA1Ktbu
NJafPWOmTy670ellFUuXvrri7bZ6fPIl7q6jMQTLrb7704/DXVRM3pbnXHwP
unPY8eA3grsoXf4SVw5nAaNurMZMN0/XTicPB+B56tgSnb36sBV0+crgFejt
pWAl4Cj0EzwDjADcgrwqU2c8b8t3KswBjAMsQsUiWSbt3Qc+3nnZy05zfedw
EvqRp19YCRiERtNWHdcwCjAHjtoUrmOc8RWFtWjniWGtD3X0kXx4g8IkwJK0
cTh6P8YK96Af78GxYmsP52/dM7gNz1JjmGb8B6xHxinBSjR6vLAjrismyxLv
wfaX/1m2v5I6xunZ6z7DHMvbuf5THhxLvfP2jow3dgfytM879L97JueeO3HB
Pa9x+88LP9OO5ryjuOBsKeA9jNV8Mndhh8wlfcGJGI/5Ep+x2hpbYWfGC+p+
5p86xug9ODenzVvjlV/P094nbIj+4X78F8ruM15W9tL5ryrmeJvv+qm5tYxj
DqcEL+M7glEqnFCr7/lhPQoP1eo4d3/tlcEX+c58V1t12j18n75T3ziclef3
jOrFz6Y63ok2vln1XHuP8YmqD/X1HR+9fGg6Vye4LtfxH2pdgFFJPefxMWpN
cR682Ha/m875OI0tu3VRgltxzcbDegnvwqYDRsWayRemc+svuw9rnTUv/ncd
2cgn3nPs6OFayJBhV7SFX+GbExYvNh72Cmu5ftiC2JPsK4kDzUYElg5NjF6U
tIPDk+xlZMvK7UWOkS3bx/QXLAzawl653TeUvdzeG1m08cHn6NeeHZ1BfGXp
y55tz0cLoKdDB6Ir5Iees8fbu+3p8aVp/w+th05HM6Hn9BUfXqEh0CjOw0Og
dfAaoTviJ0w++g1NF97GtWeLnwa0nWv0UOxO4rcp9CB/KrEroYfCh6Gj8Gz6
QSvh6fBx6uIV8XKxJ8En4v2c4wldqxvsKD4Tv8kuBaYGX4ufxW/igZPwwfjl
+AHCk9Mp4pHgaSQ8uDK8uzLn0UHi8SXyZ7JpfD25BGwMuUKwL3Ax5BpkxTC+
5BkSeQh5BBkD/5/0u/Ax5DJkKWQxMDLkN2QusMbBtdMnk+PIV59sJ5h2siJy
qOigpeCT6bpzTL7zyKKUkRnTaZMn6T/jcE5GRB5FRkTu5JqcSBmcPZmJazIg
uBQySvI6YyMrIgvyrMZHXkeeRxbnGciO3JuOnXxPGfkieZsxkn+T55HPwfmQ
adP1u9Yf2ZaxGh9sOJklGSD5KpkivIEEO6SdcnLu4L3J1tzfPSWyUmPTh7ru
Hcw7eSPZH9m9/oyR7JwM0Fj1CSdAXujonZAD6l99cjnv0DU8uWfz7tVx3H7t
WfTjvbgf2ab/yr38T/pQD0ZB35FbKtfOuIyHTDL4dXXJOt0n/mA9v3tppx/n
xmD82rp2Hv+y8T3p2RyNgdzQvDD38ozK3ROWy7V5q9yc8RzwEf43WAdzyByJ
HYlvJjI635NExmYO+ZZ8L74j9ST4CfMoWHoyOvI8359Exhc7J/Y59ELqSNvt
htwDFoG8zrnxkVua33RN5HNwD9Exua9x+N6NF96CvFGevq0B1gVt9em+wcgp
J7+0dsBweA5jJ8ck66SzInNUHhsAeAjrjbWHnmm7TzLn8YlmvM7jqyiYCWsY
uaJ1jf4ta5yxWduyFjq3BnpeOAn6ODJPa2P8MClzJOskl1RmXY1/TZgM9gHk
oLEdcO/tfQXfKE8fSeSi7mOMwXXoO7pBukJHfciLLyT9u6cxZT2Pr0952pHP
ei95Rs8fX6HaO4ed1Cb+8dwjz5Txuc7Y8xzay3cv+wwcB/lofKWpF7sJdeWT
vZIB25u085yO8rKnkfHqS5k9TZn9TZ/6cM88q6R/YySfVcc7TD1yXO/T+6F7
NU/MKfOD3JVcw55MvuuZonfVnmyULJVcJfuivo2NfNb+TNarbZ7TM+s388Z8
jMwZHUBGbX54H/qyf7s/GkOf3kXmpPsEK+PduI9nUYe8R1s0gffl2ljcix6a
TFsb942fOO/Ctf8o8vX4m/PevWf9+G/IlNxbf+7rXFKuL/+L/iMnl6cftI33
7r8Iltc99C9PO/f3HPKCDdZWP+Tw7mM+GQ/6x322+7rTh+dTTx855vlzjH82
R/24lz68Zzp7+a79X8rJ6PUfvJN3EMyT/iLHV4cOIH4l9SsvPjG9g2CizRH/
u/849sR0Eo7xvalM8l+i9dCMaMJgm8xDZfmv6Q305RhZv7XYfcn30bfkZWhj
dKl8Y0dDxn7afAtd6R5oT3QtGaYUXERkmOhg+eT16sonl0NDO9cvelg5eV5s
u/VJ7kgOiMaGRVJGthjs+vY+YDRSN3oAslI0uvvFz1nk9amH7o+/NP2Hzifv
j09f19p4L/pxrp2+tvtKw0vgVZzjQ8gBpeCYgqV3JI8kt8eL4Esil4RDCeYK
r+AZjA+/sR1ThTcxFuP1HNuxVp5N3chRjRUfE/yY62DHPLP7+K/wI5FHex/x
p0i+7R3rA4/iOjbx6jjXh/PolcyN+HQ0fv+P++tfCnbG/xw7fP9t+o0s3Lxw
rg/390zmqP/FueeMrZt3kfcQOb33TGZMB2HemAvoA9+tZ8Gnkn/ij8lg3c83
5NvTnszc/6SdMvm+H3PTe/bfG4MxOnr28HLB2ZEtk31Hd6Xc+7E2RQdHB+Ye
eZb43TMn9Os+5nr8HeQ/15//zvsxvrRXFl1G8HvmXvRo+pYnqRfe133wyuZh
5llk6fQo5OLB0+lH/5L65iM+PFjMfA/hs81x/Lhvw33yXejLN+BZJfV8e+r5
/7RVHh2b+vmGcu9g+iLHd+643Z8EmQHZu3Nt3cMzuVbHfd3He9LO0b2CAYzv
CnXIL8jTY3tIbkF3Qh9gTpHjxyd3/EZHL0dWH/sg7cy76PfiA5tcJLJ98hT5
0RmQ05D9q+cZ2SqpbzxkPmQ2iUsSDCJdADlPfHZ4D+oYu3vQBZDxG7dyshlj
NAZtjdW4XdMHOJIDqWMceQ/8Nca/o3buFz0FWVH0EJJrugTjlU/25Ft0Tt7k
GF8lbLHYYdFBkGk5khOpk3hWZFqRVSnT1vsgK4v8jL4iZeRnkjrKycecO6rH
n4qjRB4ln0yOXxXPKSnTVt3Eu5FyHX2JumRyuYeytMu99E2GFxs0dZ17Xs/v
mmwvcXb0oU38YxqXPtm6kSOSMSb+E/lifMYoowshm5RHvkgGKV99cksyTPar
5JX0JOSZ+qHrYXOX8tjgOScTZavnmjxUO/JVcYwSC43s1Hn834hvlJhHrrUl
n80YyEo9uzqeh21n5P/ksu7jPbDxI+Nlo0jWTBZsvNEb0c2QKZMnk/OSQxsb
uS/ZMl2MuvLlkaeTZ9Mx6IuMOXJmehzyc3qByLvJlsmI6XfoaUqW3xJZNpm0
51SPzJsMXd/k7iV7H2b5Ox2P55LojvSj3LU2nouehww/z6KNMUZPpJ+S5U+z
XSi5vT7oGtyb7sE7ikw+sfTI9PVbeqhWn9w/9qna6Ut56ZKGc2Z9TrdvS+cU
W1o6EPkZq/p0Lu5Lt2I80SUk0U1FVxTdVNnfLnVT9CmO7qvf6mOaY/5FLxVd
iqQ/9fShjrL0UTqF5fsovVHLi+2v/rfskVs53Q8dCR2Ma2MzztLddLO+LD5k
M6YtXc/yfqWPmmZdm+cr3VCrZ775tuWZR3zJsg++23DRbHfMtneY7YyNgW0w
3Yxny3vVT+yg81+5p/zovOh3pHqX4zU6uXpf4zz2rf9xOmfLF1beX56z7LaX
77/e8XDOlu20eWc80U8ao/pS2YxPp9TzxoZb8n35Vuh2ouvUXpsaw1IP6tw8
p081530XNcdbvzn3PvSROVx25u19+GZiw+5eZZ/ejr5f3yW9Dx1X6aum2Saf
jTI/XrVujfP6YE2zFiXuXGI5Wu+se4nrFl1Q4sslNqS1zPpEv0M3bn22fluz
sxdYw63f1jjnyq17UuIo2v/s4fQyMDT0Jdljo8dXrp590X5oL3a0f0v2Ze3t
1fHrZa+P/y57OX1NcAP2aPe3Xyeum/7jY0GeeYyG0CaxR9Ac7uv57W+eI5gu
dJTn8x7tA/YcY9iO09GX/dIzoY8Sw0SZZ9afPdU7QFsZM/2P50mMk9ABxmos
nk0/aF70rHN0ExrGe3Iv79K7jf2FPjwbmk7/6MHYQWiLfkMvGZex6MvY6dP0
YxzqeFfet73bWP0/rhODLnSPccSe3L2Vx/7cXPHs6AnloQOD85DveaPv88yx
X/cs8swP/5d7pk18bXh36oU+0964jUlbfSWGnudy1HfekbqOiamX+zmad8oz
99RJXf0bg/t5FnNKe9f6Ng/Qde7liE6BEQmNE/92nsW3w/4/35H/QZl3hfZB
B6F30D1oHs8dPal+5Pku6WDVR085N4fRWmgE4/AteV/WEt+vtQHGRN3QfJ4j
tInxhI7zbvXrfuo7amOc2hir/NB2iZGIRozfksReTexDfXhuOJzEFfWc7u3o
G/O+tAstKN96ZF1K/eig9atMnmt9BqcTmjJxIhMfM/EyQ1vC6NCHWyeVa5M4
k/6/nDtaJ7LG6i8+3fVv/U1c3e3rLx2+NuqmjXqO1l/9Gnd8uLi//MT2zDjl
aec6PiS8n+jhtYuPGPRuaN7QufrXj3J5xozmNH5jNFZ7gzruHf8xniX4AnuG
PLQyOhMNnGfU1p4Ez5CYoeqqV/iG5V6lH/mO6nlP2hqP/oNnMH5jiK+axBk1
dv15p+rqy3w1BnQ4X5toR3usuuaHOWs+FL3Kd0zb5/nwMEfNF23R5fGlWdir
7mVbvjJ9P2gA93MdnBRawP6tbfER3RyX2b6OtkGX8DdS8WyX70xb40Cj2Of5
JPFcEhq+/Jm08dn30fGwWqHn0QH87ejTUT66HT+gbegDNIjr+H0pHEwbZ/U5
zr56nFdZo1mMWf3Cfi1pdtfK0U7ax3+P8SuLjx9t4ncUJs24ihZq5RXHoLWL
fxZ13Q+9o9yzxmePd6m+Z884/I/opfID1FLoK8fEznbtmf138jNG7YyvsG3d
KVtt/I/GU2MfZn9CuZc+KhbweM37Nk7141NIebA9hfdZ+mGFF3KuXTBA3pP3
7Nr/VNft/za+8rXU5qB7qaMP5erq11pA9lGYoWH2Y2Q+eXe+o6wl4RmN3z19
S4nNW/6X2jNon29QfWPJ3DIntak4462O701evi1tfAfyE8PXN+s7kBe6M+ug
ddT6oZ3xKQtmMuuw/MSIlmc9swYmLnb2gOyF9hprvb1GWWQH9ifJ92/fkuxB
aAd7DVpVW3uTMnu8lPi7kbGgGYInDeYo2Pr/HxcOrx2ZYHDyZHOx+SXrIh8k
2yWTJ08lkye7C06bLJS8k5ybzNyR3Df2B+TOZK70F7A0dGT0KnRisWuPv1U6
Hjqc+J+hs5LoR+kR6ZPi/zRxx+hJ6W3pDOFeojuGhUm8KO3JoOnI6ZTp0uml
XdNr02fTh9Nd0yvSXSvXl360pSun62ano74+6NHjO5S+kr5MvjqwJmwh4STg
a+gJ4zcVlgC+ARYC1oV+XT6cAD+VsAzK4BqCI5HkwYDAucBLxLdDfFCyiYLb
gbtxX3ZhsW9khxZ7Mvad+pEHuwIPAUcBjwE3AcsSfIp6sVdj78fmElYmfm3k
O8KlqA8PAs+iPD412ETKjx8cdWFCnMOxOOoXxsU9EuvXtfcYvx7s8tgKGnfs
8fiVYbcnn02efDaZ7ATZAcZecsbcnFo2iPKV8zfDhpPNpaSvOT7rMVtt5+NR
ZX/pyO5xGQ9YKvvIpa3h7tgvsq9MPNY5Fu2Jy5i0Jx4/x3QVd1bc2KvKz4ky
bWZbzDnea/n6afdgJ8k20fhiJ+n+7sUedLbjvCYubOLbzvaRJ5bdpLSsx87z
wOyn5X5b8Wkzrm0xbRPXVh8Vo5f/GnaQnomN5Nzn/co3ED8x/ADxQcMHkP75
pImvm9nHzI7yHcTmd/Y1c275m+GPZo7b+5T/Jyawoz4TA1iZfH5x+LQxLvdQ
L/fiZ0ed2RfR5VtxheNfR7n26vD1I+YxPz1S4h3zH+RcHh9DbX5veHa+ffgb
0sZ5m6PlA+jo7vr8F2243p6nriP/RmIui9ksNvNx3S0qbrM27V2Vf6P2DVZS
Tz7fR67Ff+ZryLGtCRu/3R238Yru/nXe3vVG+243Gt+20daSjfb9Vmp8fpXz
afT8bnWjvfu6bjx6tWm81EZbVzbaGrLRaLxKbQ/daGtIG+upG2292Wj7W3uW
l220/bGN7+RK8sSkVt7Woo2279X1R7r/UWPQr3u3/7bylWvvXurIa2td3VeZ
es7TX/vP6rr9P3WvtrZVG+Nr32odjan9pxvtv6+89r9vNDpho9ESG23Nq+eQ
PEfG3f73utbWtX4aDbRx0+6M9q7Prf6ktnZutP1g477dq9v/dN7GHKP6VvVu
25q68Yzurzbaer/x89059d79d/4b122uVV/e4XO6EzbavrnB/1Sbt/UOGt1Z
z67MMxm/5/Z/+q/5njI/2tpbz+9Z2rpec4jfJd+A99u+d/HAN9pevdH2gpqX
5r35pA//sRjf8o1fe/PcHBS3O/6j+OWKX6d8G74h3+0yvnb5hvI9J951rRV+
c8zs3Uv781qrlnGta/2yzlgfrKHWoMSWXuIVt2zhE4vaWm1/iA80Nteu7TH2
DPhB+Ed7UPwAwAPGvhkW0H4Jdxj/R0t78C1fvsGnwnXab2FJ4VfhSOH74gPO
kY0wHB98HSwsPF38McRely2vZK+396MB4nsIrQAjpx68G3oDDZGYz7lWhn6B
05ljTn6naBoYL/QQGgjORjmMjXOYksRqTexIWBN0VeIiJqZzsAIwSrBE9N30
yrHFou+mF4c7gT1A20VHjNYLloMuOHZ+0vZ4dPHNkiO9Lf1rZHSxVQxeHQ0a
Gyu6TfKo6AXRvWhbNCuZDBkLuhZNLD+x6fDAeN1g9dHE6gbnjz5XJ3IDMgw0
ORqbbCb+LfE4eA+0PZ4ZT4vuxwvgHRzxwPjT4gXxPY1XIq8Oj4pP2ZJvDzNf
hrfCwxSPt4yDJ19dfI9j8XZLflO74rWGU7d4uMjay0fsMPOj0TPhMaOnSt3S
m7FZGc/aOsdbhXetZGyNJ1QWv7P6MI6SMUwz/08HUeMcT9/SFWgb3rieY3lP
ugw6D/qHslsaz97SV1WMv6VNk/Hi96ITiT0Q3SJ7mXuNl1bqh1dVzJC2ntbR
Nf+u4vnR1fTjqyoeyep02eru4U+qjVgjYqDsHa5YfejwmooN6D+ld6HjefL4
tjbnD6z+7vRXq08f/qL6o/9hgyTOiXIxVR7RvX71YdNrqo30sO617Rt5c8Vg
EUtF+a8Or62YKo+Z3lhla8PbV58x/WXFD/yd4a/q+PTxL9p386aqS34jzsqv
j2+s+IPPmt65+uzxf1V8QUdp73hFxYFJLJinTG9r39xfVvwX9Z45vnP1OdOB
iu3iWnrucOXqHw2L1XF8d8UgFItQvBlxCcWgabzKVoxCsWlOG/5m9fTpb1bP
Gt+/eu70t6uNv1k9b/pAxbURn7Cuuw+27/IjqxdNH1q9dPpIxboR8+ay4WOr
fzx8tOIW7hs/AMtT128e/nfFMJQvVo70mulQ5TU+p2LqiG34lu4fVl8/fLLO
tRXnMLEPxToU87Ct95XE43ln99nV/zV8drXxcHN8nvHTq1dOnxPnefXg9PnV
A+PnGs/7mYrnI0biYvzC6oHhc23N+Gydbwyfr1hA75q+YO1bfd/wpYoJJO/9
05cqXtB7x+X5+I8VS1HsRMcPj1/m52z148NXVv/P8DX4yIqd+M/Tdyqe4hem
b65+fvhmxS4ST9F140thSivuoiSe0VfGOfaR+EbiHv1r92+r/zJ8r+prJ96R
9OXhO6tfHr8Dh1v1v959f/Vr479VHKb/GH9S7YxDvavHH6z+cPxxxWT84fDj
itWoXJn7fWf6QcVjEotJP/LFdvzu+MOtdv8+zOXu8d3hh/YdOM7VH0z/sfqt
8d+3Yjn9ePrJ6k+G/5yP439We3V2rOzoxX0UI0q8J/EgfzT9uMaj7k+Hn64e
PnT9jvf81L5VMaXUlxp90OtT7EjnFTuy1dXX4Wtd73n199OxlWs/zbElu/XW
dnlf9Vw7HrbS9alffbW86rflVx+tjbGr49x9jU8d4zLetFfP/T2LY2JbuXb0
br0v78/1vw0/qvf1vemH9X6T5z/y/uR/e/r31W8N8zv13/u//M/68r98cfhW
zYW2769eNX2r4l99bvpGza8vjt+qeZS4nWJ4fnb4RiXxsByVV2zPdhQry9wT
P6vRGTWHHRu9sfqp6WtzauefmL5SSSytRg+u/v00x9L6u+mrlcTRElfLt/Ce
aY6ble/H9yQGaR3bd+goPql6zq+YPruV3jl9po5ibf3l9On65n2z7+g+XeuG
mFt/PH50dX38RB3Pnt5fsbSsTb5JbfVrXXrV9LGKsfXyYar4XBUzdZzXklOn
ts5NU6M53lcxuZRL1jHrnTZiuGp/wfTBiotl3RSPy3p3Zvf+1bOG91fsrj8c
N2r9tY9YS43pT6aPVswue4C4sPYK5faTrOFidVn37QXqWacdJXliymonfleO
YnE9YXhL7SX2LvuJdV+e5PrB3Z9VfFv7mzhd9pNfGf5s9QHj+uqDpzn2rXhd
9+/Wq+4DhvVGy71qdRgur32t8A3dHDNXOTyDPbTi7HaXVFyuX5ourSOcg1he
fKqXH/dxxjjAj5S97bRvy+YW3iKYC/t+4SJaWeESuhk7EL/zpVNY2pySC6Mn
0DpkxrE/JcOV0FVk92grR/LcYJnIZtFqZLnktcqCAaBXid5LXvRxdCHRZUXf
Q35Lv0R+G5tQehU6NzJW9CXakkyWrg9dSk+I9qTjRWtK8lzTxUT3TxZLBku/
qR06l2wUjUveS/aLLnUPdemR0cxoY7pXelp6SvQyWSwcIbltsAbqxaeIOsEo
0qnDSGoDN+sc1lA+Wa7r+C9XjpaP30U0vDLYS7Je+NJgNWEz4UsTC4wMmOxX
il8X+OL4voCZDb418S3iB12Kbwl4BPn4j8TOJkcmLw6endx4O/YW1hf+F74Z
XhnWN3HqyZcT816+OvISPz7xxeCI4fTxR2TMEtsANgj4I/xU7FrwWvJjlwk3
TLYb/0J4tfhzjW0GHo6cWVnsb9i44OfY7pArkxHjD8mX8X/hGRNLKz7MYweW
uFhk03xJJVYWGwK8Jx7TeWJGsSHDrzpnt4Vn3e6/lz2ZOvxK4WXxrfp3//iS
cs1uzHiUs1GTT/7NB27iYmnvmTwbexrXfGzh3dndGYd8cns2P/rAYyvDt5N5
J26Ytvju8Ors6ZS7v3EnLhR+nezcMbFqvBNj8y7w7ez38P1k3+4j/g2ZOJs4
/H1ibnkH8ZeoL/fnR4zvsNjzkQ3wmWjc+tW/trGb1UZd+cbn3ca/V3yEuY/6
8YPs/bln4o+xo/Osxh//jv4/ddjbJUaZ/r0rdc0F88AcUKYP1+aPucIvZeKp
uY6dnuRa/969+bfdp3Lsh3NNViGZt/L1awyZs9576ulHXq7jc9J5fGU6T/8p
4zOTjCI6HfZYvjmyDkffXGQj5Ce+Ofnmluvof9gp+Y6jM/L9qesbjC2bb9W3
yRZIv+yHYjulXDv2PfRMbL/oa6wfrtngsEMge2E35X7Wh7QneyGbSXwE+dYQ
MhprjTWEnZI1Jj7G9MeeXF5skNgZkedYr9hMWKP0kXiJ7D2MSVt26cbFfsI1
PZs1Th/0bdY9siAyHm2sodZMsiG2HrF1j49V/btPyq271uHYOpATOcZeJfYr
8dUUWyG2KY6Ji+E8vpJiLxNfYrHvcZTInOLzOb6K7TlpG18D8VOsjj0ovo3t
XbF3iK+B9KPMPfVNf7ndP1lsFuIH175oT2VfQa5lT5XkBXsW/0PwaWRe2afJ
voLBj58u+fG9BYe2Pc5ncIDsF/SrXnwIwWrFjxA6IfGb4ndIXfemB04MFXXR
B+gR+K5g7pXRRWtLpqY+eSCZm+cl5wq+JzSKvsntyNeCIUFbKdMf2oaum64c
bYauIptLHCjX5GrugbZCc7nWF7mbe9GN6x/mJ7GY0JHoOvQaGaC2sADoR7gD
9KA+yPdggrbHtCGni8+RwqMMsxwv8aDI/tCUcAOuk+IrhfyvsAzyhxkrkng7
5GXKyNLIyQqPscR/OA92pPAgSx86ZIdkZ8FfkI+VzGwpN8sRTjfY6OCKg7FG
hxfGeJhpcLI05xLaHq2uLXyyhKYn55KPrkfno/vbnlV+avjWke8avY8XwB+4
lvAD8sQ9cuT3Rj5ZHNmb+ErkW4kJrK16x02XlHxOIsMjj4vcTl2yPXwMngRP
g38hk1NXXsUkbukh01wH/0OuV/K38bUloxP3SZ70a+PrVh85vL6OjY4oHz14
JLJUcZEfN72pZHRiLOPTfn1449x/95qKiyxe8tOGd1Q8ZXX3DG9oa8RbZrlg
K8OXPWn689UnTq2v7s0lK1T3aeM7io/7r8NbV588vG31qeP+6gfPp4301GF/
yQ6TJ26zenhDZeR85IXy8IVkfmSU+FRjzX0iX9Su+m313RNPKmY0GaE40ZEb
yneeNp5Dnn7IQfGvzkt22fLd07m21Q9+d5zLxJXWl3u6V+7nfeKXK271MOfh
fat8Gb+6nmdcPmvrEy/sffhfvFO8r/fq/XiX3o/rlDtK3o130eipet/+h8dP
by6ZqvNHT29YfcT0uvrv5D+me1Pl+5/NNfOMPNe8CV9tXuKfzQPzBe8smcuO
5qlk7prLfC6Z8zn3DYj7JRa25LvAd+O5y39V+9bIp+8zXFY8OTmw+vrzjahb
83qa569yY/Q9mMvmurE5Gi/+XhvjNkZz1fvwDrUrXH1bc8jXxfP2n/rf/Tfu
43u2LhiT78R34JvyPuSRh/u+3cO9fJMV97s9i7F5Lt+iWN+uvUv3qfGNf1rv
0BpB7m49Y8thPfCu3MNz6Vc9R/c2Ls9oXdC/96J+3rn3nbWo9AMtX1vv0/j0
aV3xP4pfbs0wHvIR43T9yPH1NT8aL1Rzwbu01gzj5VXumTyLdvowJv0Zn3z9
+4/yP6lX821Zbj1yrh/3db9ap9p/4uhaufurY47qx9ykF/A/OMr3v1iTHMmG
zGH/szkt39H/TfdgjtMzOLrWjzL3Sb5xkiXpy3ekju/HdyP5HiXzSPKdRt8Q
3YP1YG18eyVrhPXDd239kaxP1ivfvO/feiBZO+T7ts1B/ejfMbqSrfVuue40
fqXWDzIw7+2c4W9r7Tlx+usaT61/bS3IumCNLp3KMu69Z7C+WHPcQ1m1a30Y
q2c2Xuu09UwbY0yetb3Ox3nc8qqfts65h7rGW99Wq5vndsw6WGumd7Rcw1M/
6/L2e8rTj/HV++rmb1aedV6edc9YlXn+evftubM+Z+9S35itn/k/6z0N81rq
vdjXXJsTtXe1cnOl5pl1tM2dfCtSvgvzN3O/1tFxnve+Jd+vb8b3WHuydayV
+RZqrR2Xa1f7jtAIJXscLim7K3QIeaTvHn2C1hA/smSUjT7x7aNRQsegU/je
ozMsWeVSj8iuCgY5fv4Sm9J54mGWndTSnqrs/abTtvScyuI3snCr4zW6WTRd
cMuFje3mmIrBmcZGKXhROE065sRPJGsk+yP3Q+PGDokMEW9Bhgiv6Z7wpOhj
9Dl+AE2Ob9AnXTeZJFo88TXUwT+QOeIF8AZkhLGfhvF0D/hMfBU7IGWx78FH
keHFJwTMp/71Ef8CeFK+KvB88f2AX8Rb4kvxoHhOPCO+E0+JD4bvxHfHDwe5
m+v4pOGnJ35lyM3IiPDySXzhwF8Gj0l+QKZAphE/SpFPxZdZYo/z7UX+wvcS
mRLMB5wkLCVZEuxHYmMF+8hnVnAjcCR8bPFFBcfItxbsJVwiTCcsC4wkfEr8
hokJMMd1uGILXwjfkhjY0hz/4OjCxhRusGL5vfv4JYZmKz7ajIe7qmLpwc4l
BhxMG/wafJr4dXA+YtXB78CewZLB/8CQiUN3efeJK2HKYIzgq+CDxMRTDrsE
xyQPngguTTw818FmiY0HUwZ7BL8kBYsFxwT7BKskD4ZLm7YebLym+7uqCxcG
uwarpA4cVdvrC5PlGg5KH/BR8FftfyusFoyTuid0l1V++3/buF9VOC1HWKv2
fxfuqq0RdQ63pcxR/bb2bLS1aqOtXe3531LYrbZ2tvH8+YbYg1Jb1zfaXKoy
SX04L/Wf123UeZtjdd3Wy6rznO7KjTYHq7z91/W86p3cvbe9x3dVUub6vO6D
dY82bzde0v119eWZ2tpaY1Emtb2j+tWP8bk2rud3B7dwZ+obc9vXK7mvcTl6
n/LafKn27uPaOBz15f5tPmy0ebPR5k+N7/TufdW/e0vwbxd3H6lncN32pSrX
j/ae13g9v7F5rvTVvoHKV+4eytp3W+WS/hyVyW/f9sal3Uc33tF9Gl6t2r+z
++zGFd3nKv1pd2jjgu5DbY5+rM7belDXknHqy/vVh/lmfJ7HGNzDdVszqr5z
z+E9eD/mTaOxat6Zf/CDUnCD5tz2Mufmk/fsGkYPts58861cbzzyoP+o7VGF
//RtPrC7bWFHzfe2JtX8gXv03cHxwUX6dsx5WETfjzx4Td8NzCQcJAwpXCUs
J/ygmJMwfxL83hzz8rgak7nl2YzJN+279637ttWDb4XHhSe0Zhin/jyL/uQ7
wgq2/2AL7wpDaN2BDYQDzPokWbdm34pPOZDYMzCC1rUZD3i/3cH8zRjmq3bP
MW/m2DKwzNZImME53s0c+3SJ995tjYX7hhGHBU/MRWuwtRgWnH9G9ZQ5t05b
s63hEow7n4PWcLhz53wEwg5a9+0B8IN0E/wC2i/sCa7pEhKPRIId5FMQTh/O
ns4gsRThC+kv6CfoC+gK6BPg8/nxox+h66AnSExE+xmdAJk8GwZycXshe4HE
v5VgBeN/zrl90dE1H2X2VbJn8m77K/l4fNoFe2i/JYOm40r8P4kMmc6MjNp+
TN5u/yebJr9V5pwsmVw7MTXo2+K3Cg2AFiBDjmyYPBjGMH6yyKDJj+OHVZk6
ZMfok+3+pMho42+W3Ba9Ev2jaxjE+JRPnDp6TH5d4jce7ZO4DYn7Fn/yylzH
T4xzelXl6ChyWrRVfMQ4R285Z0dD7ho/KvHpktgL5LWJZS1tj3PtXB67WnY8
zslm0YXKtVMXXRiZbmxt6Zxdawsbmbra01GjKWO3qm90Iz8qsU+mq5bvXmSq
yvWtjXN0qXzyWzpwbemsXTuia8lzyYjJfGP3y4ZVkqdcolNXRlYce9X4rKdz
J7dFL8eXc2xO2YSS69LXkw3HBjb2o87lx6eJo/bqo6+D4Yw9aPzdp1x7zxVZ
OHofVpGsNjJo74O8mfy4bOwab0Dmi5aXH1vU+K+PrWSeD0/gWp3ERycTJjMu
m77ppOIfyLfZuroPuTCZrnEYuzbeqf7cu/zkj3NseeOIfa93hQ8he4eBSNK/
pO/4TYi9cHzCyI+NsOQ9BScbm2Fj8AzamQPaycfPmCOSMpgLPI//3H8av9nm
Hnxu6nr3rvEz5py5at6pGx878dETH0HqRbfhm6PXiL9tfI9vKDHkt+Mx8FG+
TViM+FByTT/C5l++o7x804kRAa/MR4I28bmUGCyJyxJ/UvRGwT/HJ1X8Y1uf
sn4pp2+JL7BgreMHK3E1ldGJ0V9FjxWMRXxnR1dGryVpY/221lo3rYXGgOez
nlqTrb/0etZQuA54cPnxOWddtt7T91nbreXKrNmJO0SHaL/A51nTnevX0R4R
nSReMHZ+9Jiu+Vqk27R3yE9MWudS4j/F1yRMhnyYCxgLOtrtMaLkwWHQxUr2
PnrbxJfPXiil3J6YuL/2WHunfde1JFaV8sSzgteQ+CGlD8ab2qPxp/Tg+NLE
JnYerERwGnhUfndjY4A+QDvAJMTeQD77vcRgZusXugKNgVfln1hbvGvy4oOZ
bQRbO7YRscdzRAOhmdjSsa9AU+FbHeE02FqwwwjvykYuMegltmd4Vgl9ppz/
avwr2k7b7fHpZ/uz+23FgGcXooz9hyPbuMQ1RAu6J/oPbahOYhOiDbfHKMQX
iyfufmxK2DEubdSOb7RW0dxik3vGxIPUli0XOy40NFsy9KYxoV/x0/jlNs6K
+47HXsYy34rjrq0jezF89hwv/d0V1z5x19HUbIHQ6mh09Da+XD/aoJ/Z58gz
BvnaorPR2Gh0edopZ3NkXPgE9LnxodWV6U8b/bFlc5447a49rzx9kxGg9dHt
ytjEeU73it0Q+YB48Y7SbG/0gyrHu7DN01YdKXZGZAzGqH/9OWdjpI32+Ady
B+9GXc/kKKmH5yCv8MzsnuTrW5m81CGrwLu4J37Kuf+SHZ17qauO/h31pR9H
bbxb7ZyTbWijTP95Bu2Uew7vzHN6T967+5BfGKv7qot3Y99lLMZofviPnesz
bdwvdnzmhaOxkIWYL/LYiHmHxuOaPMQzyTeO/Mds0NjusQlTT9/upX+8It5P
mTqexb3a91B2f2zK8IKS9yQfv0j2g9fUlzEbm/7wmBlv7jF/P3cq+0TJe/Nt
ZG57V/K9i9hBKldP3+ZWbC09j/erT3nK8x7VN8fzH2jn6Dswp8KXyteX+a6P
zHXn3lnmtu82NqRt7Sqe17eS89jC4aN9/7PN35/U0XdjjWAnx/6UnWt7zspX
P0fflTVhtoM96srY+8aOVr/s6Bzdyzrm2hqgjrZLuV+tWdYoa6k1cY73Ol87
Wi/Z4FqPrcVZM63veOKs62SSsZ8WHyA21eyy2V6LO4ovtl9YS/HH9pH4+ccf
J+Zo/O3LxyezDycn5Uc/dnfK2eTFh769SdwHdexn6ihjg+eeMHXa2pf5SCfn
hdPDM+O58dFs6+2/9mb7qb2RfJfdnWu4ytj8S/Jg3vDF9n8yYXuxPRkGkYw5
8mb30wZ2EQ4MPYIOQo+gK/DLyvDKaBf8LZoG7RE/2vhn+WgkGCq4LD5m5aGl
8Lb42vh/Vg/eFc0W/7vwVfH1irZzTHxFOCN0G/oNfYeeQ/vB8MLy4leVxUcW
LC+5PtoVrUmGzy8XuhVWBw2LLoYHwj/C44Rejk+J8JGh2dHd+LgkvAHeDm+A
98Iz4AXwFXiJ+MpJ3DB8EV6Ib5DC1AyzD0hHOhTYGjoWPBbdS9nOLf2j4JXo
YGKHFps4Nmvs1PBJ9N1s0xJzi96HjqjiRY2zX0JHuBn6aAmmJth2Oii6pmBd
6JToouny6bPool3TRdNR0fPTPdMt05MHy0JP7ZmDNaB7o2+kW5NHJ0YHRl8G
n0LXSydbOvBWRi8c3Rw9HN0n3Tq9MN2uRPdLB00vF31d9J30e1s63W5/6YH1
pU0wKcr0E/1p7NdgLrSnU3SkR8z49RU9aPrJNZ2m+nSZwb/QXdITF36Gbnh4
x5bONLYPxuEo0YG6Bx20to50t/SayvWVep7T0djk0yW7dl9jSv/O1fVc3pX3
XfrK7rWzrn+cdfn+p2CKnEd3qZzeUx1tor/0P8IFBH/gP4ftoKOEBaG/3K63
hIWQ6DMrztoyDlv8WxZOYpjnJ1tM8ztxvlzHr2ZhwMY5Zpnvgeyg/Bst7UV9
G74V+fHHA/8WfaVvDAYO9o0MouLhDadv6Tl9j/GZyr6CvQVZwpYt7DSWvEDf
cGzsOvRljbDe4LHJKoxFHeMn14gNBJ7duhGbWjICvHv8BVpjyAXIDcjG6B+t
SfF7TKZGNkBeQBZBFoW3t47hb619+Gb8tzVPCmZTSsxT2ExrI36dPJDMEO6S
HFEdPDEbCOsvnh0fTjaI98a/k0smRimePDbU/GHjmfHcjuHF8ddwr2wd2Dfw
x87+IX777Tews/YIvDb+2j6CT6ZvtX/Qvyb+MNlrMMb4bPpU/DE+Gb+Mj04s
CfsTWXCwyPhkWGW8shR5MB4XnwxbTbZsX8Tb4ovtvfD+ieMS3zdk1jDecOSu
t2PaxYuJbQAZd+LbkH1LeF35sPPk4vK003986USPiwfG/+J31cXzksvT56IV
8MziOqEZ0Bvk9HS8aA10B18B6BmxhdA3jnwGkP+ja9A92tEr8AGDp3U/dBPa
CH2CfsJLhv/lH4aPAjw0njk+VWafLOcWbYZHnWPRX158a3yz4H+v8e1SvlB2
L32/lD8FdCH9iiMfLXQojujEJY145awj3nHlkhcumjL0qTz6GNd4YfwMWha9
jAZGK7vG4+HvHPFn6G10dfTHaO/4MEHT43Mc8TThsfAv+IPwTniEmZdZLT4D
jxS/JPTJztv/ssWrOKePjr8QvDNfHhIdHD8a+Hq6Nv48+OPgsyP+OujZ6M3a
+y79b87p5+hw6drogOklf787sKWTpAekZ3R0TSdJj6kOnatzOk56REk7OlA6
ZPpD5/qmH41+11E7+ll9aE/36ZpOUFn0n861jf7YefSn7XvbeFX3cfxPjc39
c/267pN1rl9H+lC6Utd0uvSpEl2na30d7L5QY/mH7mvVR/u/8ZYH6VtvNF77
IN1+dMaNNt5oa8LGdcYjDn6u+2Y9q2f2vPprdPDBto5stLWinpl+2bN5BnpZ
+tpGj9d71LbR2aXXNQ516Lvdx7OqS/erjP40vl+8H+/7n7vvVp9tfan/23/t
P/Y+5avjv6Wjpfs2Tv8n3a5xwQK09aN0qvSh9Lbq6IM+V1nmiqO5BW8gmXN0
surQ+UryjSN+aDJec9fR/KXX5W+Hvxd+Xbxb5+Y7fz14cLw4LAW+Oz5i4kMG
b+17wvtHRuI7w+P6Ln2f23lbfK1zvOy8LvxeneNzt/Os1gQ8KN0srMnMk+7g
18naVLI18jBr1TLv+FmutqPKyeasc+SA1sK2Xmz545qxLBeXzy1rpDL6VzrZ
+PMii8N/bo9Fhz+kY8XnWWOtzdZjbdXDR6pjbbdPsIsSH82+EHkpfE/8sfD3
Qp9Mxmr/IaulvySnJZO1H9GjymdnBHcER2TfUk6mG/8qiZ3E/4pr+6lzulT7
J96Pn5X4VsHTkYdH92kvZncTWyHy9Ni9JK4mugA9gA9EG4RGiO4TH5gY2Hg3
9iDsRBKfIjE8HRMfIr6n0VToIvQTHQn6Ca2Ft6O3iv9Y/Br+LfGg4w+W/gft
hvajU0p8ZbxabCPweI6hB9GkMHXwdonvi75l91B2EUvfJYlfWz73W/2K+9to
YLYL+DK8GPxf2SRMs00yWhpvBjeIF8Nz8QmC1i5c9Xh54QrL/nlcL2w0bC96
vDDZjUaHuYYThvWFoUXnh7f6zektM5YcDn2JpQ5uFga3sLSNT4NH1Ta8CH4G
JvR505WrfzjMduP8dxQmfnpn2Ze/aFqsvnh4V6WXTO8qDGts0eFa2Z+zPb9w
/FClS8aPtP/y43Xkf+Pi6cNb9vF8Z7DL5wuDfwz40BeP7yrfHq6VfWT6cvmh
4DeDT4/zhw+uvnr4ePnD+PDw5dX3DpvlI4MNPv8cjsreN36pEpv+/eOnVj80
/VP57PjA9I+Nxr+q8f3/Wr4K+K7gq4CPAr4C+AZ4x/Sp6rOt/XWPTw9fL38V
xsFfxleG765+dfpu+T3gC6Gt7eXrgE8DPg74qOBLg3+E+NTYHL5ddfi24CtB
4n/CkQ8Kfiz4aIhPCT4cJHn8O/Dr0A07eud8SPAHccRmV/4mHPmPkMf3xBHT
7DOifeNVpp+jpsP7I9cP66+1eVjv/KiVI2Z/E11LrT/5152O6K89tLLuiPJf
UXU3D++vu3Jkf+31w6vdtdcO7683HNlfazqs+pd/rZXD61rZddaOqGPdo6Xr
DEdUnvvpy3WOkrZVt+W5p7ZtrZrT+nLMy/7ruKyvrmdra1nVUz/j2Tke1e9c
O6q/YXft/gbDtfrGO/RHDodVX3Wf9bme91Xvsr3DGrNn7Y7sr7N+RPV7xMph
VcbPhvfu/bf1s9rI847ruDL7AOHfQz/8ZJgD/FwYh//Y/fXF3wafGfyi8L/y
ne6H5WODXw1zpfxldPOc5KfFfFH/G+P3y7+GeWSO8c9iLvKPYX7yeeFcnlTz
rc27yhu+WT40JHPY8dD41fKR8aFu9g3jOzPXPzj8U+XxGfOx6Z9XG220+u7p
i+Uv46+HL9b3JvmG+LIoHxrdF8t/DT8a/GKU75uWfIu+vTeOf9/W8v9T/i34
xnndNPvSecP0yfKt47rRY+UT49Xjx8s/xvnj7MfCesI/D78+Z3fz+nLm9L7y
gyGdNv5N+cs4aXxPrUPWI34uYO6fP21s+cWwjlnX/mA8UP4tYNkLY7603SF3
CSadjIecybrIToFcyZpKzgIvTnZSNh5t7S07sLZ2k51Zu8vGZnp1yVQc4/NJ
PeWxGSOLsx9EXhcfFGX31q7J+9i1VByU6dzad8hO+KAoX87jKSXvID+RyD/I
SBLjvPwHL/c5MhGyysQej/9fGIlgJ8g/Ew8cBoJcNL7j7bP8Q8gn13BtH2a3
af8nhyUvsZfaa8lI7NfsSskj7PWJV2HfThw08l4yC7ikxANAH8Bvawd/QJbh
PHHsEv8r8RfIJoLdThw1sha4AzQIe2OyavIDMgfyhdA5aJnIHtA/6pF1o3vI
x+njpcR3RDPR1SfuaOylEyM0/nnRXuTwZA3k9GQRZA/kDuT4ZAJoNbIH+LjE
sIbtRuvRsbN9J5NgZ5+41fHpx64fDemcHAF/T3YAj5f4vnTqdBPkCmQMdBSJ
CQwLnhjC8IBkC+QI4hPTjzjSi8ASuiZzUA6DSM+Rc7p5ehc6GLQxzCL6OLp4
+ho0NFqaLIIOfvaheHnpd+h6rsGUX1V0euh1eiF69RlfWb5rC5dJl73EYe5e
+pkt+cLSv2PJFPAL5Ah4CHqsHMkP8BTK8BtkCXgK+jLXyvAX9Ij4LOd04Use
Y3d063gZej39Rh6Bx6FrjLyBfi/yh+hlyRzoauXRWeKF8Et0l661jy41+lR8
lnO8FDmE+q4jl6DrJIvAiznHh4Uvk1xL+Dj3iS9V187xco70rHyTBguP3wse
Xj7eD44X/6c+HK98Mo7g6vVLDqIPvKNzR7xn+Ed14gOVDEQ/6mijDllJ/IjG
5ym5CfkIDDz+Nph4fD65SPJgkuXDQMMmy8c3yw9PjZfGs8OcB7MvD346chA8
u+tg1iV8O1kEXDbstuvISxzJNuTBcJPFSK5htckHHMkR9E1+ga9XV1+OZB65
Z2Qx+iT70AYm3rPi+z1bZEN4eu+GXUF4fe+MHEG5MnmO/s/lvF5irw9e6T2T
Z5GFkN8Yl/lEToaHx9Pr17jIPLxbsjByM3NGn94jmYT/zjzQxlwJ5lyecbqX
fHPPPNe/byXzijzCM8J6RxZh/qvv3Fwxt30XviVyOmMldzOn9OO7UK5/34dv
2dE1nb6jb9X41VOur+j3favkhL7f+EaWrBHkE7Ay1he6e+XxsWztiO48/mjV
16d1x1pibZrx5U+pevT1ZJ9LuWgd45929iENt3NMrXlL7FHp4fUR+cfsw1be
U6JvX/rlnv1gR0Yyy123cOzxcbv04528HYVtt/bGloeuPj5vrcPBKsGzS9Zw
chRruLWf/NneQO5BTuKc7NlesfSVW5h2SX37B/09TJd9BebLngPnxdeNfYWt
kjqSPHp5+5BkbyL7Dm5MO1iB2Xf7i0rmArdu74vu3xjJbcjd7ZNkLXACyo3B
HmlfhYt3bHO8dPf22e17q3K2VnBv7K/svWQ45PzqqQ//RrZjH6c3UGbvTix7
+WQ+5DmhA2ABXMdXERqBLgItEb836If4OOLHBt0RHzXB7tF7oDscE0uAbsQ1
mRHdSHw78SEDQyBetiN9Ch0L2kY5WZEjmRK6Rz2yJPIjdRJ/O7HGYQz4eHEd
/1Ou+YdhNydFzwOngPaiI5LImfir+b+S5WcR
"], "Real32", Appearance -> Automatic, AudioOutputDevice -> Automatic,
         SampleRate -> 44100, SoundVolume -> 1]], 
      Audio`AudioObjects`audioID$$, Audio`AudioObjects`buttonState$$ =
       "Minimal"}, 
DynamicBox[ToBoxes[
Audio`AudioGUI[
        3, Audio`AudioObjects`audioID$$, 
         Audio`AudioObjects`buttonState$$, Audio`AudioObjects`audio$$,
          "AudioData", 2.25, ""], StandardForm],
ImageSizeCache->{28., {16., 22.}},
TrackedSymbols:>{}],
DynamicModuleValues:>{},
Initialization:>Audio`CheckID[Audio`AudioObjects`audioID$$],
UnsavedVariables:>{Audio`AudioObjects`audioID$$}],
Audio`AudioBox["AudioClass" -> "AudioData"],
Editable->False,
Selectable->False]\)}]

So how would we edit this video? In Version 12.2 we have programmatic versions of standard video-editing functions. VideoSplit, for example, splits the video at particular times:

VideoSplit
&#10005

VideoSplit[%, {.3, .5, 2}]

But the real power of the Wolfram Language comes in systematically applying arbitrary functions to videos. VideoMap lets you apply a function to a video to get another video. For example, we could progressively blur the video we just made:

VideoMap
VideoMap
&#10005

VideoMap[Blur[#Image, 20 #Time] &, %%]

There are also two new functions for analyzing videos—VideoMapList and VideoMapTimeSeries—which respectively generate a list and a time series by applying a function to the frames in a video, and to its audio track.

Another new function—highly relevant for video processing and video editing—is VideoIntervals, which determines the time intervals over which any given criterion applies in a video:

VideoIntervals
&#10005

VideoIntervals[%, Length[DominantColors[#Image]] < 3 &]

Now, for example, we can delete those intervals in the video:

VideoDelete
&#10005

VideoDelete[%, %%]

A common operation in the practical handling of videos is transcoding. And in Version 12.2 the function VideoTranscode lets you convert a video among any of the over 300 containers and codecs that we support. By the way, 12.2 also has new functions ImageWaveformPlot and ImageVectorscopePlot that are commonly used in video color correction:

ImageVectorscopePlot
&#10005

ImageVectorscopePlot[\!\(\*
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzsvWdwW2ea7zm7+2U/bt0PW/tt927VnZpb0/fO9Hb3uLtvux3akmXZkmwl
K0dKzDmBIHLOkZkAcwCIjIODHJlzJkjknJhJyXaHmbp7QCVSstiyWpbb3az6
GXWAcwCRLPLn//M+7/ue/3yn8Oz9//Uf/uEfSv936OHs7coPSkpuV537P6An
FwpKszML7mV8UlB2L/NeyS/v/G/Qi//X//IP/9AF/Zc+hvd4X0ZVrxe2j+qD
VIleClzse0Wq+3wIif+Ng5QGXgZKFvzLwUiDWMkzoKf7z2JloZeBkwcPEt4P
XhF6DQjK8H6IqihRFdtH5AfkwBemDJPlByDuP6sIk/bx3Dd1yLf/wo/0AK/3
I31THP61PfsiZUHiQaBXDlwjewZ2H9BTgvQA2AMX+LBS7z6gp/59eF/Oc1e+
FhI/ps93AIn3FUH3ef5ycCLXfqBXjlx35Loj1x257sh1R647ct1fuev+mjly
3ZHrjlx35Lo35brnrvyrkuSR636kroMf5IDcnuMFoR3Cj9F1aOgXSfoMzHPH
38F1of0c/EsJH+SlZ19wXWRPd095qYhIb4LDP5Z48Gsj7dPdI6eRn5B+qnzG
35XrIAjyZ6IjHAQv+w6uw8uegZP596z1Ml702xsGI3mOt+o6jPiZ6KBjrNhd
/UJgewr85cntufBWLfYh9lF90HVv2WZvSmiHuw4jCz0FJ91HWmjhl3PY7/8L
Novs47m/o2envs11rwRJHSW/CQ75TNLLNUhWRqj7oCgPC4ev7bpX54e1Yvob
eQJRHiIcjHmHBMLnXLcf3HOS/Ba/vSzIHXLlq/P8Zx4U2mGR7424Dt3nesae
945c97q6Cz3ieddJj1z3Utft58h1LwNyHfFNuA4vPXLdYzBHrnvrrnvxFxur
DD8Cp3zu1CGuCz8aiyMooxDPFapvymBvhCPXHbnuyHV/M65DH3Qd9s+7LvhE
ZWmbYRWxR+BeEBpBESEqogT5IyIEefgR0LsOuE655zp1mKgOveC62PP+ASL7
CD953ONbr//eXEc6ct3LvqODriMc6jr8ITXskesOcZ3IixD5ngJ/udy+paO6
nz7/fr4noX3fcttvszTyg+w7hYX884Rv89v+bBbAKwOPLIdL+y2OTfPIddHH
vQb5o7++yCOPkRSxPaJPeZLl9iwHXZAmQlKFSKoASR0gAwEKEKSoIxRVjKKK
7yNKUUOEIcjqEFkdfPL4hD3d7b0rmQaIUoDYI17fdYdC3lPcI547dUg/97Vr
9sPf+Kac+UZ0uqe7x+DlIdxLLku//vJo91xTAycL4GT+l3Fo2+KNuO7gPyGB
8D/hO7QtvkuDw70frMj9vOv2xbPv5LqDjde3Ed7esusw8vB+DrguHc8eA8Wz
P+M6ReBJoos+4fEbD7oulEb15ODpn4wq/TQd4dTBR5AgZakgwmSoMFRF0k5L
my32xHVJqipFSfPEeCrIQuE9IgdJpzvK40+IUjRxiib2CDLwPZS3hw70vbrB
/iZd9+r8mQ7v87p7GYdPQXlTrnsZ35Prnk96R657s67DHua6/RNIwlhlCKsM
PgWn3NebgI5VQbw6iAeCWHXgKTh1AL8HQR0kpHWXrltJqmDadcoYWZEkK1cp
yrU9knspLgKlOOrjtBZ9LMDHtepz7JW36hBF7acAbora+1R0R647ct2R6/6e
Xfec3/ZzsKcQeTSq9oTYHntjUGmb+Z8ZTBUkQK+onua3CF4dhiCoIwfYq14J
6hjEo1E7EpTH0q6LpHWn2gOAFAdZK0gFAlSNlwZ4qYCPCkBPQ1QgDEHRRNNA
B0AoXfBCaEJ7T6FQB0VEf1p637PrDufIdUeuO3Ldj9h1ihhBEd8j+th1Kiit
BTHqEARWtVfAKkJ7M2xDVFWYqoIeQ3Rl+AkhqiJEgx6VIRJUxqYH6NKrJMgQ
yrTuoEhG1rhJGhcRhB49ZMC/NwQXSWstHfAikOVoe1CfATktrTiSJkKCch1k
NnWCokxR1Mnvu4Y9ct2R696y6xAHW6iHtFOf443Y7HChfR8GO1xoh/DqrjsY
5A6u2FLGH7M3UQSvDGGUYawqilXFsOnXYxRlkKFy0eRzFMkQVWJh9JlZfUaO
WM8R6Th9Jr7UxpcNcBXDTMUMQ7FEUfjJ8hhZnqIqUjRVHIpnBI2XoPUQtX6S
JkoCUkT1Okm9RQI2aOpVBhBnqQJMtWcPN0PtZgIeutoPqY+sSRA1SYImgYfe
pUm3aKGMR9XEn7I/4/0g6ns9XuxxfB/O/KtVH17+/BKMl4F/3Ll4JQ6x1sEr
35A/35z9jlz3Vl33VHfpAyjmRXHpLBckQYpTB1nKZVrfKLlXT2wX44T1pDYO
vZXJbCGz2/D8TkK9mC6Q1QllwiZ5R4NKUgdo+ep+rmqSpXIxVVEq9NcNxPBg
jADGIXGRgCRNlWSqkmx1hKP28tRzfNUoX2Hjy/V8ha5WqatVG+rV5lpggK+a
Yqk9DHWEBr1LEyOBUZI2SgKhNHjkur8r170ih7vuuSuPXPfjcN1zctsj8oQD
rsMpD/CqrlPFofKTpgwwlMsM2Qylx0BqF+Jb+NgGKq0Z8huRLUDzBJh6IbFB
QBC0EFq7KO29tK4+erec0QMwe7Q1XVpBu6FVqANq1WNs9TwVCBDAFAncIGmS
bDBSC3h5knFWL8jt7eOLWutENfW9rEYRUyjltMg57cqaLk19l7alDZS0aExN
4AgfWGACbprGRwbDJDB2SK57Ohfl24imTQjs+fBwjlz3o3RdECcNvJR0nDty
3Y/Pdd+W2Z7NEnnUUYVSWfpYFd3PC67br7v4szJWEaUq/Wz1ElMygK7vhDGp
hHoMpQ7BqEewGqo4TRU1gqqmFoywhdwmpLS1ULu6KF09hN4+nFSGVSpwAEDV
6rkaU43KLBAbJW0GCxuYoamCVG2SovbxwTm2CCTU13GFnNoWWlMrvqUN2dpe
3dGF7BFhRWKcWIyXyCgKFVMO8GU6gdzSLTIBHQZ7DTDBUDppQOig6w7oDnqF
9hKoj695QY8v8hdM2zty3Q/lOvyhn3OU6/62XJee90tQhMnyvTXair3LVDGs
KoFXQsQhcIo4fq8HQVRESIpYevqHMkFSxtL903SuS1+Gk0cYmjBdOo4RSmEc
NoyKxrJQNC6GwUXxatD1TajmFqSwE9PShWntxLR1Ytq70T0SvEiKkUnRajlW
Kyfo1TSDnmsw1ptsdaaBeqW1Q2Q2tujG6DIHpkuBEzYVYEvIXGR9I665ASNs
RrcLkB1CuKgNKe3ByHrxMhFZIqLJJSy5gqHUUlRGqspSrx9Q6IaHRIbJWvkC
47HiIuR0PRva69hG97kuuk9xCaj+pWlSEFQgRQGSadI2iz7Pkeu+Z9e9otze
lutec34yTuLFPwEjfWOuQ/b5X8ZbsNnbF9q3VabfzsEs9+gYejGUXo4qD5Fl
IZLskevCKFUcpUrilAkore1N+YjRNDEGEGKpfCylj6kIsRR+lsLNVK9QNS6S
yktV+zlaH6F3oJJVW06pRjLLybwKBr+axauCqGlANQowTa0YYTu2pQsl6EYI
u1HtvWiRlCiXkTRyikFJMSqpeg1Vp6NpDTSThWmxM812vqW/u6GNT6ojM1pI
WGZxbuklBgtWw4cJ6mGtzfB2QXWHENbbUd0nQkskOImEJOmjSuRQrqMrtHiF
Hq3SUzSGWrNF7HDolIZBpmqFoQ3StMG067QBqtZL1TxqWCSg8EYFI1RNlKrZ
X+pCr6eomlUquLp3HH+RQ2Le25/C99q8tgYPc9Sb0GC6iS9/BvFQXs+Kh/NG
Wr04qZfQ9wy85DBwfS8FI/bsB3rlyHV/znURrDKytzz/6dTfEC5dvUKnQmhl
AKP0owEfHvQQNU4yMEdVjRNEFlKvntSpIrfLqB0yaruC1iln98rZYhlTouQr
zXUKG7FZXExhFBOrqpnFBG4+raaIzitl8MqYNZXsBhivCcZvqqwVVDa0lDe1
VTS3V7R0wnpEqD4JRq0gGNQUM0C1AjSLhm7RMsx6htnC6R9qamxBwrH5ZA5S
0E7B4TMQldeZlAI+u6ipqbSltaK1vaKts7y7t1IsgUtlCKkMLZURFQoaoKYD
AFEDYrU6vM5A0+p4JkOjfVjT2z/MBcZYah9dvUnRbJDBKCS9PaJkTZwMJshg
LP1UF0yj9ZN1vif4KWB4T4OP7PcMCpA4ct335zqi/IDrDtfdX63rIIPtdx3h
yHXfj+u+vbX6WHSPXYdRhTCqCFoRgUSHU3ppWh9dO0eS96O6VIiWTnRLE66R
Rmgg0BoxXAGuvp3U1E0ViGhCCbWuF83rITfLWwk1jFJ0ZSW+rIpUgKLn4Jn3
ifT7VFoem1XM45fV8Cvq+GX1NWWNdaWCxtIOYXlHS1lXe6W4p7qvDymToyE1
6TRkk4ZqAWg2Dd2u5/bbmtQgNa/0JIlZTufCBUIsGX8bUXqORcqq5RYKmktb
28r3KOnqLhOJKvvEcLkUpVIQtFBEVNONINUAks16itlINZkoFiPFZOGaRqVS
u6VeNcWSRZnAJhWI0kAo3S3TdAs0jZ+ano0cpGq8VNAD/QSooJ+qDVK1ISr4
iMhB160+4i277nviyHVHrvsbdd3+GvbxkB1GHsIrA1S1h6qYI/YOIgR9lby6
Kg4TzceT6tGsRhy/GdPYjGprw/R2E/rEZJEY19uHFEmqe0AmoQFZUJ2LJMIQ
+OJqbC6Gmk2gZZEpeTRqIZNVwuGVcfnlfH55Hb+8obZM0FgBFZ5dwsretsq+
brhEDJcoETINVgHiNSBJD1LMWprdwBtytAgExUUVJymcEhq/oqULTyLeRFSd
q2UW1jDyBTUlbXXlbQ1lbY0lXS1lvW0V4k6YtBepkGAAOUGnohlBhglkGPUM
o4lmNpGsJqzFhDVamLZRpbx/qE49zVV6ajQBHrjE1gyxNCYmYGOqHSzNIBsY
4WjGuJpZHujkAH6WKsJSpRiqVTqQoj0qWtPZL0YBo495uzXs34nr9m/yeeS6
I9f9Rbluz3U4ZRSvjBAVEYoiSlP7mKppXKe+hCssZXBhTCKajaHUINn15fzm
0tpmWENTVUsroqcd09eBlnVixJ1wuQRpNjO4gqpcxL1STEEptrCSUIQiFOGJ
hQRKAZFaQGOVMbnlrJpyDr+MV1tR11hZ31ze1FwhFMA62uDd7eXirjKxuKxP
VSnTIZQ6jFpHALUUo4FmAukOSyOPnYvB3aSw87lNpY2tVfdzfleNuk6hZTFZ
eTW8YkF9eUdTZYegokNQDn1UT0+lqK9aIkXIFRglgFeDZEBLBfU0nZFqNJIt
BoLdSLYZ6SZzra6/VzWkaQbUfDFYJwZ47Z1NopZmGV8g5wmVDW3q9g6wtwOU
dul0XbrBds1Uk3qJC3hZaj8DiNA0UNkbI+qiJG2ErA2TtaG9tWkvd90r8kO7
7pAd6d+265QhkiJElj+GeFB3b3+8Di97bhP451oV3w6kQYLER3wCXuJ7I+N1
WLFnP3+J637YBVyH2OzwmXKHzAE+HFy6yRVgqIJcpZ/WPVTJaS4kkhFMAp6L
JbHhTF51bR2svqG4oamosbmipRXZ3YkXdeGlHVhpB1LahdGD3Iam0iuZxzOr
7xSg7+UiMkqx2Rh0Ho1QwiSX8hmwBnZ1MxMmZFS20Cs7OfDeWqSovrqvrlpa
j1IJcGA7VteN0YqRoKwaVKFAEAdq8aCOrNdTbBaWQcNEVl4gYO/SGdnCDhiZ
ee/y9d9gSXlUZi6nrqC2oVjYWNwpLOtpLe9uK+ntKRNLYH2yKrkSoVKjNSAO
MJCUOqJaT9QaKQaokjVQ7HqqXUe1GJhaI8s23t4LcnCM4vpmWksLq7uLIRJh
e0XIXhGqT4GXqckygKLQ8jRGodbYo7Qq2+2mOtDBVc6xVH46kCRrVknaZHp+
su5RYbufV2pb/IgS4Gt3aV+v1fv87YoO3pfkUdJ7mzznvVfs7UJ/ViSp/ynE
g03bw133nTR45LpXgZDeLinEUHp58nl8s6EAy4ERsHgGlsZF8moRfB6svqa6
sbZKUF8paIJEB+vqRou7cdIurEqEk4vQCim5u4d64dp798uv3ofdyK26WVid
AUNlcdAlddWlDfDShpKi+uysplt3Wm/da72e0XHrXk9GVm9GliQzW5VfCBQX
W9DVDgZmuJ4w082ZldeMqNh2FdUIkPQ6Yr+DL+6qLsn7lEnKZVCyBC2VKOzN
rPunOdTyWnpxM6ewo6ZUXFcua6hQN8G0Qpius9ooxtpk5AEVfVBFt6nIRgBv
1JEMBpJRnx61s+godgNUGtNNOqrBQDfbaqz93Br+rVpObktTVWtTlSitcZyo
Gy0VY1RSjEqB1moIOpBo1FMNNqZqsEE2IBOZBoTALE/lZapjdCA9KYUCJo9c
94Zdp3j+1mw/StdJj1z39lyHf7L84blZwU+I4ZRBhtbDUkxUcIR5KFQVCUnh
YCksGItbyedV1LBLannlPG4Jj19e11QuFBZ2dZT2dVYqu6s1kmqlqkpn5OQU
f37m6rGciqzs4jtwRBEOUYYpzGPey2VezqCducE8caPhk9s9n2RKTuVKT+fL
T+drzhXpzxUbzhdBGC8Umy4Xma4X2rLKJ+C4RSZ9TsieFnPHVAwbSBywc+rr
c8pLzzDIuTXMvN52NAufDb93iVmYybh3rebuDcH9jPZ79zvvZPTeuSvPylIV
5OhgZQYU3EHFTzSzp3u4ozL6MMjq19GsOrJNl3ad1ciAQp1BS7AYyXYrZXqi
vktYSERfFjRXCIRlvT1YUS9e3EOQ9ZHVcqpGTdNrmQaQbjGwzSaa3kw0OhrM
AzK93dBrGqrXTPE0yyxNhJ6eixJ/0XWUF+YqfycOk8/BGX1vQZJHrjty3Q/q
uqdru1503eMG696GJDHC4/vUQI9p6eEgxaVFF8YpAlSNj9g3kM+oz8fCEaTC
akIOnlGOoxTSGCUsZgmDns9g59M4eWR+AbOhVNBU2CUs7mstU3fCFT0wg4FS
J4B9eOrXd/NyCwqLEaWVZbezyy7eLT99C3fyNu2juw0n87pPl/d9Vi47Va78
AqY6B1efrzJfRA5cQA1eRA5dRA9fQk/dwE/dxE7fxizlE5crCXMY7AyLONNK
mVEyZgcFBOoNROXlekJRMy5fykcz82+Xf/wx/fwVzueXOz/Llp4uBs5W6M5W
mL6ocJyDDV1FDN9A919HODKqRyrQQxjsAB09KiSNSWijAH1YR7fpaQYtBUp6
GhXSACKHHOSJoXqVlIVBXKsTVAg6yrpElT19VX0SjEJBVgH09AoOLVOv45iM
fIuRazNx+u21dkeddaDBOCyW9muFegcPWGQ9UdzeZJXo3vS89IAeCYwTwTjp
yHWvNV2ZpDhwG0q8/MfnOrwsQJD69/EDuA4peVWb/eBCO7TjkMAqUntbnT9u
MTwCDwntCXsbLj1a5hDau11phCiPo9SrKDX0rhWOzkns1hcRqaV4JJxYWk3I
RhAzq/H3cJRcGqOQzixgcgpp7HxGbRG7oZTfXC5szOsS3Be331N052vEVWZt
7aU7J3937mROXmHVjeLKz7KLfne7/Ng95MlM9pmCxtOFHadLRSdL5J+UqU/D
NF9Uay8gjVcw/ZdxI5ewo5dxo1ewo1cwU7dwcxn4pUx8oJgahdEjGHqIzPDQ
6C4ue1neTUXkEu5cbzp3s/vMve7rxaSPr/G+yGo+VyC8UCz9ohL6TMN5lO0C
cvAiauoSZvYqfvY6du4W0ZlNcJWSvHC6F013Y6kLFPRsLWZOzBjXcaxaillH
VIhLVQqY1UJy2NgWYw2NfLVFWNLVDe/orOrpRUikGKUSr1bjAA1WpyMajVST
kWYy0ywWtqO/0THQYO3n2Po59vE23YiyQ29pUM+yACjIJR+5jgJGqGnjxUja
GEGbNt7+knbvmmccprtDFud+l4vfiOtIh3YuDrmv7ncy4YFJgwfvIU48yIFT
b9d1f65VcbBtIfPvByfzPeW1Xfcif5OuOxjeINcl99Z2pYPcgVWr6SwX29tN
Dgpy4XSEU0Llagqn3MQpd9HKTYwiwtK4ib2OW2haDqasmFBQgs+sJN6FkzKq
cDdx5EwmK5/FyGOxC2jQI6eIV1PObyivby4StmV2dt7r68o1qkndneRffvj/
XbpyPeuLW9m/vVL065uY43m0T4rYHxe0nizu/Ky4/VRRxxclkgsw3blq/QWE
6SLSegU9fA03eQ03dZ0wfQM/d5PozKAs3ye7csn+CkYYzYqRuElGTYJRu8pq
XCCzSCdOcY6f7/3gpulMWfepIsKvrnSdLZV+Wio/W6k6XwWeh+svVNu/RAxe
RY7fxEzdwUzeQs/ex89lYdyFhHgVZw3O24Bz1tHUEBY7Q0WONmJGxeRxIxuU
wlUKhMFCM5rpFhObx7nZUJclbCxqFZT3dFaLexDSPiSgxoIaDKjBGvVEqOA1
GSlWM2PA1jBkbxx0cO39DFM/2zDYBg7pu3QjPKWfqU5SNSmyZp2qWaUDCaYm
RtdEaY/n472O6159acbr58PvgefmOb8p1x3C23fdK8e8F133jCPXfRfXPblL
lzoEgXvqumc7Z8aIUMxTBXGqCEYVRyrWEIp1rHqXoExxtRFy7/DlCsbtKlQu
vqCIkFMOuQ5/B0G+hyJlkKi5bGYJl1Zcy6yoZ8EaWXABFyWowza3Itu7Yel2
Z3eFw1APr7jzzjv/dvnja7nv3Sz84E7lp3n4z4qoJ4r4J4uEp0raTxV3fV4q
ulCh+BKu/RKpu1ytv4Yw30QP3cFO3sZO3yXMZlLmMymuTKo3i+IrYoRRnCiB
H2PWpTgNm8ym/2jqmSnHYf71g+YTN9Uncoev4Rvfz8D9/LzyUrXlTKX1c5j5
fJXlLGzgYvXEVfT0TcxsBnY+Czd7H72YjXPn4AKF5EQFM1XFXkNyN1DsDRw7
SqB6CdglFnq+jzLUhzMp8CYLx2bn6zQULPo0m3mzpbm4TVje1VHV210lEVVr
1DjIdRo1WgfijXqSSUe0GGhWA2/QUjfs4A2P8K1DHJ2dq3P0AHazQDPDUbkg
uZGBbRKwQ9OsMoEYCwizAD9dE/l7dt2rJ8AfqesOnYl35Lo36LoIThXau0dD
EK+K7Mt1kb0xOugXJkpMD9ntzaBTR0hAiKDyMtRepmz6GoxxpbA8E1aUX50N
wxRgCMUkYhkTX8pFFTcRq4Q4eF1FUWNxkbCkpKW4rL0M1gGr6kaVKbmVWmG1
WUQd07Vf//T4u//63rVjmYW/zUN8lI8/VUT6tIh+qrTmXHnT+fLWi5V9lyqB
S9XGa0jLdYzlOsJ2EzWQgR27i565i57PxC/lUZbyyCt5NE8+I1zJX0XXbpAa
NlhNm+ymb7it/7OlbyILTvvppx2fZSk/Keq/Reb88jrv4/vATZT9S2T/RaT9
Ksp+qXrsOnr+LmHxPmEpG+fMwThzMe5ior+UGqlkJpDcFLZ2kyTYJgm3SE0b
5LotesMqhzPHqJxqQk8BXIexxmGvBdUUNPKzWv49QVNhS3NpV3tVbxdc3AuT
S+EKRbUGwBigMlZHNOghqAYd22Tk2m0cxyDbNkyzjjBN/TV6W7e839YADtHV
8xRNCq/Zxms3yJoEHQwwQTcjvQrj211HAZ8X2iH8SF336lf+eF23/0r8keu+
F9elF3nhVGGCGtJd6HENq9x7VD8+RVTGSPIYTRFmK900xRRRZMaJgCqB/GwJ
9mx2fjasKK80A1aRja8uJcFg+IJy5v0S3uVs7vmM2i8yms7caz1zv+uL7J7P
s8Vn86UXC1Vf5mpu3geyM/tJWFsd/8Iv3jv9y9MZn+QWfZBP+qSUdryA83Gx
4ExV65nKDojPyzvPlnVdrBRfgikuw5VXqjU3kLq7GOMtlP02eigDNwR5L5M4
l0N2FdMiSN46oXab0bDJqdvi1j+sF/57W6/jWl79T89IPs3Vni61XkMzf3q+
62q5MYfguEsw3kBY7qJtGajhTPxkHnmukLJcQHAVEj3FpEA5PQxjRJHMFI6z
TuZt0+p26S0P6K3bTMEas3GztilIJIyU5a60Mebl3ElDnR5yHeIzHvtOa1Nh
e0t5dwe8rwfV11MtEyNUMrRWS9EbaaCeBBoJWiNJa6JpjTSdhaazUQ0OinWQ
7hji2fubTEO9YquKC1rJumWsLo4HNwjaVaI2StYGoTKWAUL17KPVFo/W2ybe
quve7uzl50b2Xv3K53ll170F9X0n1+0jgIec9jIkEL5X4/Vdh3orBntFmx3e
gPjzM4HTI3JpCKp4OtTt3Z4Go4qiVGEsEKKAQZJimSYexjVLy1i1ZWwGWsC5
UFbwScat+2X5JRX5VSU5iPv3qq7dqzibXXE6D3+miHe6oO7T/NbPCkVflEnP
VgDn4boLCPNFhO0SavAqduoafvQKfBHJFWdXX/jPv8l8/2rBsbuwY3n4jwqZ
n5TzP6vifljU8El54+nKxsvIpjyqAF3XTe8A6uU6AWBs1di6DQO95qEu/UCL
xlortfJ6bXj+GJ49T2R7SIwYnb3J5j1sbFxvbPiqu116/jrvf5yXnCu0nq8Y
uYRof/eGJhOtKyDqC0jSHKQsGwkUYsASgr6C2A+jTpdRZ4oo80VUTxkzWsXa
QLN3afxdLn+DzdqG5AllRVbTQ27Tw5qWNVTNSiYshiUGWXhvH29QyWUgzosa
ylVChLIJrmhC6NuJeiHe0kkZkXNHwZohqG7VMx1GmslI0hvxOjPBYKMZbQyT
lWW1suw2br+D39/PM/R3tptBum6YrPNR1esUYIOYNt4m5DeGOkjf2/udDCbJ
4CoZTO3pLr247NVd9zcQ+b4b6XsqvQ6vLcnXduZhGpQF9kPYj/S5Lu3L+XO6
+3ty3dP5ctBxCKcMEFVBmjpEUy9heowldS2FLFIhtaqCjcE00K+U3fv46tmb
OfdzczML7t0puHi19Ph1+In7uM9KSKerqV8gGZ/DuWdgTacrO7+Ai76AK88j
wXNIwwWk9Uv04CXMDKS765gwrbP+VGbWfzlZ+m5G6W+zEB8XY46VVP+usOqz
cnImrQHf2tYC9KgdYse4aGpBuuBSzK8Ayx5g2av1+PTegNHjt3oDg/7wqD8y
63EvzU17bXavWBYVdmzwBOv85vXGtq/E0rYzN7nHM7oulKs/rwROw+p/l9lb
TFWQGrV1veoOmUWqdSj1g4B5WGuZ1dqXpab5DmBGIJ+s61lhtITJDSF6XYxb
v9oo2GxqeVDX8kd+y7/XtP6B27YBq4lkE3cQ7F0K280ij7cwOuGZYmShpDxP
mp+lyMk0FBfp8vJspSUTOOQUBTPHJy4LaE4RewrgjGtZwwZmv5HpMDEcZpbD
zLZZ2FYr22ZjGRwtcoe2QdfP1y5y1UG2KsRQR6lAHKph2YCPBYToQHrTAMqR
645cd+S6v8x1hHS/Nb0/CQn0MrTL+A5jPqMpm4wrpMDKWSVVnFJUDfps9vWf
ffLRtdt379/IvHvmes6pm6Un72JOFhJOlFJPVHA+RfJOIfmnEQ2n4B2nqiWf
I1WfQ5bDWM+jHOfRQ5eRY9dRc9dRS/cpPmIb8l+/yPpv5yo/ysl/Lzvro8Ls
i9VVFbU8ISjUjjU4pmkjk9SxKfb4NG9itn5iXji10Dbv7Fxwdzpdncsukdsr
8/o1/qDeHxwOhBZjEf9qPJyIrEUCa9NTUb0p2KOItfY1Hb/DOJbffJekwrSb
G7Xt9ZIulVlkGpSPzEjnllRLKzqXx+DxG73egWBkOhybDUQXgrElXyS84E0M
TwS1Zn+P1NfSEapt3KwXftPQ/vvmzt369iSWHysm/x5X+x+M5lV6zRQO13ru
UvvZW7LzOcC5fNPFYvul8v5LJVO3EYvZ6Pnc6qVihBuBd5FIi1yaq42zIuEs
AuxJkDWsZw0YWDZId1a2ycbUWWu1/X0io7zXaBSbBju0/UL1UJN6tDY95XiJ
o3GzNEGmJkYDU5DuKNokRRt75Lp9Wx8fue5H6boDHLnuDbluf4rDKfd2KVFG
cI+fBvEqH0Xrhksn8xvEuSRENqakkgpD0asqSKVIFvrsvRs//eijY2ev37iY
dfvTu/c+vF9xogx+rBR3spT4STH5WBHzRHHNqfL6MxVNn5V1niyXnIGpvoDp
LsBNF+HWLxEDl6tHr1fMXKv0FbJdKEH+f/n4yr9dvP3B3Zsn8ypLa8gtOrZu
nKEfJ4JDFOsEeWCSPjzFG55pHlvomloWzazIFrzKRZ9syatcCQD+CBiImHwx
qz82EIiMRqPj8djMemJ5OxXZXl3fSK2HwstWB6UcR+N1d+iGVWNO8eQyzTaE
dwzyR6faJxY7Zha7Zxcliy6p06NweSFtGoIhvddvD0GflpyNJd2pZGJ1dTMS
XncupEz6aGsbFPAetnbudnQH2HwfkvANq/4bRv03vJb5PJTowyv6s2X2L7G2
c+iBy7jBy7iJa6Tl+2x3Nn05h+ArpUZQ7FVi3RqhJkSguOgYdzNxQUKHdDcC
uc7IMplZJhvLaGNrbTydrUalZ6m1LK2hDjS1A6YekcXcaJzig1Mc0MkGfVQw
kd7zU5sk62KQ7p64Lkl7tFPoC0vMjlx35Lq/N9c9vcHN03I1fUuI9Gab6fsS
YlRRjDpI1CzDO4C7ZGomrqyUkI2gZSEJ93GEPBoPc7+84Oe/Pf7bY1+eOXPv
6gd3cn6XXXissOx4KexYCeFYAfGjPNJH2fQTefxPCxs/LWo+Wdj2WVHPF6Xq
8xWGCzDDhUrrZfjAterJq7DFL4tiZczxCu7lfzx58je3r10uxzK7GRI7SmaH
K+xY7TDFPEm3TXMH5hpHllrGl9onnD3TS+LZZcWCR7noVTo94EpA5w2afEFb
IGIPRKBINhpNTKdWF9ZTrs2UbzPpW08kf//7xUiSJlYxrWOcgWnoo/iDswTT
MNk23DA20z21JJpZlM4tq5fc4LIX9PgMvpAlGBmIxYdjifFYcjyZnFhPzG+k
PNsb8d3NP2yt/8HtXTfbY72qRKfUzaoPM2p361q+qW/d5TTP5yA1J+9azpbY
zsH6L1QPXUGNXMPO3CY6M2krWRRXLiVQyogheWv4pm2SYIfetErmRHAkNwnv
rKXMiXljxiajlaez03QOGmim2swsM0hSyRAaNT69l5SRq7M1qhy9EgvYaxgU
qic5qhUmEKSBYYo2mtYdlPQg1wGrNPVmekM8MEgFw2/PdX/Ne7CkV2q/Dn9d
rpMH9vO6rju8i+FFSQIvRfoD++01ilac8sn0OXXssevUYawqPbMOrwySNWGG
1ldQo8jEkSsJpXBCFppRgGFk0pi5PC6MwkK9/+mnv33//IkPb3727vX772fn
fZhX9HFh8YmCso8L0B8VkH6Xxz5R1PBZRdPJsoaPi+qO5zeeLGw5U9zzeVnf
6TLZuVLVxTLwCtx8tWr0UmGwmi25j33vHz+/nsfCNSuwvYYykalCNYAAB7G6
EbJ5gvbIdaPOlgln14xTNOcUzS/JnS7Fskfj8kHpy+QPWgIheyhoCwUHwpHx
WGI2mVpeWwtsbYS31gKba6Gvv7F7oxgRSNeP8W2zwpHlBscs1zTR2D/bPjov
ml7qm11ULDoB5wq44tZ5vCafzxYODUSiI+HIVCw2l0g411ZdW1uu7S3X1lpk
c3Vzc/OPm9sbTo9TAs5TGnbrRX+q7/kTv32b2TSZXak6fcd0pcRxqXzoGnz0
DnLsNnoiAzOfTXLlU4Ml9GgFcxVVs00W7tJbIR7QhTvUxk1iTRzPdNGpzjb+
kqZpxMo2WqigiWk0cix6jlpBlMswIEDWa+kmM9VgpeutzTprn8oMthnsfM0I
S7NE10b2dvvcC3WQ64ANWnpzvBD18dbHyT2Pfft+At+T+v6MFX/wpLcPysv5
PhLg6/dwFcFnpG8JdEB3xJfzqhqU+v8mXfdId5DrHoFTR3FAiKB0U1VOuny6
hNWbg2aW47F4ShWJVoqnFZBZBQxeBYODOXXx/M/fPfXhe7c+fufGtY+ysj/I
yX0/p+BYQdHHRaUfFyE+LsIcLyJ8Uor7sABxLB/7ZRXjNr6hgNlRVdeLaZKS
WpTUNoDeoWX3aMgCM5ZtIXDR18rPX0aUNWnLWlQFLapy6UClchihGcbp066j
22Z4A/NNY862yeXutOuW+hacSqdL7fJqvT7DY9cF7aGQIxwaikQm4sn51bWV
9Q3v1gYkuvTjN3/UOr2oPg3bOlXbPyccXa7rn+fbpoQji+mKeNYpX1hWrbhA
l8vg9ZoCAWsokHZdNDQSCU/H4iuxRDCxGlrfDGxteXc3PNurgZ3V2IPN1O5m
KBjw2gYSveDX9eKvmS1fs1smMyskX9zWXysdugIbuA4fvIMauoseu4+bziWu
FNN85YxwFSuFq3lAFXxNa3kIiY4h2GA0P2AJv2EKtmg1KRI9xWV6JfwJkGvW
sTQmFmhkqFXEPjFc1ocENRS9nqMzcLQmNmhj6Qb56uEusR1o0js4gJOpjjI0
CbomuUccgvZ4QVmCeqCkfZ3C9s2q78h1R657a67b22guilfGnuoOD8RxqhBJ
uUiVDOXTmnMR2GIkrBpfTqCUIFH3iMRcGquEyKjMLcv7p59/+LPf3PjtLzLO
/irr/u8KcqBc90Fu4Qd5RR8VFLyfm/+bzKJPimG38QxsS2Orth0ckdsWtBNe
y3zAuhjsd0UGvfGRQGo8vD7pjy8uuz0uP61efIPQdrcRzG7VFHUbS3sdcMUI
WjeMM4xSLFMs+yx/cL55zNkxtdwz4xTPO6WLy8plz2PX+QJQAWsOBuzhcH8k
MhSJQq5bWFtfWV/3ba75tlY9O+v+P/67dM6J6gO5tpm6gfnWcVfjwGKtfVo4
stQztdI3t6JcdKtXXFq32+jzWYJBRyTUH4kORkOje65bjieDqdXw+lZoczOw
vRH+aivwcMP3cN31YG16I7ry1fp6OLKp719t7F1nCMczyoFz9y3Xykag1Hod
MXEXN3WPsJhLWSmmu8qoXjgzgGIl8PwtWvMuXQiFugcMwTZd8JDW8g297SGz
5QGzYZ3G8tAI7i7ejLbJrONoQKpWQ5ZKkH0iuEZF0kHhVEc3WmgGO07nQGn7
6bqRDuWAVqi184E5tibE1ESZmjhTk2SAq3Rwgwau0cAU7YV9omhgYj+HyO3V
r3x1Kx657sh1b9N1eCjaKWI4JSS6KBFI71VC1YZJ0rG7hJpbcHg+qii/KrMC
lwvHZ8FRd2mMQgq9gMiAf3jqs3/6xcl33885/m85l3+Rc/+Xmbkf5OZ8kHvz
V3cyPswuu4wiwxvbOk29+knxCBSZ/J2zvo4Zb/uMr3Pe173o6XP5pN6Q0h8H
QglDfBUqPL3ffE2Smz+ltH/Zqr3TCRaKrRWyIZhqCKUfJJpHqJYJtmOyZmhO
ML7UOeXsmV1Ou25hWeF0AyuP5pwETb5QOtdFwv3hyHAsMpOMO9dSnvWUfyMZ
2E75tjeC//4foqlZvEJXNzBXPzQvGF2q75+udUy1ji32zixLF1aUSyuQ63Qe
j9HntUDaDAX6Q8GhUGAiEpqLxxdTqeX1lG9rI7S1Fdlaj+1sR3a3gl9tuR5u
jK6FR7di8a+3v4rFU7YBV02L/kaB6ssc/fUy8+1qSwZ6IIc0mEkczCSM55Fm
ywjOaooHw0zQm3Z5bTtswTajcZfW+BVN8BWzZYfZts4WJmqaYzUNYTJjiUyY
a2PPAvUDWg6oJkv6EAo5FlQS9ADBbKBaTVSzhWiw4A02qtZeox/q1QwB7SYj
RzvPBr0sEAp4KYZmna555Lr4nqMO5rp0U+MxR647ct1+12GkwZeB/v5t9vrh
TfmtG82lEx0WCnXKOF4VI0KhThligBGafP4GpuZqRdm9qqwC+L0SZFYpOgeG
K4ShM6txN0mMvKKKe//881/94p3PP3n37qmfZlz/aVbeL7Nu/frehd/cu30N
QWCLGjTD/P6ZupGFuqG52sGZxpGF1il3x4ync97buxyQrASU3iDoD5sDsf5w
ciSWGo8Flx9uV/bIPmV2fNmqz+rRFUh0BWpLmcaB0PajDf1k0zDLPlE3DLkO
Ep1HshSQLwWUywGNK6T1RE2BOIQ1knJEVx2R1FB8dTyenEsml9dWvWnXJULb
q76dzfC//0lo7yepNFz7cNPIVOv4XI1jsH5ouHVysmd2Rro4J3cuqlaWQY9L
73WZAm5b2DsQ9g2HfJOR4HwiupBKOTfXvTubgZ31yM5adGszursT+mp7ZXt1
djXigyrZ7c3YamojEp/Qmpuq8Wp+k61L0q/U9hssw2bHtKF/FnQsKI0LItmc
sHOptnWF1eyn1kSozBSvdovX+IBeu8Op3+Q37/CaV7lNcX5zhFLjwtEmMJi5
ZvaCvkUPsEV9aJUKshzNqiXbDVSbkWE3s2xWjtXCNVo4OnutfqBR7ehsM1lr
wEke6GVrEgztKl2bpOsidF2Urk08pyxyes3FYyjg80I7hNcuft/ykOB36hG/
Ede9tglf03UHIUHIX8oB9f25LsbfoOsUUKKLE9VQ6RrEKr1MYOUqsvFCISKr
ujS/KruyKreqMg+FKMajKojIUgo2n0ODXbr4+b/8y28/ePfS8XdunX4n59Kv
Cs7+/ObZE3loSnedaoRuHkdahqv7R4kDU5yhGcHoYvOks2He1brka132drr9
MncQ9IWMgYg9FBsJpyYiialYcGl3vaSz9wyv+2qbIasbzIdcp7KUgoNw3SDW
MMywTdUMLzaMLjeMLAnHXG1jrvZxN0THhKtrytM75+9bCChWIhpv3BhYs0U2
RlJbs+s7zq1tz9aWb2s9sLPh3d12f/M132jEq7Uc62jz+HzblLPGMdY8Pts5
6xQtLsudHpXbD3iCOn/YGIpaonFHMjWUSA7Hk+OJ1FxqbSGVHv3zb0O5biOy
vRHd2Yrs7gQf7Hg21xdSscDuBhTzQptr0Fmzc05g1asWJ0HnjGl53uB1moIr
gyHPVDi4GA35kuFAxB/3eaKz82G73SvqnqurDdY0bDEbfs8R/onX8ie24Gt2
0w5XuEppSBBrXCjaJAY/3cIfAprkIqJEjFJKkUYN2aylWQx0m4nZb2U70kst
eBY73+jg6gYalf3SdrOpDpzmgkGmNk7Xxuj68J7rnrfZkeuOXPd347ooUZ3c
0x1UxnpoBt8NouCzzLJMGCKvrLASVoAtryCXwRilVYycctKtfMLtXOy9/JPv
HPvVf/vs41/d/vidzPd+kfPzn929k8vAdZvI+nGsdhihHcLZxon9E8zBWf7I
bOP4YvPUsmDO3b7k71z29Xj8Um9A4w8ZQlFbKDEcXR2PJmbWovPbqfzWzvM8
0e1WS36bvrhHXyKzVwCjKP0UzjCNAyexmnGsehwLjBGBCYJqjKAepYKTFM04
VTtJM0yzrXP8/iX+wGLD0IpwzNM7H1C7Yrbw6tTqzvLWA8/urvf3v595sEvS
6ujWkZqhpZohZ83gEtM8zbXN1w9DCl2uH1xsHHE2DC81ja+0Tns657w9i0GF
N6EPr/XHdybXvlnc/Hplc9e7tRPe2gpvb4V2dkIPdoO7O97N9ZVkIrSxvvHg
YWR9Y2UjKZkdrR00tc2MimYnwflZ7eKcYWXJvLw04F4ZCXgnY4H5eNCdiCQ2
V7c2V7fjofXlpbDWFGzuXucI/sBr/Z+1HX/iCHboDduU+nU0P4pkuxCsAQR+
ultg6WX3tMBkvXCNEqfTEHUg3qAnWI0kh5XZb+faHDyLg28a5BsHa4EBcavR
wtfOsXT+tOV08T1itINCo2r38cqi+3t03SEzUo5c99fsOmXsqesIyiQJWMOp
QmxL+Gat6lc3c28WF+RUFJeU5VcW5iJuF1RfzEV8ehf14W3sB/dJJ4tK37/5
yf/70Qf/9cK5X+e8/893fvFvuRnwdqJ4oELmKFb0I7VjFNMM0TxJ6p9kDM7y
RuYaJhdbppe7Z9yiBW/fole24lP6AmAgZApF7ZHECFRvRmKL64npjVhOc8vF
Wun1Fkduh6VcZi+UDeSKB7O6+vM6HXmd9oIuR4VkDKWawABTeO0sSb9ANzkZ
JshXTqbNxe73sIbczEE3b8RXPxkUTAU75yLSpTiwEjf7EkOxjZnd3w+uf4XV
9KO1o2j9FEI9XtE3WNBlLRcPIhTjaPUUWjWJBWZw4BzBsEA2L1JsS7T+Zdaw
u3bM1zkTlznXLZGd6Y2Hzp2vPA93fQ8f+B7s+nZ3ArvbkOt8a6vh9Y34w4f+
nS3X5ppsbKRzcFA6OaWaWwQWFi3OFfuKe8DtHQsGx6OhyURkMh6ch8r2ZDS4
noysJde2N77e3n7gDiRN5nBbS4xbt8Nv3uU1b1Lq19C8RDUviGoYL6c7CLTB
tprehgpFXzWgRoHa9D54ej3RaqLZzeli1mplmW1sSz+zf5BkHq4TOyR1ehtb
t/yoeqWD6UqWBh7sR+iSz9Amj1z3Gnwn3f3NuO4QXtt1uCdgIdF9x9UQL0wV
3u+6MF4V2ts7PUHQJFnGRHXP8M8yYMczMrJLc/NyM/OvXy8+f7XovSvI32UQ
jmdTj+UyjxVxTsOz/+Xq8f/71Imf3f3tzzL+7edZ+chemNCa22IokzgQwBhG
N4k3TFJsM8SBSebwdM3obOPkfPuUs3t2RbLgkS94FCs+jddnDARt4chgLDGe
SI4FA0vrqbFE4h5PcLlBeaVz+Fqb9XKL4Vyj7os6/dV6S1brYEH3aJlkHCaf
RKqn0eAMBpwlGBdJJicE2eSk2ly0ATcVYtDNGPZyxgL1U5GOhVWpa0O+sqpY
icmdEdC/2ToVutukud9uyu2xV0jHKiTjxT2DldJxlGoWCy4QtEsk/TJB7ySa
XBS7lzYUoI+G6aMhxliYMxpsnI61zQVly0FjMD60uja7s+P66hv/N3/wP3zo
3dzwr6+HH+x6H+wsba4ub2/0jYx0DgwrJmflswty57LR47G6Pf3B4HAkMBYP
TCRDE4nwbCq6uJF0b64Gt9d8WynoMbmz+dWDtYe+xSiocdc1R2uFm7zmOI4V
QfP8ML6rqs5aTOznsuUN1dLecgCAgdoqUIfQGnFGC8VoohuNDIOJqTcxTRb6
gJ3SP8jVDbV2WMVco52m9zC1qyzNGksbpmujNG3iGc+5bv+pQ/n7cF1kH68V
+V7Q4Gu6bt+tHkl/Ba47nMPT2suSG1YeJuwD+x2C3AG/PZ0+9xhVnKCOpHdt
UsXwQAILBOmA70Q25d0Lt+9l59+/ejvj0y9zPjoHO3YV824G+YNc5idFjJMl
3M/KuKfLb//k0sf/9cqvfpbxk/fybqO6imsMuY2GYpG9VO6AAQ4kOEQwjVHt
kzTHFHsEct1M48Rc69Rix8xy76Jb4vSoXF7Q6zcFQ9ZQpD8SG43HRyPhmbU1
e2j9LqfnZoP2DN90nAkcZ2hOcw2X6q23BUPZbaNFPRMVkkm4YgqtnsVq5nHg
AtGwRDA4CUYnybxMtqyQHB7yoIc05KUO+9ijQf5ERDibEDnXZCurcldC6opr
Ig/YdtdFhqywc6hSMg6XTUGWg0nHEfIJnHqGoJklgXMUPWS8BZx+iWh1kfp9
xMEAaSjEnIhxp6KN87FWZ7xnOSpdCcmcAa03Youkprceur/+g/+rb7zbu8EH
D/w7O56d7elUrNVu6Rweks3OKBbmNStOvctl9bgGA77RoHc66puLBefjEWcq
7tpIebZWfTsQKf/uqm87GdpKbGwl/7ixtjU7v9wlDnDrYnR+CM0JV7B9FfzR
EpYViQc5VeruSr0SZtbAzVqkyYTRm3A6M81gZhrNTBOEiWExQyVtTf9Ak3ag
qdUqYukn2NooS7PO0oYYuugBv702bzfyvTF/AtGXA5lwPxEyEH7K60U+iuq1
G7gHhEaWBSlPgI4PsdnhfKcW7Vt2He6g63BvynUQQPTRJBOMPNgwsHYLJ/np
scwLV/JuH7ud/evr+e/dKf0kp+xENu6jHNqJQu6p8ppT5U1fwDknyu//5MaJ
n9z62c/vXy1vzeZp7/KBrBZjgdhaqrBUAiaUzoY3DVPt4zTHJHNgmj882zix
KJx2dS54RSshqSuo8oYM4aQtvuaIb/THN8ZS66PJtfmdb/T+tYv0rt8Ru99B
iz4gKz9l6T/nGi/V2e4Ih7LaR4t6xyolY0jZFE41SwAW8MA8UbNE0a+QjS6K
yU21eMkOP6nfTxoIUIdCrPEIfyrWspDsXV6TuFISV0zqTkCuY5idN7hAcddQ
Rd8oXDZRKR2tlIxWy8ex6mk8MEvUzpF0CwTdIh7yp9VNHvCThoLk4TBzLMae
iNXPxVuXUr0rKYU7pXDFla4o4I6C7pglmJxa23btfBX6+iv3ztbyzuZg2C+0
m8QzY9K5CcXiLLiyaHA7LV7nYGBlNLQyHXXPxQJLiahrHQp1Sf/WamhrNby5
Ht1ei0ABbycZeLAaWUvsbK3vREKLfXInmZ/E1EZgXHcVdx7G7q/EGPCwwTby
qIQxIqePatiDIN2hpTlMTKiStZioJjPNaIFgmM0cs4lnstSrzZ1tOmMduMTQ
xQmGKFkfO3Ldj851lCPXHTJr7qDfIKc9AfJblJR+JU4EEnhVBPofPVU2/9OT
xSeOZ194//aNn9/I/VVWyYeFlceKYB/lo48XUT8tqzld0XiqUvA5in688vI/
3fjZP1794g4nr8ZylqG+2WS432nIERmKFYZKwIzQ2nHGYZJllN4/zR1eFEx5
OhbC3UvRjoWQcNorHHe1TrjaJlzdM57eWa9o1itb8KmWAtbYTtOE/xdV9f9c
IXgHIzpGUX7G1J3lGK802G4L+7M6Bot6hyslwyj5CE41SdBMEzQzBGCWrF8i
G51k4zLF4ibbfFASIw36IdcxxyO86bhgMdHlWhO5kiJXTOJJAMEdgnrqFl9T
0j1YIRmGSUdg0tH0o2wMrphEAzMYzRwWnMPpFonmFZLNTez3EQaD6VwHuW4y
1jCfbHOuilbW5O4NpXtV5V7VeNZBzyawktC5ogPBuGv3K+/X3yzu7mhdy812
s3h6TDIzoViaBd1LRo/T6lsZCrrGwivTMc98POBMxVwbSc9Wyr+9Gt5aj26u
x3fWY7vr/gfrvq82AjtrvvV4YmdjPZFYEiud+NoosXGlirVSxZ4oxRtzS/Ql
RbrS0n40eoJLnRMw5zoYEwBz3MIZtvLsFqYlfbcLhsnEMhg4Jl2Nydgo1/cI
wAG6zoc0xgn6FP3IdX+VrjvgPeXfneuwL7gO+4TXdV1adxQgQlKniOo1nCrC
N8TOFNf/93dvXPzo3u1f3s19Lyf/d/llx0tgn5TBThQhThRQT5fXnYULTlcJ
v0DD3yv54P/58ue/LbpDVl7gGD/lab9s1t7r1uf2GYpl5kq1Ha4ZwJrGKfY5
9tAyb9jFtC0SdBNo1TBSOYxWQaYaw6lHCcAYTTfONE3yrLO1jjmefapjLlQs
G/lP9xg/qep6ByM5TgWgUHexxnKt0Xq3xZHd6SgUD5ZJh6oUoyj1FEYzi9HM
YLUzOP0swTRPMi+SLE6ifYU04CIPuWkjXuZEgDcTaV5KdrrWul1J8UpU5kkB
wW2kbPRunb6sdwgmHaySDcNkQxCV8tFK5QQSnEFr5zDg7H7XpXPdUJA5FuVM
xusXUq3ONdHKhsy9KXetK9wbgG8XQrG8rnImDe6kzZcYiW8sPPijYmG5ydYv
mp7ug2rYpSWN250er/N6h4JQDeubjPhm46HF1djKRsKznfJCpetuekpM6GGa
8O5GdHczvLPh20j5ttZDOxubqbVluX4aywmguJ5yurOUNHS3wnazZOwWYiWb
EqpiBdDUIIU0z8NMCwkLIs4iUDuvq5vUc+1Gjt7EMRpq9HqWXM8ValRM7RJO
v0rSrabH5R4rK3Hkupe4LvrDu04efMqBGvZ1RfddXYfd6xE85RC5PXflq7dT
n2PvZqxpcHsQ5I/By5/d0PBFDnPd3jAsEVgnKTdr9Nvw5rF/Pp7/3ns3z//6
xv33cwt+m1P2Xg7qZBnqZAnu8wrM5xXoU6WYU+WE0+X4S6gv3sv5x3++djKr
5n6t9RQH/KROdUEA3OoAMnu0xVJbuXIIY5jFGmfLFaN53Y77LcZ7Al1+h6VM
NACXjmHSdeI8Wb9IMy4xLItsx1LNoLtxzMcdWm5fTN3rHv5P93n/vVr8DkZx
nKY7y7dcqrddb7RltNhzugYKRCNF4uEK2Ui1agyuGYXrxqv1Uwjo3zIt4i3L
eOsyweaiDHipAz76cIAzEa6ZiQqXkt3utW53SuxOKr3rYGCnoteR1WhIu048
DJdAjECkR+0UUwj1LFozjwchMy8STZDrXKR+D3nITx0OssfC/IlY43yqbWlN
tLwhdW/JXJsKz7bK+1Du2ZGtbKjcm1rvptoZ75sJOKK7PRMrjbbJ7qnl3hmX
ZNGnWIloPQmzLzkUSU7G49PJ+NxaYnE9sbQeX9mMe3ZT3gcp/1eroa/i0a/i
id3V5PZ6fHsjtL3p3VhbTiUX1hPRjdSiWOlCc6Jo/mIpafRe1XRGtTebEi9g
biNqHuBrdknsVQo9QiIHqJQAl+ltZCxL2BP6epOxRmeiq41EiZ7epWmt1/Qz
tCGGNsnUJuiQ5fRxqj5G1yfpUNJ7wndwnfYZ9IO8ejP3h5DkgWUjBzX4Yuci
8pTXdN2e7l4HZZgiDz5iT24hiuwxe+2J19fdq3jvEW/fdfvTGiF9J9ZnEL51
yty3jdHtD3XpWx6n2xNJXF9UqN85myn4yc9unnr37uVf3br1m8z897IqP8zB
nCyu+iCn/N1M2Pmqqjs4bAWPx++r7zBkoRs/zmVcxItv19s/r9WeblCerVfc
6dBm9ZiLJMMl8snsruHLtbrPOcov+eCtRkNeh71MDFWLE0jlNAaYw4NzJOMS
xbhEsyyxHC7eoKd+LMgb9bUvrmd0jf6fWTU/rZb+DzxwgmH4nG/5ssFytdF2
VziQ25UeryvuHa7oG6xWDsPVI9XgBEo/jTbM4o1LJPMK2bxMta4wHD7WQIAz
FKobizRNR9sXE73udZFrU7KypvFtqzzbxR2mzCZtYddApXgU1jcGl07AJZMV
kgmYfKpaPYvSQKFunqhbgL48inWZ6lihDbsZw37eWLB2MtIyH+9cWu1d2ZC4
t9K682zJvLtS947UtSl3b6m8kPTWu2ei3dMRCjBK106wTTNcyzzbvlgztNI0
7GsZ8fZN+zVLfpMvOBiJTG+sOh+srzxY8zxc8z5YDT1MRR/Ek7vR5E4ytrMR
2d3w7ayupIvcjfH12NRqZC0cdTb1upEcF5I1fAc2dwfhuocKFZHWkZyvyPUP
SLyHRP4DYu02gb+O50WJjEUObrKTNaJpsJo5aiNVomOL/n/27jo4zjtPF/1f
ty7s2bO7s2fPZIc2M5lJJmBmW2DJMklmySC0ZFmSLbKYmZmZmamZpBa1sNXM
TGpmkVHSfVtOMraT8Wayc3ZnZl31lEp2253YrvrU831/0NCaNjCoDkwth0lL
kbJihLwAtZqPWv3x1r2Rwu9w9+Po+8uz7j+6HeVHp2BMmj8i/ja5bz/K++9o
3R/bIQz6et1hr8UpgK85UMU32fsHHbMsozdgdUlVCwePhV464nf3ZIDPGf+A
80GPzwY8cQh8dD4o8nZ8TlRFcc1w9SC2HrPcME8vwxK9SrrPJzdcKxh0r8e4
1CJuVo3drYf5tKH9OqbdG7CXCyH2GSNXi2G3q8bdqtF+LZNhXbjInvno/sWk
MUIahJgBJ+Wg6Hloev4Es3iSWzrNrZrnl8/x2xkGr9bZ/xVQeTCp3zoTdLkI
cbMSc7cW496Aedg8GdoxF921GN+zmNJPzBimZQzTs0aZ2WBmJpSWiaTloBhA
8rDswhlh8ay4bE5evaRqXpH0U2UjLO0IUz/C0ML5xiGGNqQF4VcPi+zDxQ0s
xA8uArE8sgO64thSCgSfDlvJRhLzkKQiNLUYyyieZZXMsUvnuFVLglq8uJUq
72Ko+9i6Ia4ByDDfOMI3DXONgxz9EMc4xt/oY+q7qZqGRUnSwEIulFKwV19z
MIz8SW7hFPAn5dfiBPU4bssCu5fMg3BE01I5yWBir2+INtflm+uqTZPKrJOt
aYWbOv66lmtWM3RymlZOM6pJKhl9VSqlsyiljdSkIsLDJObDFKZ/qjA8R5VS
ZsqrNuVXmfJqTTkNhuwGPZDcutWCMkZpHr6pcHmkYgZZD4FWD0CruiC9baDp
Kji7GCkqRkoKUbJ8lOJN6D5Y98G6v3LrlN9Yp9z7EBZVDkieC1qtHJd7Zw0c
vRx39nigy2E/z2NBvnahHucCXE499L+dnpzeld8+ngdeSIbhUpFzqYi5HCwx
GbF8sbDjYGy1U+GAey3sXjX4diX4dg3sRiXMLnf4dMbg+XzozTLMzTLU3Zpx
r7qJh03YkM6ZmP6F+KGlpFHLHuAMODEbTclF0/LGGYVYJlDtgJTieO0s460a
zD89BKzrs84ccSyCOFci7tXB3RsRD9swoR3jcR2TaV3TmV1TeT0zRb1TZQOY
8hF0KQhWDoNXIJFlaGQVdqJmGlc1uVg3Q2mZY7ctUfvIzFGaZJShHKOrEHxj
P0X1uB76uBkFDNSJA0Dm4vtn4vqm4vsxyUPjqcOTaaPTOZC5AvhyMYZYjCUX
TdGKZxllOGbNEq9xRdRBlfcwVP0szRBX/7V1QsMgT9fP1g1wDMPctR6GtoOq
rpzlxw8sZAD1FUXPxTCzgOF6mpc9KyiYF5csSiuXpPV4eQd5tY8mG2HIwGwZ
VqQgqYzctQ3FsxeqzS3hup67oRWua4VGFVe7ytbKGRo5VafEq+S0VTFrYnwx
vZgUkEIPSGUEZ/Aj85UZFYb8Gl1hpa6wWltYr82v0+XVGvIajLlN+uJqfkEe
qTRvuaN2BtwChlV1QGpbQIOVcEIxSlCMFH6w7oN1f8nWZb5hneWR3fsG2D9Y
lwVRZEMV2TBlFlSeCbZsoS9ByOzCa37pEHDsXOjlU4F3D/rdP/nk2in/a1eD
guIbslpx6YPLoQNzj0bmQyG4aAQuCbOcP0uLGMPZ5rUdSai9WjDkXYNwrYTc
roTZZg0cTO4+kNxjlT1yrgB0pRh2qxTpWonxqsMClWzPuvn4wfmkkcU08HIG
DJ+DAqodLQ8oPBPMoilWyQyrdJbTwdDfrkX9i1/Jgfhuq/Rhx0KwSxXsbg3E
qxYU1DQa29af1dVR1tvUOlbZCysZQxWhJvOmpnPm53LwC3krywUr+IIVYhGB
VLZMqMUTWonk/mkaCk2fwdBXMDQmksYb52m6l/gBlQMhTbDELkhO10Be71B+
33BB71DRYF8FqK8aMlALGayHjzQgxxowsJpxRBUWVT01VTe91DhHbl1id5Ol
vQzVAFs7zAdk0w/zdCN87TBXNchVD3F1Q2x9J1XVSdfmTzBiBuaSoSspCFIa
hpqKpafPsDJx3JxFQd6SqHhZUr2iaKaouhnqfqBzcjRgnhrKkaOFykWlkbP+
TPjsqWDDIDRppXqVRCPna+VMrZKiU62oFSurYqGUS2jumvCNwz9Ko4XniJNL
1XlV2qJqbVGltqgCEM+YV7GRU7aVW72e27KRV6vPLZFklS6l5uFqy2dhjT1j
JfXDNbXw8So0rQTJLkRJ8lDyQqTyPdb9wasP1v3nJv8N6/IAmv4CrHtPMvaW
Tb9N+tt569Vv1h2+N5lvx/KZ1N/kjyhnOci/F+XrZEGUWXBlOlSWCuIXImX5
UNaZkPR/tvc4cPnJafvoy8dC7u73dzzgf9s1PaxsMKJ3IrRvMqgHGzY0GwmZ
i4HOJqOX0zD44jlGUDfaPrP5VFLDzeIx99qJa2XoE6nDvw5r/Syu+0Bq/+mc
oXMFo0AlcylD36uYvF8z7dc086RzLq5vLrEflzY0lwVayoHgC2BkYOTMxrDz
JliFk6zSaVbZNL2bqrxbMfxxQO7hmFb7dKhT9ohX2Yh/zUB8TUVVa15XfxYE
nDKFjFnEPCJPBtCnApnTj9izjwTzgaLlx5KVICnhkZwcqKQ+UVKiNPQkPTNT
x81V8cpk/DYRf4zDn6AKViBTqKzysvLW1s6+UthIIgaegkWlYVHJ05j4+amE
hZn4lbl40kICaTGJvJxFwBfhVyqXCe04PAi9hICuzEEZLDBTBrTEEbZqlKMF
8TSjfPUIVznKVoM42mGOrpOibCOpMiDU+AF8Ipgaj6AlY1ipWFb6DDdjlpc5
z89ZEhUtiysJskaqspOh6ePqhvn6UYFhTKAb4+vBAh1SZFrWrfGfbgrMJpFO
J9aquVolQ62kqpVEpZwgk/LkchJmbjSxdD6lbjmmiJFaKMgplxVXKkurNGW1
huLqtcLKrfyyZ3klG/mlxoJqVXaNMqWBH122GJm+WF05NdTY11/eB2kaxEJq
kdNFKErOOK8AJbNwh9BY8vazuyKkqhih/DrAr/nj4hUi1EV/PD+8H+bBlW/m
x65xKPbOwX2dH3036Q9fwM2FvLVi+1bA0lzQD85bS7HSvDHJt8kFvZ2xfz85
Y2Ig756q+FMw/NHWvSeZ3wHtPflh1infTCZEnQmTZ8LFhShhLpi+3zfjJw63
vrroc8om+OKZmMvHws8ee+QaUBZdBw9uhPu1wgP6xkMGJ8OGpmPAuFiLdQtp
6OUSHC20B+WQ0XQ6qfFmGfRO3fTxtLGfhbT9/En75/GD+5OGrHIgF4pgV0ug
t8ogrjVQrwaofwsmrGs+roeU1EcAimLW6EoOiJAPJefCqZblCQynGCusmBJX
zHC7aXrHUtBHgZVHEzudktt8sqtTygrrmrP7e5IgQzHjY2GzkAA84j4ZeY8+
7s7CerGx3hysD3/GVzD/ULzkK13ylhMeKImP1KQgHTXSyIgzc4NN/BCDKE4r
TVdLi3Xq3iVcXkfDPRQ4ZAoasIDwWUJ641HeBLQHCe1GxbrRp11ZOFf+3D3R
gpsUf19O9FdQg+S0qFVWuphXxBXU0EUtND54hTk7RSMgaQIwUzvAV/cLlEN8
5TBf0cdVttPVTRRtApgSN0KJh7AS4OwUNC9tnJ85JcqaEefMSQsW5cV4eRVR
0URVtbPUfTzVoEAxLFQBs/CoyAQSmkACI4gnn15V00xrHPMaT2/ga3UspYqm
BOZcxaJcQpDLZolU4gpVQuRKlhmi2WUxcpLbMcgubxLl1yhyqw1F1ebSanNh
mam4zFBcp8lvVKY1quKq+RGFM9Gp6Joy+Ghz13Dl4ERz11RXPRpWiSSUIEUl
SGkJUlaCXC1GKN7krhihKkEov80H636sdd+R6vvzrnU/+Dd+f/4mrQPG1beW
XN+1Tp0NVmWCRblwXgmKve9B6k8ueX121XP/abdr5yIB6E4dCb39pNanEXGv
CXq/EebXjgrowwYPTIUNz0SDcTGvrcMsFc9S/dvB57OaziQ3Xi+DO+TDPono
+llo28dhnZ/H9h9OGrLNGrtYCHEqgd6sgN2uhbo3Qv1aUE/ap6J7luP6lxOH
8cmg5VTociYSn4HA56Ip+RhWAYZfNCnOmxK10ted8od+7ZtrHZHrnhiXXRbb
0/QI1eaC7r6HGvCcGnabB7muwFxJSFcqxoMxcZ+F9eZOPRDMPhQu+EmWH8qW
fRREXxXpsZoUrKNGmRhJZk6qiZdqEKQaxWkGUfpLVR1l3B9cbzU/dmN+7Poi
+N4y+C4B5kpBulNQrsxxdw7WjTfjJsB5SXA+8gVf5ZKvZsVHS/DRk/1NrDAD
P1YrTDTyS0y8zlU+jMmZm2MQwVzuEE84zJeNCJRdLHk7Q1dDVEWNEqJGyUkw
VhKclYLmZGD42ZOi7GlJHk5WvKAoXVZWEdVNVE0nS93Pkw8KJMN8+QhfNyYw
AgEL9VCRDsSVQTjiRbWeubbJN5gZKhVJsUpQyeflkkm5eAygTi5hqNRcnZGn
NsgUOqNCa+CIjDi8sLOfWVErq6jTVtRrKho0pfX6wiZ1Rq0ssUwcV8KKykPH
ZoCb60cg7QOICvBs+chkSxcCUYkglyFZZUh+GUJcglj9r7Uu/+382Ln4g3V/
y9a9fjT3pnWWdgdRZH1tnTJjTFAAYx3zz/jni26/unrvZ6eczto/cLQKOXk0
5E5og0cl5GL1yMUGkGc72rdj3L8HsG76tXXR0NkUzEI6ZqlgmnK/ccQhs8kq
tdU+b+iLmK7fRnX/Mqz910/av4jtPZo0AMyeV/KQTsWwq1Vg5zqIawPcvxUV
2o6J6Z1MGlhOGCQnDeNTRufSITPZoIlCyGQxfLYcNVc1vlgxudxNYrpmZJ70
cveO9UvN9a6uuj/Udg/ZeQnTexE76Dg7cn0RcouAuEdEupHR7nSMJ2AdZ9qH
P/tAtPBAsvxAtnx/z7rXvS7CyIw3cdLWuZnrvNRNQcomP2lbVkQCuaIbzy0O
Oi8OX18G3VmB3CXB79KQbnSUGwPjycZ6cqc9+PP3+Qu+ouUAGT5AveJvIDxa
I4du0eM22akb3MwNds4Gt2hNUG0QtShFPRQRdJo3BWcRx9iyHqa6k64tnxVF
9S3FD5FSIZQ0GCELRc3D0Asm2UVTvOIZYcW8pGZR1oSXd1HUg4y9g7ps5QgX
GIS1YzwjUOrGhAYQ3zDG1fTRJX0MIVKioBoNDL2WLF+lyVapKsW4kDtCXFoU
Cydp9BWhhK9f5wDOGfX8Nb1Kr9rQKIwMmnBslNHQJLBw12wqadVk1ghSSlkp
JbzY0pXQ3MnkcnR3wxioFI4qh41XjI431qBBFQhiFVxcDZWXw1cBtf4Lrfvh
jwE/WPefYN0PF+w/Atofww1INkj+bf7IsQjL+a8sqCIDLMuCWs69ZoNlFeMy
h9i6v7O5+9tr9/7V7tKvjl0/dyHo+JlHLo8qPYtGLxUPXq2H3GqC322C+3aO
+3dPBvXPPBnERYLm4yCLiYilVCS+CMfy70A65nWfSm77Krr5s+iOz+P6/u1J
+8dP2r6M6TmaOHguA+aUj7pSAnGqHLlRN3K/GRrQDItoQ8S3wdJaQYWdo2U9
w3XDw23QoWF0OxLbgp5tmZhvmsK3zOBb8MzhmBz3u0H2ocl3krKca2s9ulvv
jHXeQPdcmxq4ghu+sTjmAvQ6IsKTjPFiAGPspDsP5yGY8xQt3pfifVbx3kri
QzX5sZocpKNFGNnADBu/zo/bEMRsiiK3hNHbwAQ56Ixpdpwb8JgfvrcEAnrd
bQLMhYy+Qxm/R8O6s6Y82LPu3Hl37pInf+WBmOgnJ/lrKI/11BAzK9bMTl3j
ZJh56WuCjA1B1hY/56mw0CAqlwnbqXwEljE/RKT2U+SlaGZMz0LcICUVSs9A
EDJRlEwMNXeSXjBDLsFRquY5dYuiVryil6wfphvGWLoxlgbE0YK4QJfTQ3hG
MN84wtP1MVXdDGUbbbWVKoIIJXi9jqRSUaRSmkw2zqTN8jj9aHRtdzd8bh61
tCzZAKZdHXtDL1zTyIxqlVGp18uVXJoABOZUNGtK2/R5jcLUUkZSCT22lBVd
tRxYNJGXhx2owkBq4ZhSyGxRO6amCYZqBHOqoNIyuKz4W6PgmhK4+k3rihDq
dxZt//Bk70+x7i2y/kwMvse6vR++mb1FENjXlP146959SfZt3uEuD/yDA3or
fxbr3srfonVZEHk6RJ4BVWQj5DlQUQVG5l4w8P+c8/7k2oPfOlz75MzlL055
HTof6uCb71UwdCmn53Lp8PVq0O16qFsL6n47xq9r8lHvdEj/XOQoPgFCSkXS
0lD0DDTratHw0bimnwWUfvS46ov4vs+iez9+0v6r0NbPItsPJPYcyxw4VwS6
WAxyLAG7VsOCascia/uymjoq25u7+oqR0PRJZNbyVB5lNpe7kCwlJMiIsVJS
lJIepWZErq1Wl+Tb+YdYBSfejc91r6h1bW+6Odp5G9PlNt3tNjvgNj/shgd7
kOBeVMC6CTfW5F0e7q5gwVW85CH72jo/gCYNJVBLf2LkxK5xU9d5GeuClHVR
wlNx+itZxWzvdVTblakhr5kRjwWQ2yL4Dh7mQkTdIWPu0Sc9WNOevFkPwbyX
aMFbthSgWAlSEoNUlGAtPdjAiTByI038mDVh3JoweVOQ+ZSf+4yf+5RXsM6v
MIjapfyeFRoIQiAUjqITepCWDTYQQgqcmIymJWEYqVPcrBla8RytfIldjRc0
kuQdNE0vUz/A1g5xNZZSxzX8wTquoYel6aCrW2iGBpq+hSyECOTzGt3yqgy/
Kkax6dN8dmlP5yyDrn2+2TTUQRazFS/WxRs62aZJsq4XmFUAeqsm9abRIMcT
WS19krx6dWYdP7qYG1PBiKtZDivDRKXPNVXgEA3IyTL4bCFsunII3t4JQldD
LLd6Wh7cIRQW5f6mrPvOgu+f37o3a957rHvn/MX76Ptg3XetywbLc962LnOP
u0yoHBhdy9Hi8KaJ/3XZ/5/s3b5y8vnc9vZXJ50/P+F95F6qa+mIY8HAufy+
y2VD1yrHnOthgHVeLRj/7pngwcXQIXzEGDFsCB/QNevVNO7fMXcgpvF/+RT+
v645Pwus/X1c328je38T1vmL4OZfhzd/Edf5Vcbg8byRSwWDdwoHgkq7curq
G9oqQIP5s5AUAiqCin3MngkSzPgLZ3wlc4GKpTAlPli1AoycjzV0nw1pTkXu
kdCgY9FxlzOzL9ZWO3U0Xh/tcEd1e2F7vGYGvXAjHksQL6LFOk/6xD32FGDd
PcGCm3jJU4b3lq/4qCw17JGG+kjLCDGxo9a5CeuC5HWhJU8lWRuiHGSXHazH
YXzMeXLMeQ50Zwl8ewXodcg7VMw9BtaDPenJn3EXzXlK5n3ki/4qfKCGGKwn
hxlpYWZW1Bo7eoMbt8lPBPBcE2aZRTlGUa5JmGMW5q4LC7cERVpeDYU12DZc
UN1dXj3YUTHaVwUfq0AiSxHYMvRi+Ti1apJRi2M14tntNEE3W9LLVXVz9T08
8wB3bZRjfG0diGc5fdbN0rbRtU2AdXRjM13ZRhZC+fJFuRonlY5QiRg+O6a2
ErS0OMcgNg80suTc4Tk4XSfGMgmdqLEZyopEp9aY9Aq9Rrdu0AvEol6oKLNR
nlTPiypnxlYTEiqRYemovLx5SDMaWwafLsDM1cKnmvvgfQ0QbDmMWoJ6vVSx
x93bM+wH6z5Y919uXc53rAPm1jyYOhu8WgARFI2Sf3835leX3L645Pq59b19
x+598cXd3x996BLT4lwCssrrO1s8dKls+GoV6FY9/G4L2rdrJqBv3q93waNp
8lo59EYl3KUGdaduwrd9YV9s688Dqv6HV9n/ftz8aUz/v4V1/zqs65dBzb8J
a/4qtv1UUq9jeseDworEmoLKtpS+riDkYDBu+BFh2JcE9SFO+NAnH/Cm7wtx
98ULPrKVhzKi7yrZR0V7oKT6r0nyarIPxAd+kRxzPCv7cF2VVWej/Wj7TUS3
K7r33tSA69yI6xLUlYhyo0y407Hu7Ck3Ps5TMO8pXvICep18xVdpsS5AS32k
YwaZuBHrgpgNYfyGMHFNkPRUkmPkZsM7ziIHLkyArk2Bb86DXZYgb1nHmfLk
z7qJ59yki24KvKea4K0lBRgoQSZaGADdOid+k5u4yU9aF6QC1pnEOSZJrkma
tCaJ3xSmbnEyNrjZCkrCHMgLj4leGc8gYdMpuAzKfNEKrnxloXF6sRe5OApd
xIwtzA8vkoZIgmGmfJCj6uNpBrg6oNqBOMAYqxvl6gbZ2k6GpoWmbaIa6mmG
Rku1U3QSRRi+al6uATOp8woJikVBkJchC9M0KV++ZWSpJVyDona4hyUTC5Ty
6fl54+aG9KlRsmFQ6jRrq2reMJqa3shJqmPFlBNjSmZiiodj0qf667Dj5cjJ
bBSuFIOrg011tMP6ysHjZePsEjS/BCkpRiiK34Dub8y6H7KX74N1f5nWvXkX
zesZNmtMnguSVSHFlyKrfmLv/tWVu59ZOx48effEoftffOxqfzk5PAvkljtm
Uzh6unj4osU68K06pHvbpHsL1rEMYpc7eD53xDZn+Eo5yrkOe7dx2rcTvz+m
4+f+gHXl//Cw8fexw78O7/1VaPuvgpoA6w5GN7kllicVFZbWJ7S0PRjovg7v
sZ8auTE35oGHPCKiHpPGfZlTD7kzPmKcr3TeV4H3U648VJF8tRRfA/nBljir
Mmt/ZOi+yATr1OzTVZW2XQ3nwW034T0uyP5b48POMyDnebgLHnmbNO5KnXBl
Tnpycd6CBS/RkpcU76sgBigpASqqv5r2SMsMNfEA6yI2hLEbwgSzIPmZrEBL
y4I02GD7nSZHrsyAbsyD7ixA7izDv55haZMezGl37qybYMFdgvdYJXoryA/V
1MdaWqieGWXixpt4yWZeypogeU2YuiHM3BTkPBfmPBWmbAmT1kXpRn7mmiBH
vBS8NHKFBndlY3wEE57iKXcxzke6GCAlhEqpUausTDG3lsXoIFFHZulTE/RF
BJ0KYQlBbMUYRzPG0Y1xtSOWG6g0bUxVE13TQNXX0Yz1VFMjVddCkA1RZXAW
MMMyl2USslzOUqmFG+vcdZPIbFZvbpmfbiGxk3Se4Pnu7hAUxBDxMPj5RT5L
bDbwdTqlSs2CTBKymzjxVezoMkJs7WhkHry+bGa8EjGRDplKh2ELkVPNoxMt
NbC+QsRyGYZdjBIWIuUFKEURSlmMAOZZVSlCUYS0rEF8nQ/W/Y1YJ3kjf4J1
P1qzdzYPv4NbFmDaG8l+PbS+nTzQ13ltXQZUngYSlKLFT2rR/3ox8ONzDw4A
yh24feaAh/V+799/7nU9uN6/EH47d+xSMeRs8ejFspFrVfBbteOXSuDHUwaO
pQzYZI5eKIBcLoVdr0K51E24Nc0+7iUfTez+uV/539+v+Huf5k+ioT8PH/hV
aOOXQcVWwZl349LSsiOqSx8113j0NF8d6biE6AVgcVmAeq8gHhKRD2gTvpxJ
X/60t3jOW7bgrcQ/VBH8NCQ/PVCfyAFbopyK7ANhofuiEs6mZpyvLL/a03QN
3H4T2uMM77+JHr6FBd2cg97CI5yJmDvU8XuWtYlZT+GCp3jZR7rsKyf6q6gB
AHQaepCOFW7iRq/zo9YFUeuAdcKUZ/IiJSkJVHtqqt9xZuQabswZsG4RfHsZ
5kJC36FM3KVPurNmPDg4d8Gip3jFW072U1ADVfRQDTNcz40zCBKNghSjMMUM
yCZM3RRmPhNmPxXkPBVkbYkzNsTpRl7iuiiNM3OfCL3OQN3mYN34U26iWQ/J
vKdkyVu68kBOeqChAv9jsVpuqlZQKBc0CnkDLO74CmN+nEa3fPwZR4HgqMEc
TQ9b1cxUNtA19YB1VGMtxdhA0bZTlL00+SBVgORJ5+XaJZmGJNeRVVq6QSdY
M4j0GqXRuKrR4lbwyJmpEQxMoBS39HXMkYnLPA7NoCEoV6UqFQGExqVVcpNr
8bH1oJiSsZLcGXQVejwTOZ6GROegJiohk7U9mKYayEgViliGlOXAlXkYZYHl
EJnlwV0pXF6CVH2bYpSqCK0qQn2d99P3o0H74da9HeV38qaK3y5SyL+b967Y
fndJ95vDF++uzMreTP5bWX07svfkz8LgO9y9e2f7Hw6cSv/TrHvr0Os71r19
n/DrKfXtSwW/gW7POqDUZQC9DiHIh9OPeWX86ozvgdO+Jw97231+/+KXvg77
fD4/5HM7fdClCHqtYOxyIcg2Z/BSGcSxHHE8dehAfP/hhOHTaeCzWUiHvAnH
ksnrFRO3ayc9mqYDe5dOJLX/zK/k773K/9Gn6TcRoF8+6fg0tPREYKJz6JPI
lCcFuV71Jffaql36m2+AulwQfXcnh9wXwJ4EmDcFeZ817sudfAjMsKK5++JF
r9UVbxXpoZr0EBgVNeTQdWFeZeahyOAvE+POZKSdry692dXoNNJ2BdpxDdl3
fXzwxszojUXITQLiFgXlQsc4c6acBThX8aKbbPn+Kv6+kuStofpqqf46eqCR
Fb7BjdniRW0KojeFCUAZe6YoEC6HQBqOTfdfwg1fmwfeauzWMvgWAXqdjLpF
G3dmTd/lzNzj4+6KFu5J8R5Kkq+a8khLC9QxQ428aCM/ziSINwsTzaLENWHK
pihzS5S9IczeFGU/lQBfU9f58Wu8WCriGhl+jYm5w5l05U17CHHekkVvCf6h
nPhIQQ7U0J7omBFGTpSJn2AUZOkElWpBt4wPZfCw0+wlFIMDY8pHmIpOpryZ
oWigK+upmjqqto6qaaCo2qnKXqaqZZnbuswZoolhLAVOaqTpNjlrG/wNk3BN
LzYZZGaTemuTKRPrn20s0QnDyDEym94Lg3A3zPQNE12rEkplC+0jSym1xPgm
dGQRODdrHlmLGM9FTADJR2FLEJgyEKqiC9pUD52sRAjyUIoclAL4WvDaOoS8
FKl6M19zt5dC1F+Ude/frPI9xP25rXsr3/HtB+b/vHUj0jcP13+32v2lWfdt
ncuz/NByk0k2FKh/q9VTave8wZ+efHDkmL/1QW/rIz42X96/dMDv7O89j554
5F0AvV0AuVEIulQ4dqF47Fh636cxHZ9Gdn0ZP3gkEXIqDWmbhTmfO+1UNHej
cuJOHda9cTqoF38yueunviU/8S7+iXfpvrC2zwOLDwUmOISEeUT4R6cE5GV7
1BS7tlff7m8BrLuF6LszOeQGWLcCWIcCrPPhTvnyZ7xFc95vWqchAu0uZF2U
V5dzOCLwi4S4UxkptjVFjp019sNNDoj2yxO9TjMDVxaHrxDAV6iwq0zUVS7G
STR5RTZ7U7FwS7XkosHf1hPvGSluJprXGu3BJvPxc07YC17Ec0H0M2H8pijx
lSKfM+sNaTgw239+fujy8sjlFdAVIuQKBeJER15hj18VTN8Uzd4Qz12XLdyQ
L7moCG5a0n0dMFzTH5nZYWu8qDVB7Logfl2YuC5M2RCmbwhzgADWAaP3uiB5
Q5SkZ0asgC9SEDeYmNts7D3ejCfwx5Quekst1gUoyY+19Cd6VqSRE20WxJmE
SXphhlZQrBU2ayXtMlEfQTCDYLH6SMIuiqSNJm6miBspsjqavJ6maCTLW8iK
brqmcoZVNc+uXeQ0L/EGyTIIWzEj1ZG0Zq55S7zxVLqxJVmz3JeiebFJXxVM
rOBwxCUYbpqiVjRi0QtyiVhvWKULp0q68HEN8yG5k2npVGTzxGQpBFsAmyjE
jJdg0cVwWOEAtLYFPFQFXyhDi/KQqwUo5d7uYlURUlmC+mDdB+v+IqzbW56w
nPHPhawWQJRFI9wvLkXtPxNke9jv8j7fiwd9Hb7wvnzA7+gnd0+dC3tYivAo
QdwohFzIHzmS0v0vQXW/CGv7NLpvXzzocBLiVBraJhvjkD/uVDp+oxp5px7j
3jAT1Ec+kTzwLz6lHz0o+Mgr/XBIwenQBMfIsHuxj73Db0cm3s7JultdfLel
2nnPupvfWOe+AvOioLwA6zjTvvxZH+Hb1qmJfipSMGBdfd6J8IBPE2OPZSQd
r8s/11NtM9Z4FtNxDtfjsDBwnjjsQAedZ0MvCJAXRejzcux59exF3fx5/dJ5
4/LFNaLTJuXaU9qtZ7S7L5n3dzgB27yQV4Lwl8KYZ6L4XVUuZ/Ieqmn/4qAd
fvgCGXSJBnFiQC9z4JcEGEcx1lE67aSYu6qav6JdvmJcubVGvrdO9dxg+G6y
Aza5IVv8CKAiblgWO+LWhUnfWrchAkpd5jo/eUucJCf440EXGJg7rPF73Ck3
wayXeMFbuuQjXXmoIO1Zx3hiYAPWxZj5MeuCGLMgfs0yFGeuCTLM4nyFrI0q
wmCp1FESo4fEbCNyG8niOgpgnRRAr4Wi7CJrKmaFpcui8kVxA1HZSVUP0NVj
TCWSq5oW6fAKM8uwKd54JtrYEKwb5C/XZE8NqIXpWTIRTSS2T032kQhzEolE
YWDNUOcym/DhufOxiZzuKhK0fB5eNo+pnJ0oncTkIxF5o5CiTlBtHRhciaCX
AXMrQlmElOejFPlodQlK/cG6D9b9JViXBVGkQ+WZcHn2mLQGrX+cCvrqkL/t
qRCHwwFO+x46fuZza3/A+a8efvq7O4euRnuVwu+Uwm8UQ46ldP4koPKj4Nbf
Rfd9FtW/P37kSPLoqYwx6xzouQKEYynmWhX2Tv2UWyM2sG/pVGrPTx+U//Jh
/q88Yk8FJV2LjHCPeugZ4eob4RiRcCUr63ZF8d3Wape+P/Q613mwOwHhQUF7
0bE+rJkHHJw3f8FbtOS1Sth7/k/215D81KRAoCM1FRyPfPTbpJjDmfGHGvJt
B2pOQ5usJzusF7utVvqtKcNWTJA1H2YjRtnK0DbqSRs9zta0YGNetl7Dn90i
OjynXnhBd3xJv7HDurfL9d7hB+wIg1+JIp6LI3fVWUyU42TrV8Rhe+qoAwt0
nge9wIc5iJH28nEHOdZeNeWgxV0wLlww4y+tE52ekW8+p7k9Z9x/wfF7xQ95
Lox4Jox6Kox5CrREy/66tA1hxjoQkeVh3bogaUuUzJ11JcKvMibusLB3BDMe
ojkvyeJ9Cd5HRnioJAcoqY80rBA9J8rIiV/jJ2wIYze/TsKGIGVdAIiXZxA2
yMWgOeb4IGG+y/KJurI6sqaBKmukSNtomhaCqmxOWrAiK8Kv1pDUrXRDL8s0
yjFB+WY4z4Dm6mYkWrxSxzJtiJ4+5W0a+Ru61Q0jMNVOEckrciWUx4OwWCyt
iStSLfXApuMK8GFJ7Mx0dlUOs6WQOVhGQVZMjxfC4dkQaE4fNK92rKkStlCJ
kJdZrsRZLUACw6ymGKX5Fjqg4wEpfp2/buve3Gb838C6dz+N8X3P6340aO9Z
XX3PfcLvJOft9VagywHQ5VuWXBWZUFUKTJEKkxVApZVjPNtraSdPBp89GeRw
+NHF/f6OBx+d/dLvyJcPfv6V+363NOcqlGMF0jZ3+BchNT8Nqv9FSPtvIno+
tVg3BFh3InP0dC7ItgDsUIpwqpq+3YC91wQP7Js8m9n1iweln/rm/OLmY8cn
iZ6Rjx+G3/YLv/Ew4uKTWMf09FtlRXdaa/as63ZG9N2dGLozD3YlINxIaA/q
hDdzxpuDu89buC9c8pIR7itIPkqit4bgoyX7PZNkdZadjPD9KCP+YHbcl015
Z0brz2BarOfaT+O7T1H6T9OHT7HBpwWQ02LkaRnqlHrijH7mjHneem3p7MbS
2acE+xeUCy+ol57Trm4zXXY5nrt8v23h41fC0OfCJ7uqNCrUeqr5d9RBG/qQ
DWfETgi2E0FtJQhrBcZWOWGtwtrqZs4a5s6agXdbsd8iXX5OcX5Bd3vJfrDD
D9wWAv0w+qUo7qUo8YUo5ZkwbUuQugFEBCRlXZiwxo+nYm6QUVeZWGCAvcOb
dRcu3BcDA+zyA4t1FH813V/HDjFwokzcxDVu0gY/dksY91SQ9JSftinItDz6
E2RtCbPXRAUyScsCbXRkfrZzid9C0DSvaJoI6g66uXRBljMrzFmWFhGktZZP
b1T1cnRDvLUxwSaUv4kUrSMFGhR/dUqkwqtMDPMme83MMxhEehNboUYuE0cX
lseZHDiVTjOa8SQuPLeZHJyricoz5pRKi4oFZUXMxkLSSPkcogoFLxqAZ9dA
KgvBsAoEvxymKEFaDsnmo3TFaG0xWvM6JXspRX2dEpSm6I/nPSsXP/pTft6/
8vvWf+Jd7hRv562XfnDlk/9ABoEU/OD8aAZ/sHWSnNHVN7J3PdS3+euxLgOq
BKxLAUuqUMrwPPiXB/3Pnwk/dyzE4Uiw9Vf+Xx30+9Im1Op2+nmfwmtRzTcq
x+1L4L+Lbv9pYN0vQ5r/Nbj1k/CuT6P69icMH0pEnkybsMlCnc0FXSwcvVOJ
9q6FPawZiu6AX0+q338/7YhP7L5bXq5RMf4xvo8ibz6KuuEXcSkk9mpKxq3S
wtvN1c69zdeBGRbee3t84Nbc6C081IWEvE3B3GNi3Tgzd/lzt4XzLrKlu2qC
m4bgqSd4mik+27K0weoTMX7/VJh6tDjpQEeRNbjxJLb1zELHGULXSXLfaebw
SQ7oFGCdBHl61WLdaf2MlXnedm3RfnPx3FPChRfkSy8ojs9p17YZt3c5Xrv8
h4B1L4UhzwRPdpUpFNDp+bYvaINWrEEr3shZAchWBLGWwK3kaGvlOGCdjXYG
KIo2pkVbwLqnJMcXVOdXDPdt9oNd/qMdwZMdUfSOKH5HnLQjSnklSX0lTn0h
TgXq3KYw6ak4ycCOIMAuUNFXmRO32BMu/Bk34aKnaOm+ZMVHTvJVUv00zAA9
J9TEjTFyEsy8ZMsjPkHqJj9zi5e7xS/YEBQAI/y6KG1dkLAmiFcLK0gMyPDc
cvuCuAOvaV/RNpN0eVOiHJy4aHm1jLjaQFN0sJV9XO0wzzQqWgcL12EiM0xo
RIp0SKEKJVBMS7VU01OOeQsocjydeYkjLOvqJ6zKu2dwo2QyS2OeaUfgHqbr
o0s2MyvVuVWqwlpeTiGptADfUYkD1UDARc3giiLwYDGUUImQlcCBMVZbgNIW
oYFoXqf4DegsQX6w7q/BOgtub1one+vVvwbrCizWrWbBlWlwRSZEUgOT3vCq
PH7wsf2RYLtTTw4f8j91NvLCo/LLya2XUzsuxTTfSu5xqZ4+nDr8s5DmX4a2
/Sy45efBbb+J6P48su9A/PD+JOjxVKRDJuJKNuRm1oB3TldEWWtWQ0PrYFdM
Tpadp+95H5+zd68/jAnwj7nrF3XlUfS1gPCrwVE3ktJulRS6NFXd6m68OtJx
Hd7rjO2/vjByjQC5YXloj77Bm7gpnLwumb26inNSLVw14l02KR5A1iluu6sx
sCarlMf/VJr2VXHcp135x6B1hyeajs63H8d3HSP3nqANHeeMnRJCT0tQZ+To
0xrsGcOMrXnOzmLdksNTwkXAupdUpxeWGdYVmGF3Ba97XcgLYfj2aiJh6NhS
x37GwBnOkA1/5KwQbCOCnJHAT8vRZ5TjZ1RYK+20lR5nZVq0WsfbfWPdvR3g
fXj+O4KgHWHYrhDgLm5HmLgjStoWJ21Lkp+LE5+L4l/JUtUkv6VRaxr6CmPi
ChvrzJ+1WCdZvi8l+MjJfipagJoRaOCEGwHruHFmftKaINUyAguy1/kFm7zC
DUGRWZhrEgEAxj1jR22wkxSCagoTBJ6f6ZxndRPlrSuK4ilh8ZysZElWSVht
oSl6WHt3hPL1YyIzSGgCC41QERADXKSDC7VQvhrMli2qzcz15xSNgWcwE2Vy
/vpmx+RU+9QUVWOkYUlTgZnq+OL1nGpTQYO5oEWf38jLLFtMycGVFMz1Vw+P
VdeA20ogmAokrxShLUIaC4BBFa3+YN3/Uet+MH3/Ha3L/sa6PLDlAGwqdLVk
XJXRQjxlE+9oE3P64KMvDvqdd8++l9ByI6vHPqX9XGr3yZhGq+Rup1Lsx0+6
Pg7r+lVo108ft/08uP2T8J4964b2JQ2cyBg4l9XllNHkllsfX15R2VLQ25s2
C89qqAx09nK653/jmrt1QMTNwPgbAdFOj6OvPw6/9Sj8RkLK9ZJC58bK610N
jkPtTojua5N9TvPDjgSIEwNxRYB2lGKdVLNXtQtXDIuOaytXN4k3npGcgWlx
i3JrVxo62WWXEvB3JYm/Kor8ZUfOfmj1fmz9/oXWI4B1xL7jtKFj77OO+I51
PruCgG1B4EvBk21x9AtRzHz3V4sd+2n9pzjDtrx3rTutnjyjm7U24KzNS1Yb
f7DOdYfrtcN/sM33B94KaHe7wqgdYcwuIJ44Zlcc+0oU/UIQuStLUi17EEHW
LIwTe/wid/KGEOcmWbCcXJMRfZSU19YF7w2wMUBtWxMlmETxZlGSWZRmFmat
CXI3BHnAGLvOz1gTpKyxU42sVC03Uyso49DbBxdnu4iclkVWxSSrdIZfviCt
WVntoCr6mKpBjnqYrx0VGsaElgtSwCIjBOBObIQIjCCBYZir6qeLx6Vq0pqJ
qtfT1TqaVteGxS5rVLNKNY8umo8rUSdXbBTVG4trNkuazDn1yrQaSUoN/kna
dEba5GB112hF6UhvOZJRDjeVwNcKUfJClPLbavfBug/W/UDcvme38B/9LNd3
k/NN9r5fLQTJS8bkhZbndYoMuKIUrX6YAj5+NNL6TOT+s2HXAytds3vsUpqs
k9vsUrpskzoPxTacyR6wzkZ8HNb92/D+n4d0fxTc9rOQ1t+Ed3wR3bMvpv9w
QsfppMrr6ZnBJWkFrTndA6mjA2GQvgcL0ID+RldPn5MPHl9y8TjpE2wXnnAT
qHNBkc6PI5wfh1+NS75cVHCtruJKZ935kdYLmG6nmX7H5bHLNNhlLuKCCHVu
dcJBPXNeh3PQz59bW764tXLpBenKSwAW8tVdyaOFgQvp/n9XmvjL4uh/bc/6
ElKxf7zuK1zb4eXuY6T+PetAx0WwE1LkKQXGSjtp9Y11dhtL554RHF6SLr6i
vl6bcNvlP9gRPtoRBr0UPtmRxW0JoqdbP13uPkQdPM0atuGN2AohtiKolRhx
ZhVjrcCeUU1baWdt9PPWpiXr9ZWvrdtm3Nvl3N/lPdjh+++IAneFYTuiqF1R
zI44akccsSMOfyUAfiZ8VxQpm3biIGyE2EuiSUfJzHXpnLN8yVVF8FRT7mso
3hrqAw1zb2GCF7suTDILE9bEiWZxslmUsiZMN4sy1kVZwDy7yU1b56YbuGla
TpqenWJiJ+oF+XM08NDSZP3UdNkUtWReULEsbSCudlMVwwz1CFcxJFQNC/Wj
ItOYCKh2BogIEM88KjQNcfWDXH0/V91F4cPFCrJ5i6o14VcVGDqDrFYsylc5
AulScaMxt2mrpMlUXr9W0rBW2GzIbV6Nq1DGVZDCMyeys8YH6hsG2yqg89UI
wCtT1oQiH6P6ttcVWZ7XaUu/SfEbP/89QaneiLoIgPEP+ZGfc/F6J8wfS9Gb
eRdG5XvyJoPvX7F9L4M/NP8B+iybjXP/5LtQxBbfvs3byxa5o2/lL8G6Ny8z
AawrAstLQPJCiCIHpsyFK4thcgfvuoOHw49fiHOMqbud03Muvd0qq8M6s8sm
vftMauexpFarzIHjKeAvYod/G9H/b0/6Pgrp+Flw0ydPWg9EtB+PbrcOL7qX
nJhRFdvcFNzb6A1q80T2eKIHvOYgvkOd97z89vkGOd72tPXwt4tIcHkS5RwU
Dlh3MzjicnS8bV62Q2PZxe56e3CLw3SP48LAZSLoMgt2ng87K0LayjH2aqy9
btreMGe/tuSwtbJXxsgXXpAdd6W+5LEr2f7/UJH866LYj9qyvgSXH0PX7Z9p
O7QIWPd1rzsugp6QAdaNn9FOWhtm7PasO7exZP9s5dxL0gXAum3ajV02YJ3v
7jfW7cqT1rlhky2fEPqOMUasWUPWvDEbIcRGBLMWI61Wx19bZ63F2ernbUxL
Nn+wju62y/LZ5fntCgJ3xeG74uhdUexeqYvaEUXsiEJfAbOtKHSbGyCEn5Bi
bOSTDqqZq8pZJ9Wckw5/W0+4a6J5bTB9Ntl+Zm6IkRdh5luss+zQE2du7O1G
XhcC32SsizPW+SnrnMQNTqKJHa9nxxksidVykmS8GtxiUwusqxy9UIbj1eAF
bWRJP0M5wgIGWMWAUDEo1A0JTaNiMzDGQoRGoN2NCo1DPG0PS93D1vZx1O0U
CUJsJBmfU3RmpkbLVsoXSAQ6nz3d0S3JqzOXdxrLO7ZKuzYrepW59YqUCll8
qTiyci4kD5tXNtrXWTcEbUIIgOk1DavOHVe/adreUsXXeR90lqjeiPp7i9+f
bp3yPSl6M+9Y986rb/3KvyLrLPnTrfu+g2N/Dda9/rDXPODvAfK6UavKkZqc
fu4nl9L22SW4RLQ4Z/VcTGuzz+y2zey2yeqyzeg6k9Z5LLntaELngbix30cP
/zay/zdh3f8W3PHx47bPH9efCCq/FF32KD2zqCqpti6gvcZlpPkOpN0NsA4z
4IUDrOtyexh4+FHoDRePsx4BdpHJLk9inIOAYTbiakikfWz8mdx065Zyh5Em
B1S7A67r0mLfBeKIAxNky4fYiBG2q5hzaux53fR5A85hben81sqF19Y9J1/e
FfswoM4ZD/+hPPHXhTE/bc78/VjZMVT9gan2g4s9Rwj9R6lvWoc5o8Fa6S3W
2b9h3fnX1u2w3Xb2rNsGrBOE7ipSTKzAieaPiYNHaUMnWUOneWNWQoi1CGYl
Rp5eHbdSYK3U07Y6nK1h0dq8bPPt2oTFOrZlFt4VBO2KXlsXt5dowLpd8ZMd
waMdQeBz+n0R9LAcbaWasNdMO2lmLhrmL5uWr5tXnDeobs9ZPi84vk8FQZtC
yya9LQFQMhO3ROlANgXpm8K0dXH6miTdLEw18wCTLdYZvrbOwt26MJm3FDM/
XTq5AIYtTQ3hZwdJhCGWYICnHBLohvm6QYGmX6AaEGlBAHRCA0hoGOHp+9nq
Drq8ja7q5ui72doOshQjMdBMm1SVWqDVYJBwPGGesjCzOgbnNXSJq9rXSjqe
lfeo85uEqeX8xFJuVAUxtBATmoyoqu0YgNTDaGVoRZFlb8lbgn2w7oN1/8nW
ZUBWM2GruXAFMIw3YvQhxTP/aB1zJbLjdu6wQ0aHQ1aXfVaPbVbP2Yxui3Xp
FusOxnUeioPviwH9LrL3NxFtvw1u+8Kv5ejDQseQ5MdpyXkFYTWFHs3lV3vr
row23QB/bZ0HDuwNG3oYEHIiIPSas/vZe75W0cnOoTHXgiNvhkQ6hUbaxMWf
KMg43VFuD2mxH2+3m+s4t9RnRx6xY4/ZCqC2YsRZwDoV1kEzdU4/e868eH4T
f+E56YLFOtLlXeF9DsYtJ+CfK5I+KYj+l+aMz/asOzjVvn+x5yCh/zBl8BBr
5IgIetxiHfq0xrLnBLDu3J51ds9W7F6SHF5RnV7RbmyzXHf4PtuAdZbqFb4r
T9VTfMcbPyIPHaUPn+CMnuaDTwOlToQ4I0WdlGPPKKfOaGat9XO2xiVrM95m
gwBYd+UlzWWH4WGxjv991gnDX4lCXgEviUNNKy4C0AHVxFkg+plL+pkLxvlL
5uUra4TrW5TbLxhuL1geL3i+LwWBr4Rh28LobVH8c3HqJj95g5fwVJCyIUk3
StLM4rQ1QYqJk2DkxH8bMyd+jRolmvKRrsQqWEUyXgWXV09gD04y50BU5ihF
DqEbQGzDCB+odvJRkXRMuDoq0A9y1jrp5jaatpWuaaXp2pjaToaqnyadV5io
OjPXoCfPTM8iR/Vm9ZZeY5KKtJM4ZW2XoazTVNQuz6jhJJaxYsqZEWXE8BxU
Qu5w42AbeKUCLS5DqT9Y98G6/yrr9vYPr6bD5ClIyxbi/FFpG1p/JaTroEeZ
SxH0bFaPTVb32eweu+xey9fMrrOZXVYZXSdS2o7Edx+MRQDc/T6y95OI5k+D
Gg/6VDo8TnuYGBab4VWWfacp70pb+YXeussDTTdBHe6IHs/xQfc58H302CPA
Op+gS3e8L97xsQlPuh4WBygH5HJYpHVi/NHSzOOdpWdA9acwradxnTb4HivS
0GnGCMCLtQRxVoGyU0/Yaabs9Dg78+K5PesuviSff0a6sCNw4096Zfr+Q1my
pdc1pn02WnoUWXdgum3fUu9BwsAhcv8+5vB+EeToKuKUHHVKPX5aP3XWjLPb
WLDfXLR9tmLzgnRum+oE9LptpusOz2evdIW+5AHWpetI9yea/4U4uI8+cpgz
doIPPiGCWongp6So48rxUyrsad2MlQFnY1qwXvu61zm9pDlvM9z3et2jXWHw
rjhsVxy1N8MCidoRhr0SBr0CKp8wUIu7KIGfUI7bqCfP6mcv6HHnjYsX1vGO
G0Snp9TrLxkur1h3tjmWvc27/MBdYKYWRr8UJ72Spr8QpzzlJ6wJEw2SNBPA
nTDFwAWsi/uDdbwEFdFXOHdXTgpcJYZrKXEmWoqeU74q6uYIx5a5mAkqHkWW
QhlGCE89JpCChPIRgaGPY+5gmFqo+laavolmaKRqW2naTsoqnK8i6TcZejOH
Q5ueACkMMs2GQf3UtLml3+KwBN2D4qJmZVadOKWCG1vBjCynhuXOR+ZBcpv6
B2ZqULwCjKoQ88G6/9bWvU+w9+Z7rxf+U6xT5EKUOVA5YF3annUlMEXJiPiM
T51zxuiForFTeQPWuf22uX1nc/uts3ttMrvtcvrPZvUfim36t+Daw3Hgo3GI
L8MHPwtrPRBYZueb6hwUEp7ok5xypSzjUkP+5eayy511V/ubnUc7PBB998cH
3eYgbjPwh0/C9t9/5HDX/5qT54ngBKfI+IuR0Rcjoy5FRtslxh0uzTzaVXJy
rOYIuun4bOeZlT4r8uBp+sgpywwLt15F2arH7bQWE2zXFuw28A7PSOdfkuyf
kc/v8O/K5jwy/f5HaeLHRbEf1af8dqTkMGDdTMtXS90HCH0HqX372IP7JKBj
cugpFeqMfsLGPG2/MWv3dM7u2ZLtS8LZbZLDDtVpl+kCzLC7PN9d3uNdXugr
TtiuLEWJd8U2/W/y0H7m8CHe2AkR+JQUZiWFn16FH1ehT2onrIzTAJu26ws2
Wxbrzj6jOL1iumxzPHZ4D7b5lvXcbXHoK3HEjgW6mF1hFEDWjih4WxDwiusr
Gz8jx5xRT9hqLUc57PU4B9PC+Q38pU2i4zPa1VdMoGc671j2NvtbrBME7wrC
X4kTXklTXkmTXogStsSJwABrECbpeIlaHjC3RhtZkSZOtJkds86Nky77yJYf
aKlPNJQwMytyixWxwU5Y42aZ+aU6abNQOkjiYGaZ9HGmGsXeBHNM/Vx1B1fd
xFQ30bTNFH2TJQbgmy6atp+2OiHWkQ2bRLl4kU1Sb5jV60/F5nXBmlG/vr6h
0cqwOGJBIz+jQRZXwYkuJEZmr0QXIaPLhpqgtWhuDkpR+O+A9v0MfkdC9Vv0
odTfu1b77+ZtP1+/zxt5D2jv+vbmsoXqzZcKEYrvLNp+f364iu+k6I+nEPbv
u/fnuv3p64y+y91fkHVQi3XZMEUWQpENWy1GKpP7mOciu5zz4bb5o6fzhqxz
h6xyAOj6HQpA9jnDB+JafxNS888+xf+Xe8GR+LFjcZB9IV37AiutgtJvhoa4
hngEhTulJJ4vyLxYXni1ruJma93tnpa7Q50esH5ghr03B7m3iPZNjN3v/cjO
Pcj5kufRgAjr2Hi7pPgLyQmO8XHnEqIPFSYfai04OlxxCFV/ZLb9+HL3KdLA
GeboGR7ERgi3lqFtVBYTrPUz1q+te05yeEECetSFbd4dNcEtN/DvyxI+KY79
17rkT4aLDiOr9083frHQ/iWxcx+j5yte/2HZ2Gk1xEoPtzahbdexdpuT1k9n
rJ/OWb1cOru9bL9DcNyh3dmhu+2wHuxyAne5T3a4kburaXLcnemGnzMGjrEH
jgtHrGQgWwXsrApuo0Fa6cdtjZP2a9PnN2bPP5s/93zZ4emy/XOy0zbjzjbb
a4fnt80L3OEHbYufbFusi96zLnJXFLIrCtwVPXrG9JSOn9JM2gDQ6aZsAegM
c8B4fmFzxWmLdOU5HSiZLtvsuztcrzesC9sWx2+LE17nlSRpS5y6JkjQcaO1
vBgDO8rMDAeywYs2MZ5IZz1VK4+11HANM9rIBfSL3eQlbXLTn7Kz1/j5emmp
RtnCl8BIbOI0VY6ia0fZqi62vJEpbaKuNlNUzRRdM8XQSjZ0UbU91NVR5ire
uIVXKYkSoXrj+er6c+nGC6n5mcy4ITGZ5HqNaIWxVNrJBapdfAE5rmA5vGji
SUlf8UAjnFuC0RX9+/3tv9C6N4viB+v+1qzLhioA63Itt0kD36wWj6tDO4kO
6cNXS+DnCsZsc0etcoZsckfO5YNPpQ/85knDPz0o/Z9exf+fR+H/7VZyOB58
MnFwf3Dp6dAsp8ioO+FeHmE3/cPt4hLtM3Ku5he5VFTcba736G7yGOx0hfa5
Tgy64kBuK+iAgoyTnj7HfUKcndwP+QTuS0myyky0S088lxhnlRR7OC/xQFPu
kcHyw7Daw9MtR5e7TlD6TzNHrHgQayHcSoa2Vk0ALFjpZ2zN8/Yb+HPPSOeA
2fMZ+cJL9m0D1bPwyT8Ux/6uKOZn1Qkfj5QcxdQdwjUfInQcoXUeYbTv43Xu
F3UfXu07phg4oh45ogOdMMGOmhFH1tGHtrDHns2ceo4793z+6rOlmy8Jbttk
n23Kw1fUwF1+vBB+GV3yj6S2/bS2g5zOY4LuE+L+E7LB48qxkzqolR5x1ow+
t4E992zS/sWs/faK0w7l1i7dY5cJgPl4lxO6CwzCgsgdS5371rrQHdHjHZH/
OtlZijmun7HTAaVuxt6Iu2Cad1hburRFvPqMdOs57fY2022b5b7Nvf+mdbuA
mZZ9ensRW45jPBfFmznhRs4TIxvobxFGxpMtfoyW5L8662YkB6spoXJ2gub/
Z++uo9u89rzR33vfe2fOOz09xRSStEkaBsfMDDHFdhwzo1i2zMzMDIntGGIH
DTEzxMwYg2Rmy5LMbEt69n2kpj1NzzTTc96emVmzstZ3aSlpnPavT7+/vZ+9
n6mA3Ymw/YnQvcnAgyn//ang/enw7YUI2mLcykLm9Gx912hPzTApf3g+a2gh
fWg+Y2g5fZCcPkTLGFx7PEh5PrycOzLfsro9uEojzi9T947nD49m9w/IO3tL
W9tjm2uj69RF2voyca49OavXL3bIPXbAIa7eJua5/5Onr8YS2WfE/katn/PB
ug/W/fOsY11SFwRbxx78YfTC61YRWT1SIa/uRJbKhpbIBBfLhJVIhZVxub34
DP3gz+bxp5CJX1kmf2oc96968VedXgl7ZAvb+6k4uWo5IPVt7hvbKCNt7zh4
qHgH3wuOUIuP1chK0n2ZqluQfb/suVZ9nl7rK8O+avzDKDlTM26Elfp9Y05L
zKUgX6Fgd+FAN2FPF14PF64Qd4402Lp4/sqHvE0Z/F05QgPPREfzJCZKJKbK
xReqJVbrpKivJdeaJLfapHe7ZA974V4ndzyocDymuTtqEeP4eYTjDzFu3ye6
nXsRcrMshqMh8XpH8o3+lNuj6ZyktJvTGVyLOXzkZ3y0PKHNQpGdUqG9CpGD
asHjehF6kxSjVfmkTZ3eqQv1mUB9Zsw+C3ofCpBcxwokq0P/MviIZyxdYDJT
ZC5bZO6Z8MILwZVcQVqh2FqRxHqx2GaZ+G6F2H6N2HGTDKNNGfToQgMm4A0a
kGzBpCOYdgbTLuxPJ9g9MENgTmOgOQytU3G+RoDWIr3WBA/mMltt8tvtd1jW
9akdDWqdvNFljhkxiSbMCfNfWGcDZuzBWznfBpp1PpgkbJOwW0QCPKtuE+12
SA6se5u7LDcGCWujjtQpr43pwO2J0N2pkN2pgP0Zn6PpwKPpkINZv515r80F
n42F+JWFgm5iQ0n/wNOh2Yw3czB3jwaXHsHcDVAyB1efDpNfDi9UTK/0kGlL
1N31ffrC0cHC4e7q3vbi1jpxZ310c5O4QhtfooyOjdYnpfa4xY46Jbc4JOV6
ZBU+G31QshpdRX13e+KnS05qV3/F3QfrPlj3x1oX8JN1EeXkUJi7mhWTjA7Z
6FKp8GK54FL58CrRwJKLDk/+bJ78EfLh58iULy2TT1kkf2ac8L90Ys9YPRF1
f6Do7KzjjDWyNzKyUTclqCJsVAlOml7+90LCFBNiVLIT1PIfqr7Kvlvy7F59
nnbbK6M3dVZPkxSssLwoayUdE24k+kqIL3eo5+1gdz4vV043hxt+zleTA28/
i+YsSeJuyORryxHufS4ynC9GKhafKhOfq5JYqZOivJZcb5LcbpPZ65I76pNn
PRc3qMQY0TqZxCe5nA23Oxfh8HW0/TdZPhcLQy/Wx1zpSLjZn8w5msozkco5
l867kiNKeSa2nie+9Upyt0Rsv0LisEqUXicBNcqCFhVmiwbUoQ96TGHroD4L
Zj8ajDmNPBGsD/1y5BE/KV1oJlNi8YkMOVduNU+akiu29kpyo1Bqq0h6p1Tq
oFLquFqK3iALtdwF7Vqgy4DZY37ca3kygIVGbcG4M5hyYfUx2CiWV3gwi19u
klqsF6E2S1FZA6zsVrvCZqf8DmuxTv1wSJs+rM8cM2WSzJnjlmDyx72JH62z
BTN2rL1dODPszNrSp62OJzG741ZbY7Z7E86bY3az7SbkPszqgPUmyW1ryn17
ynN7yot9o5Tv3gzrNO7hrPfRLOxe8P5s8M50wOZc3OJyXtd4dWFvS/bAePrQ
XOrQQtoAbB01fYCcPbKUS1oqmVhqXiAvbh5R906WDw+oe9vr25vkzbWJ7fXh
rW0SZbt/frV3c3VseLg1KK3bNr7b7VGRa1ZxZn9WBTW2mhb9k2P/R9ZVU/6K
0m+crfh7rYuqpkZV/ZwP1v0x1r2Hr18d9fqlZv8waD8nmLU699eElK+Glq/C
AyycqEpKeNlKUM2KfnqrTGyZTHixckS1TGjVOZvsTxEpnyHTPkelwPkC+fBH
6/5f7ZjTqBRp91BtL7yZu7GZg56ZtZ6ZlQaKoEZwVPfwVQsOvRsfo5yRoPQ0
VaHwsVLZE8XXefd7SnQnmi1qnivY47/FEASMkQLmFtdC/W+E+ZwP8eTzduN2
d77p43Ql3vfGk8jbhYm36zL5Wp8IdT8THswXJRaLTpaKzFaKkeuk1hult5tl
DjruHMHpkqX3ytB75E56VcGE1SPXGwGIL6MJn0daf57leaE45GJDzLWuRI6B
ZK6RFO6JNK4fraM+l4Ct2y6ErRNnWyfGtk4atCiDDg3QpQu6DaFeuNqZQ3Cv
I7oMZnC+Djk19khoPFV4LkNqKUdm6Zn0aq70ap4E3Os2CiV3iqT3S6WPq2QY
tTJQgxJo1gDtBqDDDHRaMLsRzG4U6MVCA3jmMIFJtAMTdmDcGkxa0YmIuWrh
5XoxlnUN4nCv22yX3+pS2O6/uz9w7/iNFmPEgEkyY04goAksmMKDaWtoxoZ9
tNaBTZw16ynlKTw0bQVN49gn0ZD0Gas9Im6P5EAdsJptM6UMEqjDdhtE5+1J
j51p791J//2ZoP2ZgIOZoMPZQHaC4RzMBe3N+O/MBG3Pxa1PpUyPvqjo6sjq
m374ZjGln5I9uJ/ev541uvCCuFwyvtKySJs/OFk6OF7ag63bWdvZJG+tz2xt
jmxuj1A3Bynb1ZTVkY2dseaxeu9HA26ZZfbpOakNj6un4qqXo1l2rbMX7laj
a8hRbGfC/z7r4N+Bx+F1dv52Ll797by7gftL6GpWf3mP6I/3Tf2cqN/v3j+a
36/irxL1bv5e637jyNgf4R47/32sY2clCP7fSgU5onQ5tIask9IkG12iGl0u
EVBylpDzCSrtFCbjC1TaZ6iUz360zjzpM5P4f9GKPGseq+IdpO+LsXQzsLQ3
sCAYWuA1UVaqNizr7gcFq8VFKaUn3nmaIlOUJV//UrWrSKu/RH2iQbuzSNWV
8LW1LRcCI2pmcjnI+1q477lQTz4fD34vdy4vh8uRXpeyIzkLE7lr0/lasgW6
ngkN5YkQi0SnSkQWykQp1eLrdeJbNcJ7DeL7r8X2GwVPWoSPW8RPWuXBCOqp
xy1/4z8n2J6OtPoy0+NCcdDlxujr3Ym3Bx5wjaRyTT7imcvgI+eI0V5IbuRL
vmudONQoBZqVQLsG6NQFPfpvrRtAg1HH3qSLjUGniGlCk6kii1ly5CdyS0/f
WreaL7JRILFbKH3w1jpZqB62ThO0G4J2M9BhAbqRUDcatg7048CgNXMIzxhC
nwxaMIdRh4Pmy1Xiaw0yG42y66+lt5ru7LQq7HTf3etXPR66xxjRAWNGEMkc
mkDBjIMpWDYCy7pZO/bSnz1MH+vJvSkWd2AKAyYRYNqCMYU8nsLvE60W24yX
exCUAez6CGFzzGFnwmN3ype1UjcdfDDDyo/KHc2FwJ/7c4H7s6y7oXamQrfH
IyjEB72jFYU9g4975jMHFh8PUFlLdsOr+VOrBWMrNVOrE3vH8wf0xYNj8sH+
6t7O8vbmzOb62MbGKHVjgLpeT6O1LVKmZtc6n7+ucUiudslMj8lNr+iJr5mJ
Zj1ltxYBA1W7El0Dh0VNWN071wK837pfQPeWu/9z6351YfKvuPtg3f8M6wIr
VvyryEEli0nVVP+iGaWIcpXESuWw4usO2Z9jM7/EZX2BTv8clfYpJvVjmDvE
A9i6L0wSPtYMP6vjq+cXaOKPtfQwRjgaW9oaIay1YOus7dXcPVWCAhTiwmQy
42UKMuUrcuSbc1V6C9WGS1Sn6tRHa/QCHb+zI9zA4cRNDM56uVyM8L0Ij7H+
XiJe7jy+ztfDXH/IDLv1Ku52bSp/22Ph3qdiw7mipDzhqQKhxUKhlUJ+aiH3
RjHPbrnAfiX/UQ0fs1GI2SJFb1EAI7iSIB5f3T8l2JwJw32W5vJdccDVxqhb
3YncA8k88Aw7mc47n8H/Y6/bKJDcLpLaK5VkDZ41EswGKQD3uibYuvugSw/0
GLy1rh8Fhh27Ei40BX8zmiIwmSq89Bi27g7c68hs6ygFIpvwLFwoc1gqc1wp
w6yVBa+VWda1sa3r+oV1fSzrwBtraBDD6DFn9iFp1YqL+bw7dQo7NXJ7tXeO
mu8etaocdd477r3HHNRgDusCoglEsmBZNwlbR4CtYx+q/cm6GQIMHTSBBOMI
MGHJuptl0pg+YUKfwhwSUcutuusDiI0h5PYIfnfMfn/CfW/ab28aNi34xxzM
vc3h2+9BrJc5TgZukYIoxJDZmYz+4brilr4XveOP38xkDFOeDK8XTdPyR5er
pqj1s6sdS9TJ/ePZ/cOlvf35za3pzfWJDeoYlTZE2WimrLXMrfTPrQ4PzxVH
PClxSsxLeJJWUhVX/SamdjGqhsp++ATudXBWYPTC6sgfrPtg3T/bOr+qFe+q
ldDSxdQa6j3fItngQtXkGkH3nHO4tC8wsHKPvkCmfYF+9Akm9c9vrUv83Djh
S82wi+ouhl7eqAAswtME6WyGsDNC2GgjrVRxBGVnZ5ngAKnkKJknSZLF6dI1
T2RbXsj35CuMlCrP1KrOvDaO875ih7toay1hoPO1o/VXkT5Xg91u+HsI+nrw
+bveDnG+mBp8Mz+Gp/aBUNsj4f7HIm8eC4xl80xmc88/41l9ybf5SmC/RPi4
TIReKQxVC4HXoqBFmvFaAbzB1cUIeGv8S4Ld2TDMp6mOp4sC4F7H2ZPEP/iA
fzSVfypdYD5TcCVHhPpMgtXriqTgXrdXIX5YLU6v/7nX/WgdPMOaQn2WoA8L
hhzbos41h5yGrRt/KDifLrX0WHr5mQzLunzJtSKJzUIpuNf9Luv6cRDc7gaw
oBcFuhEreSILz25vFIlvFIlsl4jtVUru10qftKpAPffBoDYYNgBEUzCOZA2w
k9Ys61gPEv/aOjBuyXpieRz+k4ZgQp85qQfNWG4N6K51620PWuyNIA+I+KMp
h6Np98MZ392ZgN3Z4L1Z9vXvsG/zwQdvZ9gQmLudab/NCe8tktcayZM8GbQ8
nt7dWVXYPfJ4ZD59ZPHZyFrB2FbeGKV0Zq1qbr12ntIwu9xLpk1t7c7v7sMz
7OTGKpG2OkTZ6iSvd63QmpepLQvkhvLWF3bhFYmpWRV5UVUdsTVzUTXkiFpq
RC0l8q11yx+s+2Dde6wLKvnrdSXB/zF0K3D+1rrgcopP9apX5WJCDdX/8ZsL
uqF6yQ0SocWXrDO+QaV9jk7/Fpv5LTrjS1T6Z6j0jy1TP7F48K15whmTuAu6
QTdVkObuDrgANNLTyMLFzNzR2MJOA2FzF4274+ggFh4gkR4r+/KBZHGqSM1j
ydbnct25cm9K5CaqFOYbjR8FX7HHfOdoB/e6M9aIU5Fet0Pcrgd68gR48AW4
cIQ4XX7ox/Eyiq8qjrcxkbv9IVf/Q47RjNszObxLT/goz/m3C4QOigWPS4Xp
5UJQtSBoEANNcszXimAI25Ei7qvxL8m234UjP3nk8F1JwLXGKI7OBO7BB7xj
qfzT6fzzmQLL2cKUp6Ks9bpXkvvF4kdl4ieV4owacdAgzbKu7T5rhmWt15ky
YesGcMwh+9eBZ1tCvx95wEd6IDj7SGzxsfjyUynySykKbF2hxHaB5P4r6aNS
GTrLujvg9V3QwrauE7YOAboxUDcG9GJAHwbqx8JhW4eGuiyXXwhSXghuFIju
FkvulUgelEkeVckc1985alI86VBlDOhAI6YQCQNNWINxW9Yq3xTsmz3rahQW
dLasfYopNBi3YENnwrbOAEwaMKZN1jvl9wZ0D4dNjomW9Ekcfcb2ZNrpcNZr
B+YOnlVnA1lXB8wH77Gsg2fYEPgTbnrbU36b4x6b427rJA/qmBf8fZ6Y9rq/
O3tgNn10NneMmje09WqcXL6wUTq/Wbm0XgdzN73UMbcyubU/u7dPhHsdjTJC
3eyi0rpWaa2UraplSufI5EvfhPLYmNyKrKiyyti6sZjahchamC/YKEpULcu6
iFry+9frot6u0f2YX37/FXS/eo7lb/IL66LZ77/4ZWJ+CvuX71j3y/yzrHtP
/iHrWNyV/TXvP0PBfu3sz/nDrPuVYO9pbu8pcsHvvvTw/dz9u40utJwSUkH1
rVn1q1x8VE+9i804fz/Q6GHjTbfnF61ffI9/8iU28ytM1tforK8RWacsMz8z
f/iVadz3hqGXdfw5tZ14VNXNnRGEACTaw9DCycjMWd/M4a4lQQ6Dk3FzkIjy
F0+PkspNkihJFa7JFG9+KtX5UmawSIZYLrfcZFyQcMsJc9rOXgSNuoox+SbK
UyjCkzPUgzPA+XaQy+1Qp2uxrpcz/G7kB1+tib7Vnnh7IIWLmM49ky2w9FSQ
+kJ4M09o75XAUYnQSbkws0oENIiDRnkmLEw/8s2Tu36af3oAW2f5Sartd8W+
V16H3eyI4+xP4h5Lg3sd/1wG33K20OpTkbVcse18ieNX0lCpLCiXBlXSAK5k
jSpspnRAlzHoM4N6LEA/9qTPqs7vdGf45ZFEPlaveyQCW7f0RIL8XIqWJ0nL
E9nJlzp6JXdSLMcslwPV8tBrVdCiBdqNQKc51A33NyzUjQU9aNCHYvaj4UB9
aKgHRW81WcjmWs8X3yqS3iuRPiqTpVfcYdYoMhoUT5rkD5rlj9rVGf3GzCEE
NIJjPbgy5QQmHcCUAzT948YEaycXmkQwx83Y1pm+FW/S9GhEc71d6uiN+tGQ
5gnRhDGJZszYMGedTmbdD2d9Dmb9D2cDD+bgsKzbn2NBB/e6XVap82Rb57pB
8tgc890k4lYn3QZHC/N7hp8OLxaMUQverFVMr1YsrpcubFbMb9bMrzfM0xpm
VhunVgaoW8ObW2PrW2O0jc51cg8N5m6zfonSs0guyXxZFBNeXv4gruhxYk17
fO1MZN1aZN1GVC0lqm4lqm45sm6V9b2W+nP+xr213y5yv//BvF/+sXdvz2Nf
MPWLH6T+anvil/lnd7xf591zZ3+Xdb9M+N9R8/6w92v/97EutILqV7YSUbUS
/Zx4ScKJUy9UI7bqvO3jK4SXZ3BPvsBlncJmn0JmnrFM/84s5axJ+CVjn1tG
Lvz61mJ6SHFtVT1rDedQFM7TEOVmZOGsjXBUQFmL2RBkvZ2kov0l0iOkXsSI
FCUJ1mSIN+VId7yQGSiSGyuTW2nWr38i6Yr7lmDDi8VdxxieinATjvbiCnfj
iPQWCHC47mt1Nsj6dIr7tfwQjpqY2+0JnAMPuInpfNNZAotPhCjPRTbyhPcK
hQ5KhI7LRRjVouC1BGhSYMJMdZnMFhn6a/8l2e5shOVnKVbfvvK8VB96s5Nl
HQ97huWfTeddfCxAzhGmvRTdyhM7zJdklMhCZT9aJwca2Uy16YJOY6jHlNlt
Dlt32I6o8T7VEXZpKI6LlCwwlya4mCVKzpGkPpVaz5NcyxPdzZc+fHXnpOQO
s/wO2zoV0KwN2o3ZGxPon6yDex0a6kfDpY7ebQl1Ifaq781l3NrIk2At9xVL
HZbJ0CvkGDUKUIMSo0mJ2arGaNemd+iddJvS+5DQEA6M2oFxRzDpAqac2dbB
I60VNMWyDho3/Snwd+PNTrm9XuXDIfXjNzoMkiljEsWcsWXOOzPmPegL3icL
Acdz/kezfodzAYeslzaysj8btD3ps0linaLdILmuwyG6rRPtyONWU5OJDQNt
BQNL+W/I+SOUyum1yvk1uNqVz29UzW1Uza/XzK5VTlIqJpZeL9HebB8Nr2/3
rq32UCld5LWGBXLb3FJ1ae3L+KjKygcpr9ISSysf1o7HwANs7Xpk3e+37j1D
6x9hXfUH6/6HWxdWQQsuWclo2sT7lN3gt5U0jpEPLP6OwLLuS0z2p1aPP8Vl
fo58eNoi/oJp5DVjN35TGxlztIK5rqKJmoyenIqFlGOIOcHTFOdpjnTRQNtL
E+wlnOykPB0lInzEU8MkYOsKEwWr00QbsyXan0sOFMqOlUkvvL7XV67uZXfa
yvqmNeEGQvdzfxvOWG+OCLebAfa3fK0v+2DOBOC+eeh2LTeQszqSqz2Be+AB
11g6L2zdQo4I5ZnIRq7IXqHwQanwcYUoo1oYgmfYxjvMhrugTZ9ajfXT/N9x
uM9h6xJRX+S5XKgJvNoewzGQzDeSwj+ZJjD7iHcxk38lR+hn6+glMsxSKVAh
CWpkQL0SaNIArTpQux6j04TRZQb68TuNJhUeH3eEXRmI4SAm8kyn8C+mC61m
S9CeSG68lNzIFd3NkzoquHNcIvfvWYf6q3W97EbXj2HCg20naq1QavbRjU14
lC4Q3yuWPiyVY7Csk4ca7kKNylCrGtSmzWzXo3ea0ruRzC40vRvD6MNDo45g
wgVM27H2KSYxYMKSdU3BpNmPAVMW9FG99Vbx40H1owF1xpgBNG7OZPU6tnUL
7sw5D8acN33O+2TO53je7xjmjvUybv+daZ+tSc9N0k/QkZzXSPZrRJfVccLK
RODQQH7twGjR8HIukVw+Q62ZX6uCuZvfKJvbKp3dLp3ZLpnaLiBR8oiLdctb
g1sHg1RKP3W1h0xtXaQ0zS01tHfnZz2sLkt6VpiYkvcipWIgsXYlqnbt514X
VfcOdB+s+2DdH9/ryqkxFdTUypW7urG3Oa1FtULl/Iou2z6/Ssj9Fp/zMT7j
E3zKKWTUGYuAy+YeQuY28pZIVaSumqW0irmwvKHkHWNBWz8DWx8La3dTG08t
KycZO0dxF3tpN1vRIDfBlGCxFzFirxIFq9KEXj8W6XgmOlAoRSyXmq1TIjYa
+rt8b2fPaWfHgdQ75Ym5HuN1K9D+gjf+hwDrq4E2lwJw38bancsN4KmK4G6L
5+5P5hx7xDuVKbCQLUx+IrT+Umi3QOSwWOS4TIRRKQTqxECDLNSgyGjW3m1z
iDT5SxTiLzGoU3GIj186nKnyu9Aaeas3nnsoiYv0kHs6lWchg3/lsSD1uchm
rugvrJNgW6fItk4XatdndBrTO8xBH377tXG525/aQy/2R90cS+CafsC3kMq/
kiFKzRZbfya29VJkL08atu6kRA6qkAdwMWMNwmzrOs3Z63VY0I1nf2JYNa8L
BTqQoB29+kRoMYNzMxe2TgK27qjkDqMcnmHlAUxlE1wv74FWeBDWhzrNWDZ2
YZidOEY3ltlrxRi0YpJwYMoKTGDAuCU0AWtmCk2asKybsdgfuLfbrUAf1joe
vA8RjcGEBWMKA1vHmHdizrtCsy7QLFu8WQ/6nNfxvPfhvN/+nM/2lOfWJGul
bpPouj7mskZ0WiPZ0khutDGftZHA+eHklv7K4qHp4tn18jlK9exq9Ry1Ym69
eH67cG63YGrnJWnzOYn2fJzynLhSt7QGT7JDVPIAhdK1TG2cW64fGi58+bih
PKW4JC7jeWZKUUtyzQI8NrJYgxtdHflXpe5X1v3NfsQfYF3kr95i9mGG/U+3
Lujv2V19z95EMOt86y/zG9aVrSbVrIUk98qIewnwO9xQ8ZX2fnXDLvcqIe+c
1dOv8VmncWnnLQM5LezFLBHKFgYaCF0N5L17FndULGTumstI6fLhPHSdA03s
PDSdvTSc3GQdncVdHKVdbIT8nfiTAoSzI4ULEgQr0wUaHwt0vhAaeCUyXi42
UyM3026aEHjZ2eaKs50gzuiivfHpUPsf/AnfB9nC0F3xx533w5yKtbvwwoez
Ioy7NZa7L4lr9BHPVCb/PDx+PhGErdvLFzkqEj0pFWOWi4BacVDPqmTMxvtH
XehU3F8iLT+KQX8SZ/HRc/vvyt1/aA661ht5eziGcyqeZ/mByGqK6HqG+G6O
1P4TUXquBCiSBiVSgDXGyoNaVVCvCV7rgmZj0IaAOuDB03H7NabZ86uR4JsT
Edxz8XwrDwSpaWJrjyQ2M0S3H4vuPhE9eC51kCd7UihHL4OLmRz0WhE0q8Ml
k7U30WEJOrGgEw+6cCzxOjGgAwVaEcwmy7nU2yvZ/Bu5YrB1+0WyxyXybOsU
QYMqaIahU//ROtBlDnUhWT8I/z3dONCDY/Zgj3sR9H4EIFqBcRZ3zHFj2Dow
ZcaYNN7pVTnov0cf0WWOGbCuf5/GMaYJzFk7aM6efZrMFcy6Qeww593pix70
ea/jWa/9Sa/dcbctovMG0Xmd6My2zp5Gcl0b81of9SITo7p7c5qIb2oXdwpn
98oWNssXaGXzm0XzBwWzR8/H15+OL2aNLj4mbjwe28oeXWiirA3RaAMUcg/L
upX64dGaRxmNCRFtL9Pz8h49KMpLqHkTW0+JrqNF11Oj2V9+Zd3f0Ef75WbE
e//k7030b4f9VkfKu1n9Oe9eCP/TK25/yj+Ju9+65j3y3USwt1//3YS99+ao
d19Hu/jLvMe99+9iwH/gj7Lu9xe539ybKCU/qN2w9agQ5LG/wmMlgogT9yq4
ZvvyGiHvktWTH9BpV1DxPCgfWTTuHlpfG3FPB6GmgVBVs1S5a3FX1UJBRkfE
mKDmFmzg4q3q7qXi5ibp4izq4iTlZCvkYc8V5cubES6Qn8Bfmc7X+Ji/+7nI
4Cuh8VLRqTLJ5S6Ll4l8rtjTrtZC9pacaI0/B1idC7O/EmRzMdj2agjhii/q
q3CrM9keN8pCuBsjbvXE3xx+yDGZzjX3mHflCd/6S/7dfMHDIqGTUmFGuSBU
JwwaJEGdAjw8Qr3GOfafBhh8FIn8PML4k6eEKxUut1p9ed6EikxHS63Eyawl
KmwmKGwnyOwlSO3FSx4n32E8UmU8usfMuM/M0aHnGJ48MT15ZnGSizrOxxwW
4ulVbpQsizqL04M2t4ftuaa8hOYDRcjhYpsJMrsPZA4fyZ1kytOf3GW+VGPm
qdCL1ZiValCtGtSoAbUYQa3mUBsKtMNM4SCYKbjadWFAFxrm7rBGZyLpIvWp
8DrbuoMiuePSH61TAg1qoPk+aIXrpTZr2bDLgtmFguAfhLnrwrLSg4P6sPRu
xHG3OTSMBBNYQDQDJNauxMmIzl6f+tEbXfqIPiD9+IpbG8aMHZN15bs960mV
Wbe/Zt4dLLqBBbjjuR9Puh+MO+8QHTeIjutExzU4JPjTeWPMZXPUmToWMjWU
/YbY2DY5Uz2/Vbm0Xzq/Wza/VzK3nz+znUMiZ4/P5xDJ2SNbT0Z3M4eXn09O
99PWBii03hVa8xK1dWyiN/VJq5tPc2RMXV56am5aUk1XXN2P1r3Nf2Tdu+Xt
n2/d3+zt/uajLO/s2P4ntL731rx/+Ja897x6+3+GdXCSq9YUTB6e58KpoZLU
vF/yeeRfs8+9bv3sBj71JiqMD+kljXW4i7NUR2trI9R0kPc0EWr3kKp3kXdV
EEpKRrIalrIeQYbe/uo+Pspe7hJuziKuztIu9qIudpwhnjyPIoReJgiUp/I1
ZAp0PhXuzxUmFYpPFcustJhVPpJ0Q37mjOawt+BAqP2rD+b7cIerQTbng20u
h9pc9cN8E4z95pHblaJgjrqIW+2x1waSb5BSb81kcC1n86695Nss4Nst4j0o
5T2q4KbX8kF1oqBWjl4tC3qMC9wv+6qfSsJwxRhcfmxxqxTN1WLD32PDO2DN
MWZzm2TFMWnNMWdza9mBa9VWYN1WatdRec9J9cBV/chX/zjY/CAMeRCBP4y1
OUy033/ocPzYe8HfvEz2XIeOUI+ByJC52ChKZBzLP2vPv+IuQvUS3QqU3A+X
P45VZTy4D7L0oBf6oMwM1CDAayxosgYtBNBqBdpwUBea2Y2gs561Q4I+DK1E
fizxDO2ZyMYLke18iYNCuNfBM6w8VK3Mto5d6loNQKclPPMyu7BvrYPTjYM6
0cxO1l/C6DQ76TZiDpqCERMwZgaNme333D/o06CPGDLHTCCSKWwdNGv7FjpW
3rEOmoO5cwFzLsxpp5Mph4MJu91x2y2i3RrJgUZyppFc4GyMuuwR3Wl9npQ3
ydTpssmp5sHp/tdTizXT29Wze+Wz23kzq1mTS1njtJzRrRdDm7lvNnKGqU/f
TDXNr/SvbfStbsDWdY5NDqY8H/QMaXD1KYsIfPUs80F+Y2INOQZWru5tPlj3
wbp/nnUhZatRlbTQvNmLCt6SJpHG/vkynrm3vQuvO+bewGdy4RPFcF53sDgV
nOV9nIEGSk3H8q4OUl0TqaaOVFVBqqgilVTMFFQMxdwCDYNCtIP8Ff29JLxc
hd2cxJztRZzsOAM8OJND+Z7ECRQ/EKhLF2zPFu19LjKWLzFbqDRbrtX2/K4X
8iNHi0t25rcQ9z5yM/863P5KiO2FUMLFUMLlQPx3AchTiQ7nX/hdqwq/0RJ3
rS/52ujD61OPbi9mcVGfcm++5Nwt4Nwr5Dks4Tqp5IUqxUGFAr1SGXSjW8Ik
QuS/jVK97i/8dYLU6VylixUql16rX+7UvDKgfZVkxDNrLrSMFF7Hie9aSR8T
FBg2ypC9GuSiCbwMQIA5CMeCKDsQ6woSPUCyF8iKIHugG8Q5BjRkxvQVJk0V
Zy2VljB3V3CKZIwMFS+zaSe/baew76h86K567Kd2GKJ+kGxIz0ZC+VhQbgtq
HEGjC2hxBK1YZrsls5MVuODNPxWcfHCZ+kx4/ZnIdp74fqHUcbEcs0weVKuA
hnvsXqcJ2owAbBoLOivWCPxzr+vGQp0oZoc56LJkdBoet2kxew3AGJI5YLzT
dveoX4s+bMCybtyM9aoL1n3IDj/l7Qz71roZF2jKkTllz5gkMKatjiZxexO4
rXECjeRIJTlTx2HrnDdGnffH3Dd63fbGovbnUjbnc8hzhW8m29qnphumqSUz
60+mVtInKJmk7SfDuy+GNnIH118ObeYPzZcMT7WT1weoO81LtNbBsZ6IjGmf
6DfuIdWuzoUx0TkvmpMrlmPqPlj3wbr/DOuCS8nx9Zv4hM4bWiG6fi/uuGcL
eDy/5VN01fnlLes0fnykIt5O08pIx8pAF6+pg1LVRajpIjU0EffUkSp3UUqq
aGU1cwV5bT5bT43QCL1Qf7lgX1FfDyF3ZxFHBxFHe14/d+64QN7MaNg60fp0
8fZsyb5nEmMvJCaeS5Neyo+VGoZbf+ls/p2D+U3k/S+stT+OsrsWbv1dmPX5
EKsfgq1+8Ed9E2V1NsvjYnHwlcbYa11JVweTL02m3pjPuL2azbWVw7v/XPAo
T4xZIAZKZUCxKijQpL+4xyg1bXaSdD7z/7hf/Dffi5884P2u8A5HgypPpzr/
sJbQuJ7QrL7okpE42Vh83VxiFyF+hBanYyWY1jKQnTxwVQO+OiDIGApFQVE4
KNYGJDiCrKBZO61q4dN9qtxvNAUmjcTnLWXJKGUKUoWKVNvAqu1b3z+01qDb
aTGctRleuswAw+NgE3oskpGEZDy0ZGRiGM9toRIHUGUL6gmgCQ9arEGz1WzS
7ZU0flqOyMYz0Z08SbZ1svAMC9Uo/7Rep8W2DsGuc3jWYl0He8muk81dJwLq
sACdFlCH8Um7Hr1Nl9lrfNSlu992jz6ox7KOaApNWoAZHGC9xMfxpzi/M8PO
OINpRzBlAyaxzGnk0RRybxK9TbJaI9pTSE6UcUcq0ZG1VTFgtzHgCs1FH8wG
HixF7y2lUuZfTsy+bp0aLZpeyZmmZZE2HxO3c0a2n77ZePZmE7bu1dDS84HJ
2lnaIG2/dZnS0T/aF5I26Rgy5Ro24B2U7+73PL02o3IlrpYWxVqvo7LQ+2Dd
B+v+PuJW3jr2zun+XwceXcMrqSFl5OSmHVXfMnH7TK2wAlm/50K+eRw+hVed
n3AQoiXwXtq2WEMrXUO8jgFeQw99Xw+hoYvU1EbeV0cp30XL3UPL37e8o6jN
bW4tFR6lHxogE+wv7O8t4uUm7uIo7mjH5+3EGePNmxUp+ipeuPqhaEuGRHu6
UF8G73i2yOQzqcVyk2yvCw4GHztb3iYYnEeo/Cna5loU4fsI6+9Drc4H4WDr
vo/AXUh3vlLgd60u8mpH4pX+pCukxBsLqXzrmVLHWcogSw3KgCdHhZN4eUaE
Gj1I/cBP6TBSbwiv7PmX/zv4+1ORl86n3r6cL8ldoyzUpio8cF9kTFt0Rldk
yVCMYiy+ZS61j5Q9Rt+h45UhGxXgcA/A1c5bHwSYMcMwjGg8I8mGmWwPHvtN
EJRKBT7qVr0+pHVr3Jh7BiG4jJVdxarQMOrrKNVtjMoeTu3QWvXY7h7kqgN8
jEAwEkQRQIwjFO/ETHKipzgx0hwZ6Y4nWQ70HBtQ7MIoJFCjxbceSGyliWzn
iOy+lNgrkDgslqKXyzCq5KAGBdCswu51hqDdArSjQDsbunYMaEOzgwStpqDN
BLSbwmG0GUKdpvR2g41quZMe3ZN+bcawIeswxQSKdREK+y2NrKW5BQ/WJzy3
skZXN+aME2PSHpoggAk0GDcC4/r0CePDCcTBOH6HaLs+TNgcd9ggOa6POq72
2+6O+zLno45nIg8XYg4W4/YXktaWskiLZc1Tw0Ujq8+G13JG17JG1tOHNx6N
rue8WcsdImcOL+ePUAaW9kYom71t/cMh6fPOkXMO4SSXmBqHiNzgp69eTaXU
0MIbVqMayAm11Pjav3a8vyvvL4Tvye+3Lurdf/q+Y2j/6bu0f5R1v87vte4/
2LH972Ad++G61fBKioJ3sWpokXJYvnRgrrBvHrd37k2XdD7bEDVHd307SwOC
rgFsHU5LH6ujh9bWRmtpoeBep3APJaWBktYwk1I34De24A8L0wwJlgnyFwnw
FfP1kHZ3knKxF/C05Yh05ckIFn0RLvAqkqs6gb/5IX9PugAxR2ziqfhKhWF1
PL+r8ccuSE47s+to1Y9D0Wfibc9H4M+EwdZhL/givgvDfP/I8Vqe+7Uqvytd
ERwjcXxz8aKribIbCYqbgdLbXhJbruLbjqK7DmJHdgpMZy3IQxeEIJYcjMO+
+lPEmS8jz3798OLpPJFbtUrCLapCfRpibOtEWdaZiG5ZSO4jpI/RcnQrJchG
FdirA2dt4GkC/JEgzIYRY09PdmI+cAHZISOIO8XcH3epcQ5o84wZCUxaii1i
5cg4JRpWZQNzdwd3d8/q7iFB5dhOFXLVfGtdJDwFu4N4D2aSJ5TizUz1Bik+
UIon/aEzeOS4Hnh/zp6P6iu6Hia0/1D66LHCyQsler4Ss1gZKldiLdm9vgc1
a7DW69rM31rHyrvWtZqANlNW2s1AD+L4tdZmhexhs8pBmwpzUB+MIlhXo7A2
I9hD6xwMnSeY9/iFdfD0SgCTODCBYB0uG9dljhudTJgfT2H2SbjtUezmqNUW
yZ4yZLM67HC4GH44H32wELe3ELu7GLe3FLu9ErlOTpuZq2ofGijuXXg6TE0h
Uh6MUVPHKFkjlKdDq1mjlNw3q11TG+PUrabqpq6QtGnv+FmHyCnHhE7HuHzH
5MKMvvQaWmjDSmTDSmItNaHmg3UfrPuDrYN/P6yC+mO1Cyxe0gypVokokQjP
FQrIFfXJF/PL5XV9KOHkb+jpaGhvqk/Q07HW0bXS1sNr62A1tbDqmiil+whp
LaSYDlJc30LS1EJMV/9SYJByWIhsoL9IoJ+Yn6e0m5OEu72Qtx1XqBNnvDvn
I5+bL0I4yqJ4mpIEezJE3zwWI2aLLJVqdWXIeJt+4ozgtDe/jr73Fw/9T+Jt
vgvDfsu27rwP8kwo8myqzdVCF84GL97BIAmir/iwI9cI7hYRc2sexbOGEd3F
y57YKkOO94CDOrDXgJy0gK8Z1RkZc/bT8G8+jz799cNzX+cL3apTFGxREezX
ECNq/WSdseiWueQ+UuYYJcfAKQOCCts6TeClx16ygwdYOyjZhZnsCrLC+w0k
C25/2qkiOKAhMqYvPmkus4CRJ2PkaRjFDYzSNkZ5H6d0RLh7YqcCnOH/ABMQ
hgYx9iDeFcDQPfCFHvpCqX4gzR889IGS3cFD9wW87IQRF4UgSXUU2fAS2w2R
ZTy4Bx5rg2c64JUOKNMDNTrMem1GkyFotgRtWNCKZ33CyrWiQCsMHeId6zrM
oTbjg2rV/WrFgzrF41ZVZrces98ceoMHE44s4uZ+rHOsT/bzdS5g3gW2jjGJ
Z9+RYgGIhoBoABENTkjGJxMWx+OonVHE1hhmk2hHeUPYnvPbWwjfWYzZXYzd
W4zbXYrfXYndWw7ZWwraWUghz1d1DQ+97CWmjSymjK2kjZJh654MkXOIlMIR
WtM4tXdheYQ01ZGe1+waSnSPI9knDjonFVrFvoxrzKiFrVtmW0dJgBn5YN0H
6/5g61bgOgeXusiaNf+SJa2QSumwfMHoAoGQfFGfPHGvp1LeKWo+QSYeKAMH
XR17Ay2CNhxNgvZ9/H0NnIoWVlEXLWOAFjfHiltgJC0RInq651ycBCLD5QP9
RIJ8xfw8ZDycJDzshT2tb/laXQ61vfTA49qLYO6yaP76BL72VJHBLDniY8mZ
XIXpQq0Ywjk702suKC5r7S8dNf412uqrUMw3odhzQbgL3shvAy2/Scacy7e+
XmPF2Wh5s93g2oARD8lEYB4hQUFJbaPvHOHvMqxVmVYqwFYJwLUKpsbHdNvb
Ku6Hr4K/+iz67Nmk779+yXejSk6w5S48w4oTtcRndSSWDSSoRhLbZjIHlneO
kQpMnCqwvgfsNFlSecEzrAWIwII4W5DsynzgCh6H9uiKvOL4rOMuf/89kVFd
iSlT2SX0nVW07BpKfhOtvINWPsAqHtuo0O3UgLMO8DMHkTgQ7wCS3UCKN5Tm
w0zzAnCvS/MGDzxAgjMz2nYWKT1vJrZhpbxlrbRjq7jtILvnoXASfJeZcB9k
6oBcA2a5Cb3BhN5oCjUhQAsONFuzrGtHs6BrsQQtFmzrTN9a12bCeK21UypP
b1BnNt1ntmkxOvToncYnXRb0fswx0YY5A4+x7uw1OlfmrDNz1gmad2bMOJxM
YpgTZkySKXPMEIwZQGP6zDE9OsmQMWm6TzQ+GCdsjODXRu2OyZG78xF7S3EH
i7FHC3HH8/EHs7GHi9EHy+E7CyFbi4nzs4VNg69f9pGyhinpI7THI9THw+Rn
RErx6FrZ6GLzysr07jZ1Ybk3+3mLa/SwS8qQc2KFQ3xGWGlG7Vr465WoD9Z9
sO6Pti6UneByclglFbYuun7dPX9SNahYLryQPyxfJrL4hkPWeUyCrFeyrr+3
qbuhkZOWnqO+jg1snZY2QUsDr6aFUzTAy5nhpCzwIhi8GBojjkAIGhqcx+Ou
xUWrBfuLhPiJBXpI+blKe9oLOKMuuiLP+mHPJbtxPAvkK4ngrYvjaknmHcyW
nHwqMfVUYrlcP83tqp3JOTc0r63O93aq/18w+rNw3Klo7A9hyKthCM5Avauh
qmfS1M7lqnxfpXKp4z7PsK7YlL74opEk2URy3Vx6Dy1/YqXEtFZg2t4B9vAI
CVtncBBik3Tl28Cvvow4cz767DdPeG5UyAo0qwgPaMDWic7qiK0YSNAMJXbN
ZFnWoRQYLOvUgZ0WcNYDXiYgAA0ibECcI3jgBqW4gachrRq8BZyfdt7lGVAT
IOqKzppKr6BkqWjpdZTcNlpxD614iFVk2NyD7DQh+G/ws4Si8CDBHjx0A6le
UJonSPMAae6swBNxouO+v/m4Af8SUnoDq7yDUTmyuX/ioE53v8/wUj/xVzsJ
V2ck6zJzzKBiNKixZm9n2LCeXWmFR1fUT9bBMWf1OjgtxvDnUYXKdrE0aNEF
zdpQuy6zw4h1sqzT8rgLudeHOBzGM8cdwAyLO2jaGZpxgmYdGTM2J5MI5oQJ
RDJhEo1Yl4KO6kNEXQZRjzGhB3N3NEFYe4Pbm/I8Wgw7gGVbjDtcjD9eiGfM
JTDmEw8W4rcWwjfn/DZnPDfnYhZmiur6Wp/2z2eNrGeNkB+PrL4gUvNH1/PG
Fltoq1P7O3NU2uLs7OuMVw3Oyf1Oya9dH2YH5j+uZJU69nodJb72g3UfrPut
/Po0xL935/A7gYdWOGGVa6GVa4HlrBcT270YUgl6pRhaLBFcJOD94hOzuM9N
Y5V8Hhr5O1t4mJi7GBi76BnZ6ehbqRvi7xti7xpiZc3wUihrUYwVPxbPj0YK
o1Ai5mbXTU1Oh4cqRobIRARIhnhI+DmIuFtzOSIvuCHPe6PPxTjcyPbhLgzl
qI2+1fKAoz+TY/qZ4PQT0aVCjcIIPkfTj50srtnoXcEq/cXH8qsI7FeJiEux
+lzhqsJu3Jedr3+fJMZVfOd2413ernuig/dFiZqiczriZH3xTVPpXYQMA3sH
spZj2spB8BDqos30NmBEOqRdP+v72afhX1+IPP1tDs/NCmmBJkXBPlXBMU3B
GR2RJUNxqrHEtoXUPkL2EHOHjleBCD9Z5wlbhwIRBCjekYXVQ3eQHVArf+kV
5186lTkH1PjGtUXnTSXJaBkKWnIdLbODUdjDyh/ilBkEdaa9NnA3BgFIKMoa
JDgAuBOmukOP3FnWpbKtS4atc9501R3T5FhF39nAKuzglA5sVI/t1ehOGpCH
NuRrAAWZQGFmULQlPQHJyMKDQjtQbQsasKARAeCO14wEzfCnBWg2BS0moBke
cg2g13q7r2To1aqgUZvFXYcR+1iZJaMLSe9BnfShD+EM4OjDNhDpx6sDnFgX
Q03hmRMW0IQRNGHIeuqYaMx6WxlJn0nUZ32ZtNwfQ2+NEhgLQSeLEUdLsYdL
CUeLiXCOl+JPluL3FiM35gO3Zn12pz13JoM2ZtKGSaWv+rpzhmdyRhazRykv
iWsvxjbziOQ3m1vLezsTZMrgMmV4htqQmF9vG9Pq9uiVz7OcYlL06+XIenJ8
LSXuvXsTsfVrv5WYfxTG379j+/sTVUN5z+Gyf/qO7d9s0f7D1r3/Ddq/lb/l
7r/Yuoq10Kq1wApKeC3N/uWQWmixckiJhG/hV4ikT8wTPzGKV/RKsQjytHAz
M3cxNHHRN7LTNLBWNbJSNrNWRFjJoawk0HhBLJ4Hh+NBowSRCEE0ikdP9wsX
J+7EaJUwP/EwLylfGwE3DIcr5oo7+qK75dkIwrUMD86CAI7qiBtNCRy9D7nH
M3lns0WXX91//UjG3ux/OaK/c0BcR6l86qz3dQKOK1rrYoDUDw43z7hev+B9
63qSCH+eFFetPGfbXYE+NSGSpticriRZX2LDRGrHUvoELQdwspC1LLDRAA4G
wMMIRDg85vjO488fRX19Ker0mWzO6xUSfM3y/D3KPCP3ead1hReNxFeNJTbN
JfeQskcoeSZOhdXrbLSAk95PexPWINaRNYQ+9AKPfGslvy3m+rhdgaNfjZek
A/c6yRW0DBkjScXKbOOUdrHyB3jlIzuNExc9yM8ShONAjC1IdAEPPUCKB5QK
Q+fFykPWAAvPxStWyiP3b5IRMlSE1C5O6ZCgemKnznDUglwNgLcZCIT/7XgQ
awsl2NCTsIepyJMnGKjECjRYgUa2eI0W4LU5aDJhnWJr0oe5O65SOyiWB691
mA2aUIsB1GHC6LSAoWN0oZg9GEYPltmLo/fhTvqwJ/045ogd66VmU7ass7Qk
M/auhAHrk2TIJBqwY8gcM2KQzHdHEQcTTozFYPpS9NFy/NFy4uFS0uFS4tFS
wuFizN5i+MZ8wOasz96M996k3/pE1OJcQeOb2mc97c9Gpp+OrOaTaAXE9ULS
8szR8cLW5gRlrXtpdXBxbbJ3qtTvYZ17ar7ns6fFE3H1K1F1q7B1sTXU96j1
wboP1v1d1r3dfq1cC6qghVTRIupo6KweldBipeCyK1Y53yLSvsNk/lk/UdIp
FRMaaOmONHcxMXMzMrbXMLRRMibcQdnJYgiSGJwwDieIw/FhsfwYjDAaJYzB
8JmYnMNhLiVGqMQESAc5C/nZCXlZcXngb7ohL7ohzgfjrqe6cOf5cVeGcTbG
8ncnio6lic48Fp/LvfsmVz0Y85GtyecEw0sErUsualcClS473/jfnjdOe964
5n75qvsPV6K5uJ5I8lTL87YpC/apiRA1xWHrVvQl1o0kd8ylj5CyEO4OsJYH
eDVgpw25GYBwx3yxm14f/zn6myvhp759dPNiqQR3/R2ezru8w+rcs1qCZD3R
NdYMK3lgLsVA3AFoJYC9B6w0gaMui0p/BIiyAfFOrFL30BOketdInCrm+Uur
IkfPPd5RPdFpc8kFtMwSVpKCk9mxUj7EKpzgVRi29yEnXeBlDkJxINoRJMAT
qzd46A2lerOgS/GCJ2KQ4ATFOUwYCoxrc5MR0jSE9C5O+cha7cT2Ph3+L3cx
Aj6WIAgHQgkg2gHEO0JJDswUO3qq3fEjAv0FBlQSQA0O1FiCWhPQYAReG4BG
fTh7hTLHFUqgWR9q0AGtRlCHObMDwTqm0cU6mAb14EAvHuqzgvqsGb1WDFi/
fjQYxgIiBoyZApIBO4Zs9FiBSHBM6CQLuNcxlwKglQjGcszxcsLRUhKcg6XE
g8V42Lrd+dCNGf/NGe/dGc/9SZ9Noh9lKnl6pqCyv+zZ4HDuG0rh+EbB6ErV
9CqZwZjfWCdS17sptM456sg8taW8Odc5Kc/7RVb+WFITLbJ2NbGeFgMrUbf2
wboP1v3x1lXTIuth63pVQssE3Qq+QaSfxWR+g8741DCFDx+PiwjH+thYulia
uhmaON43tVc0c5DF2otjrYWxOAErrCAex4/FCmIxohi0EBbLh0RfszQ9HRl4
Jz5QLsiJP8CB38+G2wt/0xVxyRN1xR99Pdb2xhMvzuLAW3VRsHWyY6lSk5ni
08/kp/L10u2+c9f92sWA30aZw/LGl9Y//MXvxvdB16/5XubwOHfd88L18Fu3
M0U5y+S4mxR5uu8KDKsJT2uKL+lIrBlK75jJHCHkmDh5BkGBYa0GOWicuOuC
aPtqZRG418Wcvhp+6pvEK2eei90ol7vdeo+/X5N/SltkRV+cZii+bSa9j5A7
xioyrFUgWw3IQQd4GDD9zBhhGCjBHkp2hR55Quk+zFTPUrEvi4S+bFS61Xmf
b1hfdMpcch4DWye1hpU9xCozUQoMrDJkcx/Af4O7CQurKCeQAEPnB1J8oVRf
kOLD6odJbiDe+SgQOXTv8pyxMNlcagMpt4uFe50KbB3DXpvpagh8LUAwBoRb
s7dxnUCSM2s744En9NDt+KHNUSaW+coGlBNAhSWo1oVqNEGTAaNOY7dACtRr
gAZN0KjDuiC0wxLqxLFO4MKf3VasCwd6rECPNSvwL1mnMJDMbnNoyJJ1inYM
hk6fXe1+CjzPksyPxkzpM45gOQDA1q3EHq8kHC8nHi/D1iWwFu4WonfnQjZm
/DanvXamvPYnvHdJ7usTAbS5lO6xvBf9va9GaK9GqblDM320XfIJfW5jbZS6
3k5da1tee72w1EWcLIl49twtJytvFLYuomY1/vVaVO3qhxn2g3W/x7rfepTu
b60LraQFV9KCqsihtRRkZrdSSMVVwrNvEJmn0ZlfotJPmaZetwzBRcRY+Tig
PNCmLkaWTpp4FzUrJxkbO0EbgqCVlSAeK2iFF8HBBQ8rgsUIYTC8WAynueFZ
fxfhBD+5SFfhUEeeIBsuXzyHO+qaB/KqD+pqOO5SptutAr9b1WHcbYlCAw+E
JtNEZzMkybm61V7cvnIf2Qt9j7hywfybM3Znvwu5civ44s3AH277nLvpdeFm
4NWrDwRuFErzNMhydSjwDN4VmFQXXtJlWbdtKn1kKUvHyBxbyzEI9yAHzRN3
TXgC7dJV9PvzR/Hf3oj86mzihTMvhG9UyfO3qYv160hO6UkvGcmSjWU2zGS3
kQr7OJVjm/tMB23IWZ/pZcwINGNEoJhxBOYDe2aaE8jyOnnokc/7RZHI6ddK
PL3qguO6oivG0jRL6TX0nW2s4gHu7glemU5QYcDMehjQQ5GMODv20yYwcQHs
wOL5s7yCrUt03fEyeqN+ZcFMjIKU3cTI777dwL3HcNCE3HSBnykIQbC3ce1Y
RzaSXECyB0h0hwPFe9JjHY4T0SeZCFCAAqWGzDJtUK+7Uyq180oMNGiBeh2Y
Ptazdp0oqBM2jZ1uAjs2LOjgX3bi2YcvkFCHMbPLEAwagjFj1gMn4/rQuB4Y
1wUkPTBheTJmfkTCALjULQbC1kHkWMZK/Ak54WQFbnfxBwvRh/MR27Mhm9OB
m3C1m/TeGffYHXfdHHfbmgqancgs720qH91kbcISF+YOTpb39qc31kfXNrpp
tKYlSuXyUsPKUmNJa4ZT+uNXY4mN1Pia9fj69Sh4jIXh+o28x7r3/BScf3gj
4x+1jn21+8+pfh9971yQ8s+x7j30/X7rfn9+dUEKnP9i6ypooVW0gMqVoBqy
RUaPmHfhOVzOd9hsuNSdQqV/bZH6g4k3MjjMPsQd445CuhriXTTs3FTsHCXt
CQKONkLWcLXDC+Hw4licCA4rjMUIwtbhUDxo06sE84uRbuIxLkJRznwh9tyB
1txe2NvuyJuu5heDUD+kOd966c1TGnD7dcSNwQTRyUSplRSF1VTNFkcBt/P/
l9O5r+1/4MGevmH/zaWQH26HX+IIPs/h9/0tn/O3fC/8EMdxqUCCp+EOb4cC
76CKwMR94UUdMaq+2JaJ5KGlDB0lzUTJAKwGsNGAnNVBCJ5koRX80b8lfnsz
4uuzKee+LxLgqZeXaFKR7tKWfWMgP2YiP2Zxh4SWJ1krTjiqzLpqLHhoLXnr
LgUYLocZkWPMV5PRq49wy9nWtDyPuQynCJFPk+XOvbwvWKkr0mYsNmopNY2U
nccqkAkqNFvVbYd7R84adA/d40Dzk1grKNkJsB6iYxMHB/6SFsB60C7eGbZr
Ba84onaVbCm9jlbYwSrtoRWPCaps6zSAhy7wNwWhSBCNB/G2INkBJLO5S3AC
sS4g2hvEeEPRdsfRZofxeszHeqDIlFGhT3sicFKlAtXC7hmyNizaLFiadeFB
lzUrsHLdtqzA31nQ4VgPrnQg2C9zNIC69MCgMRhjrdpBE7rMcR24152QTA9G
LKEFT2g5DA4gRwFyDLQSw1yJZS7HMZZijucjD2ZDd2aDtqYDtqcDNse9N0le
rIvvJt23Jjyo04ntb2or3tCKiJu1s+SZvcPFvQPS5hZxa2tgjdXrypcXK9eW
2/vHH4e8fJQ/mtBISahZj6mhRTfQ4v4j0/6B/FdY94u817pfvdLif4R1v256
/02sC65dtUjv4rDPOYPK/A775GtM+peotK8ski8Yu+p6erhFeVt5muO9tO08
7jm4yDs6iDnZCjgQhGysBfF4YRxeDMteuMNi4WGWFw9XO8tbZhpfhDqKRjuL
RDjyhjnwBRF4vXHcHihOZ5MffCx+SLLlyHHnKvXjaQ3iHQqXWUzQmPKTHXOU
GnW4l3jjVMCF606nedFfXiJ8fjbw3M3wi7eCzt/0P8/hc+GW7/eXo6/efCnE
Wy/H267IO6gqMK4uPK8pTNYW3jAQ27eQYiKkAUIWoNWBrRbT9T6ItJ4kmLj9
278EfHPZ+8z3fue/ieO9lqko8kxb5qWp7Cu0fKG1YoG9Qq7n3Xw/1fLg+zUR
OnVR/z97dxkd15XmC//T+95119zunn476XQSs2SLmZnJYqbiKhUzl6rEzMxs
MbNKVUJbhsRxwCyZRCax7ZilOuc9R3bPJN2TTE9PunvujNd61llSrJL9Ieu3
/s/Zez87Yqooeq4S/UUj8atWync9rCv9nEvDzG8nxRMdTKzPbxjhJ5Ix1iUU
50aWcxffZUjsoZScnIv3/zox6Hpy0J2EgJXEkEdpiJ084vMS5pua2N36hL3a
BFVtAlCbBNanAZXS3SI+UCJYQJjdDjN6jHPainF7TvZ8QfZ6zYRznYofAkqj
wRQ8mE0G85lgMRcs4wNlfLCUD6+S5PPBPDGYLQJyuHs59N0cwtv8qNdloXut
iNftgcBIFCCPgF/incbB+1Ig0L6k7ue6n7AO8hDehxytuhC590W46lvEPndR
qoUI1S3U0++iXt1igA9TgAcZ4KMc8GEuVMCDHOB+DvAgd/d+ztuVrFeL6c/v
QdAl7d/FEwfXLdmTW3FPbske38367vaw/MrqwPzW9P31s8sPv3305Oazl5e3
tr/dWP/m0c7k6sPRxyvn7q42VY1Xdl0tm9koVG4WTkDWrf/i0H2w7oN1sHVj
DzMnN5AVF07QGo5QTh3at+53hKpPCGVHUUIvJk2cE8tNQnMSAoQJPmKJs5hn
LeZZCdg2bIYVk2FNY9hS6bZ0mhWNZkqlm9ApRiSMNtL/d2KCVkmcS77IIptv
ls42SaIayUiGEqy2DHm0gKxZLzAYkBqej7P4Rmr/BdnkK7T5LYrHfTF2wMMq
8bND4gMG9APalF/9If4Px3LV9dIOa0LWJR4xSDykk6dm2mJkonDQO+du/I2X
+bwfZJ3No1Cb7Si7FxjH3RgXAF6N9VPxQ1/EBz0tIF1NoeJ+/79xhw4hNQ8G
6f0e7arJi7RJILunsj2yxD65cb55qb55eUElhUFNxeGtlYiOalRXHaa3GTvS
QZ7opZ0eZJ0fYZ+X0y5NC4faqcH+v8FhDFlU50ShN/TZkqSTFRk+1TkBTYUh
nUXhA+VhyorIs5Wor6tj5hsZi82sB838tRbxkxbpi6a416cSdxtTd6vjgTLx
60za1WC9xSjzNazjNsH9GQHerPKW4aPiQHE0EpRiwFR4uwuYzwGLePBCRqkQ
fmVXzAPz2KpMmiqTDmQxgXQmmMYCMkgvUyI2Ez13a5FgLwZUYsEJHDhDAM+S
gfM04AJtf1zAH7n7kgVeYIDnafBBs3MkeG/eHBI8gwDORu+dC397IRy8igXn
0aoF5Kt5zLOreNX9BPBxFvgwG7buQSYIBbz72eD9DHA1Y281fW8l5fVi0vO7
Cc/uxD+9Hbu9INyeF8HR7lYixN3aHdnVO43jV+/Kl54rH6xPr2yMLzy68GDn
ys6Ty+trV+5vz608Grq/qFxabR74srLneuXURuHkVuHkZtHUB+s+WPcLW5cl
38iUr6fKH+XObkWVntWgNx1ndX5Oa/2YXPdJTNlRfJ4GmuNKxAiz+KJUrCQ5
QJrkFSuxlwisYOs41lymNZthTWda0+g2DLoljWpCoRmRCLq4aDVCxGFC4G8L
Yp0KJLa5AvN0jnEiw0BGMZAR9KUItUyUWj3LrJdrLo/RlYdrnQ41vor1vk3y
uUv1/QLrH/f577hHtFgHdai//oP4o4NZ6nqpR/atO6yfcFAn87BpjZbeoMWJ
WReji+6m17wt7wVZPwiz3Yx2+B7t8orkvs302BT4P5QF3s0IulaCOVvFCzL8
2EX3oL3lEUvbQ17+BlisA5vhIeF5J0v9M+ID8tICi7JDSwrCq8qiamuQDQ3o
5lOYjlb8YCdZ0UM9PcC8MMy6OEr9bkY41EoO8f4oBm/FZrjHiQOzEgML0vxK
sv0r80LqS6KaKqNb6xCdzaj+Ntx4N3VugPXVEOdGH/dOr3C5R/ioU7zeLt05
FfukWvSmRrKeiP7K5/hilOUaznWH4Pk92fs13XeX6Q9wQ0ExAkwggOlU+CBt
AR9ehC0V7JXtL0+UQNYxVTlEIJsAv81LJoLxVDCJ/ioWscZ2f5kR8boyYrcH
ASpI4DQVPE1VnaMDXzD3e1jq/jxkJgh9e54OnqOB58jg2RjgDBber3ImGoSn
iUbvno9SfY0Er2OBBfzza7g3t3ngo3TgYTbwKBvm7n4mXKsZ4EoKVMByErCc
sLsc9+Ku5Pvb4me3RdsL/O0F8c58/M5C0g7cwwpv3C6euDY/uvRs/PGaYmVn
8ObWwPXlcw8eX9/ZuXx/6/zKo5H7i+MPHrbNXS/pu145uV4w8c6ln1uA+GDd
/63W/fCkw89eG/EXjaH7mQj3Z5UxBt8dljm+njr2OHdqM7LsnDqj5RC7+xNa
6+fkGi18lgWSZ4uMcUIGsxNpCRmk+LTQuCQPqdQmVmAVy7MSca14bCs2y5LF
tmaybRgMSyrZkEzQiUGfiEEepyLVcf6/TmGYFEvs83imGWyDBKa2lKYdi9eL
j9LNDjco9DeodNfp8jQbDXA4G+bxNcp3AeOyjLdbpPkVaX3GOKDJP2TE/O0B
2v/5bfzBEylq2ukHtVMP6iYe0Ek4rFekqdVtqa10Nr7gaXnZx+ZmoM3tKNu7
aKcloscdtt+FhMDTWUFThYHKimh5A36in+fn/pmR0adWLibGDtru/iZorBOL
7iXieydI/dMSg3PSw4pyo0oKo6vKEfU1yOYGTFsTtqsVP9RNUfTRZ4aYZ0dY
54fpl8+IOuqxIf5H8HhbJtMlXhqSlhSSkx5YnBNcXhBeW4porEK01KPam5A9
HdjRPsrkCPPMOOuSnPvdGOfyKPfyCPfqEPPuMOdmG3WpU3ImOXA4RP063nGJ
6L5B8n5G8X1JD3rDCgYEUaAMB6ZSwCwmmMsGCwRgsQgoF++Wi1RlAqCAA+bR
wVwKmEkAklFgIhJMRINx6Ke0k6/FYUAqbi8L97YACw+P6qODEzzVWSFwng+e
Z70f/A6luwts8Bwdhg4eGoADzqDBM/D2POAMcu80AjiPen02RPUtEriOf3WN
rLqfAj7IBqC+FbIOfmWXqbqfDqymAaspwEoSsCTdH/IpeLvIfXmb9+SWEL53
7JYMqq0F8eYCf+MW/958yfSNy/L7W+MP1oZuPx2Yf9t/Y7Pv6sLZtccXt57M
PVpTPFgdu/+w9dJi4chCGXxiYqt4auPvk+v+cvf+Fqu0Pz6d8adX0P4drPvF
l2j/rFZ/WFnDK/9Y6+AaX08ZewRZF1X2hRqz/TCn61N6oxq5xBgr9cQzvQkE
p0hvHA+Rls9MSIuArIuX2cuE1rFcKwnXBo52bGsO25LJMKORDEhYbQpOh04w
IEQdpaOP4wJ/y0YdKItzLOAZZ3OMkum6iRTdZIJFUpip1P5YrOGnRRY67c7W
Iz5O0/4uX0Z43UQ6L2PtHrICuh2N+Qc0uMdMaB+pUX/1ccKhE5nHtLM/1cj+
TCflM63Eg9rFmnpd1sYKN5vzng5fezt+GWp7BmenZLj1S7y7UwN7c4L7ioK7
q4J6GlG9zbiJUV5IkIa61m+t3c2N7PU8/C3QWGfYOh5sXUpSSHZ6ZGFedGkh
oqoc2VCNaqnHtDdiulvwQ12U8T7G9BBrbpT95Tj/u9PipvLIQB+1mBgHJtsx
XhaWnhyWmxFSnBNeXhhZW4Fsqka31mM7TqH7OvDyftrMCHtunHNBwfpinPnl
OOvLceZX4/RvFIwvBmiX+gT1sbYVdONesdsM3+smx3+NHfiUFfKCE7YrQcFp
LYuxV8BRFXLBQijLScBiCVgkAvK5YA4DHh+aQQJTCEACCpBFgvGIXWHoU4qH
ShoNJuHALApQyFCV01/WkF53MVVKMTgrBU/z4ZHIUOt6gQm7d5YKzkHQwYfL
VBB08FZklGoWAczBU6HezIXtfhm++y1adZu/37TmAQ/zgUe5/2Ld3mqqajUR
WJaBi0LwHld1l6ZaYr25x386z3t6K3ZnIXb7tmTrlmhjnrd9J+729brpGzcn
1p4Or6z2L2z133w9OL/Tc/3e8K2lc1tPTj9en7j/cHx5vfXb1SLlYsX0dsnk
dsnEZvHPbiz5YN0H6/5660Yf5U5uoiq+PMFpO8JrO0ir1Cdn2BN4/jGUABLG
BeXjhfdKLWCnZ6CSkk8mxjnGSWykfFsJ11bIteGxrLksCzpJn0bQo2I1aQRt
JkGfhFAjI47RkSfQ/r/KExiXiIzz2AZZNKMsknlmtJ3Q7jhd/SOZoXaeuXGL
vemAp920v/P5ULdr0a7LaKctXsRMoKvk08M8DVPyx2rM33wa98nR9M80sg7o
Zh3QTz2gl3BAJ1tNq8HcuNXFpt3DujvQvploX8N1LpedzMsIKCgIbiwMaikL
bKkJ6mhCdTRiZuQCEt5M/fiv7dwsjO313HzMo6IdqGQ3IfckZF0ynOsg697l
up+wboR1dph7eU5aXRDk434Ai7WhsxxkscGpiSHZaYGFWcElBWHVZdGNkHV1
mI4mTH8ncXyANjvKPjPOPatknVMyzyuZFxTML5TMswrK3BhzrJOazNFLl9qW
pJxsSvYbTA2ZTYu8lhx+LyHscWL0q7QYMJcJQQcU88ASMXxkA+IuTwBmscB0
sioFD6QQwCQ8KEODkghQGvGS5v2K5Q/EIYFEDJhJA4s4YLUQqBO8rme/amK9
7RGACik4KwHP8MA5NnieCZ6hgKcJwGkMMItUzSKhJ8QdMIOAxAPORKvORrw4
7f/6IgpcioPb1R9Zl6G6n7a3mqxajgeWRfv30jL27pJV96hv78LR7vmCcPuW
YOuWcHNBtDkv2riVfO1K2+mbD8YffN+9fL/n9lrfwtN98R4N3HgwfX/7zNr2
5P11+b2N1m8elkwsl89sQtaVTm59sO6Ddb+0desZ8v0eFrJuaofccFmT33aU
23ycUWJJjvclMwJxiABCuFdMkBXCgZuMz80lpKYHJic4J8kcEoT2UK6L5dkI
2OZMij6DoAcRx8Tr0PHadJwmDX2cFH2EjtHGBP5OQvi4PNagkKVfSLXIQ1lI
HXRpGgclurr8IzpZhiZN1gY9LlaTvo5ng5yvRnjci3Z+TPP/FhWQcuBgrJoJ
7zMt2q9/z/71RwmfayQf1k86aphwzEh2WId3TJ1vphl70kQWaRtPcUkQuSTH
u6en+mZnhxTkh1YW+teV+zVV+bfVR7fWRU+NCcQ8F7Xj/2TpaGRop2vvZRwY
ak3AO3LYnlKRf0Kcf0ZKSF5WeEFueHkJFM8QTbXI1gZE1ynMYAdprIc6MUCf
HWHODbEun5MVZXl6OH+CwlrRWDYScUBSQnBmakB+ZmBJXmhVSXRDJbK5FgU5
2Q99cJA5PcY5reCcUTLPKBlzE0xYvAnm3Dh1dpx1qiGaw9WKT3DISPMuzAmq
LIxqKkUOlSNmS6MvF6GX83E7+dS9AjZYIgTKJarKWLBcDAe8HCaYFgMkYoFE
PJiAA6VoMDZKxQt4QXJViSNBCLpUEvyKr0gI71WulIG18UB93Osa7qsm9t6I
BJyJBec44BwdPE1SzeL2phF7M5HAbBQwA1U0OIuACpiJ3J0Jfjnru3sJBywI
weVU8AHUwObtv6/LUD1I3VtN2ltNUK3EwlPc79LBuxTwDlF1m7R7h/EWto6/
tcCFulfIuu1bsfdvJH13re3Cve2hxdct93ba76733VofWNgcnIe424C4m330
dPL+1vDdjfbLG6XTKyVQ9zq5UzK9VfR3eV/3wbr/OdZlQtDJ//i+bnqH03ZL
W9Cuyas1YGY40dlBFExYTIg/3s+b7GeLccbygouKaJmZYSnJ7okyh0SxnUxg
I+Fac+mGjBhNBl6HTdBl4XWY+0VDa1CQ6mTEcWLEYXro/yrl6ZYxzKrJzilu
WiL9E1JdQ5GanuSoRYqmWYWJYZeDpdLLdtbf4VKY60K00wreY5GGLDpyRPa5
puywIfe3B2n/9M8Jh7SSDuuKj+kztY3wujrBJlpBXsaoSNsYghuNfVIoORkf
75OSGpSVBVkXWVIYXl0WUF8V2FKLaK2LVAwxU5KCDqv9HwNLDR0rDQtXfZ9g
cxTOnsFwixX6JMb5pycH5maGQtaVFkfUlEc1VkWdqovuaEL3txOHuymKftr0
MGNuhPvN2di0JDsHp9+hCLZkhq1I6JcUF5ie7J+bGVCcE1xRHAlbV4faz3Xk
sQH65BhrVsE6O848r2BcgHKdkvmFgnlBzpiVcyuKAxhcfVmCa0aab0FOUHVh
ZFNpdFctcqQBc7addrGTfqWF/qCBswNlsxoRUCECy4WqYp4qj6lKjwGgRlWG
gaETR4OSqFdUz9dUL1CGhK1Lp+yv20LWxYMVyWBFGliRClYn79ZI3jSw9no5
4AQPnGYDkyRgmrA3Hb07Ha6aCQdmQsGZMPiU2XQUMBXxQu77Zi4SvMravcbZ
ux2nWsqAF14fZIFwqEuGoNtbkaqWBcASE7xHge+wuI2HSnWHvHuL+nKB9mSe
tQ2LB4U6ydKN+Jt3Or6482D01vPOOy/bbz/pvb3Wv7AOWTewsNV+ZWlscW1i
dXv43lbr5fWSqftFk5uQdcUfrPvvad3qX37U6y/H7d+zbv2PQ07WM6EeVr6e
odzImtiS9i8ZiTpMeGWO3DgfLj6EERRJCgiK8fMn+XgQ3MIIrvn59KzMyNRU
LyjaJcfayfhWAoYJh6LNJmmxCdqQdWy8Hhuvz8Tp0TFaNLQWOVqdFKlO9v1V
Fk6jhu6eF2Aab6yWbmyZrG0Rp2YuO2onO2KZq2vaZmcx5mIx5W17Psz1KsJp
CetynxHdqqsT97Fa3CFD6ee6pH/6SPS5hvSYPu2EToSJnqutnoWjjr2nUWCY
Iw7vxaD6i7kBslj/hKSAlPSQ7Lyo/AJUaVlAVVVobS3qVEPkaB+5JB91TP1X
OpZqmpYaRg46XkHmSKw9ne4qFvlADGanheRmhRbmhpcVQ7kuuqka0VKP6GjG
DnSSR/toyiHG7ChzdoTz9XlprMTYwfmjKIINgWHLE3rFyfxTkvxy0v0Ls4PK
iiLqK1AttZjOU/jBbqpikDE9Bq9NfCFnXRxjfTXGvjTOvjjGPDfImOrnZqa4
cHmWyVLPwiS/isyguoLw5tKojjpUXwtutJsyPkidGmWeGeF+18dbbeW/qOar
yrhAIQvIpO2lknYTsapYBChBgKJIFSf4e7yjiu0Pvn9ZR4U3qJSJwFIZWJ4E
lqeBZZlgOcRdAlgneltNfXuKCgzzATkdnCDtKVG7ynDVZBh8B+50APycDN8b
D341EQFcZILXhHvXBW9uxL5dSAAW08DldHA1HYQXXuP2L9Hmgkt08B4ZvEsA
b2PBWxjgNmbvNmb3DuH5PPvJgnDrluTRvPjxveTHjzqu3/tu5sbDsfmXPQuv
e25t9y88Gpxf77+13nljtWd+Wb68OXx3q+YCBB1UW8VTT4qnN4vg2vqp+kXc
+/NjFH/dEu1freLPTJH6mRXbv/402X/iZoqfq7/YOui//AOtyx6Hch38yi5L
uZE9sZkqf2Qj7TTnFPpLksKEMWGMwAhKYAjJP4jkGxTjGYC0EcnCysspaakn
U5Oc0xMcpRxzDlWPS9bikLQ5RF12jN6/WMfA6jCw2lSUJgWhSfT+TWzgoWqy
b6KVRrqFcZqhTbKmdbyaVdxRy9hDxukn9E5ZGg05Gik8LM8EuVyOcIavvInx
nfB0if/9MfFhPeZRrejPjoQdPoYwNAgxNfC0MrCxNzB20TVw03MKsArHuOEo
J+lcX4HEVxbvn5oUmJMRXpATXVTsX14eVFUVfao+cqAD31RD09D8rY65mqa1
pp6TtlugaRTGjkJ3FYl8kxODstJD8rPDivIjK0qj6yoRjdXRcA/bgoPIGhtg
KEdYs3L26XHupS9kfIG+vcdnkTG2kHUc4cnYuICkZL+szH3rCiPrK9Atddiu
lpjhXkhI5gzU+cpZ5xSs83JYvC8V7PMjjOle2kgHTcY3kwrtU6Seecn+ZVkh
NYURjZXRDadQ7Z344R7yRD91eoQxruQoFbzzQ7yFdu5GLftVIU2VFgMmxewl
4VSxSFAUDcYinpPcX0GhThIBJmDgBYsC1v5RMglYLtufNpAE57qKFPgQbm0s
UMV7UYp/UYUFumngKIQeBpAjQGU4qAwBJwNBpT8wFfpy1F91gQxeFoBXBapr
4r1rsbvXJHs344DbieBSEriUAM9vX4JDHbBIBe/GgHcg6NDvrANg6/DPFxg7
C8L1eeHDecmL9YIX200PVk9fvPGd4ur9/tuvum49GVhYG5xf67t9v/fWw45r
i4P3Hg/c3iqfWy6cfAgRVzy188G6D9b9ctatZY2tvc91cnhtIku5njWxmTmx
7pXcY8XM9uNLorjoCKZ/MCMwiOwXTPILJ/oERloSSA5lpZTczOD0JNc0mZOU
bcYl6wjIujyyzh+t02ftQ0fDaNMwWlSkNinqBDnwCNPrWKqfdaqlaY65Y4a+
S4qWQ4K6RdxRY/EB3ZSjmtX62oN2BuOu5rO+Tt+Gud4IMb+Dcf8KHRqnrkM5
rhutoemrpWmrcczeysDB2dzSwdjA0UjXxUDbRdvGxzQA5RxN8iCyvdhib7HU
NynBLwMKadmRhUUBJWWBlZVRp+oRva3Y3g6Bnt5HmiaHde10dR11HP3MwlB2
MRRXgdA3GV6HDYOsK963rqYS0VCDbG1Cd7XA8Wz0j9bNjLEunhMz2CccvQ5E
kRzwDDs2bF1QUnJAdmZAYU5wWVFUXQW6uQ7b3Uoc7qNDn4Jy3elx1pyCfVbB
PqfgnJWzpwcp8h5qU3mkkGmQLHVPT/DJTvUvzA2pKIpoqEJ01aOHWmIU3ZTp
PtrsIHNmjKNQ8uQK3swo92I3a6GWspaDe5WC203Cg1IsKEQBvPAdjOMrug8Y
h4TnJ2fR4Jmi76GLhQfuVUn250fFg1Wy/ckq3L1Cxtsi8ttyHNBGBfvJ4HA0
KI8EFeGgPAhUBu8pg15NhADfcMErIvCaWHVdoromAS5LVFcke9dEqpsi8K4U
vCdR3WXv3qPs3sUDd9DgbSR8F888SnULDdXuHdzzBcrWDcYGFO0W015vlrx+
XPriYc/q8sTZ+Ut9tx723N0ZvLU9dGu79/aj7oW1tqvLfQsPu25sFM0sFU49
hhwrmdqBoCv8YN0H634h695dMAFbN76WOQ43sGnyNYg7ZLHSiZ0VLhKh+Mho
TmAwMzSYGhhO9I3EeyGwDpFRBunpkeVF6OyUk2lSh1i2CaSckKIHcccn6vNj
DDgEXQZeh449QYMKamMRWjERGvRwA5KjOlHjYJq5Xa6Bc56BV6qeS6KmteyY
YexBzcRDx0vUjvSYa485m015On0V4DQfbncX53GFgRSbGIeoHws20nHW1zTU
PmpopmVsb6jvbKjpApeOs66Nl1EQwhUR40lmnmQLfARSP2lSQHJGSHZOZEFR
YMn7XIfsacEM90nt7Y8f0flE30FXx0Hb3tc4BGlLILvyRX5JSaHZaWEFOeEl
BfA6bG01qrEW3d6M62mPGeqhjQ4yJ0ZZM+Nwrrt4PpZIOeLiezSa7IBn2bOE
3pB1iSmBkHVFuaFlJdH1VZiWelxvO3l0gDUxypmWs04r2XNKzpySCxXknnKQ
ohzmlOR4i1imSTLPzGT/vMzg4sLwypKIxhpkXyN2pJU01kVRDFCnBxhzg+w5
6JeMcSfGuOPDrMku6sVa/K1C7Goq8iUU6riRL0g+z/BugCgKgKxLI4A5dHhE
QHksWCGDJ6JUicAaEVArAWtk8Li8Ij6Qw1Jl0sFcxm429k0+EmgmgQNIcBAB
jkaAIwGAPPC1PEB1kQRBB1wRQsqprsYCVyTgt2LgO0g8wd53XNVVDjDPVd1h
7N6J2b2LVd1BgLciwJsI8CZGtYDcv44H/fwWdWuetXlb9naz4s1a+d6DYtWD
qp0HTddWxofvXum993Dg1k7/wvO+21s985stV+53XX/QfuVxycxKycwGpFzp
5HbxB+v+21r38If1d7NuP9StZ43DaxNZyk0IvbzpTUrN3ElhDlIiiBGjkZyQ
YGZkKC0YQTqJxrniCU5otKlA4FpVjs9L90uVOsrYZmK6oYRmJCIbiIlGohhD
Ll6bEaNOxR+l49RYaG1OlD43zJjsahytrR71yR/idKwKDNyK9DzT9Rzjta3i
1AykBzVkB49lHj1cb6zX62wz4eb4pY/TNxFOF0keM+IItr+5g8lBZxs9SysD
HcMTmsZqxg6GBi5Gmi5GWs5G+o465u6GvmEO0Tj3GJoXW+AtkPnFJgckZYRl
5b6zLviddV3N2LFBkW+gzmeavzZw0dNz0rH3NghB2hFpHgJxQGJKeFZGJGRd
aUF0ZTmq7r11hJ4O0mAPTT7Imh7nnZ7gzk0ILp3PwuI1Xf2PRVPt8GwHptBb
EheUkByYmRVYkBdWUYxoqMa0NRL6OyjjA+ypMe7MOGd2gnNayT2j5M1N8GeV
bMUQbaSfkRRnKeSbJyd6ZkMfzIU+GFVbHt1ci+hrwg23k0d6KGMD1IlhxhTU
BQ9zpoe4k0OcsX7GcBdZ3oyfrMfOlEZdSw9fE4etEdxe0gIAGXo3Ef0mi/iq
kKEq27euXArnuioJUCsGavYnIZeJgXwWkEODz2IkxYDJOFUq+nVO9F4bERyh
gINR4FDgqwGv1zMI8LIQvCIEroqgBhayDrwMWwd+JwAv84FvOG/OE/a+pYB3
OKq75L27OBUc6qLBm2ioVPAR2si9BfSLBer6de6z1SzgSdObR8Wqh7lv7pc/
Wy3fXG2+dntieuHK8L213jvPe289672503z1YfONB1Vf3iuZXCmZ3YCUK536
963Lh5j6ifpvZN0P609PVfxL/Ye4y5E//Nf6hazLGflR/ax19/8WuP28de+2
1b1fhN3nDqps5UbBzI6w7UqwrAgn5eMECCQnIoQVHUELwZG8yCRXMtEJgzYl
4o3KClGFWSFpMsdkoW0Cx1LGMJGQDCQkQxHRgEfQ5MSos2PU6YhjfIRhbIQl
01kHrXkccVQT87m64JBBkZ5zqZ5Lhq5dvLZ5/DHDuAPakoMnkg4dK9bRa7Ox
HXV3nPR3kiNduhnubcmh8cJAa/uD5nbapg6mx000j+oe0rfTM4BDnfG+dfrG
TrrOfpahWHcc3ZMh8OVL/WVJgUmZEVm5UQVFwaUVIbVVUS316M4mrGJUjCSY
HND63/rO+tr2Jyzcdf0jrfFUd64oICEhJDM9vCAvuqQourISU1+NbapFdzTH
9HSSYeuGmFNy3qySe3ZKeGG2IBKh4xagFk2zI3Ac6cKTIllQfEpgek5Qbn54
eQnU/OLbm4iD7TTFAHd6jD+j4J6Z4M1NQiWAakbBmRhh9LQRhDwDocg6KdUn
PTOgID+iEgqEFcj2OlR/M364c9+6QZpimKkYgYozPsiU99FHoX9MC37gFG7g
FKa3HjlehTiXGniNf/JJbPSuDLWXEvM6j/aqnP2mSqiClINCXbns3SRkuHvd
D3VgLh2+0SyVACbiwXgsmIx/m4Z6nh+lgrgbIu52BrwaDISXJC4JwO/EwFUx
FO0AqJOFoPtWBH7HA79lg19SgXO4N+cxe5eJ4G3a3h08cAuyDgXPCphHAwsR
qoWIvQXs9zfpWwuyva3q3Y36t48KXz9Mf7Za/HS55MW90o3bXd/Mn1UsrfQt
Pu27DVn3tOnKo7Zrq/kjX5Uql0tObxbPbJZN75TObBfO/CR0UOVNbfxU/bsT
n/5C634pBv9K6/6Uvr/B4Lu/eIn2ZyTMGX2Q+4PK+dOY9yfWrf4XsS5LsZ43
tZ0yvBidUkmI5+P4SIwAGcqKjKT5kxgnGTRnMtEmhmCBRWknSN3LC6LTZS6Z
Uudknk0cZB3VQEzSExF1BQQNPk6DgzouQOqLw82IFocx6p+TjmkSj+gSP9Vi
/k49V8umzMA1W88uScciXt1Yesgw9rBe3GGtrBN6tebWpzwdG8Idq4nuBQKP
oozQglyKs8txY0s1M0fz48aaB7U+07TU0ncy2rfOWM9RX99Bx+6kaSDKBUP3
ovN9ebB1ISkZERk5kXlFwSUVITXVyJYGfGsDamI8jsmz/1Tz/9G211azPmLq
csInxBxNdGbyfKQJwRkZEUV5iNIiRHUltqEWf6oe19lK6u2iDfbQxwaZkyPs
aTl7blp8ZjonOEzdNUgjgmqP5zoxIOvigiHr0nKC8gojysuQTbX4jlPEwU66
chgKdYJZJRQI90vJh2pKzp4YYzc3RLGY2pJYx5R0//TsoIKCiMoyREMVsqsR
N9RKHOmkjPVQxgfp47B1LMUwa6SPPtRN628n9DSju0+hepow3Q3IvnpEW46P
Mi/0Zj5mIxP/NpOiKmSrKgS71RJV1b51lbI/VhxYIgZymPDKBdTnJmHh5drE
/UrGvkwIfpkbrGrBvm2P3pukgJeE4Fd88DsJ1MaqLgv3vhMC3wiBr4XgNxx4
yOdcDHgGtzuLfDEXsfsdFrwVAyxAie6ddUhgIRxYiNy9iX9yg/7qYe7eTsPr
9bo390terGTsLKZv38t+drdgc7Hh5r2J2Xs3Rxc3h+487Zl/1nJ1vXPmekGV
omH6UcksZN16xdQH6z5Y9zfPdVDlTDwgFbVg4nkUWQxOjArjRCCY/hSWB51m
T4JnDlsTsfoUgk5JblROkm+W1DVd6JDAtpDSDcQUbRFZSxSjLUTriaKNBIGG
FGt1vPohylFN+iFdyud65E80aL85knLUpNjAJd/AKU3XLuGEhfSYWewxM9Ex
I6GmQYKVRaKfXTzWKZ7vLZOdTE0NKipghEfYGlmpmzmY6ZgZHNU/pm58XNfB
SMPZSNMJynWGkHVWHsY+US5IiieJ480W+YriAhJSQzKyw3MLg4vKgisrUZA/
TXWI0WFRamYgZJ2m7Ql12+MmblonQy2RRFemwF+aEJ6REQlZV1aMrK7E19XE
NDUQ21spvV30wR7G2CBrcpQ7Pc45PS2ensz0CzzqEaIVQbXDcV1oQh9hXEh8
SlBadlBuUURZGbKxFt9+ijT03jrhjEIwo+TNKKASzCr4EHSKMW5ejiuLqSuL
c0vJ8MuArCuMhBrnxmpMTwtxtJMq76GN9zMg4sZHOYpRtnyAMdxDG+ymdjZj
2xuRbQ3wedvmmugmKLKW+HU1oJVNMV/Xk1eqmU9reLtVIngxAspylX+0Dp7t
KYOnB2QywBQCfNdtEh5KdDB0CVioAFnE6/iAZzlBqn42OCcBL/LAbwRQllN9
J9z9VgAVZJ3qawHwNQf8ggLfTjuDBWcxb2YiXp8NB65ggHkscB0Bv6+bfzfb
E7U7T3x1RwBul+1u1b16XPPqfvkL+H6xhJ17qc/uZW0vFt1b7vny3tfKOw9H
bu10Ljxtu7LW2Xq6Lqv/1OSjspnNkpn1yg/WfbDub29d5vhayZkNceMwKk5I
lMYQxEisKJzA86NxXBkMWwrVkkAwopBN0FHHkmLdyrIjsmJdc8QuqTxrGVNX
RFMXUtTFOF0pylQabkGxPIo+8in9mC7viAnzU33aAQPqZ7q0j9X5v1PL07Ev
MXTN0bVP07RJULeIVbNknDBD6OqHWRkhA62IZMgfX4k0IEXqX5hDZnNDjK2O
mDqY6FqZnDDVOKh7SNveQMvFBMp1uk5GuvZ6xi6GHhFOESRPLBOKdid5Ur/Y
5MDUrLDsgpCC0pDSClRNFa6xNrq/j1FZR/lM7/+o2R477qBh6KLtEWoRRXSj
8fxjE8LSMyIK8qNLS6AfjqmvI51qJHe20fq6960bYE+NcKflnHOzkvHRJA/v
z73C9MOothiuM03kK4wLjksJTs0JyimMKC1HNtTh25tJQ90M5RDEo2hGAbex
s++4U/KhhnR0hCcWG3G45nHxnilZgVm5oUXFUdUVmFO1uN5W8ngPQ9nPVA7B
yinkPPkoe6ifCvXRfZ2k9iZUc0N0Q21UfU1UbWVYfq57bU1oZ0dMfwdJ0cc4
PcS/0it41Cx8WSfarZGo3t3gUyGDhxgXicFMDphKhS/OSMaCiXCuU0HpDmpj
JWioXnP8tqR+e11C4Ewc+JUY/EoAXBLsfs3b/Zq79w66S3zwEhu8QAFP71s3
g1FNRb6ZDtn7Mgq8jt0fZRwOLoRAoU51E7d7kwE8St1bL3i9Xvn8QcXz1bLv
V3OeLEt3FpOfLGXsLGU8XK69fG/u9K3l0fnNU9fXm75a6ioe6k7ta514CFlX
PLMGWVf2wbr/edb9Urj9jHVZ+7vsoMpRbGSPQ/+3PE7v/xKflBojo5JFUSwh
FJacOAJ7JsuGTrWi0iyoJGM8WouC14F6zPx431yJS5bANo6pE0s9KiGpx+OM
4yOtWFbaNHU1troO/7CJ4KAl54AF/aAZ5YAB8Q8apI+PpqqZlWg7FWs75Wk7
Jqpbso6bR+mbOZkZWDtZeoa4RhG8qSx/qSgwReyfmRaZkoG1cVY3sNEzsDfT
tdb/XPeQnqORrquZtouJjpOxnoOhgaO+S7BDRIwvhulLE/jyZf6xSQHJsHVh
+aURpRXY2hpiSwN2oJfe2i08bPq7A9aH1Zy09F00nQNNw3AuMWxfUXxoSnpY
Xm5UWem+dfXkU02wdVAPO9BDH+1nTgyxp0ZZ507HDvaJHFx/5xVhGkKxRrLs
KQKI1kBJckBSVmBOUURJGaK2BtfeTB7qYSqGedNyAWzdOAdKdNMK7syEUD7G
b2sncwWmXIFDfHJAalZoVm54UVFUdSWmtY7Q30Yd72UqB1gTI1zlKE8xyhsd
Yg720QZ6ad3tMS2N6OYGKDdG11REVJQG5+d4nmpA93SQRntoE8NspYI3rRB+
PShcbRO+aJC8rZfu1stU1bK9Cgl8V0UqDUwigokE+FhZPBpMQAOJaECGBkUo
gId4yQh+lYZ52ch51S8CzySDFxKBL4R7F7nAJQ7wDrovufAYqLMk+M6yaQxU
wGS0ShmqmgwCL6HAa2jwRhg4H7q3gH55k7S3GgduZO+t5b1eK3n+sOTJauHT
laynK7InS4nbi6lPlmTbS9lLdwcvzl8bvfbg1PXHNWfnG1Jb+lN6u/etK5p+
/FdY90OI/g7W/VISFvy4fpa7tR/Pcv8lrNtfmf2p+ssZzP0z7v6l/kNrE38H
67Ll6znjcOUqNuCncr1Afj0mLTdGyqYKERy+h0DsIBDacTiODLodHZ5QZ0Yn
m+KQ6glCp4qMsByxa47IPompF0/RSIjRj4s0YdueoJw4xlHX5x0zFBwy4x2w
4hyyYh6yoB4yJH6qRfjomPB3asVaDsX6rhn6jlxDm1ATCycrY2MbY1NnKzcv
u+hQFwbZX8zxSxT7J8YH5uSTAqNsdC21TBwt9ewMDhkeVbfUMvawhNpYHfiV
HcydpbdlINYbRfMlcr1ZEh9Rgm9iZkhmfnheaVRJJbaulnSqCdPREdPdH6vn
9PGn5p+qO+voOJ2ArAvBueBZJ4XxIUnpobm5kSVl6OoqQkMdubmJ1NFG7emi
DvQwIOuUw+zJEcbctLink2Pn8ruTUebBZMsIujWe68YU+wgT/eLT/TLygwtK
I6uqse2t5OFelmKIPzXKf5/rFIIpBU8p58rl4rKKyBiqDl/iHge/5QvPzoOs
i66uwLY1EAc6aPI+pmKApRjhjo/y5CPcoUFGfy+1p5Pc0Yo/VY9qrEU0VCNq
KyKLsr2qioL7WkijbZSZPtbZIc7pMe6UEm6TLw2J7nWLN1slT09JXtdJ9sqF
YD4bTKPA0/DisGAcBr7dGyoo1EkxkHWv6MG7MixQyn/dIHjRzHvbLQTPZoDn
4lUX+MBFHvAFFzzPAc8ywDkqAN/PiIWtm8KASgR8m48iSHUmDLyCAq7Dd8i+
uo59uywBN/PAx9mqRzmvH2S/WM3dXsl6spL+bAUKdcnbi2k7S3FPltIf3W3/
+uZXozdWqi/d7b56f6BxoiWpo1vxoHR6o3Dm8V/xvu5/gHU/fZrs73Ipz19u
3Q/rz/ec/JeyLm9iq0hxi5xdQooTUoUogdRfKHIUCRy4HAcm0x62jmbKoJgQ
MRo0jGZVdmRxvE+uwC6TZZKC18/E28Z6GlJPHOWq6fOOGAkOm/APG3MPm7IO
mzMPmTIPGVE/1SZ/pMb81cGMY5ZZRm4iU6coW1tbRwtdZ2NNRxN9RzMHB+NQ
X2tqjDeHdVIi8hGLvTKyCVROmJ6llqGdqZGzmbq59ueGx/ScTbRdjHWgaAeJ
52Bk4mHhEekWQTqJY3owhN7CeN/EjJCM/MjcUkRxJa62gdzQiG5qRAwOJ9j5
HP1n3f/vuLPuCYfjtr4mAWh7LMODJ4Vf8WXnhJeUICsr8LXVxIY6QlszuaeD
PtDNGtm3TjnCPDMtbm6kWdv/88kIM/8Yi3C6NZbtSoOiXZx3XLp3Wl5Qbkl4
VQ22tZU80MscH+JOjPKnxnlT41C0400reWOj3LHx2NRsbxxVV5TgI00NSM0L
y8wPLSlF1FVh2xqJgx200R66vJ85PsKVj/FGR7mD/cyebnJHG7GlCddQi6yr
RtRVImrKovLS3OuKQgabiOPtlLk+zrlBDvRXTE3yZ5SCs+PCr0dFNwaFS53C
zUbBiwrO23wGkE6BQx2EG5TlpFDfun/mQhT1ihP8XBAGX19bJdmDOt/G2DeN
/FftXHAqCTyfAJ5lg+dY4Bk6OEMBZ4ngLAGYwcHQTWLACSSoiAQUoXszweBl
NDiPe3sD/2qBCazngWuFwIMc1YPMt6tpz1eSt5cTdlZSny1nPFlK3VpM216C
ol3G43t138yfHry6WH7+xti9zZkz16tyutpHl8umNyHryqe2oVxXNPNze04+
WPd/hXU5I6s/rv9a1hVMbueP36LmVDJSErgJlNiEYJHEUSJyFPBc2GwnJgtq
Y42pFENyjC4m9EAyz7EmPaxQ5JzPtc2OsU0KshSY6Qg0jcRHLYQHzUWHzLiH
jVjHDFmHTViHTFkHjRl/0KF/coLxm2OSj7RSDZzJti6eLnZGrubqbibHXE01
HU11HfXtfI0jcM4UpgcUKcUSr8SUyOR0mp27uY6lnrGzmY6N0QHD47qOJnqu
JnouprrOJlpQG+tu4hTqEB7jiWecZIr9BAn+svSQ9JzwrMLIgnJ0ZTWhvgFd
WxsxMpoUjLb5tcY/n3DSU7c5bu5pcDLKMprkxBD4xCYEpmcEFxRElZcRoDa2
oSamtYnc1Q5ZxxzuZyuGuIpR5rkZaWMdydbpI1+EpR/BMpJhi+e40QTe/Dif
uHTftPx/ta6vizYCfWqErxzlTsi5U2OsiTHOyBC7t1/AEVkSWabStMDE7NDU
vPDsorCqKkxTPbGrhTbUxRztZcoHmWND7JFh1tAwq6+X1tVJ7GglNjVgaquQ
1ZXIqvLoktyA4hzfU7VIKNeNdVJnBjhz8DoIb2aCf0bBO6fgz00Iz0wKLw3x
F9rYq7X0J7mktyl4AEp0sQhQigSlKFAYDbJD99gB37P8dzNIYIUQPmFRGQdW
xwP1spd1/NdtfGAyHjzLAc7QwBkaOEUCJgnAFNS6QsphQSUaLkU0FO3eTgSq
vsXszRPf3GLAt4ytlew9LAJWssHVDNVK8qsV6ZMVyc5K0veL8EVj28sp28sZ
TxezNu6VfzMvb7t0pfny0sTKM+U3d6qqR9pGlspmtgpn1sqmt8tntor/1brN
P7q3/5yCq2ASluonrdvfnlcw/f6LD9b9o6zLHb3/4/oHW/fD93WwdcqdPPkK
Oq2Blp4tSuPK4oNlUiep2EHE9+RCLRvHms4wJVMMY/BaqJA/UCMOV6eFVcZ7
lwg9csknhY76fF39OE0byeeWsQesRYfMoXTHOmrIPmzEOWjC/tyI+Qdt5iea
rN9rUH5zhKVvG+nmauNhZ+hmqelmpu5ipuFsdtRRR8db3xNpg6G70XhuXLF7
Qmp4eg49KMpD31pP39FI3970oPEJdRsdfTdTXRcTqLSdjHRcjO2D7ILxnlim
N0PkK4jzlyQHJGYGZxaE5ZUhSysxNbXYqqrI/sE4Kj/wn9R/peGkd8zyuKm7
vkuoWSjBnsL1FMp8k1P98/Iiysvw+9YRW5soXR30/p731o0PM8/Oymqq8LbO
H/ujbAKI1hEMGzzHnS705sV7SzN8U/OC8oojKmvRba3Evi7qUC9DMcxVjnKg
DypHWaODjOFBdms7jUDVZont4zNCkrLDUnLDoC67qgbX2kzr74SgY433M8YH
2aODrMFBZl8/o6eb0t4e09yEbaxH11WjqisQ5cVh2WnuJQUBbadwfZ2U0X6G
cog9M8qdHeWelnMh684qhGcnRKcnRefGeBf62OdbyfOlmK0M9Nu4aFAcBYoj
QFE4yA0GOaGvKCdf8oPBMi5YI95fuoWsSwJrE4G6+FdVvLen+KBcBCrZgJIM
wLdXIMGJCFCJBJUYUIEBx6EnClCEvVb4AN+iXl4nv1lOBDdK9u7nvV3NhacE
LKeoluPfLolfLYleLSU9X8x5spywvRL/ZCnv+3t5G0uFF6/3NJy7OLK0qVzZ
Gbm+Wj3wRaNiuXxqs3h6HbZuersY7mG3i6bhmSfFMxsl0+9qu2Rqp2Rqex8r
iLWN/P0qmIQr//23m/nT8DVkBftP+IufGJny97cOAq3wj1Xw11v3o53Gef+J
rcU/Uz+z6/g/Y91fDdrP+PZ+COdP1I+21Y3/6zpslmI9d3wrZ2zDO7YDlVQi
TBXLEsPjZM4ysZ2Y78Xnu3G41kyGOYWoj0cdj4k6HBPyaTrboTYlqEISkIPz
FdgaygwtZUctZQcsZQetxYct+EdNOEcNuYcM+QeMeZ8bcf6gy/qDFuMzrYiP
j3pp6np4uVp4O5p42um7Wmo5mWs6WqjZGWg767uEWEQRnckcT67IS5YcnJ5P
jGEEGdpqQ9bpOZh9ZqT5kf4RfVdTHfiYmDFU2k6Glj5W/kgXJM2DwvXiSv0k
KQEJmUEZBWFQG1taiauuwVZX49q7JImZyH/W/H/V7HWOWKobu+k7BZuE4h3I
HA9hrHdyamBebmR5Ga6mivgv1vX90TrFCPPsmbjCokhrl4/8cfb+ZJv993Xu
dJEPN8En9sfW9XfThgcY40McxQh3bJCuHIV+CXV0mF9ZjSBQtPnx7rK0oGQ4
14XkQ9bV4tta6ENdbHkve7wfynUc+SB3cJDT18fo6CS2tOBONWLqa1F11ejq
iuiCXP+cTM/K8pD2ZvxgN320j6kY4kyNwcvEs3Le7LhgTiH+Qim5KBeeG+FN
DDAHu4iTTdirpaj11Oi92EhQGAKy/UFO4Gu69wuGP5DDgI9UVMvAqji4ahIg
7oDqBKAiDiiWAtUCsE8EyBmAAgVOhoPKCFCB2FcOC45jYevGI3cngne/RL5e
iAXWS8G1AtX9bGAlDVxKBJfigGWpakmsuidU3U18sZS1c1+4vRr3/b2iF/cK
11cK5652tVz8Tvno6eji45GFrZKJhaLxuxUzf7RuartkdrsYrq3SmfXSmbX9
50bpzE7p9BOoYKz+7KKxgncRbnoD/qMfVP70+r/J3d/Iup8qSGNYOeX7+k9Z
99Mx75fPeHA9yJH/25Urf5A39sN6+OP60Z9C3P3XsQ7eX6fczFXsuIo7AkRF
4uz0uARkgsw1PtY+VuQh4rvxObZsqikZq0XGaVEwJ4ihBxihh8pkPhXioPQw
N5GVcYKBTfwxa9kha+kRa/ERc8EREyja8Q4ZCT4zFnxixP1Ej/GZHuKgpre6
poXGcVsna3tfF1MvO2N3G11nSw1HC3V7Uy0HA1tv0yC0PZ7uwRT4iOICkrPQ
CWkkCwdNHVtdfUeLw+Z6H+sd0XTU13XZh27fOiN3Y/dQm0iiK57lzhJ7S5ID
IevS8kOziiMKy6KralD1DeSO7tjiavIB4/911FrnhJ2ukau+U8g76zyFUr/k
1KC8nKj31tWR2pqpXR2099YNc8dHmOfOJmYXhNh5fx5Icg2g2YczrXE8N5rY
l5foK830TckPzimNrKzDtLYR+7rhg2Djw5zxIbZ8iK4YZowM0EeGBEkprniq
jiDeMzbFPykb+ueFFFUg6hqIne2soV6uvJ+rGGDLB9ljQ9whqOHtZba3E5ua
MPV1yJrK6MoKRGlRWG6Wd2lRUFMDqrudNAJFR9hhzuQIZ3KMNT3GmRnnn1aK
Tk+IZ+SCyWHOWA9tqDVmpAU/VYf+tgC5lhixxwnaI3vuUr23CW5vU8j7xMn2
Kx6u6gR4HEplPFgSDxbLgGI2UMcEB7mgnAiO7Y8IGI8Gx5CgHCoUOI6E2tg3
E5EvvyCCa7ngVtH+gLtUcCUeWBSDixIQforAReHuovTFctrOSsKTlaSX9wqe
L2Y/Xi2fvDQ6dmd16tET+dL60K3turMrJZPLFVNQclsvnd4qm94qmVkvnnlc
PPuo+PRD6FkCc7dZOrMNcVcysw03szMbMGs/5AuefbdZtH9XBVTFk+vvvthX
8b+Gdcr1H9YH6/6RuQ6qyc3sqScusX0urEJhVl5yKjVR5pUsc4yTuEr4bkKW
FYdsSCdo03AaNPRxNkojxvejFLJ1Qxwqw9c20coyWd8uXt1GdtRGfMRadNQS
amOFh4x5B42Fn5vwPzcmHzJEnDD20NC11NM5rqNubG7g6OFo5uVo5GGv72yl
5Wx9wsFc087I1N3UJ8IWSXKnsH34sQGxiaFZ+XSPIDNNG009R0t1K5M/GB09
ZqVp4GSi52ik6WSo4WSk62xo52cWhHXE0F1pAk9BvF9cRkhabnh2UXhBaVhV
DbKhkdjSzq5rZmrafHzE4riOk7Ghq4FTiGkIwZHM8RbGBianhOTlIN73sHVE
yLpuuIdlDQ+wx6F4Nso8eyElOSfQPkDNl+wSwHSM4NriBe70uAB+ckBctn9q
YWheOaK2idDSRurpoUK5Tj4MqcWSDzFHBhmDA/TeXhZHYEblW/ISPIVJJ+Oy
/NMKIOuQ9Q3ErnbmQC9nbIAL/fzoAGtogNk3wOjqobe0UhobYmqq0RXl0aWl
4QV5wYW5/tWVUa2N2J5O4kg/XT7EgjidGObsrxRzp6GAN86fUAjHRvmjQ+yh
LtJwK76/ndDZgh2tRn+bEbnGD3zLCNzBuT7lR4IVibBs77nbtw76tiJ+f++x
BMwXgkXct3kxe5Ux4CAf6MeDQ0hwFLJu//LZsQhwNFI1hnimRO4uxINbxcDj
HPBhGrCSCCxLgEU+uCgA95/AEu/NquD7+4lPV3KfL6e/XMx4tpSyulQt/+LM
zKOns+tP5YuPh29t1194UDq1Ujm9uQ/afs2ulc4+LJ15AHMHuTe7VTS7UzS7
XQR/sVE0s1Y083j/uf6uINBg1t77tgZVyQfrPlj3s7kuVbGWNrnjnzllTS0g
xmdkZwtSE/1T4p3iJU4ygZOYacEjG3KIenSsBgN1nIM6wY5Q44adqOAEFfm7
pJlZpxo4JGjYxqpbitWsoIo9ZC45aCw4YMw/YMI8ZByuaWxvZGhhbqRurn3Y
UkddT93S1tzK29nY3d7Q1VbXxUbD2UrD1lTfwcjJ3zoM40pgeDOE/sK44OR0
LJbmo2l7QsfWXNPe/KCZxjELDUMnE+gnNR0NjzsanrDXNfc08o62iya7ELnu
LMnJ2JTA1Jx31oVW1kbXNOLqmsndQ1JrTzU1k6OGjsZGLgaOIabBMU4xXB++
NCA5NSw3D1lWhq+uItbXk9paaZ1wDwvJA1s3Osqcu5AqSnZ3CDnuR3cL4jpF
8e0JYk9mfKAwLTA+LyijJLywClXfTGrrpPT2UgcHGSND7OFB5vAgfXiIMTDI
bjhFwNF06BIntsxNkHRSlumXVhhSXIVuaIxpb6f3dTGH+ljDg4yBAUZvP6Oz
j9baSW1sJtfVx1RVY8oqECWlUcXFEaXFYY11qI4WfF8PeWiAMTbEhDKnYoQN
lXKUM7F/1GJ8lDc6yO7vo/d2kXo7SF2tpJbmmPYGrLwYdTkl6iHdd53mt1sg
AqtSYe4q4+DjFe+sq0yAT9EWSsBcIZgjALNZb9MJrzKi9mpIQDcVHMKBIxB3
4aA8BBwLhax7O4p4dYYOLueo1gr2HmbsrSaqluHRduASG1hiQU+oVMvM1/dZ
3z+Ie7ZY+nIp+/sl2eZy/M0bNaNfXBy8vTH5+Il8eX34zpPaLx4UT62WzW7C
x8Tgk2IbxbOQb2vFs9AXT4pnnxXOfl8w+6xgdqfg9Gbh6bXC2cdQFcE/s77/
MxuF+9zlT0Lt6uPC6bX9Wi+YgRrY94sU+xOP/wHWFUz8oD5Y91/Ius10xVr2
1LOwggtW9IpQQVpGUVJmGiolzhXqZGV8RzHTjE824hD1mXgNJpzrTgiQOhTf
z5OjLSoCT2ZbOmabeCZrOUpPWInVLSTHLGMPWsg+NxUeMKEfNkEdN/YwMDa2
MNSzNjpupaduo3dET03LWNvay9nUw97IzU7Xdd86BwttO2Nzd2vvSK9osg+J
58uODY5PRkoSkYZux/Vc9DUdTI5a6n+mdxSCTtsBUs5A3c5Q3VbPyN3QM8I+
guwKLxmIvUSJfinZYVmFYVCuK6+JqmnC1reSu0YkXiG6B7V/b+JsYuCk7xBi
7o+zx3JOcqUB8SkhmbnRxaXYquoYyLrWFmpnJ723hwlZJ4dzHevMXBJX6uAc
rBVE9wzlOiNEDkTpSU5CoCg9MDE/OLMsqrgGXddMbO2kdPdS+weZQ8OcQaig
UDfIGB4RFZZFIogaLJknQ+oiSPKSZfim5wWXVqEaTpEg67o66f299MF+Rv8A
s6uf3tpNaWwj150iVtXjKqsxxdAvL40qLYuqqIxubMB0tJMG+iFCmWNQmzwC
Wbdfo1zlGA/6Qj7IGe5l9ndBuZTS1k5tb6G111M7a4htZZj+wuhptv3DdDRY
m7QPXSLcscLWxamq4oB35yygRJfNBzN4YDoTSCe+TUK+TUeCTQxwEOIODVkH
jPjDK7DDEW+UVPDbjL3rmXuLGarVlN1FmWpJBF9CscgClhjgIh1YpO8tU9+s
0J6vir+/l//iXubOkmz5bvbFK8P9lxZarj2WP9yRr273396GrMufXIGIK3pv
3TvutoqhjnX6+5Lpl4VTL4pnnhfN7ECsFc0+zp9+nDe1lje5njcBrwW8VwXq
Xqe3is/sFJ3ZKZjdzp15kjW9nTOznTezBXFXDN/X86fWvVvU+I/Wnwe2n6rC
yY3iifdVBHP3N39f98N1il9uqeKXsu6vX5v4d1da/xW3f+uaiT+zbjN3YitH
sVFw+iWq/JIlo9KTFi/MlGXlktMTvFITTsoELiK6uYBqzCMbsQnaHJwmF63F
idTghGpyPI9nu9iWuQUUWfln6v//7N33V1vnnj/6P+DeO9/5zuTk5CROYpve
u4SEJEQ3vffeJNQrAiEhehVqCCSKRJXoRWBM7+ASx0kcO+42LrhjMOAOSPtu
OTmZnJxJbuZ858zMncla77WXQoBl/+DXen/2s59nexWZwPONYZyjztzPYZxD
EMrnjklGdv5WdhCoHTiimsFszZ1tjaCWR+1MPrMysHWFOfu62XohLbwRph5w
czdnE6S9hSvELdwvNN0vhRJAyo0oKE4oq8nyTYaboI+YutkZQO3+YP65AdTU
wtXOCGltgLQzRNpYu9t6RCAiMr1SaMdweceyi4MKqyIqRVEgMvLGeEVrmlKV
1Xc8JwGD/MTsH+1cbazdrBERToHpqGSaHyHXL6cgoLgqXCCOl+m3WmS06esW
rq+PMDxIngC70zh1Yb6ASIW6h5gEY9zDKajEHNfMfB9yUQirIrRQFFEli5Mq
kkGdOvtwfUP4oVGKZpyuOUEbHqMMakjDx3N4Zf5JeHsix5dS4JdbBv7ZQqvF
UfLmtLYOXFcXsacX39+PGxgg9g+SuvsJbT1ZzSpMY3uaTJEia0qurU8QiKOk
sjhla6pandk/gBsewo2MkMfHaBMnGD9mapwxPkrTDJGG+3Aa8C/bkdWpwne0
43sUxG4ZRiVPq+cHTIpDHvewXrSwD/RneOb/2Tr9Jgv9YVASEDo6UE4DiklA
IUZbmKErTtMWJBzwk4E+gr7anYgBJqPeHY96M56qO1MMnK/Rflv29hLv4Fa+
7m6Bdi0HuM0A1qjAGkV3m6xbIx/cJoDcvbmb/fJ2+Yu1yid3Ki5da1n69szg
hfst5x/23Xh8Yn174PrzxjMPhXP3wW4mXNgQLT6T/DCx7kjmt+sWXtTP79bP
bDXMbMin1ptm1lrmbyrnL7cvXFMt3exZWetbvdO3crtvea1z5lrrie/qxq5I
p+/VgRMuqOLKtnBxUwBWuzkQuk3p7ObPqt3flp9x9yvfWTv3TDr7LxHP/OUP
zvxF/lb3/g4n3f26dT9dhB1/KJx48Ev5mXWgfv91rOPPPONPPRUvvs5SXITg
ZZ44Do5D4QuyqkuCKwqCeQwPNtEpB++QjbOlZZjT083oyea0WDNmjA3dz4zn
4ihxD6pDRYjsfKvNXUtNXPKN4CwDOO0oNNHYwd/KHulob46wP4y2N3axNYPZ
mDhbGziaH7IyMIHYOB9D2x9ztfJBWXq7mLtBTJGOxkhHmL+bX6JPdJYfITuM
XRhRWJWUxgwzdzMwRzsYwhwO2Rp/ZPmpBcrOBGVriLIzRtpaudm5BMMC09zj
yN5ZeX6s4pCi6qhyUayoLk7WmNDUktHUltF/gkNmh3xs/g/mMBNzlKVzmINP
MiyW5Ilh+tA5PtySoEpBtKQ+qbEpTdmS3qnO6u8njQzre93UBH1luYJEc/GN
tonAe0XR0Am5SKzeumBmWWiBIKxSGi1pSlS0pXd2Y3qG8AOj5MHj1CHwOkoc
HCX1jzCpObAMKgzP9WGWhnArw8oEkcK6+EZFOjioqrrxXT24nt6s3n5cTz9B
1YtXdGXJ2zLkLWmSxsRaeYJYllBREyJvTlZ34fsHiBqwNI5RRo5Tjo9SJsAu
N5k9qQ/zxHHa6BC5f5AA/qqhtsw+Jfi3yGhSYloVOIU8WVoV3CwOPnuCdne6
4GFv7k4be1/B1W+bbdYf/aSTsYHaHEBAB6pp+j1lPCyQn6l/gw8vWZsX/ZYb
pmvHAkMZutGYvfHo3dHog1Ns4NtqMLoLJW+/zn57gQnc4mlv5R6sMd6/SJGi
+yEk3R3iu7uMF2sl23eq79xo/PK78ZmLFwcu3W86/1B5/vbonZ2+q9uyUw9r
l9+PnKB1S89ES5uixW3xwm7twqZs4WnjwgPl9M2eueuDs9+NL363+uWlr777
8vqtC9eufnv75uXH62sb67c3Htx9cPvmnWuXz3xzpW/hW+XkOdn4t3UzN+oW
H0rmv59qN8V/fljlX71393exbvZ36/5rWqe/X1c9tSGYf8FUXXelKoPoZelM
THl1hqg6sro4jMf0yKdC8wiOLJwNM9MStI6RYsGIs6RFWNH8LDOPfsizQzR4
xDc4hUltfCpMXHjGSLqhC8YYeszWyQnm5AB3skI4mSOdTOB2xs62Js42Rk5W
h21MDe3MHTxcnP097P3QVt4IczRUbx3CwdoT7hbpFZrum0L2pef5ccsiKQXJ
jsfMLdxtTVGQP9mY/sn8qCnC1gQsdSg7U5R+NRYS4OST5BZJ9EhnHaMWBnMr
IktrokXSOKk8oVGZ3gj+8x/NLa5JO2T+f5lAjhohzGHhjv4ZqCS6H5kbllcS
Vs6PFtelNSmw7R0EVRexu480OEgbHc0eP8GcnMheXqnG4B394+wiicdimO6p
+e7kspDcqpgCQVxlXYKkKaWxNbNVhVF1Z3X3Z3UPZPUO4vuHSX3DuMERSntX
FpZiQ8x1oxYG5lSEF/LB4TpOIk9qAn+kM6uzB6/uyeruzerpx6v7CK3qrIb2
DKkyRdqUIpIniGQJ/NpoviSypQPb1UvqHyZrxmgnxuljJ2hjx6nfV7uZ6dzJ
8ezREapmkNTbR+jqxvW2YnqaU1sVKQ3NqfWNyXXyGFGFz9QA8euTnHNzjFsz
+fcH2budHJ2SAyg4+lM9pUxdDVV/HEoFESjCAtwMgJ0K5CYAOXE6VsQeO2RP
mgwMYA+G416ORLxbJgHfVuqtu1Ch/Sb/4Bzz3VnSwSWWDrTuFkML9rpb5D+H
AqyR3t0l79wueHan+vLVvuUL301eetBz6YHiuycN526N3HmlvrgjXX4gXvrB
OvF768SL+l2xjfMPW+ZvdM5+q5k/t3z2wskvzn5z9vTtS18+vLn66sk3j64t
Pr6+/OrR+f1nl3Tb13Wb+uzvPNjeenL97t3Zry63Tn0hmboiXVqXLj0G251g
YUsP3U8eVvmx5gl/+ZHj363772fd96/XAXsdf3anSLPuk9sWncdPpqRmc2Kk
omR+SXRRtnchA5FPcc7F2zOzrOgZJtmp5rlJDvQI+0zop4l//F+Ej03E8NAW
VFyDnZ/A3D3PFIW3QMZZw5ydncxQTjYIPXeOMCcLqJ2JM1jtQPFsDB3BSdbM
DGYPC/Bw8Hez8nYxQ0PNXJ1MUY5gnP1RAYmesVg3QrYHk+eXV5XhFmFvADe0
QMM/d7D6xMbwCMTMzNXBxNXBDO1ghrK29bFGxziHYN2SGd5ETmBOSVhxdRRf
EiuRxcn1FmWoBujiBpKhwz8aOxtZediiYuDhJG8MO4xVElfMj6upTZQ2YBSt
hE41uauP0ttHGRjSWzdxIntqKndxqTI21eRYjFUEySuK6Z7McSeVBrOrY4vF
CfymtIYObHs3Ud0D1irK0Ch1cJQyqC915IFh/JCGIqkPzySYU9juYKnj1MSW
iOOr6xLrmtMU7VhQsI5uXGcPTt2b1d2D61BhFa0Zdc1J4uZEoSxBUB8vlMaW
C0LrmpJVXaRu/R+JMnycMjJKPjHBALvcxAQDrHZgxkZpw0Ok/l4cCJ2qC9vR
ltGuSG5rSpaBtVAeWyXw62pP+Xqx+MvlnDPLzG+WODfnix4P5b9tZ2tb8oCm
PKCWCVSQgWIcOLrquOna3BQdKxHIjgOY0QAz8h0jaLckFOjFvdMkv5lNBy6W
6c5XgTn4pnTvS9b+WZr2LGnvK5LuJku7Rteu6X0DbpH015sgd8S9O5Sdu/n3
rpV+denE7HePRi5vqa88VHz3sO6LtYGbr1u+fi5ZeFS7+AyETrj4tHYJnGE3
ZAsbytkHndNX+mbODE3PLJ9evgq2ua+Wrnw5+eDK0tO7p19tXXq4tvpo7dSr
Zxf3X9zUvrmzv3tzf+eG7sUt4PUD7d72i7cvbm486z99XTr5nXTurmhhkz+/
LZrdfP8A3sb7jrclmQWvm/pnkv/qab1/F+skP4EOdO/nP/i7db8Zt19fgPjr
xYif5a+tq5p5Vj39tGZmt3piI6SoPYZbnJ6Nw5BjBHyysDSthOVTnI0spCM4
JCdWliULY5KbYp4fB6G726YbHcV+Zo75JwOmCVzmGa2wC5BaH6Pau0VAUT7O
MKgLxBoFAa2zcXG0gjtaOtubwuxNXOxNYLaWcEdjJ+sj9mb2XggHP7S1N9LS
3dncFWKGcjRC2tl4OXlFIaPSUekkVxrHm8uPiSN6miKOWLu7GMEcPrE1+pOd
ibkb1MTVyRhtb4q2tva0gIc5+KUikuheOLZ/dlHY97snwDG2rikJ7HXtvdQW
NcfG9RMDyFErT0dkDCIQg0pm+NILogr5cZXCOGF9srw5U9mOb1cTunvJoHWa
EebYGHNqJnd6riQi8cixGMsQnFsEEx3HdsUV+OdURhWJ4qrkKbI2TJua2NNH
GdLQR8aYIycYo+PM0QnmwDBpfJwtFAUT6fa5hf45ZaF51dElorgaWZKsJa25
PV2pzmzvxnX04FW9OHVXVlt7ZlNLam1jorAxkV8fW1MXV1ETWloVKG/JUPVQ
QOv6h8igdcfHqOPj9InJ7InJnIlJ1tgJhmaEOthP7OnGq9TYDlVGc1tKoyKh
QZ5YL4+vEvhLagOXZ/K/Xiw6v8T5apX7xTL3/CLv6kT+o768l21sXVMuUEsH
KgggdAA3XZeXqmUn6XISAUY8QI8CGFEHzLA3+WH7rZkvRzK15zm6i2UAaN3X
FQfnit59wXp3Gg+cI++dxOguEIEbROAmQXcLA9zO1L899joe/Mrbu4zNtbxb
35Z9eWHpxOXt7usvVFceKy7drz673nL5lez0M9n8U7l+L9hTyeIT6cKjxpUn
rdO31KNfamZO92qGxmc1X305defKyuWvpi59ObZ+fXXz4Tevd64/e/jNk/Vz
2xvfvXp25eD1g3cv7r7ZvnXw8p729eODN9tvXzzR7j9/+eL111futE9/Wzt1
Xzz/Sji7qz+nffEJSJxkdhu0DgxonWDhX38u5f88kj/nX5mUZ5/+UkQzT/4y
/w67yX6Wf6+1iX+Ldf+GtYm/q3U/zLDTYLXbkc7vpImHorg8HJeWgo9hsZJk
YkoZJ6CEhS5kInlUGJtgl4cxz00w5YZCcFaG2MOmpMN22A+M0/9gVgkNaIWF
i+19yS4+vgiUCxzqiITaISG2CCdQNgswMHtTF3tThIO5i4MFzMHC2e6ovbkJ
3N72GMr6GMrGC2GBhpqjIIYoB3O0DTzQKTgBmYRF4ZlezNIgRkmck58FOLpa
uDp/bG/yBxsjQ1dHY1cncIw1c7MxdzNzCLByi4dEkdCZOcdoBcGcstDS9wdp
1jYkgr2utZvUoylDB1t+anfI3NMJEgEJyESlMPxo+eHc8siymsgaSVxtQ1pz
CwasW+peot66UebICHVyOmd0nBuWcMQ7xtwvAx5Cd43Pc8cXBrDKw/NrIitl
ifVtWa1qYt8gbXiUoTlOAzN8gg4WPJCm/gFKQZEHi+vGqwjnVkUVCGPLJHF8
WbysNbW5M621C9PRje/Qc5fVrgJbZXp9c6KoIYFfD3a/2Kra6JLKQGFdbHN7
VmcvaB1Jb90o+fgJGtjrJsBeN8nSWzemt66/j6BWYdtVma0d6Q0tSfVN8XUN
CSJJeGWFh2aA8MVi0bnFgvPLBV8v884t8c4t5n8zy70yxl7vZu3Iae9EJF0l
ESjEApx0IC9Nf7QdaB0zDoQOoEVomWEvc4P2FBkHy5yD8zztN4XAVxXaLwoP
znD2v8jRfkECzhC0J3H7ZzJ1V/HALdC6DOBOum4tC7iBA24Sd2/SH12mbdyU
fHd5buLyg57rO51Xnii+u8//4r7825d1pzbrF5/V6/fAPq1beKRYeSSfvlnb
szpwfGl6YVXdo5qfH7v09ey96yevfTt75ZvJB7fO7Gxc2n99Z/fZpZdbV/Ze
3d1/dV/37smbF+uvt9ffvXq09+qp7u0L3d6udm9D+2577+DN5Ucb6sWrDXPr
dYsgOO+3UYAFT2/dc8ks2OueChae/J2s+7X8bt1/qnV8sNpN7tTO79BaZkLz
8jO4pAxmcjo2oLoKKy6PKctxK2a6FtBg+STHgkzboiQnGtoSY2hAPGpNOmRN
/sQG80dz6p9slchoCSIsw8XTx8Md5oGyQ0HskRA7BMTGBWKFgFjCncwQ+liA
gTnYwB0NHSwO2ZpYujnbv3+u2ModZopyMkDaG6JsrT1svSJhMemuaSR3Atuf
U5XhE4s4DDGw8oQdgVp/aGNyBG5v7AoxQoFXa2O0uZWPOTLGPgyHTGX4UPID
2SUhRdXhVZJokSyhQZmu6MD3j5QFJUA/sPjA1N3BJsjeOx2uv1+XF8YGB96q
0GpRVK0cbETpirZMVTdoF314hDk8QpuYYfdpWMci/+QRa+GVDgmmIuJy3cFe
l10WyqkOr6iPr2/F6q0boA1r6ODQOjRCGTpOG9BQBkfobaosCguSne/NqYgo
FMZVNaRLlOkSRbK8LUWhBntdRiuoXA++owfXos5sbEkRNyTWNMRXSqMraqNK
BWCpC2pqw7aqCJ295K5+Uv8gaWiEPApaN84c10OXMz6RMzJKHxwm9/Tg2jsz
W9ozlO2pckViXUNcrTy2pMytVRl/ZqVkZYZ9dpl7bon79RJY8ArOLfDOzuef
msn9Zoh5Q0l6KiW8q9S/dkfHSdPlJgOshPfQRQOMSIAW/o4csJXtox3KAc5V
HZxl687lA6d5ulN5utPZwBkGcJoIrJKBVcr+yUztBRw4tOpugaUuXXsLq7uh
/8+ta4zNa+zXD+pv3xxauHJh8NqG6tJG4/kHwjP35V/tSlY2xAsbdSvPxQvP
5EtPlAt3ilpmxK2jEzMrYxOT/X2qlYUTV76ZX79x5ubF+WvfTD28/cXuxiXt
m3s7zy5vb1w5ePMQALYB4Ln2AMy2VgteXwLaPa32rQ54sX+w8Wbv8Wvdzp2N
DfXs2aaZq01zG5JpkLgdfanTj5kbIv2tvE2w6f1u3f8c6/RjLNjrJrZrZ7d4
fSdjikpS80kZ7LQ0UnB2boSUn1TD8SxnogtpzjyCU2GafXE0hOBgmHXEjHLE
kXzIhv6pY9YnNtj/ZVxjfUzsE5fi7uPu7+3k727lCrFDQW0REGsXqCUCauEC
MUdAzBAQCz19UAu4g7GT1UdWBoZwO6ifm72Pq7WHi946hP0RFytTlBU8wCEo
AZmY5ZaV7ccsSUplRJu5mZm725mhnT62N//MydoIATVydTJC2xqiLCz01jmF
4NAp2b6EvEBmcVB+ZWi5SH++k6QhSabM6B4uisW6fmD5D4dR1lZB9p4pkBiy
NyE3JLc4pKAqrEoUUytLa1RglR1ZHV2E7kH64ChjSMMYm85v6yWhQ//gmWDt
nQEJoaFiczyyCv2zy0PBXlchi69rxbSqCT391IFhPXH9GsqAhto7ROrXMET1
8TiGM53nx62OLaxNrGxKqe/MVIC+9eNUg4S2HgxIXGu3nrsWNRYse8KmpCp5
Qpk0qlQUVlQZIJBGt6gILWq8qo/UrX8ohTikIY2MUUeO04+PMcbGskfHmP0a
cnc/OAWDozdW0ZEmb06qk8dL5YnC2gixOHBmKueL1cLVuZxTC6wvF/O+Ahvd
HO+ruYKTi/mzc7mzo5QzXaSrCvwzfuZBYdpBfqouOw6gReunV2akjhkJ0CPe
4nzfViYAJwqAFZ7ui1ztqWzdKTZwKlt/ut1pku4kCVihA0tUYBWn/Rqru0kA
1jJ1euswwE3cm2v4Zzc47+7zX92punej8fSN1aGrDzsuPpWevSdcWa87/Uy4
/ES0+FTy/rm42rn1wtaF3Bp1Y/vQxPT01MzkUJ9qefr4+TMT926cXru8euWb
qUdrX+w+uaB9fefl9rXdzSsHbx8Bul2dbvfgYGdvf0er29Xq3h1otQe6Ay3w
SgdsaXWP97WPte+eX7l1s332rHLmUf3MG/HMrmT2qXT+sWTuqXBuSzj3/Hfr
/uOt+/UjSn7rAsT4v4Lbb7DuWcXEVvXEtmTmiXD6Uiq/Nq2YlcZJw2VHkil+
VUUxstKoimy3UopzMQ5aloLMP+ZIsjClGdhlH3VmfA6hf+qA+8ia/Acr5gdW
pajQjOAwl2Afh0BPKzeYPiioJdLZAulshoSaggG5gztZIiDGzrZGEOvP7E0/
d7K090Y6eKOsPeCmaIgB0hG0zhBhaetu7R0Fi8xwTaP5kAqissszEaEQE6SZ
pYfjYajVx3ZmRkiICcrRFG1n6Gpm5mmGjIaHYH2SmYHYvGAyLyi3PKREFFVV
F8uXx4ubk1RDuVjWsY9t/vdnLuYWgbauSZAIoheWFcQsDM2vCKkQRwtlKXIF
RtmBa+smdA3R+keYgyOM8dnCxk4iMuwj9wQbL4xLCN09LtcT7HWMilCOILJM
llDbhlH2kLoGqf0aMKB11B4NRTWAUw9SuKX+WQwkvTAwrzKySJpQDTY6VYay
B9s5gFcP4nv1D9SRO3rwCnVmswoj68wUKpIq5bEVsphiIVhKA5rbMB09pLZu
vLof/P2kvmHiwAgRrHbvAxZI6sAIFTRQ1ZvV3oVt7cQ0tqVLG5MksgSxNLqq
ym9okHz6VOnqQu7p5ZyT8/QvF/LOLnDOLOaD0M0vcManGMdHyXMD5NMqwi1J
5sti0LpkIDsaoIYC9HAdPUzHin5NCHzLjtXVk94pCQeTPO0qV7uaA+hDAU6S
gZMU3SpZt0IBlsi6Zfz+2UzgBmgdRns9VXc96+A6Yfcy4dWdyv37wpc3C57e
qLxwfXj0u6st5x+KT6+LFu7XLeqXXwVLzySr27LFDZ7qDEc6XCHtalCqp2cm
FhZm+npVy7MTNy+duX/r3O0rKzfOTz+5e+bV5kXg7e23u9dfPr+s23sMHLzW
aV8fHLw4OHip1b4GrdPqvrfunZ473Q6g3dTubR4c7F68s952/HrD5I5kbkc8
/7h2/pF4/oloflM4v/Wfb91Plyr+3ej7xQON/zPWJv4LWVc9s8mfflEzvSOY
uN+4tE5rHEgr5WJ4GcTs0JzsoAJmuKwsTcQNqKAiqnEIQZIvBwWnm9qyjWDs
z+HMQ3rrKH+0o3xgQ/wHU6IxLCkiyjUyCBbk4+DjZumOMEeB3MGsXGHmIHQo
qKkLxATmZAx3NHaxN4HbGTjbHLI3M3Gxd/RC2eifKAarmsNRhJWBi4U5yhoZ
DAlOd40juWPZwazK9AiMr5mrsbmb7WGYxcf2pkZwBzOkk5mbgwHKwhBtDg2B
+yZ7xZAC0nNDcdxARklwgSC8XBrLb0gQKRJbB/Ccqog/2f3jEZSVqb8tMtEp
HO+ZmR3MLArnVoSXi+Jq6pNlzRnKTlxbF6FrkDYwwhoYzR6fL63rICHCP3FL
dPDBooPpHnG5PtjCQHpFaJ4gslSeIGnHgtaph6jdQ+QecJzUUDsHSKoBgrIL
R2a74VjujKKA3Mrg4vpYQUtKfUeGohsD6qTuwfb04fvAnxqmtvXiG9QYQVNc
TWNctTymoi6yuCZQIItR9VJUvURVP1E9QOwZJvZpCAMa0uAIeXAEvFL6h0mq
/qz2boyyG9PUmS5vTZUqkmvBBtuYUlkd0NqSvLpcsrrIO7mYd2o559Riztk5
9pk5zvwSd3Ihd2KWBc7CoyOU8UHKZA/hy2b8g4rUd9wk/fRKD9GSfHW0kJd4
vx1quE6aDchob+ppb9R5wEIFsMQFlrP15xWDo+syS7dK0q1kAUtE3RJu72Sa
7hoBuJUFXMXorhL3rlDe3OLq1qXvbte8uc19tZZ/40rD5IXTzV+tC1Yf1C48
kS3oj6cTLG7UrW7WjlzPk4xXyIdrajuUraoTE6PzizPjEyOa0YHB/o6G2sLx
IfnDG8sPb8y+3vwWeHtr78W1V1sXgb2HwMErQPsGvGoP3uijfauvdYBWC+xr
dXs6HTjMvjoAdrXA1ssXG6vn1ltO3JeB0+vCE8l76/Sbyxb+Deuw/7+y7hdr
3v9k696vw25Wz+zwp7cEkw9kC+tlfcuphYUYXjo5N5DN9GdTAivYEY3V8Xym
ezXZrTrei25nw7JwZn7uzDmCZH0GZR5yYHzsSP/QjvahbewfzcL9/I7FRaIC
fZwDvCw8XMzQMHM03MwdrodObx3UBAYxhjkZIhyM3ucTB7NDNsa27nB7L5SF
B8zY3dEQZWuIsDNysXPwsfeJR0biPBLpPqTC2Cx2vBnK0BRlbuBiecjB/JCD
pSUarIJORq62R1GWNr6O6GhkCOZYCiMYwwkiFvmzq4OLxVFV8nihMkHRi6lu
zvyD9T9+hjAz9rd3SYCEEDzTWMG0woi8yuhyUaKgPqVOkaFQ4Vu7CepBWv8o
a3A0Z2KxolqBgQR/7JHs7IfzDGUeS8zzzSoKplVF5ImiyxqTpCqcso+iGqar
h8iqQVLnALGtj6AepklbM1KpEAzLjVEcyKoMKpLFClvS6vQzLK6zHwdap+4F
h1NCRz+xpY/Q0IWVtqULmxJq6mPKRCFl4tDGTn2pU/UTQD/BEtg9hO/XEL+3
bkBDBqFT9+GVXemNncny9pS61mSpMlnSDFqXIBCHS6QRS0ulp0+VrC5xTq7k
nVxmn17MPT3PWZnnzM3lTkwxj4PQHaeMaKiaAbKmlzzTQbwozNzigL0uUcuI
1DJCXuC8n5MDddJc/WPGdcwDee6rpmztUD6wUAgsgUMrHlgmAyss3QrY63Cg
dcBS1t5qmvYyDrhN1t3A718l79/MO3jI31uXvLxR9XKtcPcW5/Y1+YlvF2Vn
b1csgchsyZae6zeFrYD/ou9yG2YLpGMVDYNVdR1yZUf/YP/yykJ+ESc8KiQj
I5ZJSexoLLp9aerhjbkXT7/Svri6v3Pl5ca3unfrgHZXnwPw+lKnF++tDiQO
2AcALXjV6dvdSx2wu7+/8fbVk0fPXqqnr8pn7kt/OPQJ/GM8FurR+w/n7nfr
/jOte1Y9u1UzvSGYflQ3/1A8dhFfJSGW4rN5gblMbw49KJfkLS4NlxQFVjK8
KxN9GI52OZYw1hEXzlFX9mfQnE8dsw85MT92on3iGPeZDdTG2j0iKCAq3MXP
y+4YGlTOzA1p6oY0cYWbIWFmCJiZi7Opi7MxwsnYxckAZnsEYnXIysgIagP2
OktPuLE7xMjV0RgBM3GBWrnaI0NhIenuMWSPdFYAsyQFHQ4xghtaoByOQqz/
aGNu5go3QIA22hsgrc09bF3C4f5pnrEU37QcvyyeL7MiOF8UUVofK1QmN3Zl
NnTRDBF/+MTZ5HNvW2gcJAjvkcwMphREciqiy4SJNbJ0qQLbpCK09hDBXtc3
AlqXO7lUXVaf7hx22CsT5Uf0Ds/2S+YG4MtCGfyoPElseXNKnQqvHKCoNPQu
DQWcW1WD1PYBaqeGVVYXl0yF4PJ8aGVB2TWhxQ1xgtaU+k6MohfX3q9fe+3s
xYPQtfYTGrpxsq6shi5CbWuasDGuVBQokMe095HbunFdA6Q/Wwf2OnLf+xm5
e5ii6sO1dWY2tKdIWxIlikRhU7ygMV7YmCABR2C+3/Aw9cyp8lOrvJOr7JOr
eSdXuSeXOMvz+YuznJlx1okxumaUMqw/U4UyOEAZ6qMOd5FXFaTbJWmvsxN1
9KiXGJ8tvO++mKnfOSsCuWMDUu672pwDZTZwIg+YpwLzWN0cBkRPu6yfXoFF
gm4h8+1yyv4F0DrGm8uY11ep2vuVb9dFr++JX6xV7d6u3LlRsHa9bvT8lPjk
9cqlbdHiS+nSbt3iZv3y49K+cwV1o2UNo5WNAwJFr6SxTd3ddebsaQIVB3Nx
pFIzuGxsvSjn8lcjdy5NbN07tbd1cX/76u6TC/uv7wLaDTDaffD6XKd9q9Pu
60dYnVYfvXVv9dbpdrQHT/derr/d350+d7n2+Hd1+oOOn0vmN8SLD8UL9/Xo
/W7d/wzrvl+bAMdYwcwz4cxjyczDhrm77IZuQimeWxHKZR9jMwOzaT68HPe6
qkhBTkBVwrFsB4c8KyTXxI19BJn7vXWfOGUfgpA+so/83NrCwtTWHREaHekZ
GuAc5GPjjTZ3R5l6II1d4aZIuBkCbuYCM3WBmSCgRi4OR6DWBlDrz+3MPrEy
skRD9da5QUzd4GYopBnCxRScbX0gx+JREaBLdG9maRwmN8YMaWqBsrNxg39k
bXEE6miIgBgg7Y1QdsZoG0gQ1CfFI4Lok8D0weT7MStDuKLIEmmMoCVJrsps
GWRBg4586HTEwNcJFu8ciEMnMwKJBVF5lTHloqTq+oxaRVZj53vrhuhgrxsY
zZla5JfUprlEGgfiPQOox6LYgckFwYSKiBxhbH5dYlVLpryb1DbEUI8wu0eo
3RqaeojePkBTaXJpxV5JDGdKSQi9OixXElnWnCRsT61XYZt7cC29Wa09WPCq
6Mc39mdJuzDiznSBMkWsTNGrJY9RdOOaujLburO6B0DoCF1DBFC596H2aWhd
g6SObqyiLUWmSBA2xPIbYyplURV1UVWy6OJq75b25NOnKk+u8M6cyjt9Mvf0
KljteMuLvIUF7vw0e/I4Y1QPJrF3mNAD/tpB0lA/ua+HPN5J/YqfvpmXdoAL
303z2a8kAYpCrSxfV8vT8Vm6GvZ+TfaekKDrZQALTO0sdh/kbpmqWyaB0yuw
iNctZLxdStFeJO5fo7y+Sjh4ULD3oObFPemLdcnzuzVbdwTbN0vu3KgdOz8m
WblaufBCsPhGsvxCvrwlnlpjNU2UNWoqm4aqmvr4yj6BXNncolxYXpA31Xt4
ogj4ZDo5sZSX8e2Z/ruXJ7fWzwBv1nSv13YenX/3Yk27dx/QPT7Yf3QAige8
1mrB0XX/vXLgJLuv1b7R6nb3tdva/Sf7L27s7d2/8viecupC/eymZG5Xv3Vi
8aFk8e7v1v0HWPfbcasaf/rT/Nw60Lcf89uVm3paPaXfGvZ+g9gzcIAFe937
O5mPG+e3y7pOYksI7MrAQl4YhxXJyvHLZrpUFwU0lsTXxPsWOCPyLdFcUzT7
KDzvMCT3kCPzkBPtc+fkzx3dzGxMHW0+tjVz8/MJjouGBftBAnzNPdCmHihj
NMIUiTBDIkwRcBMXmBHcyRDudNTZwQAKimf3ByvTz5xsrdyRZm4Ic3ekqSvK
BOFiBHc0c7V1CXEOSEXFU7zw+cH5QpJrBPIw1MjSDfahteUhJxtDJOQI0sEQ
5WDgam8X4OyR6BaM9Yihe4HWMSpDOcLIYr11yfWdmZ2jHO8E+z84HjYKgDsn
OPvj3RKZQcTCaHZlXIneuvQfrOsldWuYA8fZoHWTS3yuMAERbRxE8Aik+ERz
AlMKg4kVkTmiOF59UnVrZkMPuX2YqRphqt9bBxZC1RCjbSg7k4NMYbuTKyOY
omhufWwF2L5A69SZjT04ZS9e2Ydr7sPV92BE6rTqjsRKZUKNMrWmOam8Nqyh
I71rmKbsxrT34VX9RNUgQT1E7B2h9GpovRp6zxBF3U9sU2EblEl1zQkieUyN
PLZcElopCS0XB/ElAfNLBWfOlK+s5p0+lXv6ZM6pk5yTq7ylRd7sPHd6Kld/
6JMG7Irg78zqHsL1DRL7+4hdw5SebuIpQdoGK/FZqv9+NQ1oLNDVs3XyAp0o
T1fFBCqY2krqXmXW20YcMM3SzhL25rJ0S2TdElG3mKVdxB8sZOydytCdJ2qv
ULV3cg8eFb56ULJ7X7C9Xrt5T/jobtmzm0V3r0uPn9NIFy7VLu2Kll+Jl7eb
VzdqNN/myjUVzYOVTX1VTT18RTe/QSlXNA+PDB8/rgkM9ElMCGczsdzspNXp
9lsXxtevTK9dnLh5fnLn4Tdvd67q3t4FrXv77v6+7qlWf1/uNRjd+6sWePVe
v52Dg23dwVPd29sHb+9tb65Nrl6sHX8gmXspmd0ULjySLNzVP8n8y2/z+Zvz
b7DuN+ev6PuX/Hwx4l9bm/jzKSj6jRV/Dgjaw1/O37gO+0P+Juuq378K58f8
lgdLfpN1PzxFrLeuZmq3Zgbk7qlg+plk5oVk/B5FXMwoDykpii/kJLDy/Fkc
NJMCqc2PkmdFF8Ndiyw9C0w88466cD53zD3kwPgUgjsMDTV2dHSwN4E7fOJo
aWxr7RcR5hYVBgn0szrmZeKONkGjzFxRZkikCRJh7AIzgIEDLGidIxhDmNOH
1ub/bGFq5Yay83a39HQ1cUMYIpwNXaAGCFsbb3v3GJcInGcay5denhJPizJF
W5i7Qj6DOH1gY37YxeEw0ukwyv6Iq6O5t5NLNMI/wyOWcQzDC6BVhuUJIwuk
MTXK5Lr2tM4RdlgW6n/bfvq5L8QxzvFYFjKe7k/Ij2KWR+fzYyskSaKGTHkr
XtFNVA3R+kdz9Nat8JmVkS5RhiEkzwCyd0Sef3JRCKEykiWKK6hPErRgGnup
rZrszlFmxwi5exTsdVT1aI6kIyuR5ZxZ7E/mR+VI4oqbk6pakyUdabJubGMP
vqkHBza6pr4sqTq9RpVc2hpfqkgsb04sr48ul4a1gONtP1E9SFaDrA1ROgdI
oHXdGkrPMK17kKrqI7V1ZTW3p9W1JAkaY/kN0dV10RW14dXikIpq3yEN9cuz
/NOrhadOc06dzDmpD2d1tWB+kTc1nXfiBEN/up2+zuG7B4lgegaJXX16eNvU
2CVhynVswOsSItBUDNSydCKmVsgCA/BZQCUDKKfoKvEva5K1/VRglrk/g9cu
4HXg9DqP25vJOFjFvjmZqr1AAtbygHXu/nre6/u8F/crt9fFz+4J798tfHyd
dfuyZPjUhGxurXllt3ZlR7K4qVx+WN17mtekqVQMVDX3Vjf2CJrUNXKlWFbf
3KKYm5vB4tKCg33ppIxcarKshlmaE1XCCM/FHVPLOa+eXHj97ILu1U3d3vqb
N3f295/ogG0tsAMGAHYBYEcHgFPttk77HBxv91/ff7V79eDFnf2n352/eK1+
/I54blc8syWcfyyZfyBZ2PhvYd3jX8tPNo4JJ3+2m+zBr+S/qXUvaqaf14DF
eGazZmKrfu5ZQVsXsyKrpDyphBfL5QSy8tAEnBUHh2ymJ5e5epba+pRZ+hca
oosOO3E/daQegSYbOB0zd7BzcjRxdjBysjM0N4O4oX3jo1GRoY6B/iaebsZu
KHNXlDkKZYZAGbvADeEQMD+K97mT3T9bmhq5QB18PKy93EzQLkZIZwMXyFFn
e1O0nUsYLCjVLYHinZUfRS3F2ByzMkPZGCEh/2Rt8ieI1VGU02Gkw1FXJyMP
R7sgJ9909xi6bzrXn1IWklsTkS+JrmhMkLSld2jYGeyQ/8fyoz+521lF2Hik
QyLI3pm5IdSiCHZldIkwoaY+tRbkS4Vr7yd3DzN7NczJ5WpSUbBzhGEgyd2P
6hGZF/hn6+KLZMnCNmxDL6V1mNk5QgetU4/RO4ZoXSc4RfWxsdnQrMpQmjg+
X55SrkwTd2bWdWHlfbjGXr11jT1ZDV2Z4s7Uipb4wubogoaYUlksTxAgaIxT
dme19eL0uI3Q+48ze4/Te0YoqkEiqJx6gNLRS1B0ZMhaU0XKpHJ5VIksvKQu
rKI2rJTv19aB+eIU/9RKyemVojOneSsrrNWVnJVVzvISb26eOzmVOzJKGxoi
Dw6SeweIvX2krn4imM4ufENbclt7+kBZyFpFJqAo0dVyACFTV0PT8en6VDCA
MhpQQgbKsa/KE9+14IGxHN0EGZjBaacw2rksYJX8cil992QKcCMHuJMP3Ms/
uMd5d6/g1b2yF+uVm/dKH97mPrhGuX5R2jN/Wr6wJV99Wbu0I13YaF58UNg6
W9Q0Uq0c5Df31TR2CeQqcVObUCqrb5AvLMyVlBZ4e7qnJcYR02MquPjsTL98
UlghNUItZ7949MXbja+1L68Ab269e3XrYP+B/t6dbksfALxuArpnur1H2nf6
r7/avjHWI9hYOwO8unljba1xeu39volngoUN8RxY6n637n+odYLZTf7kczHY
8DVn2YKSUn5qWWF4KTc0l42mUJwoqY41mHBRcDgfGsq3Dq408646Cis47Ew8
Cgk3cUI5OFs6Oxs7OZja2VnY2Rvb2aOCAvyTE5xDgix8PU090GZokDtX0++t
c4Hqaxv8B+uMEc6fOdp9ZGNh7e5q6eFqCg68ri4m+hUKiCnKztEP4hXrGonz
Ss8NopenH0tCH0UYH3Wx+aO92UeOFkdRkMNIx8MoRwNPJ9tgqGeKWzjVJznP
n1ASxuBHcUQxZfIkoTKtdYjFEWf8k+3HH6FsLcPs3NLsw4ieaTmhFL11MUWi
hCpZ2vfWdfRRuoeyu4azxxerMXnHnGNM/chu/jSvCG5wcnEwriqcWRtX1JAi
6sA19lGUQ7S2YWrHCKVjhNoyRG0dYZPK/ZK47rjqcLo4vrApvbodI1Fj5CBx
/cTGPkJTL6Gh+32pa0suUcTnN8fky2KK6mMKJWF1HZkt3VmdfTg1OFeOUAfH
WZop9sAYE6x5nX2U9l5SK0hTe5qkNaWqJamwKZrXGFEsiyjiB4hqI1eWKlcX
y5bmeadPFp1czV9ZZS+vsBeXuXPzedMzuWMnmCOjjBFN9tAgo7eP3NtP7eol
t6vxTcrUZmWKXBo5psA+HSp/WZ/z/oBiBsCn6wM2ulI6UEwFColACfZdWepr
SZqujwGcoAPjeGASq53Dvl3K2lpK2buaDdzjAbfz9a/XucM9uMt7d7fgxW3u
s7XcB9ezH15hXPiqpWPqYv3yi9qVbfHS87qlZ/VTt/KbJkubR/jK/prmXkFD
l0DWLmpoaWztEEqlmCxMckoiGu0RHRmNTYuv5NG45Ph8YmwRNapDyti6u/jy
0Ypu91vdyytvti8dvL2jfXtft/dYt/8Y2H8E7D3ce30XOLivfXsbeHvn1qWZ
ZgFtdqB2f/vCnfs3mmaufH8OSY1+08TW3wO63637deuqxn8xv2JdJfgN71+A
+H3+Nuv4U8+Eky8EU6B1G9Wzm1WzW+C1efFRkbytWIipLA2r4oVx8tzpdGg2
EcGORUhiohv8kqROkSJLP4EhsvAoHGMI9bOCOLnAjREwQ4gjCJ2Vg8NRa2tT
GNQzOhIREeoQEmDh7WXxfpI1QoLz6Y/WQQz+XPCM4NAPrcwMYI6gdebuSHM0
3AINN0PD9Wd4ulu7hDoHpLlHkrxwBTGpOdGfIz81QFl8ArH40N7iMMIR5O4I
EmLoAbUNdkEnuAfjveJzfLOKQ6mV4TlCsP/oH+Vt6CeXNZE+cDj0J5StVbgD
OtUxnOgFWkcqimBVx/DEieXydFErRq7GtfVRuoaZ3RrWieWqBJYnJN4iiO4d
yPCJzg9OLgsl8KOyJbHFTcniLlzTEFUxTGsZoXUcp7VqyI1DZGk/NYmDSCv1
zawKAkksVqYLVJm1XdiGfkLjILlxgAR+kPVkiVXpVe2Jxcp4TiNIVhxXGlnV
nCRXYRU9+I5+fNcwuW+ENnAiG0z/KKN/hAn2zPZuYkNrmkSRwFcklCjjuc0x
3Kaoovrwomr/42Ock8tVczP5y0sFS4v5S0vcxWX24gp7bilvcoY1Ns4cGaFp
Rugjo8zBIUbPAF3VQ23vIjcpM+rkSSJhkLo19cJpyY2x0l0lWyf4XjkaOLfq
Gx1oXSEVKCADRYSDkszdkpgDFRU4zgTG9NaBM+zOdPKbCwzgfonuLge4ywXu
cHS3OQe3ue9uc7dvsp5ep61fJq9fKji5OtA6tVa7/Fy0uiFZft64siUZu1rU
MlPdfpzf0itQ9Aib1HxZq6SpPa+g3A4Ct7a1iYmL8fIJCggIS0mM4zAJPEY6
ExtdnpOqEJIfXxt/tja59/SU9vn5N5tf74Mj6qtbutd3ta/WgLdrwN6ds4uq
r1a7gL3bwLu18d6q/tay/uaCnfWF+0+uK+Yu1s49lM495S88F85u61/RuLD5
m/Iz0H71O/+LWffkx/t1P7Xu/Rcf/DT/Affr/hq0X8lf8PWX/+vXufsl62om
Qet2hVO7gunNqrknFfOPK2aeyxZeifvOsPiMSn5iTWFUIds7h+6cTbJnJlqX
xbnVRYXWo8Oktn5iUzTPFJlkDfd0RlijkEYouAHUyczBycIRYurg9JmNjaW7
u1tsrHNEqE2Ar6Un2tQNZYRC/mjdjzGAQ8EB9gjU9kMbEyMExMLTxcxN/9od
I6STIdLOAGlh46s/iykI45vIjMQVJdgHGX6OOvQpwuqf7MwM0JAjKOhRV5ih
h7NVgAs8Gu2H8Yxi+KTzAomlwQx+OK8+rkKZJlJj+B3Uz93MPkRaWYY5oJJc
QwkBKexQfHEEkx/DkSSWNmQI2rD1XfiWAUqnJrt7jD00UxrKQCHSnXyp7v5M
n0heUGJZML4mIrs2trg5SdyV1TBEVgxT2kYZ7WOMllG6ciSbr8LG5kCxFYFZ
1UGs+viy1vSazgxpN2gdvnmI3DxErR8gSbpxfFVGWXsSTxELWsdtiGYK/UWd
GLDXNXfh2gdI6mFy7yijbzS7d5TZO6L/0K1hdPaRmzrSxU1xVc1xxU1xnIYo
XmMMVxjYos5aWa2em+MtLuQvLnAWFrgLi5zFpby5xdyJGeaJcab+OJRR2vAw
bXCY0TOU3dmf3dbLbGzHyZvT+MKw5qboL0+XnwYzV7TelfNWTAFqqEAFBSih
AEVgo/veOgrAI+oKsa8KYvcascAoDTiRpZvCvJlIfXOSANwp0b5/WyKgf/EE
aF3uwQ3m/hr7+a3cR1eY65dpV7+VahZO6V//uvJccvKZeGlLvrIlnbhW1DIt
UI3xW7oFSrWwuYMva5Y2thEZ7MMmFpb2EE8/v8DgWJiLd2x0NDkrhZdLIKSG
s0lxdeW4rXsr2p2vgTff6XbPaze/Onh+/uDlpYPdSwevrwJvru08/GJMXdop
Jp2dar57abKrntWrKJ7X1O1tfLH+8FrL/AXp3D3p7BP9Oe1zO/p30f7wosb/
j/yMu1/75oWtX+t4v3kd9t+Jvie/vHHskXDq4Y8RTD382TrsLwVUUTT58McI
J39tWRbMfyXrNgVTO4Kp7ZqZ59WzG5VzjytmtyQzu8qZ2/kNUl5FpqA4vpDl
l0dFsoj2ORk23Hin6gjvev9wKcRXZOWeZ42Oc0QhUWgrd1dDFPwI2NAgEFMo
1BwCNXR0+sTBARIc7JYQ6xgaZHHM3dgNYYCCf7/u8BdBOBu4QI862/3B2vgz
qK2ND9rKE2Gmf52igwHS3gBhZeRm4Rjs5JvqE04OwZcmBeHcjqA/NXa3+8DB
7GNnawNX6FEU7AgaYuoDg4ajfNK8wijHkvICsEUhlMowdm1sSXOaQI1t0PBs
wqAfuJhahDgiEtyCicHJnDBcSQSdH5Mn1ltX05Yl7SY0D1DbNayeE5yh2dIg
JsolE+JDcwtg+UUVBqdUhBCEEcx6sLClinpw8mFyMzi6Hme2nWA0gZ9Hc9h1
UXEcOLYqkCSO4CpSK1WZwu5MaR+mfgDXOExu0tCkQ2RhT1a1Or2kPREcYDlN
0XRxYL4sQqLGybsJij6ysp/QOQxiS1MNU8EP4FU1RO3opyp6iIouvLQ1ka+I
L5XHFMkieeJgoSJ+8WTVwkLh9HTO/CJnbiFvfpG7sMQFP0xMM0YmaCNj9NHj
zGENdWCY2jvEUA8xlT10eSepTplRxveXyiLPnKn68kzZ8lL+4hz3uob9vIm+
LyQDVaB1JKCACOQTAS4R4OAAtv7I4nfcmHe1KcAwQTeB2ZvIeDuD0V3kAtfz
wS73Hro8MLrbrIPrlINb9I0beeuXOGsXS1dWejtnb9QubdetbNWv7EqWdhtO
PpeOXy1snRCoj9e0qIWtaoGiXdDQwpc01DUpAyKiPzE0haLQgWFJMKRvUEhY
VkZSLh2DSQxhE+P4vMyJPuG5+ZYr57q3b8/tb3wBvPgWePUd8OrS3vZ54NW1
71ZUfXJWf0POeEfpVGf5oCK/tZZ54/z4wfNv7j240blyrW5uXTr/uHrxWc38
tnjhN0H3u3X/PawDZ1jB9BYY0LqamS3+7NOquWfC6efNc49rBma51XlVJWnF
7HAe1ZNHROQQ7HNSHAoj0KKQkHr3UIGTD8vBLQKCckK7WnigzZFIQxjUAAY1
hsOMoTBTZ/ifbO0/sndwi4tGRIbZ+fuYeboauoJtDWaMcP4x3w+zR2GOhyE2
H9tbfOxgaeGBtPZBmbnDjFyhhsjvnxa2tPSxc4t3D8L7pXIj03kx5sdMjDxs
P4HZfuBgcRipr3afopwOox2tA2GuCW7+OM/YnABMUSilMipXHFfSmF6jymoZ
L0Uluf0j1NAqBAqPcw8hhiVxInGlkTR+HFuSVNKQwW/Pqu0mNg0w2kZyeyeL
BmbLfSlwGBbiTXMPzA2IKgpOrgzDiyKZsrjiljRRL16uAX2jKY8zWo8zFKMM
+Ug2tvxYDA+ZWR1EqYvOb0mpUGeKerDSfkzdIE42SJINUyWDJEHvD9YVgjNs
UwxdFFDZlirpwcl68I39JOUguWWY2jJEaR0ktQ4SWwaIij5iUw+xXoWTtmPq
VekiZWJ5XUS5NLxCEjQ2k79yunJxkbe0zJtb5M7Os0HrwA/jMyzNOG3wOGVw
lDo0Sh/QUHo1VPUwrW2A3tBFFrdk8Ouj+JKg5ZMVp0+VnpznnFrgzU3lro4w
brTTdiTkg2qythgPcDEABwuwMQA7Ux9u+jt25J44QTeY9UoT/3YWpzvD0p5j
AFfy9Cuwt3OAOywwB2vZBzfw+7cID66yb1+qPP+FYmR2VbH4VHJys35lq3Hp
tXTppXx1SzZ1vbBlvLpjSA+dspPf0CqSt1SJ5YJaGZtXZGbvZGBj6+YX6eoV
4gxHpCZGMynp6bG+xOTg0lwMNdkXG2ZfQfW/+82gdvPU/tap53dnth8sAQe3
Xm+cG1cVt1bjBhrzlgZrNU0FPfUscIx9t3nx1YOT99bX2hdu1c09qpt/wl96
WvP+JRe/W/c/x7qq6aeVs88qZ7dqZrdE09uiKXCSfVoz/Vw8+aRueq1a2VRV
kVXMji1hBJSS3BkUezrOLj/OtdjfvS4grM4jnAk/ForytPNyM/Nyt0OhzeEu
RnA4GENnuDHU5aij8z+bW1p4uqNjo2BhgbZ+nkbuCGOks5mLfg+FiYuzKRJu
DDY6mKMBzMEA7mDg4vixg8VRuL2VF9LcHWaKhulLINLZAGFv5GoDCXXxSXeP
ovviyhLdklyOupobuUM+sLM4BLM3cIUcQjh+hrKz8HdyiXM9hvWKZgViS6Lo
1fFccUJJQ1pFe0bTaFEYOfJ/OxlbBTs7x3kE4EMS2GEZxRHESnCKjOfVp1W0
YAUqfH0vpWU4p3eqWD1e6JblAMU4edM9/mxdOF4Uky1LKG7NEPUSZCPkpuO0
5lG6YoSuGMsV9FHieOiYIo8MUShNFstrSa1QY4S9oHVY6QB4JdT2EwQ92Cp1
emlHclFbAk8RnyOP4DXHi7px0l5CfR9BASqnoTYPU5oGyU2DhOZBggz88a7M
2k6ssC1TpAKbZ3K1Ik7YFFstCVH34pZWSucWOIvLnJWThXPL+bMLebMLeuhG
JuhDYzQQugENfVBD79WQ1cNUZR9ZrsbXdWArZdGlIr+5lZKzX9UsLrBPL3BP
zeZPjTNOTDDO9VCfSkn7VSRdMdjl0vVHsrPTgJwkIDcJYCfts8L3xYkHfZh3
kxnaL3OAszn7X1B132UDN3P1r9e5QwPuUA/WqLqbmLfXMu5dYl85z19dHBpY
vFR76j7/7GP56vPmxTeylVfylc2m+TWw15W39tWpemtb1fw6hVCmFNU1FVfy
+WJpWGzCR4Zm1lBvT98oJygsyM+DSkgmpocnh7uX5hLzyWlZEa417JhnN2b2
Hy8BL79YGCzqlhLuXNRcXGlRVme080lTHZUTnRW90tzuOubTe0vvNr7evbN8
8+ZN5dRN2fxm3TwI3ROB/g2Mz3637u9t3U8fD/6ZZj9fnvjJ6sNfa/Zr/+sv
t0j8/ItT/yJe5cwzMDUzm8LpHdH0Fn8GtG6revyJFGz4moUSQV4xL7mMEVhB
9mXRoNkEu6JkJMXZlmUJUwam8Hyiorz97LzQZl5oW3c3awRSz50LyJ2LERRu
4AT91MHxT47gJBvgFhsJDfY393QzQyPNXRFmKBczVxdDuP5mnaH+fh3Y8fT3
8T53sv7E1swCDbP1RJiA1iHh4GhsgIIeRdpbHYO4J6L9sa7pvMgEVpixh4W5
F+yf7S3+CLU9ioLqrUM7mPmBnQ19DOsdzQzCFEXTquLzhPGFstQSRWrDMDej
KOn/hvzRIgQCi/PwywqOZgSn8kKySsNo1VF5tYnFjWnVbZlgtWvso3dPFLaO
clCZts5YZy+w17H9I4uDkirDcMLobFliUXumsA+0jto4Qms6Tm8ArZtkF7Zn
hOXC0yqDibVR2Q0Jhe2ZlV1YUW+WHjq9dThxX1ZlV0ZZR0pRSwJPGV/UksSQ
hlR0ZtQOkOsHyA39JIWGBqZpmNI4SGoYINb3ZUm6MoSdaYK29KqW1DJlYpki
trI5pro+vK0rc2GxcHYub3GJu7TMmV1kz63kT4Oj60zO6ARjGIRuhKrfajFI
A6PSMFoHGQ1qsBlmVMtB6AKnlopOnauaWQR7IHtxhnVyMnd2kjUwRZ/WUNca
iW+r8AfFWXv56XuchAM9dClaajiQG/uWHfpWmqgdJwNf5h6cZerOZu+dpu5/
RQFuMIE7FOA2FbhF096kaK+nv7mSePMCb/FU0/GFr1UrjySnHwrPgNZtNS+C
0L0ArVMu3ilomSxV9Db2DNS1dwkbWwT1jdWSunKBqEIkLqsRmjkiPjWDwdyC
vXwC3FDOmNSIbFJSYoh3Lj6NS8rEhKGlxam76wt7G4vvNuYHG0kNJfGDDbSB
RnpjaWJffQ4IXYeAOiDLG1eV3flu5N368ut7p789f1k+frN+aadef8rKQ+Hy
o9qlTeni81/KXyP2L/k1GDcl7w83+CH6x1p+krmnP81/yFLF9w8Vf//50Xvi
fszDn3H3S/k/se7Xmtvf+lTJv826n5zVCSr352z9NPzpzdq525Xqfl4JqTon
tIrqx6W7FRLg5bEIkq015iPrCsdAQVxW1DF/lwBfU18PK0+0HRplg0RZIJGm
SISRs/MRR8cjUMghiMNRGAwVHuYSGmzve8zay9NKv06BMHNDHgZHVxA6JPL9
+uz/y959R7WV3/nD/+c5Z59nf5tspsUdY+NuMKarN3oTTSBRJBAgCaHekGii
dxDqEh1EVaP3IkAS2J6eSTIpmzKbZJoH0+zYM248V3gm8WQ3k7bZ3xaf8z73
XCShP1/n/bnfe7+Cng4KOBtw/bjnxTP+3n4hqCtIMDDzAvFAQs4iwOcxAZBk
REgmGC+IoJSnBiQGnUNdPwa+/s++nqcRoFPowJNIX4/wgAA8IoQSmsCOzC7B
sWvwokZ8mYpU0UZSGHlCRdY/Bv2DR4xXAAEVRolK4mFJJVhaZTy3IblInlGh
z2ropaiGGJoR9uBMaddYISzHG5wHxXAQsUWRSRVYUt0z6zIA61rMTNUYRzPO
1U/ydVOCjoVSrio5QQzOa07ka1KLu8jVA/TGEbrMQle6oKMqLHkyl3U51f3k
8h5SWXeGWIeX6JObh+kKM1Nn5Rwu6Yo6J4RtYzy9laUx5yuGKQB09X2Ztd2Z
VR2k0jZCVXtKtTaxWZe4sCpdd5QvLhUAcytQ7RbXihZWC+dXCmcWxeOz/NFJ
jnmCNTzKGjKyBk28HrNEO8hR9mTLOzIalPHjc+Jb78pszpKldcnMsusHLGwz
gvkZgXmRNzrDe7OXuVtP/6KMtluedU+a/qQo+zE37Skn+aEw8bY44osR1sEb
FY/fKnz8pujxLeGjDd79G3mPf8J7+q+Cp//CPvgJ4+GP8u7/KPPOD8hvvNFo
sa/32Ld19s91jj2d847OsaOz31U77mrtW332jxqHneV6Y2vvkKZvSN7RUyOT
1chaGhTyRpU6MT3rvC/EwxflcRUSFZsQEoxITYwo5GSTEiIE2WQpm5oZF6Cs
ID342P50/+YH7w32NGX1t7Ime0r1lSR9ZeZkV5mhhWNo5tiMsvGeKvtk65Pf
LN37xcby6uuqxX+Vr+9qbK4f15bZP/nLrPtzs+W6RfmP5f+Cdc/noz/w7c/M
/3jrgLQufaKd+75U1lJVkt4gwlTywuqYsdUpIdzr3qILgazjPqXRafnpWdCY
CK+Y0Cth6GvBSB8U2guFvIxAXACBPQICzgYFugUFHvfzuYJGguOxkASsT0SY
6yY6NAwYTg8DAaC7cLg+6x4UcMbf57Sf16uXPbyQQLVDnkMccocAA9a5Qf28
IkHBJHgUFZZdSojMjToJuXwGGfAtnyvHof5u6KCTSP8zwT7XkyDILExMfhhJ
EpdfnsSvTS6VZ5RpMhr68yp7WN+G/X/HMOd8kuCYzDAsOzy9MJrqsi6lUJ5R
DljXQ1UOMbVG7uCMVGvkQbOvQWgQNBsRI4nAlWOJ9Yl5rfgCPanSQGsyM2UW
hnKcDXCnneCrJ0RZVSGJEmhOHbagLauil1o7TG82MeVWhtKapzTTlGZ68wit
djC3oo8EWCftyuDK4+qHqEA/lFuYujFu5zi/a1LYOS5oG+VqLUylKa9lEBi9
SVVdGRUdxBJtWok2uVyfVK7C9o8xVzdqV9aKF1fECyuShZXCuRXJrCtF04vi
sRm+ZYJtHGMNWlj9Jk6vma8ZYCl7aYouUm1r1MRcwZvvta44pQB0cyuCyQXe
9BxvYZo3Ny0YmxeOzvJWBxkfttC+KMn5bWnmFyVpT8WZT3muLYu32aH3tbkH
azVPN4oe3xA8vMl76GA/djAfOCmPvs87+Kn4yY/zn/6U9OAnuO2fZP3k7bIF
+8iw/Sft9m2t/e6X1jm3NS7r7qnXtvs3ttqmf1jVPtHSNdLS0afp7ZXrNfWK
lmaNisYTvOp2wd0L5AkOc7/k5wdGYKMjIzFgYT4xGxfHJmZUCZkZMQE9Ct4X
Wze/+GzDPlGnKk0Z7SgdUPIbRLgBhcCqK2mrypvpqVsekpu0pTZz3eNP13/+
3op58V2l7aNW+2fq1Tvy9a0W+23F+vYL615Y92UWt/W2rZbBpSJpfkNJcC0H
LWPhKxNjRdfBpZdhPPcgkrufMJ2SSEj1x0ZcjQ29EIG+HIzxxKCuwGCXIJDz
QYHnAgPPgcGn/Hxf8/byi4oA2h0IG3MtDAOUuvNw0Hk4+DwcCkAHcHcWDDoL
CgKsuwDyOeJ5wd3v2vUQ1OVg+LNqB+QMDOyB9AtMDAjPRqRw43KKc70ig05B
vV8L8gba3Skk+CQy0A3j5xkHgWSgQnOD8fzo3OIEXnWya4zVkCo6shuHRCdD
vvsS7KRXIhRODI1mRRDEUTllCcxavFCWUaIl1XZT5ENstYnfN1/RPMiGZV6D
5YAwTAT20LoMwDqg1+lJFQZao4nRbMlvtTKVYxzthLBxhEUoQaQUY2iNSQVt
mUDxqx9hHHpIV1qBageUt/wmI616MLe4K72sN0vShi/pzJBZmDIjQzXK1gGj
6wQfmIjbxnm6UY7KwmweotYC025PemlXRnFbmlhNEKuTC+Wxrb2khY3qxVXp
4opk0Va0aCueX5HMLBXMLBfOLBdNLEis0wLzOHfQzOwzMTtMbPUwo6Unu6k9
vao1anRW8MZ7rfZblcv2onmbeGpRMDbHn5jjT80IZ6eEU9Mi8xRvzMz4gYJy
v4j8WJL5WJD0hJv+VJR9lxV7v5l8sFB3sF7+1FHw1Cl4DGSd9XSN+vka+dHb
7IP3+Y++R3z0Pu7uj5N+8754ebV/ePnNXse2Zm1X77z3O+t09ntq+32Nfb9z
7bPelX9t6ltp7baqDSZZu75F19qilVU01bPFhRd9QMcv+VzwR1zyBZ+96BUT
HRuOgrNyU1jkdHJifI2ES4wFTRgaf7v99m8/vTHYmt9eTZ3uqZUVZmgqqNN9
9bpyqlFRZDOpehr4U13lt38wtv3z5dffutG3+kHz2set9o/Utl3F6m6zy7oX
ve6FdV+mZXlXubLbufzLeq28pjRSURAqy0+SxsQXXgstPg0r8IBRTvqRriEo
aaSwlCTfpJhL2LDz4ZgrGPRVOOIiDHYBBvEAAYKB3EGB3/W+dszPJyg2BolL
8o0O9QRGVAzctQsKCn4RDr8Ah3mAgjzAIPcAX6DXufl6fvfK+SsIsGcY+iIG
fh71jDuYG/T6pRAvJBEZlRdBLaeG58a5o3yOw/3+OeDyKRToJCrwOML3YlRg
AAGOJKET2VGZklhGRaKwPkWqJpXqSEpLybWUy9+CHruaBINmhkaxolIkMYdj
bBKnKbVAmVbVlds6zFKZBb2LlVU9FDDJC54DDWEDM2wErhJLakzKlxPE7VlV
A3lNJmaTmS5z1TaWZkJY2pONK4ETK6N4KmJBO7HCkFs3RG8w5jdb81rNNJmR
2mTMqx6mlhuyizozJO1pIm1K3QDVZZ2VrQZ8AwbhST5QETWTHPU4F2iD9SOU
8n5SUXeqqB0v1KXwlTiBPL6mI3V8rWJ2rWx6WQIMrQurRYurxbO2wskl0fiC
cGJBZJ0VmsbZQ1Zm7wi9c5ihHKZXdZPq2tMq5NHDk9yb78hWb0gXHZI5m3Bq
mT82x7VMs83T7NEp3sQYb3JcYJ4SDIwzNzQ5+xLSYxb+MSP2KSdjLydun5d4
MFp5sN74ZK3kyUbBgZ134BA/XWMd2HK+sJEfvwlYR3/yHu7Be8nb79He3mjt
m1jptX3cZv9Ca3+gtf9W53xm3Y7O8Vu1/YEGeGXl9qD9U53ljcY2a7O+v1mv
adQ2NKmb6uSyypYWrqT4tJf/0cveniC4x1WfgCBYdGh4chyqgJFDScFVihj5
6WFtjYKuFtbCSE1HTa5JI+2s41VzcBZ9RXc9u7ueuW6SDbVyBmXcD9+x3P/F
xM/eXl64+b585VeNGx+22n+tWbmrsN1ttm+96HX/paz7hnXYv8i6ZxubNC1u
AQFO/txet7TbvLSvWd/VTdyoqua1FmMV3JiK+KgS77CK82jxabDoNCj72HVS
UHA2MTM4JfEqNvxSdKhPaMgVJPI8EhhLoR4Q8FkI6DQo8FiA38vXPIFBFYlL
DIiN8gzFXA1BX8IgPRDQszDoGSjEDRx4GhzoDvY/DfL1gAYc8bl61M/rKjAX
R2DOoaGn4UHuyCA3uJ8bwssvARqaHYYXJmcWZp8L9TsO9Xk50OsELPAUHJhk
/U+hrwEjKjwdhWVEpAujaNJ4fj2hWJlRqs9UWksRFND/G/DKxXgwLCs0khWR
UhiTUYKlVCZymggiRWpFZ7ZsiKUwcg0LVRXtWQHEq2AaLJSLii2KTK6OzWxO
YigJko6cyn7Auvwmi8s615Q6xmMo4mMlIHJ9jECXXtydWT1AqRmi1o/kNRgp
jcbchuHcumFq1RCtsDuzoCNd3J7qsm44rwWYVcd5qgmeZpKnnuRpJjiqCbZi
nAUoWjVCLTIQxT3pPH0yW53AVyZIFAldk/xpR9X4kmTaVji/WjwHZK102lYy
tiw2zwtMczzjFG9wjGUw0TuHaLpBekNfTkV7enFzZP8Y69b3VcubZXNrglkb
d2aFN7nIHZ1hmadYxmm2cZwzNsobtwqNE6LOKdZ8F+XTwvSn7NSn9Nj72dH3
haTHSu5Dg/BgtfapU/rYefgzE+u8gzXGwRrtyWrW49dzD36Y9uTduP136T96
XTY4bW2de1/v2NE47us2vlA5djUbW1qXdbtAr9M4Hugc93TrO13AKws/a+5d
TqaXUUXSPtNQtawph8WpVSibNG1kJu+1C5fdr/n6wTGnznhFRMbGRsK5ecTc
1MhSfhqTiFbXMMo4cV3NzPZqukVXWcNJHWgt6mnk6ipzV0YajCq2RZP/qzcH
9n4+9uF7lrfeeb/b9nOZ4zctzk+Uq1u6lV3l6k7Tn7Lur2Xw69a5dsz73bLs
1n+Udd/g3p94jOL3+cO1iT8//9Wte461v8S6rYbl7Ybl3S7bbVWvpaGaLJdE
VSQEl/qF1HhFlF9Al54CiU6Css8EZIZjcVkZYELidWy0f0ioVwjmfDDgGMwD
Bj0Lh54KCjge6H8KFPCK59VLaCQcj/OJjvAMD70cjAagc4NCTkPBp8ABQE5D
A9yhAWfhIDdowCs+nudQ0OtRIRdC4G6IQDdEwGmkC7SLYYGwdHRkXnhmUSYk
NewY/NqrIO/XAr3cEYGnUP7Hkde8YqEgPDKKFkEQxVKkibz69AJZarEuU2kp
TpJE/T8BL11MgIIzQ2K5MThJDFEaR63GcZpTRaqMio7clmFWq5EDWCdRp/qm
X4blIcIEIbHFkSk18eQWHEudVtRJrumnNpkA6IDky0eZzRZGejUytgRElSUU
tKWVdhOr+nNrBim1wBw6Qq0HrBsBoMstMZBFXRmizgyhNqXCkFM3TG+2slRT
QuUkR+Wyjque5CjHmM0mGuBkaX+mpI8o6kkXtBNYCiy7KVI1nDe2VmFeKpxc
KZxZEc/YCmdtRTOrxWPLhZZFkXGWNzTJAVpZrzW/25Sv7ae2dmfVd5EKGsO7
zYzNd5XzjrKlTenUimB6hTezIphc4o/OMM0z7JEZ7tA4y2LhmM38XiO7fYy9
2Mf8qJj4OSvlQXbYAxb+oEnyWM75XM84mC8/cEqfODlP1jgHq4wDG/XAlvto
Oe2LjfQDoNS9Gfeb1yVTc30tYzdb7Z+oN3c1zn2t857GeUez8Zn2y163p3He
U2/su04cu53OLdnIm+ki1VU0nswSy9u73X0CIvHEOrm+Sd1OpLNOefpeuB7k
ftUfBA+OiwkVcXOK+ISWqmxFdc6QrljfwOhu5nQ2crQV+dpyhlEtba+izfRV
mnUcsy7vJxu6nZ9bP3ir+19+sDq29mPV6kcy52/k659pV/Z0KzuKta0m+2eK
9b8GuhfW/c+zrmVpW7b0afPSp8Ak27Zyt2/xJ026+prC5PqMeCk0uuRKcOVl
TPVZePFJEMsDFH7ROwqXEEnJhOGToRGRVzEojxCkBwp+Fg47A1gHDjwRFABY
d9TH56ifDyQxHpGc5Bcb6RUReg74DAJ6Bg45DdQ/CMgdFgjkDBwE5Fig97Eg
nyuHN7ScQYNdvQ4BPg2HuWPAfsnwYAomWZicyEk7hfb+LsTr276XTyECjsCu
uWH8LkWCfBNhwTmhyUJsjjSJVU3gt7hG1BZjAb2J9A9BL13GwcBZobF8bII4
KkMan1udzGwiCIDu15ndOMiQmXg9SzWMlkSf1AtoOjJSGBZXGp1Sm5DdksJW
pxf35FQP0prN9FYro9mUpxrnAjTFFfkTakPZmlSRPq2sN7Nm0GWdK0NAo8up
HcqV9pEF7WnCTiJPRxDpCQ0j+U0mlnyc58oEt3WCIx/nKMZYrSZa3VBOpYFc
1JNRaCAJOvAFbQROK7a6mzi8WGpaLLQuSsaWJeNLItfcuiweWxKPzhdYZkXG
Sf7QOLdnlNFuomkHKcq+LHl3ZlFjmHYgx/5Gy4Kzcn5dOmMrmlqRTCwXTCyL
xhdFlhmOaYYzNM3pG2MOjDD6jNxeE6/byFrUZN8uzfqMHHaPnXzQVPKkRnTQ
JHik5Tyxig/sJY/X2U/WmAc2ztMlysFi2sOFlEfOrIdv429vJPzkVk2Xdaxp
+ueazT315p52Y1+zsafZ2HZBt7GtP4x2Yxt4xTXV2vc7nfu9ax/lVA37xrO8
QvGhKTmQSNzRK0HQcFxhVXOtXHfOD+rhE+QZhLx8PSguPo6UhpUWZMqqSLqm
3AF9wbBeYmor7pMLq7lJg8qituq8+cE6a5to2iCeNgidUzW/fnfogx9MrG6u
96z8i3x9S+a4rV6/o7PtaWzbcvtWi2PrhXUvrHvOujuypS3Z4n7Lwj3t2lbH
9EZDdVkdiVSGjC8Hx5V4YsovIErcodxz0HjvIC9QUHBmejQlBx4Z7RMWdj4M
fR4YUQHrgOYGCQS4A6bUM+CgY37XgZoHSsCCE+M9I8MuBiMvohEX0ICKrgbo
Dge5A+MqPOgMPOgk2P9ln6tA07sMfFUI/AwKcgICcUegT2Ngl6ICEVmoGBYW
x8/wxIJPoLz/ye/KEajPcYTvSeR1j7AAzzgwMiskjhtDLEmkV6UKZRlCBaHa
wC5sZ7+CPuYR7Q3PDovhYxMlMenPrGskCBRpxfrM2j6azMjrWa6lN8YFpF8O
ZQVjJVG4yviMBhytNY2nI5X2UWuH82UWBmBdi5mumxYVdqZFiX2yZfF8PVHi
ulhHPrSOCkyyVQO51UOU6sHcoi6SQJ/GayfSZPGlPVn1I/mNZpd1MiundYzb
YuW0jLKBibhphFIzQJb2Egt7iQXdGQJtskiNK1anGGaLx1YrjXPi0aWiUaDI
zQvH5vjW+QLzrNA8I7ROCU3jwoFRXoeZoRqiKvrJ8p6Mypaw9l6SfbN+ySmd
WhaPL4pnVkonF4vH5sXj8xLgaJniDU+y+saZneb8ruF8vZHVNcLtHci3y3P/
hRKxL8l43Mh73FB4UFt0UCd81JL/eIBzsCB6usp8ssp8ahM8XaQ8mY9/tJD0
9Ebe7g38rzbTvv9mq2p6qd62pbtxX7O5r93Y025ua5w7wIluY8dl3eZn2s0t
7SbQ8fb1Gw809t2eG/uaxQ/QeQ3eSQzv8IygMHxgCP7c9RBoWHIMnuzm5XcV
hPQMgF/1gcDhwbi4iCJBWl1JorYhXVOb2SXLNyhZQzp+n4LbI+NZO0vM7cLZ
wTJTm8AgZ7231vcvNy2bq9YR25ua1U+bHbsyxx3d6o7etqda32l1bMu/cWHi
hXX/M6x7dsnuy32Jv9k6193Fey0Le03L9xtXtjvXPuvpt9VSCioj04qh0aJr
IcWXUJKzMMYlWKwvxAsKPYdBhWdlRRDS/aIjr0aFnUMhLqCQgGBu0KDTQCBB
7qDA06DAV655nkFAoEmJvtioS8GoixjkBTTiOeu+zGlY0Ku+nkcCrp8Phl8J
R5/FwN1g8DNI1Ak45DjC2zspEE5CEURZYZSkI/ArL4M8v+V/+STS7yjM+zTG
/3IMCEpEx7AiUyVxtMpUQStJoEqXduVV9UvcojyOhl6AkkNjuNgkCfaw16Uw
GlL58tQiHbG2j948AljXQG2IA2VdjxZEJhRjU6qTsloIDDVR1JFd1k+rNzJa
LAyZmQ6Ip52WsOTxCaXgfG1qQTe5tDerZuBZqaNVDeRVDriO5X054vZ0YVt6
njyRpcJVD9EbTIzWMV6LlQ1ENsppsbKANFvy64cpFQZSUU96YR+Jq8cL9QSB
LEE5yBhbqbEuSS2LRdblIuui2DzHN89wjTO84Snu8CR3ZJw3bOX3mbjqoXx5
f25jT0ZZa4S+N+3G6w12Z/n0knB6RTy+IB5zEefK+Hzh2FyhdRqogqyu0fxO
M6NrhKU2ctuGeUMd9LWilDuF5MdN3IfNgsf14oP64oNa0cN62qOufNeGTsuM
gxX6wRLz8Qzx4VT0/bmEe47cX6+nfPAGdeOmrHl+qfnWPc3GA+3GXZd1riIH
HO/pNnb1G1v6jU+1m7cPrdvTOe+74tjtfX1fufBT3+zy6/H5qHgKJJwICU/3
x+CuwyM8IRgfeNj56+ATHt7XrkOSsBFVJdmGNt5gp2CoXTioY3Y0kLqaqUZd
4UR3pbVdMmMQD2lpAyrOrbneN20TG/Njc/PLnSs/U6zvt9j3FY5d3aorQJ2T
OVw3/f6Xs+4/4hmK/zTrZF+lZe7D3+VPWtc0//v8wRMQf751f4Dbv2vdl8/A
Lm4959udb1qHBbhbdu1+07wCZEe+tNe7+Jum2t4qQk49OqLKJ7LuYnjpBXSO
JxzhC/KGo074BVwJC42mUSGE5Gsx0Zcjws6i4O4I6Ck46CQsCBDvDCToLDjo
NDDPBvl7R4WDkxOAancBqHYY5HmUizvgw89yGg5xg4GPBPm/4ud9Cga6GIbx
wCDOIBHuCMRJGOQIzO9smF8gARmVn4wvoJ4O9Qes+z++l44j/L8L9XZD+1+O
DoKko8NooYmC2GxpMrs5Hahthe2UhmHphaSrblFXkOQILDsuRRxHLE10WVeP
B6wr1BGr+ugNI7zulWZCWaQP0TNKEIktikmpTCQ14vNUGeIuSvkAvQ6wbjRf
NkaTj7FVVjG1Mo5UE8XoJAr6yaWD5NrB7Prh3JoRStUgrWKAVt5PL+7OEbWl
8bSpmfWhwjZ8zTC9zpTfPMpqtDCBNJgZzVZmk5VVO0KrHs4tNZDEXRnCzjR+
WxpHgStrJ5kWqkYXy8ZXysZsZYfWFRhn+SMzvAHXBTq2wcrqtbK6Dx+bVRio
9R3pleoEjYG0vlnn3KhaWCkArBubB0qgwDjDN80ID9ErME/zLdOuS3zdo5zu
EU5vP6djWKg38MYrM35TxTxoKXpUw3lSyzuoL3haW3BQI3hUR/9cTz2Y5B/M
0g/mKQcLxIPp5IfjCdsL6b9yZP/yLeZPv1e4aOvoXvmRbuPBYW3bO8yudmP3
sOMBJzuHcY2xgHV6512dY79t46569c7g25+3LPwaktN4LYoOxzECYzKgsfjQ
BOJ1ZNSVoJBcdiE4PPGs33Uej7798fdftw9o5eJxi2J2TGLUkDrqWd0NRTMd
dbNdxRZ1zqqR9+6Sen2qd3Zmdnzp7UHbB1qgv63vKu37KvuuZm1Hs7qrXN9W
2LdUf0Ov+yb6Vr9xW7yvL8vKv/xds8O4fqx2+6vc+fMb4Desyf4l9P3FK7bN
/96OT/+Wu/8u1h3edvK7AOjtd63d0fTZ6tjF9bFJdSBs87WYimtROb6hwYgw
bxTmMhJ9EgzyxsZE03JB+CSfuOhzLqAO7UJA3OGQMxAQYB2QMyBgqg3yxUYH
JGAvhwUDkyxQ8ADunrcOyEkY+BU/n9cCfT3QiPMhqDNo+BkEDKDvONz/BNL7
WiIcSoogSGjg9KjXIJ4vBXm+Brl+BOp7CuV/KRIETkOhs9ExzHBCYRylNpnd
ShBpMuuGin2Jfq+i3WHEYCw7Fi+JI0mTDq0jcFsJYk16eQ+1foTftdyMK4nw
I14P50UcPiCWQGxMoSvSJV3UisH8OhOzZZzZPMZQTRfWjYgyKhPzdLmMQQbb
mC8y0cpNlGoTucZIrhoiVw7kVvbRSrtyRPpUhjKJKosu7SXXjtDrzfl1xrxa
Y16diV4zQms4/LNiMFvckybsIgjbCVxtMk+TIlIlG+bLrctVo8vSCVvFuK3M
vCgxzxeMzAoGZ4T9E7zeUXaniakz5qkHaa292U2dxCpVvLqXuH6rcc1Zvbpe
NrtYYJnlWueEljmBaVYAlEDTtNA4LRgcZw+Oc/vGuO1mdls/q6eHqeykNeuy
bmi5j9TSx5XcJ9Wcg1ruAXCsYB9UMB9V5T5QZh+McQ+maAeTwEnyo/G4OxPY
T1eIH99i/eztgjdv1k0tzXWv/kbn3PkKOld0rkt2rmifi+6rdzWOHaDaqda2
u27db53+eSxbeS2OHZhIhyblhOLJkBjcFQg6IZMajIsXltP72ht/8vrEB+8a
1dXpA65qlznfyxjWCtXV9BFdSa+cZ59WrIwr9KqqYfPoyOKb3bZf6tduq9d3
v8qO+suF123V+pbqb+h1f3/rthXLn72w7j/ZuufEA6y7p7Vtd0//sLGuo5rM
bApNavSPKfeLywZFI5HhVzCYK8Ho83DYK77efnGxsTQKQJlnZCjA3Wkk7AwK
YAp6FgbxcO3BDvaAgF71cRU2EC7eLy7aMyzkcjD6AqAZEvY77p6Jdwwc+B2f
a25wsOtd4EuQsJMu6wKOw31OYa4HpQVjWfgkLvFcWNDLQVdfCvQ6gQw4hvQ/
G+7vj0cjyMGRrLAUcXxuVQpThudrSPXDRWg66jvwI8CEG82ITi7AZpQkZlfi
8mpTWE14oSpN2pVbO8RrX2hMLAz1y7wWwsZESyK/Zt0Qo87MarTmVxlpzTMl
jE56RGUiZVhMmSzJnyvlzhYWjLEl5txiU2aZkVQxSCo3ZBV3ZYrbiXRZvECf
Wj2UVzPiSuUgtWqQWj1EqxnOqx7OKxugFvSSOJ3J7Ha8oA3PVyUVKJP04wVG
W+XIUolluXjMJjUvFZkXJKb5woEZUd+UsHuC12ZhqkbyFQP59Z3kpu6sakWs
vCPZBijnrFhely6ulU4tFY7OFVjmRKYZwcg0f2CcMzDJP0SS0zfO7zBzdUPs
9gG2QpHWpEsbmRa/P1Jyr4n/pJb/uIL5tJp1UMk+kNIPSmlPSslfyLIOLJyD
ccqT0fSD0ZStfthH05G7b+R/cpP//k3pur3bvPJ+m31LfeP24cT6jdYBxe+w
+2ntAIy7hxXrTtfmXrvtY1rjWEBqsXcCK5IshCdmQePxx7z9Iogp/SOqjpaq
5b7Wz96yDtRnWboLhzRsk5w/pK+slmbXlNNqasQVtRUJadklMoNh+ceda/8q
X/tI6dgB6twfWueCbvswL6x7Yd2/Yx0wybYsPwBG2s6VD5SG+caiBi2B3AKP
KwMnZUGSECHYq9EhZ5BBnmiYG8j3Je8rqDRCODnzOjb6UhgGmGTPPrMODj0H
de2F4gEGHwv0eyXA52pkGDgpPiA2+lII5lww8iwAIwrmDtjoQg/2jLsjgX5H
QP7uKNjvrUMEHoX6fhd+1TMeiiSFEYto0LToV8BewBjrhgG/CvM5jvH1SoLD
sjARrAhcQTypPCmvCcdsTa3sFyWKY74FeQWSgY6kRyUK4tIKEzLLknKrcPS6
RL6CUKjPqu7naKarI/mIoBy/EA4mWhyVXJWQ2ZCS/8y6gfwqACtzfqWFUz0j
TdGSQ2WkFHMpfraGtFxPX63jL5UVzBYUTLAkFkrRUGZxb0ZBRzpfl0Zrji7v
p9QO06uGKJXDFMC6CoC7YRpwUmagFvXlsLvT87vw9PZkrg5XoEps6aeOrtUO
LBQalwtNyxLzsti0KB6Zl4zMiw3Tws4Jvn6UrRzJbxnKr++l1nTlFsnjZR34
FWelbb1odb1oZb10eqVkbKHwWakbmeL1A0VunGuYFPVOCDtGOZ1Wns7EU4/w
5O3ZSlWqdb543i79voH1WxnncQ3nUQXzcSXzaSn9QJJ7IM55Ikp/WJt6MMx8
Ysz8fAS33xfx6SDi4dvk7bdoP7Oz3rJXza7MD6x+ot7YU92486d73aF1bZv7
7cB4a3cRpHXuKlZ39I7f9m7s1Vt+kCDuxBClwXhhcCrDJyohlcvpMnV1qprm
u+p/NtPZW0nvVop71GJVFa+iTEKlZ2eQM6FR+IDY/FLt0pBzt3NtW71+R+bY
BqJyff/OV9btuOrcC+v+S1r3zfuc/Of2uu2Wld+2rOxqVj/ULrxfK+/Vclit
cSlVoam5qBREWOzl2LALkZgLKJhr0xIE9GiQHyqdgEkn+GFjLoViAPGAOdQd
BnGtQUAh7hDQKUjgUVDAdwP9r8dEwpNxVyNCPUKQZ4KRpzEIdzTcHQUH0DsN
tDskcIS85O9zFBJwFo1wg0NOwIKOwwOPwQHrvNxDffyTkXGstDhmxnG49//x
PX8KFfQq1O8E2u9qPBRERIbSQxIEWHxxArkmntaIK+5kZdcQvw19NTAVHpkf
HS+ITZFg00riyJUJ1LpEZnMiX50m7WXIJyowLDAoNzCMGxYjicZV/s46irQf
6GCUikFatZlXbJWEyojRnYKEiVrcsgy33ExYbMhdbaKvN3BXq7nTIp4xT9BH
5rWlcVQ4kSa5cSS/dohaNQSUQ2o58CUDFOBYbCAX9mYJuoj0dgKlIyWvLYna
GiXtSDMulw/Oi41LRablYtNKoWmxwDjHH5oVGGYFPdP8tnGOwsxoBmphb3ZZ
Zza/Jb5CkzLvqNx8vXp1Tbi0zJ9bKhhfKjTPC82zPNe9JZOs3nFO2yire8L1
1K3WyGw3c7rMwiZNprqNvLhUOWOTWufpb5sZt2XURzXMx+X5j8ryDoooB6Ks
A27aY07Co0r8wRDjgSH5kw7UtjXmyRuZX7yb8fFG1vsO6ZKt17z2/W7ntuLG
DhDdIXHPon3u/Pdxlbr9wxWKPb1zTw1wZN/ROu+qVvc1azuDbz7ovbktN3+P
UTkSSamGEDgBuJxyrbbDoDPpy+w9FYN1HGWDqL6Ry+FlI+Lx1yJJUZRSgWJi
YP2zkTceal0ba+9q7Dut9jtK+x2VHXBv+1mpO+x1dw5r5N/Tum/azv0brPvs
kLsvo1jeUizf+TIr37Ra8TdY9/Efz3+Ydc/j9gf5k78c8X/ROtnKnsy222r7
RG7/TfngXGO5UEbNqUlIZ0UlhEZGecXHnouOuBQWehEZ7BmMOQUJOgkFRWdn
wvHJV8JDLkWGuGqbq5i5VivcYWA3cOBJWNBLPl5A34OkJPrEx5wNx5wJQZ4N
RrpjEG5oOJBTKNhJJPQkAvIayP+lQJ9TKOgpJPQ4HLAOqHbAGOt7CuXjFQeH
pIcmcjO8sPBv+Z8HDAQ+cAoFuhgDCUxDYighsZzYZHE8qQJLaYgXaHN5cuaJ
0LPeyaAQWngsNzaxAEsojsuqSKLU4vKbcTxVamkPo3m0DMkIDMz2D+eFPbte
B1jHUGS4rBvIK+3PLR+g1ph5TAMX2khKMNbh5lrxy/KUxVbCiiJ9XYV3yEn2
lryVesa0lDnCoekIbC2+cYTZMECpG6RUDlHKgS43kCvtzykxkMU9JFFXBqs9
LVudlKNPyVHH57VG6aZEw8ulw0CLWygyLkqADM8VDM+K+mf43VN83ThbaXHt
hlfdlyltT+O3YKs7SZOO2vU36pfXxSs2weISf3peaF0UmhYFI7PcwWl2/wSr
fZShNjG1Fq7ayNKM5LcbGY0KXHtbzvxcxcxcyeSsaHKZszZB/0BNeViV/1hK
f1IMNDryAS/9gJP4OSfiSWPaQwP5k47gHWvMg3dy772bcPeN+A+c+WsrimHn
zW7nxx3OXc3mHfXmtmZjV/NVnfvdpTn9s7n138ZF364rjh2t4/DEvtO2sW95
677l5o5y4kdFnWuUmmGiRCWWdcib6+faqld6m8sLxXg6C88RUWu7yoff6trc
GXnvUc+Nu1rXbgPbmvU7z2Rz4eb4/fmhdd+QvwN9X8vXrfv6Fk//xr3fdzz5
8h350n/4suxfvw77v8O6ncPcbrJ9pFp8v6lZIeMLmzJz+AlYbFx0QFLiVWzC
5ajYKyEAd4irocEv+3h7IGFhmUQ4IdkzJvxCKPpSWPC5YNThUgX0NBQMTKOn
YODjgf6Xw4MDCUkXYsLOhKM9APGCkWeAYRYNB6A7gYCcQIAB3P7J1+uVID+g
+wF/HgYQL+AY7LpHSKBvEiqcmhhBTXkNduUVkNcpZNBJZNC5SPB1HByWiY5g
xCQAs2pJTE5dLEueIVRzzsVe8UwMQGYHR7GjDq1LzKxMzq3D5bckc9TppX3M
2pHCoFzvwNyAMH5YbFGMy7rGFKYyo7CbCvQ6wLqyfkqVmZ/VQUPKc1MnlalL
avxyK35JDliXZtcQHJpUu5q4oiRM1WdapRQDgz/MLjUyy4cpFSOUsuHcsiGq
dJBSMpBT2Jcp7ExntxFoWhxZlZCliCPLoutG8gdWK3vmCoaWioYWCgdmxYOz
BYOzYsOMsGuKrx/nKq3M5mHX5gCVvUSRMr5UmzS+XrvyRsu8s2LBUTS7Ipha
5I7O84wLwuF54eA0p3+K3T3O0lvZShOraYCqGmaoh6i16viO/pzZpcqxiQLL
hGBivmBsQbA8xf2Zmv64Iv+gjHogIR/wAehSH/Pi9gTBj9Xpn2hCtyzYg7fy
915P3n4jdutm6pu2ogn7WM/mDzscdzocdzucd9o27vx11mld1u0AJ23OvXbn
vnblTuf6bv+Ne4O37prfutdj+7Vm6n19x/SQXL4xY5pbfV0/9T3rW3dM7+6P
vP20w/FQuQzUuR0dYN36luZ53ADr7HdeWPfCur+4163sylbuNC59pl37RDNs
ayitlnOZVZQ0Ai4SlZzsFYu/FI27FBXiGRl8HoW8gMEcC/C/GIqJzMkCJSd4
RUdciw6/GII+i0KeQSFPI+Cn4XB3OOIkFHwcFnQ5Jtw3GXspLvJcVOjZENSX
1rlMAwE97QQc9Eqg37d8vdwx8DPBiEMAgYCOwXzdUNe9YsDwtMgkdubVKOg/
Xj/zGuT6SVTQMZTf1TgYOAONoURGc2KSCsKJlRGUBhzQ664kXD8f4xVCi4jm
RCeK4gjFuMwKPKU+hSFL4apSS3oZFf3CwGxPGB0aLoqIL4nD1ySRmwlMNbGw
i1pqoJUasgGmpCZukjozpodPXNDiAeuWWl29bllBXNdmOtvS13XJS8rI6caw
ESluUFJsaxFPFQtN+UUu6yhlQzTpIK2kP1fYRQSgy9fhczWJFHUSuTFS3EE0
rNW0z4r7lov6FyV9swXdM6KeaUHflLBzEoCOpxrlNBvzagZyavuzC1SxEnWc
Za1y+WbL9FrltB1I6ZhNYF5kj8xxBmY5/bM8wzS3d4KrH+WoLdyGflrLEL2l
j1wqj+4bZ0+ulJmmhJbpAuusxDwtNk8WTI6JfqBkPCqhHBSQD1hpB/nJD/Pj
dhkhu2WRt5vR+1bc4+8x77+Rev+NxN3XCT/dFM/YBgecb3dtftAJQOf4LWCd
/s+y7u5hvrTuyyt7z9qdc/fZh7WOu+r1ffW663W9807H5u3hd+4pDCv1ZZU/
fu+W8/u/GNi83eH4TLH+G4XtjtZ2X79+t82+q12/o1n7mnUu6P4d65659MK6
F9Z9Q68DrNtrAY7LdzqXftHS0t4iYDRxiIycxKjUFBAu51IswSMGczU2BADt
LAJ5AY36znXP88FIFNH1g2J+cdGXQjFnUSjAOnck4gwSEA9xBgE/Cg54GeTn
kxBzLSn2fFSIRyjqLAYJWPcMumc5BgsCqt1rYP8L4Ri3w8EWePcUIugEzPNC
qG9AIgZLTwslJwHWvRJ07Tgi8LsIn3ORQf4EFIIcFs6IjBOG4EsxWdVxBRq2
Hz7wYuy1sLxILA+bVBCfVoIjlRNyAeta8WwlobSPVT7A98u6HMxBxxZF4SsT
iQ0pVHkqV59Z1AsA5TKqqJ8sGKRHtKalTVSmL6lTF5Vpi/LUw16XtaYmr6nS
l+WJ8y3h0w0BA6XxYw0Ch67A1lC8KpWOs6XAADucLx3KK+rL4bWn5quTqIok
sjKJ2BSV3xirmRD3LEj106K+paKuWWHnjCtd0wW6UbZ2lKMa4zeYWK51DUNO
sR5XrEsYsklnNuumlqXzzuqx1WLzsshsE5iWef1zrL5ppmGK230IndLMah5m
Ng3nV3USS5VxgH7TjirjnHBkimewMvvHhcaZUqO12GSVvKNgPJJkH3BIB9Tk
g9z4B3nRH9MRv5ZA9nvjHq2TH7xL3HkL+3Aj7lNHxuqactj+fpfjw27HJ93r
9zsdD/Qb25obW9qvoPvSOuez/AXWaTf3Fc49IMrNXdWNbeXmVsvqnZ537hfr
x09f8IbCMb2jm33rW9qV264n0exb7fbbbet3tGsAdECvA2bYZ+sRO89Pr/+d
rHNx95x1f8mPLf4p6z79Kv/NrPszcfuD/HHr/sRddl/NsDsu7pb2tKt3FJYb
xeWVjSWMci6JlpcFT0m+mJDgmZR0JjLcPRRzDoN2h0DdIOBX/f0uR4RACcmB
uMSrUZFngdfRqDNIl3iugodEHodDXgMHnsAgruPir2AjL0SGuoegTiIRRxEw
IMfhsBNw2DE45Ag08NuB108Fw0+HII7DwW6uy3fgE3B/N1TAlSgYLDU6lp5+
JjjgpQDPY1C/Y3Dfs2H+vslwBCkkPC8cyw1LKYwmlicKVAxEDuhc9Jnw/PBY
fmyiJIkgTcmoTCE3pOS1Ehiq9BIDt7CbC8rxjuGH4oqiSVVJVKDUKdME7ZlF
fdTSgbxiQ27JCIvSlx+my8qcbyYsqVIXFcQlReaKGr+mSXKoM1bkaQst2Kl6
yIgUMlSa4+im2nV0Ryt7s7nI2Vg4UyyysIpGqJJeEleXkqeIz26NJ7fGZzVG
1RrondOl+smCjhlJ+7TA9XsWwHGa3z4p1IxxWk3MFjOncpgpHaBLOtLEmniL
vWz2zWqTTTi1XjxmKxpZEo4s800rwpEVgWGO3eO6RsfRWdhqK6ehn9o4kFeo
TilV40YWpePrVf1TPNeD/2PsIQtvwCwYNEqM5tIJq/QdBf1zcfoBM/FxeugD
csKvyOHfo17b6Up4MIp7PI99cjNu72biHSfhhzbR5NKUARhdnXc77Tvd6w+6
7A8A0zSb28/fcwK80uH4Mu2H4gE6PZffL87qgf9yfBkt8D3OfeXGXRUAJnC+
sa903ut8+wFFNfcPp0I8oxgGx4dta1u61W2t/R4gm9a+BTQ6l3L2HY19T2Pf
fxa1fVe5vvPH8qes+ysZ/IanKr7pV7Nt/3ap4nfv/gWPUTzLH+lywOuffZXb
f2PN+3KH9vmv7fgkm//aE2RA/vtbtwNUOyDa9Q9r+8ZKygrqRfkiMhGfkQwj
4DyTcFcSEs9FRZwPCb6ARrvDgCkV8nKAz5XoCCQxwz8xwRsbczEs1AON8UCh
PNCuancCAQc0ew0KOhMR4ofHnY8KPx2COoFCHkMigBwHPgCDn0DCj6Mg3wH5
fgfi7xaMOImCuiGgz1YugNZ3GhNwOQqKyowPJIT9k9/570J8jyF83DA+3glQ
SAYqhIKJYYcnibAZUhxTRgvnhrrHXcAwYmP4CQQxNrM0gVwRT62LZ8qSOPLU
8l52cQcDTfHBFUSmlyTkVOPzG9O4ynRxO1naRy3rz5MaKGUDnNw2ZvIAj7jQ
gl+RE5ZasxYVWcsqwpomzqEmrCjx862xEw2QgZKo8TrKRle2Q5vtVOQ45Qyn
krvayJ0u5BkZrC4iXUegqlNomrTUmjCuJqVjrrRrpkQ7AcjG1bj2eOeox1nq
MabCmq+wsmRmVvXhgxhCfXqBDje8VrbwTr11XTixIbGsFgwvCQeW+ANLvIEF
bv88t3eW1z7G0prZGjNPNsBo6qUWtMSWa/EmW7VltbJ/WjgwIzRM8PqtvCEz
32QSmo1C42jR2JDozWryXXba/bSI++lRP0+GvJ1xba8t9elY2p4l+KEt+tFG
yu5ayo/X+OvrBuvau52u9Yj7bc69rvV7AHftjn3989Bt7LU7/mzrnL+3Tm/f
0znuapx3ta7HK+66Nvx07mmBD2zuVE38tGHhFx23djXrd3T2fZ39rnbddU/y
l7Hv/g66Q+v2/rta9zX3/kOs+/Q56J7l0799pP3fYJ2Lu9U91dpnPSs/qZTp
68SFJQQSD0/MyaJAEhN9EwDQ4i5FRFwMCTkXjHZDwE8hoK8EBlyNjgrPyfFP
BNpd1Fl0sAcm+BwG445CAtYB5e0IHPIyDHw1LsY7Hns6BHMSjTyBRLiCgJ8E
vgGFOIIAHYGDvhV4HThxB7hDQE4hAejAx+GBR2GuB/99EzAoUtyrEK/vBHie
hPkfg3l5x0NBqShkFjqcHhrLj04uTsxrpiYU4c/h/KH5cVG8lLSC+KySuNyK
pLyaBHZzErcFX9nFlGhooZRAQkFcVmkKrSaD3pDOUxBLOqnV/fSqfnr1AL28
h0GR51IsUuJSM25VjrfJM5fl2cuKjDVVskOdvKyMn2qKnWyEDJaQ1tpzHJ3Z
Dn2OU0Nxqil2JW25mTZTTTWLs/uZBB0xU0ckNMTktmBbx0W6mULdVIHCylFY
2QBuCgur1ZrfbKE3m/MajYy6obyqfpq4Pb1Qjzcslcy80Ti2UTZ1U2pZEw0v
CwaWBH0LnN5ZVu8Mq2+G1zXJ04/ytGaecojd2s8UNsTUdWaO2RtMy+WGaVH/
tMAwJegZL+gbLRgcLTRahCMmdu8o29yV9/1i8lZm6qdZae9Eg94het7vIh4M
ZjwdiNi3wnc2Uj+6mffLJaZjucvieKt34zeqm/uKW7u6jZ0uO2Dd/Y6/j3Va
x77O4bpHRWX7pOvWdtdNoMJ9ordv69YPrbO/sO6FdX9P62y7zWt7jSs7Xevb
utGbTZWtilyOBJNYkEAiE8moRFxQXKJ3bJxHeNjZsGA3NBIw7QwC9UoAyD8J
hyJm+iUmXQyL8ggJPRcS4o7GnEAB4yr8OBJ5BAF7BQLyiou9EBV+Cg2Ut8Mg
EaeAdoeEHUFBjqOgL0MD/hns57ojxVXqwMdgQUehAa+BfV4Be18Mg6DSsedD
IN/2uXQS6ncCds0rBgx2WYcBrItihSaIosm1pPTyDM8UfxQ1OpabklKYml5K
yK0mUmvw+Q0EZnNGSTuP05oXRkelFyWTywh5dURmC1GoJZf00CoG88v78yoG
6AWdNEo7gzpXm7oqS7QrUtZbM1ZlmbaWzLXW1DVF0qIseqIebZKGj9bQb/Zn
rrflOPW5G9rcDU2WXZ0635o8VpdiqSYYpYk9zFglPqUpqnmU2zlfIp/gKib4
LaPsZtdWAMxGC6PBTK81uba/qzDQyvvyRPo0gSp+eK1i6W3ZuKN8fKPSZC8Z
son6Aejm+b2z3O5pVscUq32Co7NylcMc1Qivui1L1BTX2k+32uoMkxLDlKhv
kt87wekd5xjGeP2j/D6LsNvE1Q3mqfpyx5WUH7EzPs4krcbAblEQnw+yD4Yy
nvZinwxg7llht9dSf2gX2Ze6Latvd2x+qrq5J7+1p7p15+9tnev8EDSdfUu9
9onO8aneseW6vWR9T7u+/8K6F9b9Xa1rXtluXN2Wrd9X2vYNjtvtfXOtbGl9
JFEMiRUmk0mkXDQuxQ+bcC460i0iGChpF0JDLgSHHANDXwaDA5JT0KRMn/iE
q9HRF8LCzgQDFc7V306ikEdR8O9Ag86GhwDVzh2odhjkKQwSkPDEoXVHkZAj
AG5IyEtg/6Nw0GkU3HXzCRx0BBL4GvAK1O8o1NsnDg3Bx3w36NpRsM9J+PUL
oX5+yQgEOSyCHhmVH4LjR2RXpORVpwWlXMGkB8aSofHkgFQ6mCLE0Atg7CI4
txhd3pzKKokMJZzFsyAZQlR2cSilPIReH8VX4Yq6M0sMOeWDeZSObKK1MGut
Bb8ux63Jk1dlGbbmrFUZaU1GWGuNX2iOnaj37xWl27QUZxfZ3pa90Zbt1GU5
NamrqpgZedhoS7ipMXSoKtEoTunOKbSwdDMF2gle6wS7aZTVOMqqH2XWWvKr
zXk15ryKoezivsziPipfT+Rr8L3LpZM36yacZePO8qHVwiF7cf9qUfeioGuW
1znNa5tk6yY5ugm+xsqXDTLLNcTC5gS9kW9dqjWMSQxjwoFJYe84F7CuZ5xl
MNMNw/SOYRYw5FYb8hu0OVO1tB/lEGz+V9apYffHRY+Gsp924w4MifcNiD0T
6OM5vGNWNrT+dvvGlubGXeXNfeWtbe2NO22O/S77fSCHlP211m24iHsWoMVp
nfvPWQfAtau2b2scd7SOLY3ztgY4unB7JtveIXHPsvf163UvrPvdYsTtr0P3
t16v+3tb9024LfxR3L6+cdOfzJ8/w263ru3L1/aUa7vdyx+1yi1lGfTKMHwB
PJONpZEyciFxiZewsefjYs9EhAPD7EU0xg2BcK1BoOAgfDIqg+iFxV6KjnQP
DXYLRrlhUCfQgHWII0jYPwb6n4uJuBofeyoUfQyDfCbeSQz8BBp6HAU5igS/
BgO9EuQH9Lqj4AB3JOwkFHIUFHgcEnAUfM0DE4hIjT+NBL/k53UGHXAu1Pd6
ahgoJy6EEhNPj0rOQxOZwQxxTCz+XEbO9fLSCEMrbnGIsTElen1e+MNlyU9X
Sn6+UbdipE8acldmJMvzhbbF4rkZ4STQggaylW2EUllUpTqZ2Jaeslyde0OV
ZVPmrKhzFpW5K5qsdX2qXRtvk8fMNSKGS8Ks1bnOTpJDn73RDiTLqcfbWmPm
WtCTreDxVrC5CTFYGdrHoJqZOkeVaoKjsDCbrPl1lrwaC7N6lFFmppWbaGVD
OYU9GZIukqCNxNakdy5XTr7ebFwvsThKTGvFA2uSntXCbltx57ywfUaonxao
xjlKK1c7JpKPsIsVKZV6omFaOjRT3mMVdZl53RZuzyinewyAjgsc24ap+n6a
po9d38OtbOfKNTwjJX7e/9x7MaB7iryHZsIXBuxBX8rD7rg7vchfjcW/NdM4
bnN2vn5bu3m3ffNe+43d9ps7HZv7Hc77nY7PO5wPdJt3tZvP3Wfyp6z72tNk
h/eZfBnnvtqxp3bsPpcdIFrntn4DOALiHW507HSpqHF9cv+r7P3BP6rsX8tz
WwHs/qevw37z42Nf2wzq6z+i/U3PTfzuIbJ/77kJ4MWtr/KZbOn2c/R9+tda
9/E3/GPr4idfy/8U61pdz1Dsylf3Wlf35GtbPas/k0qapTGUegSDCU4nJ2Wl
5OT5Ewge8diL2NjLYSGXgjGnUS64jgHTKASESE9DkIjX4rDnwkPdQtGnQ9Fn
woOPByOPIKEvQUH/BPK/HBt9GRvtdsgdkBOH1gE5hgADBe8VsB/Q5QDuTkCD
TkKhJyGw45CgYxDfYxBvv/jIwMTYl/yuuKN8L4b7++GQ0FR0CCEwMd0/mxJU
URI73MPtaE1bNIvft9X/64r0Y0fFJ46y2zdK99+oePS9hoNftH9kL/3QWXb/
h+rPf6h58tP2g593P/2l4fNfGj7+Qedb9nrzAK2mO0u8WEmfkTJsTXTXZKoi
O3UZdi1hVZW4IIsar77ezU+zqTPXdWRnOxmAbqM9za6JX2gKn6yFjjcEWRrh
psYQQym2l14yJ2me58tG8+Wj7CYLs8ZErzDSpCZqqZlaYswt6E4VdRCYynhG
a0LXSo31Dblpo2oYUM4mNqxIupcLupbFHUuFbXMS/YxIPc6XW1hKC6e+N7dI
kdzYnWNaqh6clXaNCTrM3DYjxxUzu83C7hjl6kwslZHRNEyv7qA3aLjNrfx6
UvSg39WPUmLu0mK/qIl7OhB9MBj3RQ9utzPtp/3kNxaUM7Ybgzc+7Lu12+Xc
7dkAst2zsdft/ByArtNxv23znv7GPd3GXdcdJn+5dUCF0zyXQ7J2/iAa57Yr
h5sba5y7h3keumfZff5f/ndb99lz1m0dWve33273v9o6xdpe4+qWzP6JYfaH
0tyG6hBeSTAlFZmQkpEbkZd3NQV3JR7rG4P1Cgk7h8acQqM9woJfBgWeQiLQ
mcTAFNxVbPS56Aj3MIx7OOZEMOoVGPgoGvF/gvxehoM9E7AXYiJPhri4OxEM
tDvYYa+DAGPsMTjopUAf1412MPAJCOQkFH4cAj4J8T8Bun4hGIbAJ5yC+RwB
XToX7BUYeSUq0SsvD9lamzrWx785WfbT9aaV7swbg9QfTAh/PMb7xZzk1ysl
nziKtzZL771d/+TH+h/PcH+9XrL/Vv39N6sev1v/5PvNT77f+vg91cP3Ow5+
Zd7/seHjnxt/dmd58V+M6lsqwVIleakqa70l16FMX5ClzsshQ0Vocxlts5Ps
aMsBSp2jLdPelrKsiJttCJuohlmrYab60MFqbKeYP1ZUN1tQa6HVmqhNVnaj
lVU1QqsYzpMa6VJzHq+bwG3DsVRYVmts22yx9VbLyGb18EZF71pR97K4a0nc
Pi/oWhR1LIi1MyLFOE9uYbaaGJUd6VJtinI4f2C2tHdS3DNe0GkVAMrpTWyd
ka0ZYWmM7MM1C2atgS7poFZp6ZpKWllUkAEZtJ1NPshOvk+BPayLOOjBPumJ
2+oiv6vOs5s7xtbf6d38dceNu/0b9/qcOz0bQLa7N+72OB92Ou+3b+62b2x3
bNxrd/72z59h/3Lrns8L615Y959tHTDGKux35Wv7batbfUNvlaVJK6JonKis
0LD44OxsFJ3mm5wciE0IiIy9gAk7jcG4Y1y31f2zr89xOBRBTPdLTryaEOsR
GXY6LPhUCPo1BAzoda/Cwd8GBXhEhQJvnYsMdwvFnApGugXDjx1aB+QEEvJd
kP9xUMAZBOwEGHIMDDkOBtALOgnydYcGQnExnmGQf/I66gY/h0sH1ZcmD2no
M535a32MjYH8H01JnO0pb/dl/HKS+8Gk4KOFotvLxdv2ov0bpQ/ern3yI+XP
5jif3ijff7vu3vdqvvhR/eMfNT55v/nJD+UP3ml5+OP2T9+SP/hw7Om9td/e
Xd/9/Oa7H06231KJZivzZuuIQKmbrLveK0xdkj+zLtvZlu3Qp65o4mdbYqbq
QkfLUaayMGN1ZGcxube4Zkpaa8qvGaZUGqkVI/TKobyKYWrZCL1ohMruSed0
4PNVMbSWUPWkwLJZP7xebgSgWy/pXJd02gr0C3zdLK9jVtg2U6CaFCjGuI1D
lIqOtIq2FMOceHixpHtC0Dsl6hoT6sxs9QhDPcJUjrBkw6zW4f+fvfsOa/Je
+wB+3jPec3p6ztvlqlsU9xbZe++VQMggIXuQhCz23psQdgIZTHHgVhSRDQnD
2lqtWrdtrZORhD3yPgGLgJVj7TiL6/peuR6w9p/SD/f93L9BTy+jxBWhI3ik
EC47iAOJ3Luy2tZQHkAbRUOGoGbPsbtHue4qvquywO1KDq6hNPtUbUdR2xO+
TFEoGwZqOXGLQtgqL2rrFgJtbJsyXyrPlz0RSB8LWxRAjVcwA7Ff2rre17Jg
3b+0dSkATTPy7tadf5U51k1djzidX8S69Nqeqcy1Dijt6vp4tQrgs7jhRb6o
OQgS4O9G9ASj9jq76mJQ5r4kLU/P3Q5OO2zsN1lYapqZrVGfpm68SEd7jbmZ
GdJbG+q50cF+PWCatdkyc+MP9HU+NND5yFAXKO00nWy3ujoBDAId7ioL42Wm
BstM1G3sCiO9lUb6y7S11hkarjEyWm5otNRA71N9nVUG2qv192821dlvZ7jb
fI8zyiEiFCqIh1akI45xPWvzEa0S/LVjATIh/HKJ98NTft+coD0/x+6pZfc1
cgZaA0a7IlRXk7+pJvW0hcovxSqvJA1dB3zLGL+RPnE9c+x6dv9XuY8uZ448
OzneXTP6/MJ4d71qQDYwdOnSd+cyG7IRh8MsDoeYHI7ESYu8mwvQzYX41iJk
Q557dYbjyVSbY4kmhyItD0XYlQR6FrEDD0REV7JiKogRJbioClJoKSFEgo2p
pISWExhiBKnQg1zgTuLZcU/6HZYml9WFl9aFlTVGlraEFzX4511g5pxl5p5i
5Z3gZB1j846zkiqIIXmgBBGi7HzQobpw0XF68UmW6ASDX8XMOcTmlTPSy2ip
paSUcmJiGTVUQGJn45mJdC+UA8N882dQm4kgohLrNuzj2Avb38MyHMuBKbLR
X2YQzxdxz9Z3lsu+5atlGxZJB0XS3iL1y7p+gawHCF/Wly/tK5A9K2x7KmyR
C1sGZgqm3tza/DL8ubsn5lg3uWz4h8wha/JL9QLjycziLuenvK/LbpyR2dZl
qZl6lV/MuvpX+UfWvcpc6y4+fVPmtW6Ku6k8zbgwy7f0OTn//XQy5s981n0/
K+cezeJr9vlOc890mmfn1/n5hq0/Bbf5rJtxLvGPl3lT4gHJmDQwt0nBb+nP
yD5FhjEgXkQrL+QOFxctNXdkbYjHLgd7LQfHzZaW683Uq4g3WJgvM9DfZGdj
6oPaDQZvcnJcY2f1qZXJYjOjj0wMPjTWf19v/0cm+puc7TY52a21tlhubrrU
xGjZ5GI8oGNdZWDwqY7OCqCcMzZaYmiwwsxolZHhSt39K/Zv36i709PHg8bC
U3zhMRyQIAp8IBV+Khtew0c2i/FXTwS1SzCdIu9vznC+Oen35Dz7xUV2bzNH
3hYw3Bk+9nn8wzNERUfEwKX4kS9Sx69xJ77iqr7iTlzLUH2d132F9/S6QNVX
q+qpV/U2qHoaxrsbxnpbRoYuPR/5oqRd4JKHhFYnoNv53lI+skWAaigAn8tw
PplsdyzJ6nCK8YEY64pQ50Ia60BQeBkzUIIPKsEFF+NCxPjQEmKQBBdeQeSI
kb4CL5oQhuXZ8s5yDrWnii4ESerCJBfDJXXh4voQQS0nt5rBO+mXeZSRcYTD
PeqffJDKyQXHFfuU1ISVnQ8uOcMpOe1feJSWe4SSe4TNqwxML/NPkFBjRPhY
CSmogMjK9vMMRu6HGJOwNu1BKBXVcxxnO+Rjp4CYPIbsHohwesb16UgLPicu
Ptv4tajtmUDWL5YOCKVycVufuHWwCICuXT6VwnZ5kRSo8V6msFUOmPYOyW/9
4XXcy8xTvPW9zuCbMse6ecaymQ3d0+H9jDJvViFX/2bc5s1c6940oq37B3vE
Zu0XuzALurQ3583l308uCP8zrbvYM/nPAP+Zeg40fBPPO+yI9HdE0o1B3lou
7uZotBUepw2D7AG7bXd21LSyAKDbYGmuYW3xobbWehsrQxRyrwd4vaPtciuz
Ty1Nl1mYLDY3Bp7/ZqCz3NxkF8h1jdo6kynrlhkZLDPQW6Sr/amB/lI9nRUA
caaGq8wM1hoZrDfQ3WWm74nyYLBIAf5EIsYtlgPmR3lUpMJOZcEv8JH1RejP
jzDbizHtRfDvzgZ+e5rxrIbdXcvpafSXtwYNdUYNXoq9f4Y0cClu6HLS+Jep
AHQT13mq6xmAdRNf5z/9LKPnbqlK0TDRfRGAbjJNqu6Wke7mwf4OxejlA03c
sJoo/PlQXGuad1uO07lk51MJdscSLA/Hm1cmWpZFOks4qGJW6OHgEAkpQIhh
CdHsIh//IjRbiA4tJ7KE3iyxt2+BB47nlFkdUNwcJ6oPE9cHF14IENeFCS+G
FtYE5p9lZ59mZBylpR72zahiRZUSWXkeKYeohdXBglNs8dkA4WmO8BQ7/7hf
9hEq7xAzpYKSAJSOQkIgn87O49DSqM4kK1PQHmoI8kxBzDeBhFGY4xjSWeFp
3udm8gJh/yyB2phIq66srGu/c6D1Gb9VyW/qL20blLT1CYFIBwH6XlknewXd
z7GuoKXn5dBh1ujhbRrVBesWrPutrZtcY9yTUdude+GRpOEhI6PKDOZvA/c1
90TsdXHdAwEbEbF6GOQOD7etzg4aNlZrrcyBrDA1WqSvt8nR0RCJ3OLmtMrG
Yrml6RR3wMMSC+MlxgarLM3W21kDn8vMjJeaGi0xMVhmbLjYQG+pkf4ig/1L
jXXXmRusMNi31UTfGuwCw3qjcDAiAebPwDAJnrEscF6kZ0UyXG1dgdq6zgO0
zjJiGx/y6FwQYN2T86znF9g9DZy+lsDBjqj+juj7p8lDlxNHgaLuaobqK57a
uq/SVdd54zdyn1xKG3p8VCWvU01b19008aJxHPjsaep9cOzp3YP3Hxw4II3j
nPf3POvvURNrfyzW5nCs+YFYs/I4e3EwoogZcjQytIIRJsYFCNGMQiSDj2AX
ohgCpF8RiiH0YRR5U3M8cs6GVMpSxfUR/NoAYWOQqDG4sDYg7yw75zQQf94J
dlIlOamSGFnsHcD35J5gCmpC89UtLT3vOJ0PQHeCzauiplaSkiuo0cW4wHx4
SIEvPZMJDsXtBWvZeesl86glxeFnYgjf4jwGvVyUIKdnLnYP7W0fklmN0fHV
x88c7XxQfKknX6bMlw6IW4bKWwaLJ60TLFi3YN1/vXXc+l71crtGeWZdb9aF
J4K6B7jEMlMftiEUaQCD7gF7aEG9TAloXSx8h6fbZlentfbW62wsV1maAs3p
EmOTTQ6Oet6wzW6O6xxsVttarrAyA7gD0PvExPD/DHVW21hq2FoBpd0yM5NP
zYyXmZssMTFeZKS7xFhnqaHWSoN9u61MXFFePiQsEgNH+oBJBKgfycufDIli
gHKiIOWT1tUUeDcI0a0lpPYSQksB5Pua0O9O057VsF7UsrobmH3NnKGuSEV7
+MNq35Evksaupk18lTmuJo6nupGhusEbvJLefTVnoufM+Ivzqt56dRvb0whw
N/GiYUz9fLH7Cl9+lS+/k9d9X3zpemFCdSD0MMP2SJTloVjz8mjj0hi3ogBm
SWDEwaDocmqYBBMgVltH5cNpfDiFDyfkQ0l8BK0Amn0mpLIlVVwbWVwfKWwM
LahnFzaw82oYmSep3KMM7jFO2iFGfDk5VASPKkWKGyMLaoJyzrDzzjCyjlHU
W2hPMLlHmUkHybHl2KgyYmgRxY9HwSeSzQjW+yBacH+3TElofnFAfibuYoT3
fazLYy+nbmf3e45uLSjC6VT+6fovK7seF3Z2Z3cNcNsHcjv6xS2KysbB4ta+
Iqkiv32woF35q1j3I2PWeaybmQXr/g2sS5pz0Po8uE0NW6fzZuh+QeteF29O
Zo5lX26pAL5fN8yrH86ue17Y+C0quUQHTdFFYY2x2L1Qjy1uDoYYb6C62+Lu
ssHJfr29rYZ6zGq5xtJyqZHRdjdnbZjXZhcHTUfb1XaWQA+7BLDOzOhjM6NP
TAwA6wAbl1uYLLMw/dTC4hNjE6DkW2lq8NHuLTssDDFUIhKPgqMhPhgIButJ
xHuSsCA63j2c4cGL9CpJhJzkwWoKEBcF3k0irKwYX58FAnrYR9X0p+cZ3ReZ
gHW9zezhrgi5NOjbGsr4ldQJoKi7zpu4kTVxM3viRqbqRpby8wz5jUKVomai
txaQbbKua1Z1t47Jm8eVDQPfHui5kjZ+i9v/deLAl6njd8q+v3tYcjENVEi3
OBBkdiDMpiCAJubEHfCLKqFEl5AiJFiO0IcuQNEECF8+nMSH4ws8sVnumWfD
Drdnic5FFdfGiOsii+qDAevyLjKzztIyTtBTj9BTDjGAv84pgMRXEA60xQtq
OVmnadmn/LJO0DKPUtS3zR5jJx9hxVbQg0WkwGI6M4eC4EB0XXTsvI0j0nDp
xYExIkZ0ETUlHXua6X4Xan7Xzfy6o9s5Z8yZ7EOHO7/nf95X1A6UcEqBbFDQ
McyXKcXtCrG0t0jWJ2hXFnQMFcr61e/optOmmBlBq/xNmY+72XdS/NgAYmbk
r80j3irzuMebkcldFb/E4PVdrZud53N8e/sLtd/euplzil/Purct5Obd+fWv
YN3LAq+uL/3CUE79RHot8Nv5eXbTQ48U4S6snzaaoO+N2Aty3wZy0UEhAPq2
g9y3urpsdHRca2291spqtbnFMlNjgDt9b9gWF0cNe2uAu6U2ZsssTRebGX9g
qLfE1HCDg616ybGl+RIzs09NzFaaGC3V3q3naO0Oh6BxSAwegcZBMHgwBgfC
48BEIBi3QDo4MxJWnAg7zoXV5MNrBPC6InR7Cbkmw+XBaf8nF/yeX6B31zG7
G5k9TczhzyL6pAHfniOrrqarrmWqrmeN38we/zp3/Gau6mb+i670wW8PqxS1
Y70AdHWTDWzLeI90sKdhVFn35KucgetpE7eSh24mjNzMGLqWP3S9vP+bmmPN
Qlg+3lVAIgjYCRWc5DJ8UikxsYSYUEKOKPdlFqH9+N5AdYfPBmOynBNPcsTN
yaVNScX1ceLaKElDVEFtEO8cg3uGnnqCEltJSDxIDxVhgot8eKeDCi9G5J5l
5p9jZp2mZxynpB6hpB2hpR/lxFeyYg/4BxbS2Hl0PJdphLXQst9ICYTkFkem
8xkhPFxwPjksn5wS5V1PgtxytWp1tC4Hwy4IT52VPSvoGsrpHC6R9pe3Kkrb
FBKZUtTZz+/oK+joLlB/KvmdA0VSpbBNPp051gGl3Zsyb2k3aznKa9bNHEb8
Kta9toPsv8i6n+jbgnUvrePV9eZc6M+60A88JJz/ntv6PLPtO0TWQS00yxSB
N4DAdoLdd4LBugi4NYm4FwoBuFtvZ7fG2lrD3m6VldnHRvp7PcH6SLiGg/UG
J7vldlaAdUvNTRaZG//NQHu1tcVGB9tVluarLMzXW5kv2rfL0NXOh4rzISGd
QHZEsjca647GuGLxICweDHBHwLmxKC7p4dDyFOTxTNj5fNgFPqxWgGwvp5xJ
tn9wxv9FI+v5RXpPA2AdvaeJPnQprKeV830NVXWdO3GNO2ldzvitvInbBaM3
+d9LU8dfnBvrrRvtbZjobVKnp1n9pk7eoPjm8NOr2aO3c8duZEx8zRu9lTt0
UzDwtWTw9qHBb2ubm3JDUyCpFQFJpbT0MiK3gppRRk0vo0eWUkJKCIEiDAvg
Lg+afIIjaUspqI2QtMQDEdRFFFwMyz4fkHaKmXKMFldJiSjFs3IhUSW4/HNh
+edDs88EZJ32zznDAeq95COUhIOUuApq7AGgovMPFNB9MwnuwaDNICMdiEls
HievMiReSAnNo7LSsGEZxPgUYhkbVQ92q/OACuHEysKjF7qelbb0FLYMidrH
SqUD5a29pW3dkvaews4efkcvv0NeoI4CCFDLLVi3YN2CdeqXdYB4F3uAh8wG
eWp9T1aLIq/tCT7zkCGaYYGj7IN57fIEbwe5aSPhZkTcDk+Pja4uG5wdV9la
r7K1WGxh9pGJ8S6Q+344dAcItNrBbqW1FVDILbUw/chYf5mJoaat1XobyzVm
Jou1dpt5OCMpGAQBhvNFQZHO3j5ORLIHCuOMwbvj8GAC3oOId6fhHZKCPEqT
vU/y4OfyoAB3tQJUe5nvyQTbG0eofa2Bz2upL+r9ntfTuhupI5+FPa2nP21k
qW7mTHzJm7ieo7qVP347f+JOofJqzvMv8lR99cO9jUN9baN9raN9TaN9DaN9
tarec8++zB24VTRyK39U/VcKJ74uGr0l6L8jkAPfvFkq/7zo4ZciQRkhqcg7
q4KaXUHjlVIzS+mJZZTIYkIQHxUmxvNOBEkaEwpqw/Jqg/Maw/ht0TkNIUmn
/dJOseKP+CUcYgQV4f2yvSJL8QU1obnVQZmnWNxTbO5J/9TjrOQqekwlWX2G
p5gYVkwPKWKiYqD7EVo7PPYgItA5B9N5peER+QR2Do6cQaAm4UJicQn+yAoM
qALkko6jlvLPnvxMUSwdKGkblsiGJe39kna5qF0hae8rlvWVyOTidqWgs38S
OnlBe8+CdQvWLVin7mHruzPqX3DruzPr+nh18qz6gcy6/pzG3qLW78k5h/eh
aVoolJY3QgsG3+4B3uftbUwk7oBCN4LcNFwc1zhar7Cz+sTcZJmVGWDdfm/Y
BlentQ52a2xtllqYAdypZ7JmJptsrFYb6e61MQUqOm8CzBsDwpFhGKKHK9iI
QvXA4l2xODd1UYf3IOFBVLRtPNOpOAl+jAc7lQ0+lw+9WIhqKSGcTXX6QoJS
NLOe15J66mk9Deq6bvhyxNM66uOLfqqb2UBRp7qRPfF1/ujXuap7oheXuP33
D6oUzcN9zYNy2Uhv20hf40hf3Zjy4tC3B3sv545+LRy9UaC6LZ64JRm5LRq8
UzRyh6+6W6T4LKP3Wq6q99TjB2WHjvrxhBieBJddSsssYyaX0xJKKTHFxIwq
jvhibNGFyPwLIdkXAtMvsHkNQem1/vEnaLFH6JEVVGYuyjcTkXQ4gH8uOutM
QOYZv9QT1JQTjLhDtJhKalQFObSEGFxCDZIwWbm+VmSTtVbLbUlWEYKQjMOR
sQJ6ZJZvWD6TmEbwTsYTEgicIHQcAcpFglJpJL7oyJmWF3ktA1kdI7mXhvO6
lIVd3cKO3gKgV20fLJEOVrYOlrYNFnYM8oEGFijw2l8USXt/cesKWuT5M5LX
0jud16zrXbDuV7DuTccC/Czr5gft3XBLvfCTNkf8A9x+knI/EoC7BsA6oLqT
Z16U8xoU6mKvvlsoHWAJG/WInH0okrY3focHYgsIvh2K0ieQ96F9NoDd1jrb
L7WxXGJlscjS7FNry31wqDYSsdbedpWNNVDarbQyW25mvExfb72J0S4LUw8s
HElCovCeWKInhuCBI0MgcDs4ygFPAFpXEAELIuLAZLyHP84uGKVfFAc7nI04
nudxXgA7VwC/KMZVZ0I6C2CjrSEv6pnPmoIe1/rfv+D/9FLyk6bIXmmi6q5k
4Gbh2N2S8ftlE/fLx+9UPJXxRr47o+ptGe2TjfRIJ3qbx57XAm3seF+N/IZo
5GrFxO3K8Tv8iTulqluSsTvi4bvCsfui/ms5fVd4qm8PjD+sUD2uGnt2uuFc
RArXjVtCTSxjJpbSEksovGOBeWeD886F8GvDc2qC08+wk08xMs4HJp9mx1X5
xR5m+uZA6TmI5COBGSdCk6s4GaeDUk74xlcRoyuJkeVAKIEiPKuAyC5gQ8KR
21337XXfx0glZR6ITJD4hRYQQ3JIwVwKLdUXm0RDJfjBAvF4X1QEiRjqF8oV
HD/Z/qii9ZmgpVd4aUjQNVDY1S/sVIg6lUWd/UUdA6L2AbEMiFIkUwplisnI
Zw0mpLPmsDMGsr2v5yeMZZtfHWeX/9q+sB82UMhf30nx+s6y2VvGumfkjSNa
3uyx7Pzhqn+z/3gy6p5Ph1v3/F3nsPMl4+LTN6b2afqFJ9OZs29idp68+Wi7
d7cu7dx3//nW1fVw63+o9C6q95FlNci5F3vymgbF7f0xh9vNaIlaSF9dFHY7
BLLGxWUbDGFIpO5BYTTBHhtcnVfa2XxqbbXI0nyZjdV2CHinJ2idg92nFmYr
LE3XWpqtMTZapbPfxMUJSyd4Y6EYHASDc8cQwEBdhyV5esDtiGQIDuNOAKAj
eJLUpZ07Fe2cFog7lsk4k4k4l+9VL8I1FXOO5nAKk/y+ajt2+nBumSSjVJjO
F6eUHOUXFqacPCo6d+5g8RHJ4ZMV1acKv7l2auzRuZ6v8sefnph4XjfRI5vo
7pp43jLR1zDRUz/8baXiywLVnWNjt4on7mWN3xOM3RGN3RaO35UM3yx8filj
+JZQ9bBcda9s4l7Z2LeHh5+ePlThG5vlFSemJBdTc44ECM5G5J4OyT4bknk2
KOUUO+GoX9wRetrpwPQzQSFleFo+lFXok3YyJONUYGIVNekkNfEEJeoQOfwA
NbiYGihm+BexAos4xBSMNnLXVjdNRBgk81BCRmVkaC42MAfJ4uHJGT7IFCQ0
jgINY0IoWBTJy4/qHUCjZuYfOtr23cHWRxXtPWWdSmHHpG+TEQLpUE5HpJ7D
vorwt7Vu8gaKeazrW7DuZ1s3/+l2C9a92boZLS23rufltln1PjKgqu8Vtigz
Tt10CkzfhyTsQcJ3wCEbwB7r3L30iFR9HHETyGODi9s6B8eVtrafmJstsjDf
5Qne5QHe4OiwxtZaw8pK08xMQ0/HHgJGEn2wZBQW54VBuxEpXgB0OJKnl7c9
EuVEVE8lwCSCBx7rjiV54ImgYBLoaDqjLpdcJ2BVZIdHR4eHczNRQeHxRVUx
ZafDi6sjJDXBpTVMyVlq5kFO7tFgyTmcqA4vPMcuKE4S5x85Lnhw7Zhq9IpK
0TH2vH68WzrW3T4mbxzrvdh7LW/0hlB19+DYLeHEvbyJ+4Kxu0BBWDR+t7jv
i+yB6/yJ+yWq+6Wq++VARoGS75sjd64UJqS6JAmwuYc5krOx+afDck6FZJ4O
STnhH3PYL/ogLb6KCViXUOVHKwCHHSBwz4UmnWTHVtFiq8gxVdiIw5iQCmqA
mO6X7+cvCGPkhFvT3LaAt1v47g8pImadjIwtZ7GyfPyz8fR0FDEO4x2P9oz2
cWPhPfAEMgYXyiLQyD7pOYVnOx5WtH1fIXt2oLNPLO0VTRE3nbe37sfoW7Bu
wbr/Nuumizr1cyPw3J9ZoxA09PLr7qKSCvegiPsxuB1w5AYPyHp3sDYKrYPB
bgR5rndxX25rt8rBfrGV9VIrSy04dBvITdPZaZO97XojQ10HGxgRA0Z64ChI
HBGGxgGgeWJJEKC0QxNAYE9LAgZExnoQsSD1AxFEIdtQ0VriFOyRnJD4mGRE
GN8+9oBNfDkut4opqaZV1DGPd7AOd5AOtuErm4KPdTHLW0ilDd4HWtGHpNjS
876lZ+FJOdF8wYWOi4+6vxxTXRscaB/ubVbJ64e/Od17pVD1oEJ1txSo3IBP
dfF2VzR6u1BxNUf5Vb7qQZkaunslqocVE/fLxm+Jx26VqF6crz4dxuWjC46w
84+HcKvYmScD0o8HJFSxgY41voqVfJwTUUkOLEHFVlFSz/rHHKNFHiEEVfgE
lGJCDlDDDzI4Eiydj2XkspDR1I3uprvgFr6ZfmlH45KPBgSL0JwCH3Y+GZeI
xsQRvCPIyEAaEk/0cndlIKEJvr4sIjm7qPJ013elLU/K2uUlsp6S9r7STqUY
MK1zKv2iBesWrFuw7idaN/nck92omNpVkVmvyG4Y4l3sLWrtEUuf+BUc18UH
7kFRNkOgm8Bu693d9vn46GHxG8GeG9zd1jg7L7O1/cDEeLG1xS4YZDvYdZuj
/RZLU0ckzIeKg2G8EFgPAgWOxYEwWDcCUNfhwSQKFI5wgIAtqCQIFuVCAWoZ
rBuL7kTy3uNHcA0IT3KOOqSfXKudVmuYcA6ZW4/gnzFKOeBWXOdV2gI/0ISp
aqRVtdCPNGMqLpAr6okldcQDTT7FjdQjXfjSWmRumb9EUtJ8/kHfDZXqq3Fl
y+PPi4fuHVV9fwjoUifuV03cPTl69+D4/fL+a7l9X/AmHpSM35OooQNKuwdl
E3cl418LAe4GH5TdvyqQlGDTirx5lYykcnrSQXZshV/cYXby8YCoSlpIGSH6
sG9mbUjiaXrEEXzoIR9OqbefCMEpJvtL2GxhAENAB9pSPZzRZvBuj3BU3IGE
pEOxwUXUoCI8Jw9LSEaiolDIcIInB+dC9EFC8BRLb7aVUzTUPYZCLSw5WtX1
fbFMLmkfAhATAdx19ks6FCIgk2/qXlrXDhD3MkKZQjRtnUwxH3S/hXUzuXt9
1fGCdW9p3dTB7NOZad0vM5uY37p/uCHiFW4/7aSmn+DbL93DqonjNconoZNP
ngEl/4G+XolMnnD0siUjaY83fjcCuskTsh7succbqYPB7YJ5a7i5r3NxXmFn
+3czsyW21nthkB1uTjvtzD2JKG8SEkNBwjHuCIw7hgAh4NwJOFcSAajiPEl4
ENjdEPiSgHMjEcBeGDsc2dYHZmjvbIsIzTKJrtJPuaCbfEEvqc4uowlRJNVK
OKHLrTFMrzPNrLHLOosWtmCKpRBxI1bShC9qxIubUEX1mFIpSNzoLqhzyTxt
Gl6KTRbVSy/2917quXd87Gnt6DeHJ4A8ODf+4OTog6KRO6Luz7ljd4QT9yUT
98Sq+8WqB6UTd4vHbgsnHh4YuSV6/lnKwDeSlosh6Ty3VBExUkQNKSSHiciR
FfSwUnKAEB19yDfjfFDiSb+wQ4TgSqx/ubefEEkXEsl5JCY/kMwLMPcDrwHt
tmXbBon84g8Ghop9AwQkVj6BlI7CxxNQISSoHwaEhTuBQWBrkK8ZLMQCFeyI
TGZHVB1pOvPFE/GlXnHniLhrZOrVnLijX9Sh/pwVmVLyQ4TtiiLZqwjnzWzx
+t7NujnJn72rIq+1dzrvbN08Q9ifY91M335j67izx7JzrEu/MHPw+uS1Qu6X
n8P+d1r3Q4DnHm5DTyZAX6Myq2Ewu0EpblOknPjcgR2vjSHsRWI2Q+HrwGD1
tIJM2Y1CrwOpuVs2yd1KOxstiKu2qx2cikPTsEi8F44Cg6Fd4T5uBAKYiHMj
E8AkPJhG8UIhbGBQcyrFA4Gw8kIZw9CGXhgjNNU5KC3CKSjDOumsVkrTtrRm
g/R6TMFls6QGw9QWk2SpeUqrWUINKL3ZIanOOOG8fvIpw+ST+jFVtmlnLZNO
6UQf0o4+vjPkxP6oOn2/Uqw/N4ubdPF4Rt/9uonHF0YeHh3/tnr8m4Pj32S/
uJysvM5XfVsxcVekeiBWPSwF0Bu7C6BXMnhLIr+SO3KL339b8P2NwoJCeEQW
JFRACi4iR0h82YXqPRRxR5hpZwJjj9Mjqqj+5QT/EgJLhCfloQnZBGoeCxSG
2QE30SUZ0/J9k6tiw0s4LAGRnoul55CIab6YBJpbKNCxYx0Q3m6OULgphGPi
HWiCpNoQUmJLjzV8c/rzAZHsRWGXsrhzUNIxOGXdVCE3rRxQyInbX0Gn3joh
UxS2v8o/2zqAuJ7pLFj3TtbNKeR+Ui23YN3bW9fNbejlNigyG/p5jUMZF/oE
zS9STly2YSeb0tg7UD5boN7r3MCaHp6GJIo2FrvRA7zK2WmFs/1ye6tNjjbm
cA8fJhlNw6Ap3kQ6EkOGwpBOBDyYTAARce5EdYHnRKOC4DBTJMICi7YlESx9
fa1RPtoY5O70FB88He4ckmaUcnZ/6nmzxGPYfJlV8kXjlHqThAbzlEbL5DrP
LJlN4kWDhJp9yTV7k6r3xJwxTa7Tizu/P+a0TtzZneEndoSftIo7xsw85gFn
Hy3NKUzCfXExR/WiZuBe+cjtA8qv8rsvcye+qRi7V6wu6h4ARV3JVHU3ekek
vJavXsdyiz/8dd7A/fIjh/1CMsDhRZQAPoGZ7xNcTEo5EZxwlB1RSQo/RAo6
QGaVUPyKyMRcIj6T4hmDNKZZ7kXrIZOwGacTko9GM/Jp+HQ8OgXvk4RDxJLA
YWRLms9+AkIbCbF1gqDMERwLAssER7WjF+RUn+ocLO4YK5QNFnaqiSuVKYsn
B69zrZut3IJ1C9YtWPdO1qkPMeY2TKU3o7Eno0Ge1aTMrH0hbOnNOHPLOTzZ
gEbXwZF3IlDrQR6bwJ56WKwuGrMJDF7r5rIB5LLa2nynnSWOQ8Uz8FhfFM4X
gafC8WQYEuFAxHsA1R0e54bHOlLIjhBPHTubTUw6iOhrR6RZ+nhvJ6B2JEaB
4iPBWLqrV0ioXWi+Q2wVIq/FIOGsbtJ5k5QG/dS6/Yk1DrxW46TavYk12ol1
++Iv7k9p1E5v3hBzfmPMuW3Rp7VjTu70P+iVXWcbIMT7p8l7r97oKkxm2dUd
iB57dGHi/smn7SljQCH3TfnoHaHqnnDibpG6k71fMnJbKL+WM3KnePy2ePx6
7uAX3IGbkvqa6NB0MCfbxz8fG13BiKvyDy33DS4mBJViAkox9CI0RUD0zfdD
JJP0KU5b4Hoe0eD4I4Fpp4ICxL7kbDw6iQCNIUOjGeAwqjkdtR8H2Qix3+Th
oANycnYAkS0QdEOkPymx8uSXZ7qGSqWj4o4xkbqcUxa3y4ulfZJ2ubBT+bp1
U+/lFqz7b7Lu7YcRP8+6Nx+l/rpv73qy+j/Vuslz2ieXnfRN3TvGnRRvssxT
S5jdpODV9RZJB7jnrzuGZRrSQs3orL0o1BYPLw1n931wtAGauB3mrQFy2+7u
vM3KFELyIXMoWCoaS/YmUOC+NAQBC0J6u+HwUDTZE4m1wqJ0fSkGMLgmmahF
oOiSqDo47DYfn41sllE215vFMKSznAhsDCw4BJ1VAeIeMY6tMksGarlaoHKz
y2nRSjq7Of7ktsSaLYm1u9IaN6XUrYipXhV1akNY1daAMuu4Y6isc9o+oQGR
gU/vlE/0nOy5e/5wblC1KPBRO3/s0ZmxJyeH75eP3ZOMfZ0/drsQqPGG70gU
X+WPPiwbvVc2fks0fi1L2ZU6cF10sSbCP8EuoogUc4CVVBUYJGH6CYgcEYkl
wtIEGHwOEcfztWa7b0OYmDKcwyuieOeSg0sI1HxPIg+JSECCQvCuAX5A2aqH
w26AglaBnIFfByaeEAc3mKMtAu7GyMo4cVT25OAlpahFXtw+rF4V3Kku50pk
CoA79TCiQymafFknmmxd1QFkk05OImTK6agFa3+Vn2HdPPlJ7+vecjfZnA1l
vW9vHW/yZKepzMGNNzv/WtbNyLzWzZm9/sR3dK8y36aJudbNewzdnPwM3N7W
unlwe2frfjQziz1eQ19Ok5JX31Mkk2deuOsaWWDOCDOjcfb7YPZAEVvBkF1Q
OPC8Fea1H+q5z8kOQkTjGCQcHUuiYci+SCoNwaT7oFEeKDQISXZC4gw4NKPQ
AL2wkP1B/vsZtF1sphaJuImI12Qz98bH2ibGOnJYxoFBNgSGqW883Dct0C04
AhQtcIiS2EeXQTKrLeNP6sWc2h19dl98jV5K3ebos5vDTupGndALLjNk55Gz
q+zZCfvcXOPifPrvFQ7cLxt9dGqsu/Vul+RMHvyrppzxF/XD3x4evlUE9KoT
twtH70qUNwsB7lSPKofvlgx+VTByhdt/KVX5VVFbQ1xSATyjKjiqnMER4qgF
ZCC+OURKPpmcRwXHwrVJxiZ0G2oBm3smNaIyiJyD806EwOIgnhEIBw7UhAjd
DfPc5uGx1tl5tQd4LcRzNwxhBcZZWPoQKanFx744/YV6Z2uhtE885ViHcqp4
A0o7AD01dLOHrb9ApIrZK4rnWNfz5szH3bzWzbPm5PWD71796fx7xGbRN9u6
OSrOM4edk9/CuhlbyV6zblZ+jUJuwbq3sE49mQWqu5QLTwrauvMaH8KSyw1p
UdbMQFMqfZMXRAPssg3htRvlrQ2D6Lo5e9NJOBYZR8NR/LBkGopCg1GpCF9f
BBZjh/TRCQo0jw02CuNsjQzYkZPiHMraF0DfyiBq+OHXRHL2hLN3C7Ig/n77
AgPMAwJ0gkM3R6c4oOlWSA4S5k/x5HCwcemQsEynAJ61f7ZdON8trtjQP8uE
wzP3jTdFs9BB4fTwQCuooz1MvzDHZ+yBcPj+oZGHFf13S1SPTzztzOAy9x4T
oCYenxy5K564mT9+q2DgqzyAO9W3B0ZvC5XXBf1X80a+5Cq6khVX+e3Nscl8
aJSYwuYT/PLR5HwMKZ9IzaPDk7AGNGs9qgWOR0o/lRJ9MIySh4fFQ8ER3h7h
ODumjxEevgcO2ujusMHNfpO741YPdw2o13ov750eaHOof1zmmbMtj0+2d5fJ
usWyvpmgTWV6BrFg3YJ1C9b95tYpeUBp16zgNnTnNvfxm3uIudU65DBDWpAl
J2AvHrPZG7oFDtFDIowgnjAqkRbCJjAIRBra18+HSoeTyO5sBoyCM4OBl8aF
6cQGaEZzlgWSPsxLsE4J0vLHLgolrwjAfRzH0oxmbMhLtkwM1w1g7okK1o8P
1MlK82BxjGkBFiS2LZ7pxI5Bo1ggD7oLhAWBBaKg/kg3ugeIDnEhOcLI9hHR
aKyPDspH2xOqebLYR/UwZ+RuydjD0uEH5f03hKoHoidXheEkjYM8h4knRwav
8kau8cbuiVUPS0ZvFgx9ldt/I1/xZZaiK+FFS7T8al5LfVBYmlVYEZ4pIJGz
ceQ8XyyPbBPoYs5yRKTg44+mRh9KQKdiQZFgjwioe4i3ORViiPPe7uGx3sV9
raPrBme3rR6Q3RD4Hhhyoxda04PiHc4Xn71Tc3nsqFRRLFUfxFT0GnRvyoJ1
C9YtWPcb9LBT1mU0AJ8D3Hp5Vl2fpGMgrLJdxzdBixxsxg7WptC2IhG7YV5m
SBiYgqWFsqkBNAqLQKGjaAwkjQmnUVwYBAM/n+XxnPVJQaviOR9F0xenBuwq
iDWM9l0WhvsoEPVeEmNNAmsNN3J3YYZtCHNTRIB2BNuMl4HyD7Ghhpj7Bhiy
g0wiktyoQZYEf3MMU58RYoNj6mNpukSWGYSwNyoJEeDvQoDrkH10fTwXNx9C
q77NHLtXOHqvdOz+4Yl7FaO3clVPjz6/UZwbsuvriyGjtwWDX/FUdwvHbuSM
XMscusoduJYl/zxN0RHXLY3p/TKn4QInKNmck4vxzSPjeGTHCB8dqq19CCi0
LDzpRAouk2ob5OEUhHAI8LakwvchXPYhPTa5O2s4O691cNno6rULgt4JwW1y
xWwEkU3oiYlHu05dHjjcMVzeNlTcoh465HYpi9T121RegfafZd087+tev1Hx
1cntC9b9Bta9PW6/nHW/AG6/rHUvU987XdplAmlSZjYoMhv7shvkvIs9IpmC
e+G+bbhwDynKLCDWghO8D43eDHHRx3hgQ/yYYSxmCI3GQhN9vXyZ3lSSPQO1
PcV3UzptTSJtVQj6/UTqmgjc4vxw3SjsYrr7H4l2v48nr+QFbU1gLBelm6WE
74wM3MpkbktKcw6JsaEGmzGCdAIC90bHO/myzfF+lhS2RXC4E56iQ6Ia4Em6
dJZVYjLOx0cPhzYhoLXIXu9dP0dS3Uob+Tp35F7ZxN3yiZtC1Z2isTsi1TcV
g/dLvzhJ7b2aOXQ9a/CzpJEvU8eupg99kdJ/KUXeHq/ojHvRHvfk85zKCio1
0skvyw8cizVkONuGoOiCcEou2zMebhfkYc6AmdLhRmToXoTHFrDrJpCLppvj
elcrTXdrTVfXXVCfLe4YDUeUPimeJm4puyw/dG2oUPpCKFWq1wmrN3kpRJfk
ok7FzBXCv0ZdN+8JALOsmyeCX2st8axrKbIb5S/T1DcHtDnTh3mse7dtFJn1
L+bcG/uLWDcTN27dm/dQALnwir6MH7mQ4ul05t1NNm8WrHsL616K1yjPmgxA
X05jf06jvFA2ILmkIBfW7/dL1qVHWHDCdMnkrTCQPRHJig5mhDFZoVQKw4dE
QzB8Xemem8PcPo6HfBQNXRTg8l4k9MMglz+nEtYnYzf42f6ObvWHCK9P0iir
k3yX5UXukqSbxAeuiQpclxqvmxhrzGJsC+JsDfXfmhhjyWYb0OiGbH8b/yA7
IlGHSjMmELXSM6A0+j4MdivCW5OA3eCPXvykNVZ1rWDsZvHwnZKJe3zV7RzV
zULV7fLRrwtUjw/cOMesStHrv8JTtMcPf5488nnqQFeCojOhpy2mVxb7bUvM
wy8E3GycbwwKGku0C8dgszmEHKZ1MMSQ6m5Ch+kSYLtR0C1Q8AY3Vw0Xt3Uu
rmudAetAWzzcN4BcNFw9Vjh4GeDDggTnSqRPD32lEncN5rX0Fl8aklwaFHUO
TC4jUYg65WK1dcr/LOvedc1Jk/yVdeofs94F6xas+2dZl/WDddlNau5ymwdz
m5Xcxu6ijoHkmtsOscJdxDDrgDgLTog+Ao5g0dlxYfRQv6AoFp2DpeIdAiE6
KaCtqS6rkl2X5SJ3JjivSHRelei8vJRmHm7+txDj95Lc1yZDF2UQlucw1h7L
tsoOWZ3EWpwTvT0/ySiSqREfsCWWsyk92iiMvTuAsSssxJjD1Gb7aZHwm+Ni
bGKidMiExTTKcl/iCpLPh7G+a/sv5aouC8avlg7flozdzVbdTlN9zVfdLJu4
njlxKxuo3LjETx7Uh45dzezvilN2xHa3hMnbY/pkMY+bwr/rzJDVZ9BCwchw
vFuELziOoe/nsRFhthFutQfjst3bRdPDayMIs8YV8qmD4zo3Jw13T00wUhOE
XO4IXe2CNKVFBUqqS9q+O3VttKJzoKBJLu4YLrk0JuwcFHYMTG3hB+o6IGJ1
ft33df8s63KnsmDdgnX/ztapuWsGWtq+jKYeXot61XG2tLeg47mvqFabmmBA
i3RhBdrjsfgQf3ZsMCOcwQonBTKgVPON4brLUoxWJBgvE8P0M+02Jxp9Gq+/
rBhulGC40nf5/0TpLM7yXMeFfZwM+6MoeO2RDK1E+ge88M3CVIsoxsbYwM1x
IRvS4vaGB2oEB62PidoZxNFg0paHBW3PSrdi+X7CoX3qi3vP328l3ut/Mznb
xq/wVJfTxq4UDN8qUlt3M3Xiq7SJr3iq68kjl6PHr2YUcra0lfmovs590Rj8
oin0RXOoQhbT3Rz+qDHifntmdibKlehoRkbsJ3qvh9ttQdhpeLqu93TdAndb
4Wqx2tVpvTt0rZvHarD7Ji/IOjBspau3BphgxU6Kr2o9dFl+/NpoeZe8WNpd
2iGXTJombFfjJursE3X2CtVTiX6gKha1A+mfduk/ybqclm4gcy5YXLDu39S6
32Dx8D/Dup5Xqe/5YUWxOrzGvulkNPSkN3XzmnuyWnsyW3pT65+lNz0t7OxJ
qL5uEyE0JIU7UAM9/YOpcVH06GBmpF9cGI2kq0la8ofgpX8MW/rH2PUf5xls
D1j8v7T3fx+7cUmu4W7c73/HXPL7OJOlmZ7rUyAfJsDeP5igm85ekcJaKU4z
TQzcHBu4Mi50ZUr81rCQFaGhy6PDV4X5LwphfJSbrh8ZsMoPUI60mINbFEhY
hjb9Q0WQmeqLpInPoiaucMe+Fqhu50/cSJu4Fj9xJWri89BhGUd1ndsosL9U
CVd0xPZKo160RT5vjexujXpUF3GvKe1oWaALXGcP2HY7HLIR5rkF6bkGZL/c
0Xm1q9unjs5r3F00PJw2w0AboNCVLrDljujtyEBInIh75srRL3qOfjlQ2jEo
alOUyOQVl/qL23tEHT3izj5hR6+oE3juE3eob4sQyfqF0n9p6wStfW+6ThHA
bWZee1k3ZZ1asNfquh9Nzw/v616FN/uexLmrhWf+6U+xbta/B/Ct7mUAwX7k
hPbpvKt13MmRxHR+c+tmriv+Pv38oxn5Lu3c979OIfe2WyHe2bf5cXtr93oy
6rqBcOtfJrOhZzrcGclsVNMHfGY29/Ka+wDu0ptecBueF8jkwA8/U9Ji65+j
Rwj1ioj3S0v2DWVEh7M5ztb4VR8Hr/gg5O+/D/zb/yRprMzYtsn/vT8w3v8z
V2+f3/IPSB//ibL6z2H7l2U4bkwDrSwgb8lnboiE/l4Suzc7aEU6ezEvYGV+
9I4E9vKM8C2pIesjfP+WFrS+lGcZTPxbKOFjFuQvLLe/cpz/Ttn+O1mC50Rn
3HhXpOpKmuq6QHU9Z+LLuPHLYarO4HEZc0TKGP4s8u4pzK0TaEVnzLPmsOfS
6O5Lad81xl86FnKyPNITY7fbxWqLB0QTAlsL9lzp6rbc2XWxvcsaN8gqV08N
d68d3igND+91IJwNMzVQXF/U9PjEV6rDl0ckbX0Sqby0XVHe2V/WoSjrUALP
IgC36cj6xVIgysnPVxPYn97Dyt+cH7Pux44pnte6KdbkUylo7ZsZ9RWxMzLb
ujmLTH7aNRPTxze9G1//ALfZBWFOQ3dO/ctkv/lain94M8V8c9jaZ/PlDdYB
ecubKX7SWBYo5GbkUVr1kwXr3sY6boP6bE8gvCYgciBq9xrU7uW2yIUdfenV
N6HxJcakCK+Q2FBuXEg0h0PwNl/+MWbnZtza5aglf/X55H8TjHaGbvjU6y+/
Ixlsw5rvtlz8R8zGRb5Lfh+/4f0sg2U5LstPhFnGu/2lkKaZgVucAPl9ts9H
RX5bkpAf5zC3ppJWRHv/X3GUSQZ1I8P193T3/yXb/ZFm9VeG5cccnd/dLEBP
yKLHL4WpvkxWfZmnusId6QgcaqKMtzFHW6ijbYzBjqA7J5A3D0P7ZTEvmiOf
SRPv1cc2HQk+cyiWSnfeZ6+/zc1pvRtopQtohbP7CkeXTx2cVrmDNL3gW2A+
mp4oDTBmDzooQFh99HL32evDhz8flMj6StoB3PpL1Z9KdYAHmaKkfQZ0QDMr
7Z+Zt4Tun2Sd/D/cuvrumfkvs+77BevezbrsZiW3oS+rWZnbNpDVLM9p6hFK
5aKWp+ElbY7+me6BUZzU9LDEBFMTff0d692M99jtXOWwYwlo3/JgRxNHjUXG
2qt9cE47NT+w276StHGV/8d/il7y+8h1fyiF7xEjtuZ6rCzz3ZXg+KcU8CfZ
6I3hLn9LRq2LcvwrD7q6KsQu1vbvwVbvke3eo9p94Gv0d+8tf/Lb+cfvKnxV
XdETn4eorsSprmROdMYPNvuOt/mONZNHm30Hm6gDssDmXIP7p/DDl9KfNCfJ
Dvsf55NLJDGUENJue/0dIJf1INByR5dVzu6r3T00PCCboIht3uhNcMw6D+JO
VCCBe6S4+dHZG2OHLvVLWrtLZX2l7cqyrv4ydTk3yd0kdAvWLVi3YN1/jnWN
QFGnmIIuSy2egtfUn9WkyG7s4zf1lkkVhY2PsQXVNsE8QnwmOThozY7lW3U+
1bXZvst0k6buKlurvSBb3eVr/uiBtNW12Llh0ycgve0EzWWBi/+X8/7vItb8
5YDnPp7Z8grU7mSr97OhmnysVrrXxlTY5mjHJRKqaQFOJ8zig2DTD3z3/i9u
w//glv8P7M+/C9D8e/epgLE2/4nLrLHPwlSXU0fbQofqCROtxMFaVF81QnGR
8M1pVLvQWtGZeO1E8IkcXHkuXZwfhuaQVjnabYJAlru4LXF003CHboEhtyMx
O30wG6Cole7YHdggRNohQcM3p66pyqVDpa2AbEMVXUMHugYB5cq7Bso7B4Dq
rkSmbmOnUvJyF//LTHev/6rW9f0Q+fzWvZLt39a67BnQZf+3WPfoh/yIdXMG
EO86jPi3ta6+J/OHCcUb6joAN4Uat5Z+bgPQyaq/zAS+o14Jr8gH/k+RDggu
TSRU30enlJFiuSAKabWu5kq9jdvt9TQsdn605UNHT4t9Ruu0DFbC0DYfb/qb
vuk2Z+1NiC2raBuX0P/vdzwdTZ7OWr75uuA1f47atSTDcn2cwaow3SVJ9uv5
SEP/fYuIa/+MWPw77yV/hn3wJ8zHf8b/+fd5llsGG4MGW0iqS34TUo5KGjZ0
kTzeQhytR/Ucde87AXtxEnv/OPnOqYDmMr9SLjEvlZmYFg6jkzSdnNZDoBoQ
2DpPxFowarc3YReSoAEhLgaTdvjGeqdWFdQ/OH195AjQsbYpS2Uj5R1D5V0A
ccrSjr6yDsA3eZn6TR3wJUDctHWKyQHEyzGEaPK89Fd5Z+va5a/yC1k3cxgx
Zx4x07epecS0e6/NJv51rQPUmnN1bHb9y8wD3dw5xU8ZVXBrn82TuUey1z6Z
zq9j3fdp5578EMC67+dA9zOmq7+8de8M2ttbN63cZHpmrjx5Q103/b5OntWs
mKruAOiyWuTZrYqsVmVu62BO01ChdLCiS55wpDOAfxQVkfixjsFaE919dvor
9q9ep7vaxsNg4+6/o/BWO43XaO5bYmS+w9B4q632OsSWRfS9y9Md9qSarWcs
+UPA8veSdi/lLPt9/I4lqfvXp+ttw/7ld6j3/4D6+H2XTz920lhsv+KvmK2f
ngxyHaijDzb6TEgJqmaGqok1fBEz0oR5dszt+VFY7ynyvUrCl4f8qwuovGjv
1PSgyJQoSxxmtQtkCwK7Be6zCYrdCCVu9iJtAuHWuGKMmCmU4ouCjmcnrqmq
vhgrbpOXSAHZBoGKrrQDKOQA3ORlnX3qqK3rU1+F0yEv7pCruetQSGT9M6wb
eK0km+XSW9M3a94hbJ8Xt7e1blbTOkncq11j+bM71jll3pxh67+UdXN2gc1s
WuduLnvrvPsSlFkj2mdvmslyX7tE+7Wx7BvzZusmoav+IWruvluw7t2sm4pa
uclktwCVniKnVZHfrBQ0Kwua5HnN8qKOkeymp8knPoNG5XyiZ7FGT0fL0eTT
/Wt07PdZumqZOmz3RFqu2v737aaaW223bjRbbWS21nDXe0wv7XSirbfGnyib
Pow33xK8Y1Hojk+zrPTYGksRH/3F69MPQWtWWG5eo7N5kf72D9D2m48lgQca
GMPN2PFmtKqNM1xL6q/1eXoadO+g8/enqTerWC0SalkaNiUSlZQWTIkMNkFj
N3thNyD9VsF8V0EoS5wJy119dYhx8Fhx/OG2iktPTtwYqLgkF7X1V3SMACkH
0jlc1jFQAvStHf3qMcQUdx2AdXIAOiAlau4UQCTtc6xT/ptYJ59tXe9/gHVZ
s63L+m+zrvrJrJx7tGDdL2LddGmX2yLPb+zLberLaR3IbBnOkQ4VtnVLWh/R
so+8r+O4SFd7j4vRcq1VRk779Wy3g3D2GvrL1xus2mO9bYPRqo2mK7bqfmhp
vSY1Cg3SX+aps5TlqYuz3EQw02S4Gxqt/7vx9tVaW9Zp7di0Y/OGbZqLIQ47
MZZbzqV7j7YFDDUgVS3Y8Xrqs0OgZyfAdyptH55EXanAVvOp/CRCdCQxNj2K
EhVqgiNugSDXQwnLPHCfgHxXI8LtI8RhlV2i1idHvug/+oWyvLOnpL27RNZb
3jlwoHOoonMIaF3V60k6lSWdyjLAuvYB4BmwrrxDDmTSPXlJp3wSOrl4wboF
6xas+3ey7vX3deoldlOr7CZHsX1vsi67VZ7T0pcFpE2RLe3PaQVqvO7C1hdV
14aohXXLbb3WW5lusdTRNNhs5GlsjLHWdt+/Zu9iY9Mdevobdhqv1TJZvnHr
/7BY7lDn3eY7/xpIdLTWXU0mO2/QXbpmz5INWhvW7t++fNemlVs0dmttxEFN
3DYv+/pI5Ghb0FC9z9AF6ItKF+Up5LeVzleL7a4dRh9OdsxJJqWkBYWlRbux
/TXdoJvdUZqehI1wml1YBkNyIbv+4eFrQ5WfD5d2DohlCrGst7i9p7xTWd4u
B3rwii7lgUnW1LJ1KUq6FAB0pe3q2WvZJHTl6jV16ta15GVRJ588h3P6MJP+
f58eVl7Q0lvQ0jOVOdbNWUv8W1k3PSZ71x62/kW2+pXdy8zpYXlvzm9jHbf2
ZTJ/Seum8zit+vEM6x6rJxS/DG4/wbrfYAAxN5MDiB/NbOt+PC/HsrMGtdOj
CvmPlHmt6uRIlTltypxWeX6bIr9Vnt3cI+waTj35tRs9fY+Z60rdfUus91kS
nFwJdou0ly3XW7fLVHOX0TJj4yXaWu85gXcSKK62Rpvj6a4w6226bvv+tufj
zftXb967fq3WrpV7tq7fsdQb4uBssZUF3tLXlNxXQ1XUEOXVPk+PuN8UmH1R
4HDlIONcEbM4JyAgIQQZFroDhvrYxXs7OcopUuRf0pLb8G1Jl7Lyi5GSS/2F
0h5BW7dQfYqmXH0+sFQukfaVTS0jmZyrlnUqyrum+lb1M5DSSfFK25WTn/3F
MuV01JdTv3lTw6xlxj8yZXiVd95G8Q/FK2p7Kd58w9Y3azZ/3kG5H8vL6wBm
XgL1pvyjn963PeKJO3kw+1Qy3/mIp7qnb8qcLWO8C0+zfgjwPMe6We69mT7A
t7Tzj15F/eXT6aSe+35m1OOJBet+aesmqztFbqsyt02ZJ+0HPqeS1dwn/mxY
WP8tOihLxw35ibG+tvVuepD3cvMtf9XR3GS5S8Nk1X6zTev1l+iZLpUIYyID
4cEMJwfQ1jW6i1YYbli7e+OGPdtW7N+zdu8GI6MlPmBtd9PFR7leT2v8e85T
lPX+X5dDj4durU6zbSgLFKX5h4cG+oUk2JNCTIgR0KSSmOOXcpsfll+WV10b
Lbk0ALRsgtZeQVsvAIu485VC4nb17Q/FQHM6tUK4c/Lzh151irsp4qYz0zrJ
v611M1fQ/bOt65u5L/vnWJdR/2I681s38zaK38C6rF/FuiezrXu8YN1vad2s
SJUZLT3q27Lq7nNyjrlQQ7T19+DwYCsU+K+7Ni3X26FhqrXFYNuane+nUi1O
JSHOSPxLD0Qv3vvhRoM163Q1NuzfvWrvno92rt9tsNrTbQ0WtjOcoNVxgPj4
IvvhGWpVjEmij2Ym26EwJzIsPowTw+VwjwUKmrgnrpfKuo9+OVr5+WhxR39R
aze/8WmRFCjkeiYzCcsMggDrJO3qhvSldS/FUyxYt2DdgnUL1r2tdW392a3K
7JZ+fqtSJHsRUVpr4uwJcXWKiI5cp7tthd7adfprdff8XzTFSuJnUYDb//m5
nMw0P0YAeMfODzU3vb95y+qlG1Zp7F1qbfmRn58+K8C2NBv3ZTWzudgll6kJ
NX7Pnw7PFggzSk7wqz8XNn5XKFOWXFGVXpoQNPcXNCkLmhT8ZsCxQZG0r1Da
XSR7XgRY194net26SbUWrFuw7t/AuppHM7Jg3c+yLrO+hzd1a/bkl8DzVGZZ
1zxrSDG1/iS7bfJ93Q9R97OtyoJWZV7LQE7LUH57v+iz7rSjrVhqJI3ACAul
mbnvtIZoMVFWPJwNdv/7FbGeQShDmLP+/c6zdeJIsMmGLSv/j+oLNTNfioCt
jUnwgiF28bOIkmxIUoAB3GGjj497dumJ0oY7lZcGSjqHBa0KfusA4Gpu8wC/
FfhysLBtUNg2IGxT369aJOudhK4XsG6yrpux02Hy+ulJ6xSv0jl/D6uYzk+0
buafzrFOMSM/37q+ybyyDujfXz+65G2mD7+SdbzGmefq9L78ffoyb4Rufusy
gJ9egKbJcP8Rd7+Odc9mBTDth/Bq1cS9zJuh+wfWzbh4ceruxfTzT6bza76v
+xcdvM61btb35/tRmfpZAljLevXj15OlPteub/LMk1fJalEXcoBvs8SbrO6m
o67rWpX5rT0FLfL85pHc1gFe6zPh53Jx4+PYOEFZRhw33IdGdDbetdVnv1Y8
VP8Ej8KNo1fXVl9taP6+7tiza3WXm45980VNqK8plqRDZNgkx1B4OUHMKJwr
wpMZnHiw5ssjQFUmG8lvG85vGyhs6xe2yEXA/+BSBV+qFEj7i2T9RcBn27QG
U5sR+kSz56Fi2UvrphbO/XjmWtc3HclrJdmszLSuQ/Fa5fbGXWBvX+P9aEU3
Vcj9wN1L6/LevGA47ze37seGEa8PZH+idTNc4l788YtifzTzWzcfg3Ogm8Eg
r/bZzFpu1ulPP8W6mYPX9NnDCPU9s6/msGrc5nK3YN1vZR1Q6fFkL3La5AVN
40VNQ/mtT9KavxVK+87V3pTEhMf52HhbbYPaaPvaWcYivc5UiA7VnM+rOmVl
Yc2E2zUfLyxKYPKD0eXJvuLCmCxRWmp2PjsxkZWZyT/bUv1l76HOHkGLPK9t
tEDaX9gOlG3dRW3PgRRKXxTIXghkvYUyoHUF6FNnZiklmq3TgnX/DOt6Zzet
fa8tNXmnHnZ2Dcb9V7IOQGye9XVvbd2sphWo5ebsEVuw7p9lHdDJZsh6sgBt
GodFTQN50hfpbc8qWp8eLatJYQZUSspTU3Ni/LGl0fiuCyWp0X4cKpSMtqKi
rcLDsGychZfFdmGM/+nc2KLU8My83Ji8w4XVnx+78vTA590F0p68lj6+bIgv
HS5s6xW2PZ1Urgf4foEMSPdPsa5fIhtYsG7BugXrFqx79x62TZklHeS3KMSN
vfym3nRpf5Z0oPrCjdL/b+/Ow6Oq7j6ARyBAgOyE7CHJZIOEVdnE1/2lr74u
VYtaFTdUFFEUWq1aqkHBIknI7Ft2iAgKtGqLImSZuffOhIRVobS00vr0rZJk
1jszGFHznnvvLOfemXvnJkxIwPM83yfPZLLxx8yHc87vnN9Zt2Hvnpbthx3y
P/3lrUr5vm3q5t+vfWh+8q4N9x7dsfrMRy9i7z721gvzX3z2vi2bNla/9Fxz
RbmxDd9lOPM+YWnCzyqxXnVXn6bjnMbobMDJRtxeh1trCTB1Paem4gEjPTCH
1dMBU1cgQFjrGsJY50LWXbB1NrrvOhOH4Bz2MrRuy1BYx+67HlHrIoDbQHyz
VvKH880hm5kM1Dq4NiH1LRH7axNwh3bwWpUZnCByJkYmpAILRIVTtQkV5tYb
ydp28NZzyzDPu4f75Jo/6jeqD3R1b2q3fvRV/+/0O0slUx9bXFj3zE0uw4b+
4+/0n6xwH9l89L1ndlasaq5Rr3j8wVd//Zxc1dDw5+PvmiyNuFNHNQkn9YSr
zuSqM9rrMGcdTtbiLj21aufRmTzUYh3hoRfrQFzU+50SLxgKwIi7zhvqEESj
L030yQh/6CdJf4Bv/tR3kMEisU5AQBUHsYJ1kHD1JKjViQj66NqEr32TXYfZ
tFTjdNb+4aGwTrjwKqUvI6YTthghcFBCIKwdwhFbr2vt5QunNkH75g14TNUj
fKmGz02AZw54E2wdsy7HG6gYQT/ztT+bL23rLHwZOuu2tIb4X5UZ7AWHuSeF
uexYaSSVWCAqqjDh0uEuhdElI84rib5ag72+5UvFe/j2T07t7rTuOmx//LWq
grnzVj96x+7yZXtfuvY/2x46t3/F953r+k9o+k9t7W7b/J700fW/uf/VNc/e
/8tVq95ufPeIU9PuqCc8QDkwkAOIgY/e4N4HNfyp5XJHWecPDYtvIwp9BMyf
etbwjJ0w1vEmnHXwGbFBWBc4I6ajb8GmzoINq3XSdrG7Si7EOvG+ibYOmNbD
FzZ0rI0lMgi0YNYErKvcxyq2cgqvVZ8GwvlOZN1wWaek2gKQGqNdirnfNvZV
G13b8LM1H3buaPvn+4ft1TuxW5bce/s111asfaLppaWy21P3ryxwNt3d99HS
bz+894f9L53vUvT/U+86XX3ogzUfbHzqt88+vrvlcKPpbA12rp74LkBcUAZt
Hdwyrq7D2QDlMrBOO8zW2aXcTXTIOmTd5WIdVSQlVUaryuTUHznfSFj0H3ap
d7b/seur21eVz1pw08uP3Lf9jZUVjy6sfKBEfU+ycc2M7/cs//GzZd9/uqzv
z8+SbS+5j2788cu6/tPN3YYtu965c+8u6cemU00EqTO4h8Q61m43ZB2yDlmH
rAtvnQp3gjeC3GjRm+361q82NLXtNJyq3rr3jc21C2+6ZcH8WW+vXaF75Yl1
d5f9+tbU2heu0SxLx8uvdf3hifMtK37seu3HEzISf9XWsd5yqrHv5Hvff7Ht
2+O6P6keeOeNx5r2HWo86NFjjkhb50LWDYF1gWKElHvA/7Kwjq0Z64D/JWbd
RcZN0Dr27xS+AXZw5yZCvuqYOixfYOso7ijlSPCap0t+9urWb3afcD/5QuU1
C/9XuWP31T+/b0FR7qYV9+x45+ny++ev/8XC8mULyu+drnq8pP6plM7NVzt3
P+X57DfdB8r/83nDuZNNPaYN2PZlrtO67zoV54/u6P/Xh3/d+1b5Ky80Yf+u
Nbn0BKlnEMOdNRgUIe7Yh6fogoW3bGFyCljnFc/sDZsgIXkG4Bu/dZy6hgBu
wvfDcqwTSETqsHIjU7V3+sJ8avdmANaJrsMy5QkRByU4kbZyb4+FYmH71gtL
CAZvcl+CB3IC1oWuwNKF10r24QjuXmL+IOsusnUgCqNdDd5ZZnvdIfK5zU1L
f/nk/BllCxeU3HDz7C0v/GLP6w/JHl9UfkeO+slF5XflvHxTXMOqBbj0zn9+
sLz/pO78qUb7Yd3/mRX2o2rPF1LLKbntRMW3h37vObbj/JlP+//a9Nnu2rrP
TteY3VowmWW4G7x1gSDrhsA6JwQdE1sgl4V1csg6EG5ZFll3uVqHORVgUAdm
r9QdsjYVYZEZ//P861VL777lmqtyXn34WunaJevuKahdvUSzfPHme6bWPF1W
8WDWpgen7dn4KNGw9vPdG86Yat1Wot/dRZ5qdp/UeU7KPV/Wf/tNs63rdfvn
DV93bXUdlH/R1dqId+sIpy6i1tFx1AT2HgdkA0HWIeuQdcg6v3XU8X8AHXin
GO0Kg0Vlsq7/+NTMa+/+xc8WVay9q+aZxcpHZry9rGzz09dtfmhO46rFO9Zd
v+23N2pevm39k7dfX5JVmpKwIH3i0qtK2nepfuhuc554t7ez2n5Se2jvWvJY
taOz4vSBDd8dqd/b8pm6g7ryD1mHrLsg6w4EEhHrZJeYdWJxC+ubSOsEdgsH
FSOsrFCg8YUXuqGzTm709WPHwVvAqjLa9Add6z8+fcuyNWseun3LiuuanplX
80iR8qmFG5dfu3pJ3p7KFR/XPLfx+RtvnZNWkDgmbdKosqLE4vSJ8zJSZseP
VZQ/1uc63m/FbSe3nTErHMe07kO/7/tii81c92fDEZXZpaMO+HtDjfGgqwD1
rAiVKuD1OuZ4RWBKC5iCQndrD3xKNUUP9EXnTn7hCJrG3+KpI7gIEthaXGMO
34Pdv4uYZR3mgMNptC5gncJog8L45l+44D0uITMw+8+dvghVHCIV8X2JKawO
+NIGrBNIrz/Sll75AW9k4GNLj+KAN7KWHikn/NZxWgH42phQqeA2Mzlbua/b
l7OXsnW8lVaudYKCic8QWUdfP0HKcCAeeC9Y1eCtZLTVdzpeebN6+c+urFlz
y7YX57y+JKpiabpq5a1Vq+/f8sYTD9w1r0wyMTtx1EzJhBl5MSXpYxaVxt88
P+3qafE5E6Ievm3Rl8d39/9w+nw3bj2mJw9VfNdZ/uU+1Z/aTtSYXBoT6Y+a
cPqjIQZknYsdlnWiE2QdXEINOvw1WOsCEWedPTg6o0MPRYPxXgIraB0MHa91
8G4TJtL2IYdO2Dr42+RtVvgWHjkbNIHIW3r9uIHIW3sVvoDHgDs4fNbB58W8
V8dC12Szx3UAuh5/KvZ1I+uG3TpmXEdfPAEmL5R1ypae5i7Hi6vXrbp5VuWy
stqVkj3rF9b95obtbz9dsebhG68sTo+LmlkYW5g1rjBj4tWzM0pzx8/KH1eU
MbowdczM3Njc+KhFWbHNFS9+7zj8g6Xd2aXpO6T4S8t7u9v/psadyLpBWKcf
Huv85yaGeVwXEesUbOsUQ25dN2xdJbJuBFhH1yZIKU5uIRzVmE1hcKjbeprN
3c8se/JXN5duf/Wu7a//bH/9qubKlSvvub4sIzYnaUxpYVxpQUxJTowkfdys
goQZBfE5KaPz0mKyJ48rzpk4uzBpoSRmblzUc3dd/+9/7O33fOE4tuMYtq+5
5Ut9Z5+aQNaNaOtCnRFD1iHrLm3rZCD0K1xpdIBxXSVOVmJOaTt4Z/XKPjp+
6w3Xv3b3vO0bnqzbuPzp+66elZ2cPXF8dvL44tyYGUXjp00dN7soHnCXmTQ6
J21sbkbs7NLswtykKQnjSnJSZ2dMWpw1dmbyFXdeOWVv7cZ+99/O/P3vtS1n
lGaPBprGIuvEzmGxAHTgsda3cKfFxFhn9+UStg6+JDEAHXWTrJB18lYokHXy
IZzDnvWlmz2HHXHrdeKLrVzTOL8qEtaFq1uJtY7pdsIM5OSGQKh+7Bh4hdtU
mFWJOyqMzkriW6nBuc1s1354+Hevvby18tdVry5fMq8gY9LorITE0rz86fmT
ywqiZxaNKZPE5KWOmpo8Ki81OjslujAntjg3ebokRZIVnzB+dHFK9OKpMddP
mzAnN6pgYvSq5fcRx/5Ra/xGYXJqiUA0QtaxIlii5dYmQtQ6Q3+VYx3JDrda
AZUtxFoHH9QFEYIuIJ4DDmMdME3ni/ex0RvhKxRDFSNCW+cnTkoneBorMkPB
oLzNpvBF1maTQwmyjlWbAGM5pS8Ubi1QImRdla8wUcVwx/INDrJuyK1j2tkF
rPO91MEDKeasxh0yjLJODYZ2hKeS6Ktqd2wlLLoPTOVvvvngvTfNLEnMzRhV
kBuXlR6Xn508QzJ5tiS2NCc6L2VUftrowqyxswrj55SkTM+PA7PXtNgxUyeP
KyvOKpsaNzNt4vTMicUlyYmp2ePi0hTvG7YdcioI+8i2jq9/XZBg4q2DvirO
ujB362gx9nyWPY1lW8cZyDnp0R2nLOuNr3eTlxf+y3SEMhTWgYGcss3mD8Ud
/Ee51gX2nChaLUrIOmAaZ8gXEevghnWVn/Xwj+WQdcNsnRSnxnVqo1UDXvCY
Z1ObS467mgjr468okrMKJsaNSc+eUDAtLit/TGpWVFb6qPwp44snxxYkxuTE
XyFJH1WUFT09N6ZMMglMZrOTx2QmRBVljpfkpmdPSZqRm582OXdUTGLhop9v
av50m+nr2k6LirBQ71Zk3cizTnhcd/lZF6lxnWjrBPNpUJB1kbZOBlknM7ik
pm+Bdfr2b5KLb0tIzZVkTc5Ji0ufEpOVFVNQEDM1e3Re6oSiyYml6clzihJm
FsQWZkaDmWzulCuyJ0dJMsHEduwMyYTM1PiUpKSkhMIpGdc8+CtpY2d30wm3
jLCrTFYtYdHiaFw3oq27kCDrBmldcIbBOvY2YKHaBO924oER1xrIoK3bQofu
SGwXss63Xqc22DXgGYNbbu6TGqj+5KVLnps0KX1BSf4cSX5eSlpOUmrm5Ohi
yaTC7ARJyqSC1InT8+LKCmPzM0bnp15Rmhs9pyRm7rRJc0rjpxXHJmdmRSfl
33THs7o9x/74xTm12VlhJivNfUqzU4tbNTRrGjZ0jHWc7cSsbcZDZB2r8R1r
va7+YIhztUzCWAev7EXOOv/OYfBYBy/fCa3XBS/QcbYWc0O1WzfY6Kbrg7RO
CtUROAnHmsUfKRRq2Q3ABQX+i/I2CztWfxStViXgzhfKtDYofuhaeuRs6ASs
8+8lDnRl338WxLdeJ1yPOAslrHUDAC0i1gkN3iJUbOWoVdXGGwHftrDj/X4q
1KfUGM+3yUQO/S8v91pnV4MYnArcU2UgZUZq377OaL3u7ucT4jMzckryC0tT
U1JyUydI0mKLshOLJWl5krTUrNikxDF5GaPnFkRfNzt5fnHitKIpKWkJUTHx
mdc88Lzyk91HHe8fcdThPVrMpTZ5VCaPmnCpCVbtNTiwhPDKni7MMC/kwbEQ
ga2rE6yZNh0kt3aEToNweYI/gvCGPDIWsA4GbSDnJuDYBML5qQsc4IVMOOh6
/ZFD4y45t7rKOhSmoEZ9ImOBx3JM/KyJte6A9xAZa3R3AK7GdvsSDF03lHDc
Iesiah1zaAL8d0+dlcBIJeGuMjiASNIDvVqTZ/tR22OvKyaklEZPypxRVjo3
L1GSEFWYPqEgOzE/Oz47fVxBTsz0nOjizFFzp6dK8nPGxSbHppXcv/otfdtX
O49/p8W6a/AejbFbh7m0hJuGjvkoZB2cYbSuvsPJBx1I46Cgi6B14s/DCvs2
Mq2TtgWJdClZFwiybkRZx0xtVBR3pNxIqszn5AanmtqRYq/CeptPnavY1THt
v34ZPTYrKyVpbllmQdqEqcmjcuOj5uaOX1SaUpATn5qaGJOQfkXqrJn//Ujl
+9gfPrfXEb0aY6+esKuMFh2Yc1FjORJ81NIfkXUj3zoQTuvO4Iotsg5Zdyla
p8SYXp1uWbtThZEakxuIV024NrWdre2y7zhmW7pWGlN09cTkLElR/lXFiYsL
Js3KGJebmZSQmR8Vl5d51V0r39m587B16xGPzGjTmEil0aE1uYBsdPNPxjqm
GIGsQ9Yh64bQukEXXgdwOILzs5GwTnxtYksQdwxx/kayAeuo7cQOOtR2Yl8P
dto6jFQYHEr6yJgSd8nb7Uoj+PEe9UHX1r/88NYfjl9556qxyZKS3Kkzp6Zk
p2eOnZQ1Jn7m/6zYpG391/vHPRqjRWawK819KrNHZXLJgXIYIIsSj4IOp1bR
qTV2eHWO3U5cYO1OvHXiz01wrYMLE2Ze6Cjr+LcZc3cdC/ZgH1BtIuI9ncKp
KNShXWQGYp3VX19gtgHDnwoUIJTtVlW7xR/x1vlLEsIdicNax9ylyNpOHLCO
E2Rd5K0L3nMCWxf2bh0gHjXYA5NZ+k4xmYGsbnM0dnmaO3pWbXy3cN49Y+PK
xk6eP2fJM+tqW5sP2uvMTmmbRUWdV3KqcVJFuEE0hIs66U+NyoBydi1O3XM6
IOvgXCzr/Ldsu8JYx1/UENydgqzjg47lkpy9sQTGjRMlBN2ArOMbwg3IOv/V
2L49JxzruvmDrBsZ1lElWpcM88hwj9Lo0hidWvDib/mmBuv54PO+euzs75rM
b2wzN5osOz//AbwspeDtgDtVvjBlCGCdllqjc1LQEVYmGsKOrEPWIeuQdSPE
OhA5RluHuYF1aiOpMdrUGJDKASYUarO74cj5hiPfqQiqjCvH3QrCpSSYC8gY
7lwgGpyErdPhFj1u0RI2ZB2ybqDWKdqtfEHWIesu0DqV0ak2OsFHFeZUAPdw
t5JwK+i7xuQGm7TVAn6tDMhmclHE+UZ0dI0DPADfBiawkHW4zWsdLmSdhr1G
N4zWgQjvr6sXFzC7h4OsE2mdgn3AX9A6qwrKT9A6AdyGyrrB4iY+Ak3+Q9Ym
QgIobQvRxS64OKv0hl64o7oWU9UKFQEYpN5NACIV9Qxg0E6t0RGBCWxgJusb
p2kDS3Z2gcEbpwChYyfMfRP8ddiBFEm911Uw9DUeJBsPOps6mZBNnS4Q+knK
ukazqDSYWAn5F6FEwLohoy+QwblHx+qPzEAx5Y9KMGqDTW2whgz9DXZfbGEL
r/4IXB0b3IOd7wxFiBwI0AenKgx9yLpIWuc7OCbKOrjtj2+0Jj7M3v4QW0c0
/LPU4POwrGt38ItvnZPPusbBWlePrPNFEc43tnW8gaCjMuzWSZF1yLqfpHWc
IOtEWkcP5OAg65B1yDpkHbIOWYesQ9Yh60aWdXBZAVk3OOvE4xbWNwHrxIM2
vNYJfLW6zVHdHoh46zgZgHV0VSJkbYLTzETwvgmOdSTffROcE1hBt0jw9q/j
WNfQ4QBp9KHHxPuk4AkygTQI/WMic0bsIlg36BJtUA0CZgrAZfHFqjHaNEY7
FGtwfJtMbOwM0jrOGTGBDKxUQbtH34WNrEPWIet+EtYpaNB4rLPR1vX6YmFD
h6xD1l2C1hEOL3FmF4jOROqIQJB1P1Xr7FRnbMzijVHIOnreCm8eRtYh60a0
dToAHbIOWYesu9jWhe6yftlbJ6XKE9QtsXJjiAT2FUfEOsIBovNFD2asQLwL
sg6OkHUNZjikP/XsCw1rzQ4qHULWeQsWB8mtUJo6nHAaqUNk3jTBOUgGnSAj
qXA6Pl0C1nHatnNiCxkFNVG1sa2z8VjHsGaDImCd1XedojUoQtbJgG9QmLYn
IcO1rqWbit86Oky3E04iaF1EBnKcuyG4P3vRi61C/ev4QRNfh+WM66QGJxyZ
MRAFxj04xjpEFs46n3jeExMUcdQb2VGD2/3R00/6E+ZwxADDWNfAroTCo6wm
waOs7DqsN1u7SBDOk4yK/tTT9VYmnIsqQv6hGvOIqMMK/6DIJnh0ldYaMgrB
LcF0PUJsfBVYyjqFtwmA94YddmcAIevER8Ye9fmHgsxhsZDt7LwnyCJXh0XW
XXrW4RfVujoz2ShgneARfmQdsg5Zh6yLlHXUe9ns9IcllUnEMXlk3cizji9K
9lR0QAnaU8fMXntBFIC7dqu8nXNzIuNeBKBD1iHrBmednvgJW8fzh5B1yLpg
64am0soF7SLjxs1A4OIHjR2mE7s3Yq3jL86Kqk2EtA58rIEDRCL4Ywok5Fpc
+K5NIaxz+dPUwS0WRMQ62Ld6Tk+njhARc25Cyz5jMpKtY81boWssVFjobXIX
ap23JbvXOqoeAUUpOiKtk7awiKMC1Saq9ndX7j8bCFWS8CfYOt7rYjd/+vVP
zbpBHwRj/yDXt+G0jh0h6NiJnHVuf5o6XENtHfBN3xGIwNk0ZF1ErBN9z074
a3dEWcfec0JZF4m7dTZ/gqy77KwzkXVwCKc/yDpk3UCsszI38iDrkHUj07p6
E9lgdvkDPoWDrOOzTrx7w7tex/r9F2CdQB1W6eskIA9qboysQ9Yh65B1yLoR
bt3/A+dN+Mc=
"], {{0, 280.}, {420., 0}}, {0, 255},
ColorFunction->RGBColor,
ImageResolution->72],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSizeRaw->{420., 280.},
PlotRange->{{0, 420.}, {0, 280.}}]\)]

One of the main technical issues in handling video is dealing with the large amount of data in a typical video. In Version 12.2 there’s now finer control over where that data is stored. The option GeneratedAssetLocation (with default $GeneratedAssetLocation) lets you pick between different files, directories, local object stores, etc.

But there’s also a new function in Version 12.2 for handling “lightweight video”, in the form of AnimatedImage. AnimatedImage simply takes a list of images and produces an animation that immediately plays in your notebook—and has everything directly stored in your notebook:

AnimatedImage
&#10005

AnimatedImage[
 Table[Rasterize[Rotate[Style["W", 40], \[Theta]]], {\[Theta], 0, 
   2 Pi, .1}]]

 

Big Computations? Send Them to a Cloud Provider!

It comes up quite frequently for me—especially given our Physics Project. I’ve got a big computation I’d like to do, but I don’t want to (or can’t) do it on my computer. And instead what I’d like to do is run it as a batch job in the cloud.

This has been possible in principle for as long as cloud computation providers have been around. But it’s been very involved and difficult. Well, now, in Version 12.2 it’s finally easy. Given any piece of Wolfram Language code, you can just use RemoteBatchSubmit to send it to be run as a batch job in the cloud.

There’s a little bit of setup required on the batch computation provider side. First, you have to have an account with an appropriate provider—and initially we’re supporting AWS Batch and Charity Engine. Then you have to configure things with that provider (and we’ve got workflows that describe how to do that). But as soon as that’s done, you’ll get a remote batch submission environment that’s basically all you need to start submitting batch jobs:

env = RemoteBatchSubmissionEnvironment
&#10005

env = RemoteBatchSubmissionEnvironment[
  "AWSBatch", <|"JobQueue" -> 
    "arn:aws:batch:us-east-1:123456789012:job-queue/MyQueue", 
   "JobDefinition" -> 
    "arn:aws:batch:us-east-1:123456789012:job-definition/MyDefinition:\
1", "IOBucket" -> "my-job-bucket"|>]

OK, so what would be involved, say, in submitting a neural net training? Here’s how I would run it locally on my machine (and, yes, this is a very simple example):

NetTrain
&#10005

NetTrain[NetModel["LeNet"], "MNIST"]

And here’s the minimal way I would send it to run on AWS Batch:

job = RemoteBatchSubmit
&#10005

job = RemoteBatchSubmit[env, NetTrain[NetModel["LeNet"], "MNIST"]]

I get back an object that represents my remote batch job—that I can query to find out what’s happened with my job. At first it’ll just tell me that my job is “runnable”:

job
&#10005

job["JobStatus"]

Later on, it’ll say that it’s “starting”, then “running”, then (if all goes well) “succeeded”. And once the job is finished, you can get back the result like this:

job
&#10005

job["EvaluationResult"]

There’s lots of detail you can retrieve about what actually happened. Like here’s the beginning of the raw job log:

JobLog
&#10005

job["JobLog"]

But the real point of running your computations remotely in a cloud is that they can potentially be bigger and crunchier than the ones you can run on your own machines. Here’s how we could run the same computation as above, but now requesting the use of a GPU:

RemoteBatchSubmit
&#10005

RemoteBatchSubmit[env, 
 NetTrain[NetModel["LeNet"], "MNIST", TargetDevice -> "GPU"],
 RemoteProviderSettings -> <|"GPUCount" -> 1|>]

RemoteBatchSubmit can also handle parallel computations. If you request a multicore machine, you can immediately run ParallelMap etc. across its cores. But you can go even further with RemoteBatchMapSubmit—which automatically distributes your computation across a whole collection of separate machines in the cloud.

Here’s an example:

job = RemoteBatchMapSubmit
&#10005

job = RemoteBatchMapSubmit[env, ImageIdentify, 
  WebImageSearch["happy", 100]]

While it’s running, we can get a dynamic display of the status of each part of the job:

job
&#10005

job["DynamicStatusVisualization"]

About 5 minutes later, the job is finished:

job
&#10005

job["JobStatus"]

And here are our results:

ReverseSort
&#10005

ReverseSort[Counts[job["EvaluationResults"]]]

RemoteBatchSubmit and RemoteBatchMapSubmit give you high-level access to cloud compute services for general batch computation. But in Version 12.2 there is also a direct lower-level interface available, for example for AWS.

Connect to AWS:

aws = ServiceConnect
&#10005

aws = ServiceConnect["AWS"]

Once you’ve authenticated, you can see all the services that are available:

aws
&#10005

aws["Services"]

This gives a handle to the Amazon Translate service:

aws
&#10005

aws["GetService", "Name" -> "Translate"]

Now you can use this to call the service:

%
&#10005

%["TranslateText",
 "Text" -> "今日は良い一日だった",
 "SourceLanguageCode" -> "auto",
 "TargetLanguageCode" -> "en"
 ]

Of course, you can always do language translation directly through the Wolfram Language too:

TextTranslation
&#10005

TextTranslation["今日は良い一日だった"]

 

Can You Make a 10-Dimensional Plot?

It’s straightforward to plot data that involves one, two or three dimensions. For a few dimensions above that, you can use colors or other styling. But by the time you’re dealing with ten dimensions, that breaks down. And if you’ve got a lot of data in 10D, for example, then you’re probably going to have to use something like DimensionReduce to try to tease out “interesting features”.

But if you’re just dealing with a few “data points”, there are other ways to visualize things like 10-dimensional data. And in Version 12.2 we’re introducing several functions for doing this.

As a first example, let’s look at ParallelAxisPlot. The idea here is that every “dimension” is plotted on a “separate axis”. For a single point it’s not that exciting:

ParallelAxisPlot
&#10005

ParallelAxisPlot[{{10, 17, 19, 8, 7, 5, 17, 4, 8, 2}}, 
 PlotRange -> {0, 20}]

Here’s what happens if we plot three random “10D data points”:

ParallelAxisPlot
&#10005

ParallelAxisPlot[RandomInteger[20, {3, 10}], PlotRange -> {0, 20}]

But one of the important features of ParallelAxisPlot is that by default it automatically determines the scale on each axis, so there’s no need for the axes to be representing similar kinds of things. So, for example, here are 7 completely different quantities plotted for all the chemical elements:

ParallelAxisPlot
&#10005

ParallelAxisPlot[
 EntityValue[
  "Element", {EntityProperty["Element", "AtomicMass"], 
   EntityProperty["Element", "AtomicRadius"], 
   EntityProperty["Element", "BoilingPoint"], 
   EntityProperty["Element", "ElectricalConductivity"], 
   EntityProperty["Element", "MeltingPoint"], 
   EntityProperty["Element", "NeutronCrossSection"], 
   EntityProperty["Element", "ThermalConductivity"]}]]

Different kinds of high-dimensional data do best on different kinds of plots. Another new type of plot in Version 12.2 is RadialAxisPlot. (This type of plot also goes by names like radar plot, spider plot and star plot.)

RadialAxisPlot plots each dimension in a different direction:

RadialAxisPlot
&#10005

RadialAxisPlot[
 EntityValue[
  "Element", {EntityProperty["Element", "AtomicMass"], 
   EntityProperty["Element", "AtomicRadius"], 
   EntityProperty["Element", "BoilingPoint"], 
   EntityProperty["Element", "ElectricalConductivity"], 
   EntityProperty["Element", "MeltingPoint"], 
   EntityProperty["Element", "NeutronCrossSection"], 
   EntityProperty["Element", "ThermalConductivity"]}]]

It’s typically most informative when there aren’t too many data points:

RadialAxisPlot
&#10005

RadialAxisPlot[
 EntityValue[{Entity["City", {"Chicago", "Illinois", "UnitedStates"}],
    Entity["City", {"Dallas", "Texas", "UnitedStates"}], 
   Entity["City", {"NewYork", "NewYork", "UnitedStates"}], 
   Entity["City", {"LosAngeles", "California", 
     "UnitedStates"}]}, {EntityProperty["City", 
    "MedianHomeSalePrice"], 
   EntityProperty["City", "TotalSalesTaxRate"], 
   EntityProperty["City", "MedianHouseholdIncome"], 
   EntityProperty["City", "Population"], 
   EntityProperty["City", "Area"]}, "EntityAssociation"], 
 PlotLegends -> Automatic]

 

3D Array Plots

Back in 1984 I used a Cray supercomputer to make 3D pictures of 2D cellular automata evolving in time (yes, captured on 35 mm slides):

Slides of cellular automata

I’ve been waiting for 36 years to have a really streamlined way to reproduce these. And now finally in Version 12.2 we have it: ArrayPlot3D. Already in 2012 we introduced Image3D to represent and display 3D images composed of 3D voxels with specified colors and opacities. But its emphasis is on “radiology-style” work, in which there’s a certain assumption of continuity between voxels. And if you’ve really got a discrete array of discrete data (as in cellular automata) that won’t lead to crisp results.

And here it is, for a slightly more elaborate case of a 3D cellular automaton:

Table
&#10005

Table[ArrayPlot3D[
  CellularAutomaton[{14, {2, 1}, {1, 1, 1}}, {{{{1}}}, 
    0}, {{{t}}}]], {t, 20, 40, 10}]

Another new ArrayPlot-family function in 12.2 is ComplexArrayPlot, here applied to an array of values from Newton’s method:

ComplexArrayPlot
&#10005

Table[ArrayPlot3D[
  CellularAutomaton[{14, {2, 1}, {1, 1, 1}}, {{{{1}}}, 0}, {{{t}}}], 
  PlotTheme -> "Web"], {t, 10, 40, 10}]

 

Advancing the Computational Aesthetics of Visualization

One of our objectives in Wolfram Language is to have visualizations that just “automatically look good”—because they’ve got algorithms and heuristics that effectively implement good computational aesthetics. In Version 12.2 we’ve tuned up the computational aesthetics for a variety of types of visualization. For example, in 12.1 this is what a SliceVectorPlot3D looked like by default:

SliceVectorPlot3D
&#10005

SliceVectorPlot3D[{y + x, z, -y}, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}]

Now it looks like this:

Vector plot

Since Version 10, we’ve also been making increasing use of our PlotTheme option, to “bank switch” detailed options to make visualizations that are suitable for different purposes, and meet different aesthetic goals. So for example in Version 12.2 we’ve added plot themes to GeoRegionValuePlot. Here’s an example of the default (which has been updated, by the way):

GeoRegionValuePlot
&#10005

GeoRegionValuePlot[\!\(\*
NamespaceBox["LinguisticAssistant",
DynamicModuleBox[{Typeset`query$$ = "europe", Typeset`boxes$$ = 
      TemplateBox[{"\"Europe\"", 
RowBox[{"EntityClass", "[", 
RowBox[{"\"Country\"", ",", "\"Europe\""}], "]"}], 
        "\"EntityClass[\\\"Country\\\", \\\"Europe\\\"]\"", 
        "\"countries\""}, "EntityClass"], 
      Typeset`allassumptions$$ = {{
       "type" -> "Clash", "word" -> "europe", "template" -> 
        "Assuming \"${word}\" is ${desc1}. Use as ${desc2} instead", 
        "count" -> "3", 
        "Values" -> {{
          "name" -> "CountryClass", "desc" -> "a class of countries", 
           "input" -> "*C.europe-_*CountryClass-"}, {
          "name" -> "GeographicRegion", "desc" -> "a continent", 
           "input" -> "*C.europe-_*GeographicRegion-"}, {
          "name" -> "Word", "desc" -> "a word", "input" -> 
           "*C.europe-_*Word-"}}}, {
       "type" -> "SubCategory", "word" -> "europe", "template" -> 
        "Assuming ${desc1}. Use ${desc2} instead", "count" -> "4", 
        "Values" -> {{
          "name" -> "Europe", "desc" -> "Europe", "input" -> 
           "*DPClash.CountryEC.europe-_*Europe-"}, {
          "name" -> "EuropeSovereign", "desc" -> 
           "sovereign states in Europe", "input" -> 
           "*DPClash.CountryEC.europe-_*EuropeSovereign-"}, {
          "name" -> "EuropeExtended", "desc" -> 
           "Europe with Russia and Turkey", "input" -> 
           "*DPClash.CountryEC.europe-_*EuropeExtended-"}, {
          "name" -> "EuropeRussia", "desc" -> "Europe with Russia", 
           "input" -> "*DPClash.CountryEC.europe-_*EuropeRussia-"}}}},
       Typeset`assumptions$$ = {"*C.europe-_*CountryClass-"}, 
      Typeset`open$$ = {1, 2}, Typeset`querystate$$ = {
      "Online" -> True, "Allowed" -> True, "mparse.jsp" -> 
       0.622991`6.246026766192753, "Messages" -> {}}}, 
DynamicBox[ToBoxes[
AlphaIntegration`LinguisticAssistantBoxes["", 4, Automatic, 
Dynamic[Typeset`query$$], 
Dynamic[Typeset`boxes$$], 
Dynamic[Typeset`allassumptions$$], 
Dynamic[Typeset`assumptions$$], 
Dynamic[Typeset`open$$], 
Dynamic[Typeset`querystate$$]], StandardForm],
ImageSizeCache->{164., {7., 18.}},
TrackedSymbols:>{
        Typeset`query$$, Typeset`boxes$$, Typeset`allassumptions$$, 
         Typeset`assumptions$$, Typeset`open$$, Typeset`querystate$$}],
DynamicModuleValues:>{},
UndoTrackedVariables:>{Typeset`open$$}],
BaseStyle->{"Deploy"},
DeleteWithContents->True,
Editable->False,
SelectWithContents->True]\) -> "GDP"]

And here it is with the "Marketing" plot theme:

GeoRegionValuePlot
&#10005

GeoRegionValuePlot[\!\(\*
NamespaceBox["LinguisticAssistant",
DynamicModuleBox[{Typeset`query$$ = "europe", Typeset`boxes$$ = 
      TemplateBox[{"\"Europe\"", 
RowBox[{"EntityClass", "[", 
RowBox[{"\"Country\"", ",", "\"Europe\""}], "]"}], 
        "\"EntityClass[\\\"Country\\\", \\\"Europe\\\"]\"", 
        "\"countries\""}, "EntityClass"], 
      Typeset`allassumptions$$ = {{
       "type" -> "Clash", "word" -> "europe", "template" -> 
        "Assuming \"${word}\" is ${desc1}. Use as ${desc2} instead", 
        "count" -> "3", 
        "Values" -> {{
          "name" -> "CountryClass", "desc" -> "a class of countries", 
           "input" -> "*C.europe-_*CountryClass-"}, {
          "name" -> "GeographicRegion", "desc" -> "a continent", 
           "input" -> "*C.europe-_*GeographicRegion-"}, {
          "name" -> "Word", "desc" -> "a word", "input" -> 
           "*C.europe-_*Word-"}}}, {
       "type" -> "SubCategory", "word" -> "europe", "template" -> 
        "Assuming ${desc1}. Use ${desc2} instead", "count" -> "4", 
        "Values" -> {{
          "name" -> "Europe", "desc" -> "Europe", "input" -> 
           "*DPClash.CountryEC.europe-_*Europe-"}, {
          "name" -> "EuropeSovereign", "desc" -> 
           "sovereign states in Europe", "input" -> 
           "*DPClash.CountryEC.europe-_*EuropeSovereign-"}, {
          "name" -> "EuropeExtended", "desc" -> 
           "Europe with Russia and Turkey", "input" -> 
           "*DPClash.CountryEC.europe-_*EuropeExtended-"}, {
          "name" -> "EuropeRussia", "desc" -> "Europe with Russia", 
           "input" -> "*DPClash.CountryEC.europe-_*EuropeRussia-"}}}},
       Typeset`assumptions$$ = {"*C.europe-_*CountryClass-"}, 
      Typeset`open$$ = {1, 2}, Typeset`querystate$$ = {
      "Online" -> True, "Allowed" -> True, "mparse.jsp" -> 
       0.622991`6.246026766192753, "Messages" -> {}}}, 
DynamicBox[ToBoxes[
AlphaIntegration`LinguisticAssistantBoxes["", 4, Automatic, 
Dynamic[Typeset`query$$], 
Dynamic[Typeset`boxes$$], 
Dynamic[Typeset`allassumptions$$], 
Dynamic[Typeset`assumptions$$], 
Dynamic[Typeset`open$$], 
Dynamic[Typeset`querystate$$]], StandardForm],
ImageSizeCache->{164., {7., 18.}},
TrackedSymbols:>{
        Typeset`query$$, Typeset`boxes$$, Typeset`allassumptions$$, 
         Typeset`assumptions$$, Typeset`open$$, Typeset`querystate$$}],
DynamicModuleValues:>{},
UndoTrackedVariables:>{Typeset`open$$}],
BaseStyle->{"Deploy"},
DeleteWithContents->True,
Editable->False,
SelectWithContents->True]\) -> "GDP", PlotTheme -> "Marketing"]

Another thing in Version 12.2 is the addition of new primitives and new “raw material” for creating aesthetic visual effects. In Version 12.1 we introduced things like HatchFilling for cross-hatching. In Version 12.2 we now also have LinearGradientFilling:

Graphics
&#10005

Graphics[Style[Disk[], 
  LinearGradientFilling[{RGBColor[1., 0.71, 0.75], RGBColor[0.64, 
Rational[182, 255], 
Rational[244, 255]]}]]]

And we can now add this kind of effect to the filling in a plot:

Plot
&#10005

Plot[2 Sin[x] + x, {x, 0, 15}, 
 FillingStyle -> LinearGradientFilling[{RGBColor[0.64, 
Rational[182, 255], 
Rational[244, 255]], RGBColor[1., 0.71, 0.75]}, Top], 
 Filling -> Bottom]

To be even more stylish, one can plot random points using the new ConicGradientFilling:

Graphics
&#10005

Graphics[Table[
  Style[Disk[RandomReal[20, 2]], 
   ConicGradientFilling[RandomColor[3]]], 100]]

 

Making Code Just a Bit More Beautiful

A core goal of the Wolfram Language is to define a coherent computational language that can readily be understood by both computers and humans. We (and I in particular!) put a lot of effort into the design of the language, and into things like picking the right names for functions. But in making the language as easy to read as possible, it’s also important to streamline its “non-verbal” or syntactic aspects. For function names, we’re basically leveraging people’s understanding of words in natural language. For syntactic structure, we want to leverage people’s “ambient understanding”, for example, from areas like math.

More than a decade ago we introduced as a way to specify Function functions, so instead of writing

Function
&#10005

Function[x, x^2]

(or #2&) you could write:

x |-> x^2
&#10005

x |-> x^2

But to enter you had to type \[Function] or at least  fn , which tended to feel “a bit difficult”.

Well, in Version 12.2, we’re “mainstreaming” by making it possible to type just as |->

x | - > x^2
&#10005

x | - > x^2

You can also do things like

{x, y} |-> x + y
&#10005

{x, y} |-> x + y

as well as things like:

SameTest
&#10005

SameTest -> ({x, y} |-> Mod[x - y, 2] == 0)

In Version 12.2, there’s also another new piece of “short syntax”: //=

Imagine you’ve got a result, say called res. Now you want to apply a function to res, and then “update res”. The new function ApplyTo (written //=) makes it easy to do that:

res = 10
&#10005

res = 10

res //= f
&#10005

res //= f

res
&#10005

res

We’re always on the lookout for repeated “lumps of computation” that we can “package” into functions with “easy-to-understand names”. And in Version 12.2 we have a couple of new such functions: FoldWhile and FoldWhileList. FoldList normally just takes a list and “folds” each successive element into the result it’s building up—until it gets to the end of the list:

FoldList
&#10005

FoldList[f, {1, 2, 3, 4}]

But what if you want to “stop early”? FoldWhileList lets you do that. So here we’re successively dividing by 1, 2, 3, …, stopping when the result isn’t an integer anymore:

FoldWhileList
&#10005

FoldWhileList[Divide, 5!, Range[10], IntegerQ]

 

More Array Gymnastics: Column Operations and Their Generalizations

Let’s say you’ve got an array, like:

{{a, b, c, d}, {x, y, z, w}} // MatrixForm
&#10005

{{a, b, c, d}, {x, y, z, w}} // MatrixForm

Map lets you map a function over the “rows” of this array:

Map
&#10005

Map[f, {{a, b, c, d}, {x, y, z, w}}]

But what if you want to operate on the “columns” of the array, effectively “reducing out” the first dimension of the array? In Version 12.2 the function ArrayReduce lets you do this:

ArrayReduce
&#10005

ArrayReduce[f, {{a, b, c, d}, {x, y, z, w}}, 1]

Here’s what happens if instead we tell ArrayReduce to “reduce out” the second dimension of the array:

ArrayReduce
&#10005

ArrayReduce[f, {{a, b, c, d}, {x, y, z, w}}, 2]

What’s really going on here? The array has dimensions 2×4:

Dimensions
&#10005

Dimensions[{{a, b, c, d}, {x, y, z, w}}]

ArrayReduce[f, ..., 1] “reduces out” the first dimension, leaving an array with dimensions {4}. ArrayReduce[f, ..., 2] reduces out the second dimension, leaving an array with dimensions {2}.

Let’s look at a slightly bigger case—a 2×3×4 array:

array = ArrayReshape
&#10005

array = ArrayReshape[Range[24], {2, 3, 4}]

This now eliminates the “first dimension”, leaving a 3×4 array:

ArrayReduce
&#10005

ArrayReduce[f, array, 1]

Dimensions
&#10005

Dimensions[%]

This, on the other hand, eliminates the “second dimension”, leaving a 2×4 array:

ArrayReduce
&#10005

ArrayReduce[f, array, 2]

Dimensions
&#10005

Dimensions[%]

Why is this useful? One example is when you have arrays of data where different dimensions correspond to different attributes, and then you want to “ignore” a particular attribute, and aggregate the data with respect to it. Let’s say that the attribute you want to ignore is at level n in your array. Then all you do to “ignore” it is to use ArrayReduce[f, ..., n], where f is the function that aggregates values (often something like Total or Mean).

You can achieve the same results as ArrayReduce by appropriate sequences of Transpose, Apply, etc. But it’s quite messy, and ArrayReduce provides an elegant “packaging” of these kinds of array operations.

ArrayReduce is quite general; it lets you not only “reduce out” single dimensions, but whole collections of dimensions:

ArrayReduce
&#10005

ArrayReduce[f, array, {2, 3}]

ArrayReduce
&#10005

ArrayReduce[f, array, {{2}, {3}}]

At the simplest level, ArrayReduce is a convenient way to apply functions “columnwise” on arrays. But in full generality it’s a way to apply functions to subarrays with arbitrary indices. And if you’re thinking in terms of tensors, ArrayReduce is a generalization of contraction, in which more than two indices can be involved, and elements can be “flattened” before the operation (which doesn’t have to be summation) is applied.

Watch Your Code Run: More in the Echo Family

It’s an old adage in debugging code: “put in a print statement”. But it’s more elegant in the Wolfram Language, thanks particularly to Echo. It’s a simple idea: Echo[expr] “echoes” (i.e. prints) the value of expr, but then returns that value. So the result is that you can put Echo anywhere into your code (often as Echo@…) without affecting what your code does.

In Version 12.2 there are some new functions that follow the “Echo” pattern. A first example is EchoLabel, which just adds a label to what’s echoed:

EchoLabel
&#10005

EchoLabel["a"]@5! + EchoLabel["b"]@10!

Aficionados might wonder why EchoLabel is needed. After all, Echo itself allows a second argument that can specify a label. The answer—and yes, it’s a mildly subtle piece of language design—is that if one’s going to just insert Echo as a function to apply (say with @), then it can only have one argument, so no label. EchoLabel is set up to have the operator form EchoLabel[label] so that EchoLabel[label][expr] is equivalent to Echo[expr,label].

Another new “echo function” in 12.2 is EchoTiming, which displays the timing (in seconds) of whatever it evaluates:

Table
&#10005

Table[Length[EchoTiming[Permutations[Range[n]]]], {n, 8, 10}]

It’s often helpful to use both Echo and EchoTiming:

Length
&#10005

Length[EchoTiming[Permutations[Range[Echo@10]]]]

And, by the way, if you always want to print evaluation time (just like Mathematica 1.0 did by default 32 years ago) you can always globally set $Pre=EchoTiming.

Another new “echo function” in 12.2 is EchoEvaluation which echoes the “before” and “after” for an evaluation:

EchoEvaluation
&#10005

EchoEvaluation[2 + 2]

You might wonder what happens with nested EchoEvaluation’s. Here’s an example:

EchoEvaluation
&#10005

EchoEvaluation[
 Accumulate[EchoEvaluation[Reverse[EchoEvaluation[Range[10]]]]]]

By the way, it’s quite common to want to use both EchoTiming and EchoEvaluation:

Table
&#10005

Table[EchoTiming@EchoEvaluation@FactorInteger[2^(50 n) - 1], {n, 2}]

Finally, if you want to leave echo functions in your code, but want your code to “run quiet”, you can use the new QuietEcho to “quiet” all the echoes (like Quiet “quiets” messages):

QuietEcho@Table
&#10005

QuietEcho@
 Table[EchoTiming@EchoEvaluation@FactorInteger[2^(50 n) - 1], {n, 2}]

 

Confirm/Enclose: Symbolic Exception Handling

Did something go wrong inside your program? And if so, what should the program do? It can be possible to write very elegant code if one ignores such things. But as soon as one starts to put in checks, and has logic for unwinding things if something goes wrong, it’s common for the code to get vastly more complicated, and vastly less readable.

What can one do about this? Well, in Version 12.2 we’ve developed a high-level symbolic mechanism for handling things going wrong in code. Basically the idea is that you insert Confirm (or related functions)—a bit like you might insert Echo—to “confirm” that something in your program is doing what it should. If the confirmation works, then your program just keeps going. But if it fails, then the program stops–and exits to the nearest enclosing Enclose. In a sense, Enclose “encloses” regions of your program, not letting anything that goes wrong inside immediately propagate out.

Let’s see how this works in a simple case. Here the Confirm successfully “confirms” y, just returning it, and the Enclose doesn’t really do anything:

Enclose
&#10005

Enclose[f[x, Confirm[y], z]]

But now let’s put $Failed in place of y. $Failed is something that Confirm by default considers to be a problem. So when it sees $Failed, it stops, exiting to the Enclose—which in turn yields a Failure object:

Enclose
&#10005

Enclose[f[x, Confirm[$Failed], z]]

If we put in some echoes, we’ll see that x is successfully reached, but z is not; as soon as the Confirm fails, it stops everything:

Enclose
&#10005

Enclose[f[Echo[x], Confirm[$Failed], Echo[z]]]

A very common thing is to want to use Confirm/Enclose when you define a function:

addtwo
&#10005

addtwo[x_] := Enclose[Confirm[x] + 2]

Use argument 5 and everything just works:

addtwo
&#10005

addtwo[5]

But if we instead use Missing[]—which Confirm by default considers to be a problem—we get back a Failure object:

addtwo
&#10005

addtwo[Missing[]]

We could achieve the same thing with If, Return, etc. But even in this very simple case, it wouldn’t look as nice.

Confirm has a certain default set of things that it considers “wrong” ($Failed, Failure[...], Missing[...] are examples). But there are related functions that allow you to specify particular tests. For example, ConfirmBy applies a function to test if an expression should be confirmed.

Here, ConfirmBy confirms that 2 is a number:

Enclose
&#10005

Enclose[f[1, ConfirmBy[2, NumberQ], 3]]

But x is not considered so by NumberQ:

Enclose
&#10005

Enclose[f[1, ConfirmBy[x, NumberQ], 3]]

OK, so let’s put these pieces together. Let’s define a function that’s supposed to operate on strings:

world
&#10005

world[x_] := Enclose[ConfirmBy[x, StringQ] <> " world!"]

If we give it a string, all is well:

world
&#10005

world["hello"]

But if we give it a number instead, the ConfirmBy fails:

world
&#10005

world[4]

But here’s where really nice things start to happen. Let’s say we want to map world over a list, always confirming that it gets a good result. Here everything is OK:

Enclose
&#10005

Enclose[Confirm[world[#]] & /@ {"a", "b", "c"}]

But now something has gone wrong:

Enclose
&#10005

Enclose[Confirm[world[#]] & /@ {"a", "b", 3}]

The ConfirmBy inside the definition of world failed, causing its enclosing Enclose to produce a Failure object. Then this Failure object caused the Confirm inside the Map to fail, and the enclosing Enclose gave a Failure object for the whole thing. Once again, we could have achieved the same thing with If, Throw, Catch, etc. But Confirm/Enclose do it more robustly, and more elegantly.

These are all very small examples. But where Confirm/Enclose really show their value is in large programs, and in providing a clear, high-level framework for handling errors and exceptions, and defining their scope.

In addition to Confirm and ConfirmBy, there’s also ConfirmMatch, which confirms that an expression matches a specified pattern. Then there’s ConfirmQuiet, which confirms that the evaluation of an expression doesn’t generate any messages (or, at least, none that you told it to test for). There’s also ConfirmAssert, which simply takes an “assertion” (like p>0) and confirms that it’s true.

When a confirmation fails, the program always exits to the nearest enclosing Enclose, delivering to the Enclose a Failure object with information about the failure that occurred. When you set up the Enclose, you can tell it how to handle failure objects it receives—either just returning them (perhaps to enclosing Confirm’s and Enclose’s), or applying functions to their contents.

Confirm and Enclose provide an elegant mechanism for handling errors, that are easy and clean to insert into programs. But—needless to say—there are definitely some tricky issues around them. Let me mention just one. The question is: which Confirm’s does a given Enclose really enclose? If you’ve written a piece of code that explicitly contains Enclose and Confirm, it’s pretty obvious. But what if there’s a Confirm that’s somehow generated—perhaps dynamically—deep inside some stack of functions? It’s similar to the situation with named variables. Module just looks for the variables directly (“lexically”) inside its body. Block looks for variables (“dynamically”) wherever they may occur. Well, Enclose by default works like Module, “lexically” looking for Confirm’s to enclose. But if you include tags in Confirm and Enclose, you can set them up to “find each other” even if they’re not explicitly “visible” in the same piece of code.

Function Robustification

Confirm/Enclose provide a good high-level way to handle the “flow” of things going wrong inside a program or a function. But what if there’s something wrong right at the get-go? In our built-in Wolfram Language functions, there’s a standard set of checks we apply. Are there the correct number of arguments? If there are options, are they allowed options, and are they in the correct place? In Version 12.2 we’ve added two functions that can perform these standard checks for functions you write.

This says that f should have two arguments, which here it doesn’t:

CheckArguments
&#10005

CheckArguments[f[x, y, z], 2]

Here’s a way to make CheckArguments part of the basic definition of a function:

f
&#10005

f[args___] := Null /; CheckArguments[f[args], 2] 

Give it the wrong number of arguments, and it’ll generate a message, and then return unevaluated, just like lots of built-in Wolfram Language functions do:

f
&#10005

f[7]

ArgumentsOptions is another new function in Version 12.2—that separates “positional arguments” from options in a function. Set up options for a function:

Options
&#10005

Options[f] = {opt -> Automatic};

This expects one positional argument, which it finds:

ArgumentsOptions
&#10005

ArgumentsOptions[f[x, opt -> 7], 1]

If it doesn’t find exactly one positional argument, it generates a message:

ArgumentsOptions
&#10005

ArgumentsOptions[f[x, y], 1]

 

Cleaning Up After Your Code

You run a piece of code and it does what it does—and typically you don’t want it to leave anything behind. Often you can use scoping constructs like Module, Block, BlockRandom, etc. to achieve this. But sometimes there’ll be something you set up that needs to be explicitly “cleaned up” when your code finishes.

For example, you might create a file in your piece of code, and want the file removed when that particular piece of code finishes. In Version 12.2 there’s a convenient new function for managing things like this: WithCleanup.

WithCleanup[expr, cleanup] evaluates expr, then cleanup—but returns the result from expr. Here’s a trivial example (which could really be achieved better with Block). You’re assigning a value to x, getting its square—then clearing x before returning the square:

WithCleanup
&#10005

WithCleanup[x = 7; x^2, Clear[x]]

It’s already convenient just to have a construct that does cleanup while still returning the main expression you were evaluating. But an important detail of WithCleanup is that it also handles the situation where you abort the main evaluation you were doing. Normally, issuing an abort would cause everything to stop. But WithCleanup is set up to make sure that the cleanup happens even if there’s an abort. So if the cleanup involves, for example, deleting a file, the file gets deleted, even if the main operation is aborted.

WithCleanup also allows an initialization to be given. So here the initialization is done, as is the cleanup, but the main evaluation is aborted:

WithCleanup
&#10005

WithCleanup[Echo[1], Abort[]; Echo[2], Echo[3]]

By the way, WithCleanup can also be used with Confirm/Enclose to ensure that even if a confirmation fails, certain cleanup will be done.

Dates—with 37 New Calendars

It’s December 16, 2020, today—at least according to the standard Gregorian calendar that’s usually used in the US. But there are many other calendar systems in use for various purposes around the world, and even more that have been used at one time or another historically.

In earlier versions of Wolfram Language we supported a few common calendar systems. But in Version 12.2 we’ve added very broad support for calendar systems—altogether 41 of them. One can think of calendar systems as being a bit like projections in geodesy or coordinate systems in geometry. You have a certain time: now you have to know how it is represented in whatever system you’re using. And much like GeoProjectionData, there’s now CalendarData which can give you a list of available calendar systems:

CalendarData
&#10005

CalendarData["DateCalendar"]

So here’s the representation of “now” converted to different calendars:

CalendarConvert
&#10005

CalendarConvert[Now, #] & /@ CalendarData["DateCalendar"]

There are many subtleties here. Some calendars are purely “arithmetic”; others rely on astronomical computations. And then there’s the matter of “leap variants”. With the Gregorian calendar, we’re used to just adding a February 29. But the Chinese calendar, for example, can add whole “leap months” within a year (so that, for example, there can be two “fourth months”). In the Wolfram Language, we now have a symbolic representation for such things, using LeapVariant:

DateObject
&#10005

DateObject[{72, 25, LeapVariant[4], 20}, CalendarType -> "Chinese"]

One reason to deal with different calendar systems is that they’re used to determine holidays and festivals in different cultures. (Another reason, particularly relevant to someone like me who studies history quite a bit, is in the conversion of historical dates: Newton’s birthday was originally recorded as December 25, 1642, but converting it to a Gregorian date it’s January 4, 1643.)

Given a calendar, something one often wants to do is to select dates that satisfy a particular criterion. And in Version 12.2 we’ve introduced the function DateSelect to do this. So, for example, we can select dates within a particular interval that satisfy the criterion that they are Wednesdays:

DateSelect
&#10005

DateSelect[DateInterval[{{{2020, 4, 1}, {2020, 4, 30}}}, "Day", 
  "Gregorian", -5.], #DayName == Wednesday &]

As a more complicated example, we can convert the current algorithm for selecting dates of US presidential elections to computable form, and then use it to determine dates for the next 50 years:

DateSelect
&#10005

DateSelect[DateInterval[{{2020}, {2070}}, "Day"], 
 Divisible[#Year, 4] && #Month == 11 && #DayName == Tuesday && 
   Or[#DayNameInstanceInMonth == 1 && #Day =!= 
      1, #DayNameInstanceInMonth == 2 && #Day == 8] &]

 

New in Geo

By now, the Wolfram Language has strong capabilities in geo computation and geo visualization. But we’re continuing to expand our geo functionality. In Version 12.2 an important addition is spatial statistics (mentioned above)—which is fully integrated with geo. But there are also a couple of new geo primitives. One is GeoBoundary, which computes boundaries of things:

GeoBoundary
&#10005

GeoBoundary[\!\(\*
NamespaceBox["LinguisticAssistant",
DynamicModuleBox[{Typeset`query$$ = "US", Typeset`boxes$$ = 
     TemplateBox[{"\"United States\"", 
RowBox[{"Entity", "[", 
RowBox[{"\"Country\"", ",", "\"UnitedStates\""}], "]"}], 
       "\"Entity[\\\"Country\\\", \\\"UnitedStates\\\"]\"", 
       "\"country\""}, "Entity"], 
     Typeset`allassumptions$$ = {{
      "type" -> "Clash", "word" -> "US", "template" -> 
       "Assuming \"${word}\" is ${desc1}. Use as ${desc2} instead", 
       "count" -> "3", 
       "Values" -> {{
         "name" -> "Country", "desc" -> "a country", "input" -> 
          "*C.US-_*Country-"}, {
         "name" -> "Character", "desc" -> "a character", "input" -> 
          "*C.US-_*Character-"}, {
         "name" -> "ComputationalComplexityClass", "desc" -> 
          " referring to computational complexity", "input" -> 
          "*C.US-_*ComputationalComplexityClass-"}}}}, 
     Typeset`assumptions$$ = {}, Typeset`open$$ = {1, 2}, 
     Typeset`querystate$$ = {
     "Online" -> True, "Allowed" -> True, "mparse.jsp" -> 
      0.494765`6.145943963263699, "Messages" -> {}}}, 
DynamicBox[ToBoxes[
AlphaIntegration`LinguisticAssistantBoxes["", 4, Automatic, 
Dynamic[Typeset`query$$], 
Dynamic[Typeset`boxes$$], 
Dynamic[Typeset`allassumptions$$], 
Dynamic[Typeset`assumptions$$], 
Dynamic[Typeset`open$$], 
Dynamic[Typeset`querystate$$]], StandardForm],
ImageSizeCache->{187., {7., 18.}},
TrackedSymbols:>{
       Typeset`query$$, Typeset`boxes$$, Typeset`allassumptions$$, 
        Typeset`assumptions$$, Typeset`open$$, Typeset`querystate$$}],
     
DynamicModuleValues:>{},
UndoTrackedVariables:>{Typeset`open$$}],
BaseStyle->{"Deploy"},
DeleteWithContents->True,
Editable->False,
SelectWithContents->True]\)]

There’s also GeoPolygon, which is a full geo generalization of ordinary polygons. One of the tricky issues GeoPolygon has to handle is what counts as the “interior” of a polygon on the Earth. Here it’s picking the larger area (i.e. the one that wraps around the globe):

GeoGraphics
&#10005

GeoGraphics[
 GeoPolygon[{{-50, 70}, {30, -90}, {70, 50}}, "LargerArea"]]

GeoPolygon can also—like Polygon—handle holes, or in fact arbitrary levels of nesting:

GeoGraphics
&#10005

GeoGraphics[
 GeoPolygon[
  Entity["AdministrativeDivision", {"Illinois", "UnitedStates"}] -> 
   Entity["AdministrativeDivision", {"ChampaignCounty", "Illinois", 
     "UnitedStates"}]]]

But the biggest “coming attraction” of geo is completely new rendering of geo graphics and maps. It’s still preliminary (and unfinished) in Version 12.2, but there’s at least experimental support for vector-based map rendering. The most obvious payoff from this is maps that look much crisper and sharper at all scales. But another payoff is our ability to introduce new styling for maps, and in Version 12.2 we’re including eight new map styles.

Here’s our “old-style”map:

GeoGraphics
&#10005

GeoGraphics[Entity["Building", "EiffelTower::5h9w8"], 
 GeoRange -> Quantity[400, "Meters"]]

Here’s the new, vector version of this “classic” style:

GeoGraphics
&#10005

GeoGraphics[Entity["Building", "EiffelTower::5h9w8"], 
 GeoBackground -> "VectorClassic", 
 GeoRange -> Quantity[400, "Meters"]]

Here’s a new (vector) style, intended for the web:

GeoGraphics
&#10005

GeoGraphics[Entity["Building", "EiffelTower::5h9w8"], 
 GeoBackground -> "VectorWeb", GeoRange -> Quantity[400, "Meters"]]

And here’s a “dark” style, suitable for having information overlaid on it:

GeoGraphics
&#10005

GeoGraphics[Entity["Building", "EiffelTower::5h9w8"], 
 GeoBackground -> "VectorDark", GeoRange -> Quantity[400, "Meters"]]

 

Importing PDF

Want to analyze a document that’s in PDF? We’ve been able to extract basic content from PDF files for well over a decade. But PDF is a highly complex (and evolving) format, and many documents “in the wild” have complicated structures. In Version 12.2, however, we’ve dramatically expanded our PDF import capabilities, so that it becomes realistic to, for example, take a random paper from arXiv, and import it:

Import
&#10005

Import["https://arxiv.org/pdf/2011.12174.pdf"]

By default, what you’ll get is a high-resolution image for each page (in this particular case, all 100 pages).

If you want the text, you can import that with "Plaintext":

Import
&#10005

Import["https://arxiv.org/pdf/2011.12174.pdf", "Plaintext"]

Now you can immediately make a word cloud of the words in the paper:

WordCloud
&#10005

WordCloud[%]

This picks out all the images from the paper, and makes a collage of them:

ImageCollage
&#10005

ImageCollage[Import["https://arxiv.org/pdf/2011.12174.pdf", "Images"]]

You can get the URLs from each page:

Import
&#10005

Import["https://arxiv.org/pdf/2011.12174.pdf", "URLs"]

Now pick off the last two, and get images of those webpages:

WebImage /@ Take
&#10005

WebImage /@ Take[Flatten[Values[%]], -2]

Depending on how they’re produced, PDFs can have all sorts of structure. "ContentsGraph" gives a graph representing the overall structure detected for a document:

Import
&#10005

Import["https://arxiv.org/pdf/2011.12174.pdf", "ContentsGraph"]

And, yes, it really is a graph:

Graph
&#10005

Graph[EdgeList[%]]

For PDFs that are fillable forms, there’s more structure to import. Here I grabbed a random unfilled government form from the web. Import gives an association whose keys are the names of the fields—and if the form had been filled in, it would have given their values too, so you could immediately do analysis on them:

Import
&#10005

Import["https://www.fws.gov/forms/3-200-41.pdf", "FormFieldRules"]

 

The Latest in Industrial-Strength Convex Optimization

Starting in Version 12.0, we’ve been adding state-of-the-art capabilities for solving large-scale optimization problems. In Version 12.2 we’ve continued to round out these capabilities.

One new thing is the superfunction ConvexOptimization, which automatically handles the full spectrum of linear, linear-fractional, quadratic, semidefinite and conic optimization—giving both optimal solutions and their dual properties. In 12.1 we added support for integer variables (i.e. combinatorial optimization); in 12.2 we’re also adding support for complex variables.

But the biggest new things for optimization in 12.2 are the introduction of robust optimization and of parametric optimization. Robust optimization lets you find an optimum that’s valid across a whole range of values of some of the variables. Parametric optimization lets you get a parametric function that gives the optimum for any possible value of particular parameters. So for example this finds the optimum for x, y for any (positive) value of α:

ParametricConvexOptimization
&#10005

ParametricConvexOptimization[(x - 1)^2 + 
  Abs[y], {(x + \[Alpha])^2 <= 1, x + y >= \[Alpha]}, {x, 
  y}, {\[Alpha]}]

Now evaluate the parametric function for a particular α:

%
&#10005

%[.76]

As with everything in the Wolfram Language, we’ve put a lot of effort into making sure that convex optimization integrates seamlessly into the rest of the system—so you can set up models symbolically, and flow their results into other functions. We’ve also included some very powerful convex optimization solvers. But particularly if you’re doing mixed (i.e. real+integer) optimization, or you’re dealing with really huge (e.g. 10 million variables) problems, we’re also giving access to other, external solvers. So, for example, you can set up your problem using Wolfram Language as your “algebraic modeling language”, then (assuming you have the appropriate external licenses) just by setting Method to, say, “Gurobi” or “Mosek” you can immediately run your problem with an external solver. (And, by the way, we now have an open framework for adding more solvers.)

Supporting Combinators and Other Formal Building Blocks

One can say that the whole idea of symbolic expressions (and their transformations) on which we rely so much in the Wolfram Language originated with combinators—which just celebrated their centenary on December 7, 2020. The version of symbolic expressions that we have in Wolfram Language is in many ways vastly more advanced and usable than raw combinators. But in Version 12.2—partly by way of celebrating combinators—we wanted to add a framework for raw combinators.

So now for example we have CombinatorS, CombinatorK, etc., rendered appropriately:

CombinatorS
&#10005

CombinatorS[CombinatorK]

But how should we represent the application of one combinator to another? Today we write something like:

f@g@h@x
&#10005

f@g@h@x

But in the early days of mathematical logic there was a different convention—that involved left-associative application, in which one expected “combinator style” to generate “functions” not “values” from applying functions to things. So in Version 12.2 we’re introducing a new “application operator” Application, displayed as (and entered as \[Application] or  ap ):

Application
&#10005

Application[f, Application[g, Application[h, x]]]

Application
&#10005

Application[Application[Application[f, g], h], x]

And, by the way, I fully expect Application—as a new, basic “constructor”—to have a variety of uses (not to mention “applications”) in setting up general structures in the Wolfram Language.

The rules for combinators are trivial to specify using pattern transformations in the Wolfram Language:

{CombinatorS
&#10005

{CombinatorS\[Application]x_\[Application]y_\[Application]z_ :> 
  x\[Application]z\[Application](y\[Application]z), 
 CombinatorK\[Application]x_\[Application]y_ :> x}

But one can also think about combinators more “algebraically” as defining relations between expressions—and there’s now a theory in AxiomaticTheory for that.

And in 12.2 a few more other theories have been added to AxiomaticTheory, as well as several new properties.

Euclidean Geometry Goes Interactive

One of the major advances in Version 12.0 was the introduction of a symbolic representation for Euclidean geometry: you specify a symbolic GeometricScene, giving a variety of objects and constraints, and the Wolfram Language can “solve” it, and draw a diagram of a random instance that satisfies the constraints. In Version 12.2 we’ve made this interactive, so you can move the points in the diagram around, and everything will (if possible) interactively be rearranged so as to maintain the constraints.

Here’s a random instance of a simple geometric scene:

RandomInstance
&#10005

RandomInstance[
 GeometricScene[{a, b, c, d}, {CircleThrough[{a, b, c}, d], 
   Triangle[{a, b, c}], d == Midpoint[{a, c}]}]]

If you move one of the points, the other points will interactively be rearranged so as to maintain the constraints defined in the symbolic representation of the geometric scene:

RandomInstance
&#10005

RandomInstance[
 GeometricScene[{a, b, c, d}, {CircleThrough[{a, b, c}, d], 
   Triangle[{a, b, c}], d == Midpoint[{a, c}]}]]

What’s really going on inside here? Basically, the geometry is getting converted to algebra. And if you want, you can get the algebraic formulation:

%
&#10005

%["AlgebraicFormulation"]

And, needless to say, you can manipulate this using the many powerful algebraic computation capabilities of the Wolfram Language.

In addition to interactivity, another major new feature in 12.2 is the ability to handle not just complete geometric scenes, but also geometric constructions that involve building up a scene in multiple steps. Here’s an example—that happens to be taken directly from Euclid:

RandomInstance
&#10005

RandomInstance[GeometricScene[
  {{\[FormalCapitalA], \[FormalCapitalB], \[FormalCapitalC], \
\[FormalCapitalD], \[FormalCapitalE], \[FormalCapitalF]}, {}},
  {
   GeometricStep[{Line[{\[FormalCapitalA], \[FormalCapitalB]}], 
     Line[{\[FormalCapitalA], \[FormalCapitalC]}]}, 
    "Define an arbitrary angle BAC."],
   GeometricStep[{\[FormalCapitalD] \[Element] 
      Line[{\[FormalCapitalA], \[FormalCapitalB]}], \[FormalCapitalE] \
\[Element] Line[{\[FormalCapitalA], \[FormalCapitalC]}], 
     EuclideanDistance[\[FormalCapitalA], \[FormalCapitalD]] == 
      EuclideanDistance[\[FormalCapitalA], \[FormalCapitalE]]}, 
    "Put D and E on AB and AC equidistant from A."], 
   GeometricStep[{Line[{\[FormalCapitalD], \[FormalCapitalE]}], 
     GeometricAssertion[{\[FormalCapitalA], \[FormalCapitalF]}, \
{"OppositeSides", Line[{\[FormalCapitalD], \[FormalCapitalE]}]}], 
     GeometricAssertion[
      Triangle[{\[FormalCapitalE], \[FormalCapitalF], \
\[FormalCapitalD]}], "Equilateral"], 
     Line[{\[FormalCapitalA], \[FormalCapitalF]}]}, 
    "Construct an equilateral triangle on DE."]
   }
  ]]

The first image you get is basically the result of the construction. And—like all other geometric scenes—it’s now interactive. But if you mouse over it, you’ll get controls that allow you to move to earlier steps:

RandomInstance
&#10005


Move a point at an earlier step, and you’ll see what consequences that has for later steps in the construction.

Euclid’s geometry is the very first axiomatic system for mathematics that we know about. So—2000+ years later—it’s exciting that we can finally make it computable. (And, yes, it will eventually connect up with AxiomaticTheory, FindEquationalProof, etc.)

But in recognition of the significance of Euclid’s original formulation of geometry, we’ve added computable versions of his propositions (as well as a bunch of other “famous geometric theorems”). The example above turns out to be proposition 9 in Euclid’s book 1. And now, for example, we can get his original statement of it in Greek:

Entity
&#10005

Entity["GeometricScene", "EuclidBook1Proposition9"]["GreekStatement"]

And here it is in modern Wolfram Language—in a form that can be understood by both computers and humans:

Entity
&#10005

Entity["GeometricScene", "EuclidBook1Proposition9"]["Scene"]

 

Yet More Kinds of Knowledge for the Knowledgebase

An important part of the story of Wolfram Language as a full-scale computational language is its access to our vast knowledgebase of data about the world. The knowledgebase is continually being updated and expanded, and indeed in the time since Version 12.1 essentially all domains have had data (and often a substantial amount) updated, or entities added or modified.

But as examples of what’s been done, let me mention a few additions. One area that’s received a lot of attention is food. By now we have data about more than half a million foods (by comparison, a typical large grocery store stocks perhaps 30,000 types of items). Pick a random food:

RandomEntity
&#10005

RandomEntity["Food"]

Now generate a nutrition label:

%
&#10005

%["NutritionLabel"]

As another example, a new type of entity that’s been added is physical effects. Here are some random ones:

RandomEntity
&#10005

RandomEntity["PhysicalEffect", 10]

And as an example of something that can be done with all the data in this domain, here’s a histogram of the dates when these effects were discovered:

DateHistogram
&#10005

DateHistogram[EntityValue["PhysicalEffect", "DiscoveryDate"], "Year", 
 PlotRange -> {{DateObject[{1700}, "Year", "Gregorian", -5.`], 
    DateObject[{2000}, "Year", "Gregorian", -5.`]}, Automatic}]

As another sample of what we’ve been up to, there’s also now what one might (tongue-in-cheek) call a “heavy-lifting” domain—weight-training exercises:

BenchPress
&#10005

Entity["WeightTrainingExercise", "BenchPress"]["Dataset"]

An important feature of the Wolfram Knowledgebase is that it contains symbolic objects, which can represent not only “plain data”—like numbers or strings—but full computational content. And as an example of this, Version 12.2 allows one to access the Wolfram Demonstrations Project—with all its active Wolfram Language code and notebooks—directly in the knowledgebase. Here are some random Demonstrations:

RandomEntity
&#10005

RandomEntity["WolframDemonstration", 5]

The values of properties can be dynamic interactive objects:

Entity
&#10005

Entity["WolframDemonstration", "MooreSpiegelAttractor"]["Manipulate"]

And because everything is computable, one can for example immediately make an image collage of all Demonstrations on a particular topic:

ImageCollage
&#10005

ImageCollage[
 EntityValue[
  EntityClass["WolframDemonstration", "ChemicalEngineering"], 
  "Thumbnail"]]

 

The Continuing Story of Machine Learning

It’s been nearly 7 years since we first introduced Classify and Predict, and began the process of fully integrating neural networks into the Wolfram Language. There’ve been two major directions: the first is to develop “superfunctions”, like Classify and Predict, that—as automatically as possible—perform machine-learning-based operations. The second direction is to provide a powerful symbolic framework to take advantage of the latest advances with neural nets (notably through the Wolfram Neural Net Repository) and to allow flexible continued development and experimentation.

Version 12.2 has progress in both these areas. An example of a new superfunction is FaceRecognize. Give it a small number of tagged examples of faces, and it will try to identify them in images, videos, etc. Let’s get some training data from web searches (and, yes, it’s somewhat noisy):

AssociationMap
&#10005

faces = Image[#, ImageSize -> 30] & /@ AssociationMap[Flatten[
     FindFaces[#, "Image"] & /@ 
      WebImageSearch["star trek " <> #]] &, {"Jean-Luc Picard", 
    "William Riker", "Phillipa Louvois", "Data"}]

Now create a face recognizer with this training data:

FaceRecognize
&#10005

recognizer = FaceRecognize[faces]

Now we can use this to find out who’s on screen in each frame of a video:

VideoMapList
&#10005

VideoMapList[recognizer[FindFaces[#Image, "Image"]] &, Video[URLDownload["https://ia802900.us.archive.org/7/items/2000-promo-for-star-trek-the-next-generation/2000%20promo%20for%20Star%20Trek%20-%20The%20Next%20Generation.ia.mp4"]]] /. 
 m_Missing \[RuleDelayed] "Other"

Now plot the results:

ListPlot
&#10005

ListPlot[Catenate[
  MapIndexed[{First[#2], #1} &, ArrayComponents[%], {2}]], Sequence[
 ColorFunction -> ColorData["Rainbow"], Ticks -> {None, 
Thread[{
Range[
Max[
ArrayComponents[rec]]], 
DeleteDuplicates[
Flatten[rec]]}]}]]

In the Wolfram Neural Net Repository there’s a regular stream of new networks being added. Since Version 12.1 about 20 new kinds of networks have been added—including many new transformer nets, as well as EfficientNet and for example feature extractors like BioBERT and SciBERT specifically trained on text from scientific papers.

In each case, the networks are immediately accessible—and usable—through NetModel. Something that’s updated in Version 12.2 is the visual display of networks:

NetModel
&#10005

NetModel["ELMo Contextual Word Representations Trained on 1B Word \
Benchmark"]

There are lots of new icons, but there’s also now a clear convention that circles represent fixed elements of a net, while squares represent trainable ones. In addition, when there’s a thick border in an icon, it means there’s an additional network inside, that you can see by clicking.

Whether it’s a network that comes from NetModel or your construct yourself (or a combination of those two), it’s often convenient to extract the “summary graphic” for the network, for example so you can put it in documentation or a publication. Information provides several levels of summary graphics:

Information
&#10005

Information[
 NetModel["CapsNet Trained on MNIST Data"], "SummaryGraphic"]

There are several important additions to our core neural net framework that broaden the range of neural net functionality we can access. The first is that in Version 12.2 we have native encoders for graphs and for time series. So, here, for example, we’re making a feature space plot of 20 random named graphs:

FeatureSpacePlot
&#10005

FeatureSpacePlot[GraphData /@ RandomSample[GraphData[], 20]]

Another enhancement to the framework has to do with diagnostics for models. We introduced PredictorMeasurements and ClassifierMeasurements many years ago to provide a symbolic representation for the performance of models. In Version 12.2—in response to many requests—we’ve made it possible to feed final predictions, rather than a model, to create a PredictorMeasurements object, and we’ve streamlined the appearance and operation of PredictorMeasurements objects:

PredictorMeasurements
&#10005

PredictorMeasurements[{3.2, 3.5, 4.6, 5}, {3, 4, 5, 6}]

An important new feature of ClassifierMeasurements is the ability to compute a calibration curve that compares the actual probabilities observed from sampling a test set with the predictions from the classifier. But what’s even more important is that Classify automatically calibrates its probabilities, in effect trying to “sculpt” the calibration curve:

Row
&#10005

Row[{
  First@ClassifierMeasurements[
    Classify[training, Method -> "RandomForest", 
     "Calibration" -> False], test, "CalibrationCurve"],
  "  \[LongRightArrow]  ",
  First@ClassifierMeasurements[
    Classify[training, Method -> "RandomForest", 
     "Calibration" -> True], test, "CalibrationCurve"]
  }]

Version 12.2 also has the beginning of a major update to the way neural networks can be constructed. The fundamental setup has always been to put together a certain collection of layers that expose what amount to array indices that are connected by explicit edges in a graph. Version 12.2 now introduces FunctionLayer, which allows you to give something much closer to ordinary Wolfram Language code. As an example, here’s a particular function layer:

FunctionLayer
&#10005

FunctionLayer[
 2*(#v . #m . {0.25, 0.75}) . NetArray[<|"Array" -> {0.1, 0.9}|>] & ]

And here’s the representation of this function layer as an explicit NetGraph:

NetGraph
&#10005

NetGraph[%]

v and m are named “input ports”. The NetArray—indicated by the square icons in the net graph—is a learnable array, here containing just two elements.

There are cases where it’s easier to use the “block-based” (or “graphical”) programming approach of just connecting together layers (and we’ve worked hard to ensure that the connections can be made as automatically as possible). But there are also cases where it’s easier to use the “functional” programming approach of FunctionLayer. For now, FunctionLayer supports only a subset of the constructs available in the Wolfram Language—though this already includes many standard array and functional programming operations, and more will be added in the future.

An important feature of FunctionLayer is that the neural net it produces will be as efficient as any other neural net, and can run on GPUs etc. But what can you do about Wolfram Language constructs that are not yet natively supported by FunctionLayer? In Version 12.2 we’re adding another new experimental function—CompiledLayer—that extends the range of Wolfram Language code that can be handled efficiently.

It’s perhaps worth explaining a bit about what’s happening inside. Our main neural net framework is essentially a symbolic layer that organizes things for optimized low-level implementation, currently using MXNet. FunctionLayer is effectively translating certain Wolfram Language constructs directly to MXNet. CompiledLayer is translating Wolfram Language to LLVM and then to machine code, and inserting this into the execution process within MXNet. CompiledLayer makes use of the new Wolfram Language compiler, and its extensive type inference and type declaration mechanisms.

OK, so let’s say one’s built a magnificent neural net in our Wolfram Language framework. Everything is set up so that the network can immediately be used in a whole range of Wolfram Language superfunctions (Classify, FeatureSpacePlot, AnomalyDetection, FindClusters, …). But what if one wants to use the network “standalone” in an external environment? In Version 12.2 we’re introducing the capability to export essentially any network in the recently developed ONNX standard representation.

And once one has a network in ONNX form, one can use the whole ecosystem of external tools to deploy it in a wide variety of environments. A notable example—that’s now a fairly streamlined process—is to take a full Wolfram Language–created neural net and run it in CoreML on an iPhone, so that it can for example directly be included in a mobile app.

Form Notebooks

What’s the best way to collect structured material? If you just want to get a few items, an ordinary form created with FormFunction (and for example deployed in the cloud) can work well. But what if you’re trying to collect longer, richer material?

For example, let’s say you’re creating a quiz where you want students to enter a whole sequence of complex responses. Or let’s say you’re creating a template for people to fill in documentation for something. What you need in these cases is a new concept that we’re introducing in Version 12.2: form notebooks.

A form notebook is basically a notebook that is set up to be used as a complex “form”, where the inputs in the form can be all the kinds of things that you’re used to having in a notebook.

The basic workflow for form notebooks is the following. First you author a form notebook, defining the various “form elements” (or areas) that you want the user of the form notebook to fill in. As part of the authoring process, you define what you want to have happen to the material the user of the form notebook enters when they use the form notebook (e.g. put the material in a Wolfram Data Drop databin, send the material to a cloud API, send the material as a symbolic expression by email, etc.).

After you’ve authored the form notebook, you then generate an active version that can be sent to whoever will be using the form notebook. Once someone has filled in their material in their copy of the deployed form notebook, they press a button, typically “Submit”, and their material is then sent as a structured symbolic expression to whatever destination the author of the form notebook specified.

It’s perhaps worth mentioning how form notebooks relate to something that sounds similar: template notebooks. In a sense, a template notebook is doing the reverse of a form notebook. A form notebook is about having a user enter material that will then be processed. A template notebook, on the other hand, is about having the computer generate material which will then be used to populate a notebook whose structure is defined by the template notebook.

OK, so how do you get started with form notebooks? Just go to File > New > Programmatic Notebook > Form Notebook Authoring:

Form notebooks

This is just a notebook, where you can enter whatever content you want—say an explanation of what you want people to do when they “fill out” the form notebook. But then there are special cells or sequences of cells in the form notebook that we call “form elements” and “editable notebook areas”. These are what the user of the form notebook “fills out” to enter their “responses”, and the material they provide is what gets sent when they press the “Submit” button (or whatever final action has been defined).

In the authoring notebook, the toolbar gives you a menu of possible form elements that you can insert:

Form notebooks

Let’s pick Input Field as an example:

Form notebooks

What does all this mean? Basically a form element is represented by a very flexible symbolic Wolfram Language expression, and this is giving you a way to specify the expression you want. You can give a label and a hint to put in the input field. But it’s with the Interpreter that you start to see the power of Wolfram Language. Because the Interpreter is what takes whatever the user of the form notebook enters in this input field, and interprets it as a computable object. The default is just to treat it as a string. But it could for example be a “Country” or a “MathExpression”. And with these choices, the material will automatically be interpreted as a country, math expression, etc., with the user typically being prompted if their input can’t be interpreted as specified.

There are lots of options about the details of how even an input field can work. Some of them are provided in the Add Action menu:

Form notebooks

But so what actually “is” this form element? Press the CODE tab on the left to see:

Form notebooks

What would a user of the form notebook see here? Press the PREVIEW tab to find out:

Form notebooks

Beyond input fields, there are lots of other possible form elements. There are things like checkboxes, radio buttons and sliders. And in general it’s possible to use any of the rich symbolic user interface constructs that exist in the Wolfram Language.

Once you’ve finishing authoring, you press Generate to generate a form notebook that is ready to be provided to users to be filled in. The Settings define things like how the “submit” action should be specified, and what should be done when the form notebook is submitted:

Form notebooks

So what is the “result” of a submitted form notebook? Basically it’s an association that says what was filled into each area of the form notebook. (The areas are identified by keys in the association that were specified when the areas were first defined in the authoring notebook.)

Let’s see how this works in a simple case. Here’s the authoring notebook for a form notebook:

Form notebooks

Here’s the generated form notebook, ready to be filled in (assuming you have 12.2):
Form notebooks

Here’s a sample of how the form notebook might be filled in:
Form notebooks

And this is what “comes back” when Submit is pressed:

Form notebooks

For testing, you can just have this association placed interactively in a notebook. But in practice it’s more common to send the association to a databin, store it in a cloud object, or generally put it in a more “centralized” location.

Notice that at the end of this example we have an editable notebook area—where you can enter free-form notebook content (with cells, headings, code, output, etc.) that will all be captured when the form notebook is submitted.

Form notebooks are very powerful idea, and you’ll see them used all over the place. As a first example, the various submission notebooks for the Wolfram Function Repository, Wolfram Demonstrations Project, etc. are becoming form notebooks. We’re also expecting a lot of use of form notebooks in educational settings. And as part of that, we’re building a system that leverages Wolfram Language for assessing responses in form notebooks (and elsewhere).

You can see the beginnings of this in Version 12.2 with the experimental function AssessmentFunction—which can be hooked into form notebooks somewhat like Interpreter. But even without the full capabilities planned for AssessmentFunction there’s still an incredible amount that can be done—in educational settings and otherwise—using form notebooks.

It’s worth understanding, by the way, that form notebooks are ultimately very simple to use in any particular case. Yes, they have a lot of depth that allows them to do a very wide range of things. And they’re basically only possible because of the whole symbolic structure of the Wolfram Language, and the fact that Wolfram Notebooks are ultimately represented as symbolic expressions. But when it comes to using them for a particular purpose they’re very streamlined and straightforward, and it’s completely realistic to create a useful form notebook in just a few minutes.

Yet More Notebookery

We invented notebooks—with all their basic features of hierarchical cells, etc.—back in 1987. But for a third of a century, we’ve been progressively polishing and streamlining how they work. And in Version 12.2 there are all sorts of useful and convenient new notebook features.

Click to Copy

It’s a very simple feature, but it’s very useful. You see something in a notebook, and all you really want to be able to do with it is copy it (or perhaps copy something related to it). Well, then just use ClickToCopy:

ClickToCopy
&#10005

ClickToCopy[10!]

If you want to click-to-copy something unevaluated, use Defer:

ClickToCopy
&#10005

ClickToCopy[Plot[Sin[x], {x, 0, 10}], Defer[Plot[Sin[x], {x, 0, 10}]]]

Streamlined Hyperlinking (and Hyperlink Editing)

++h has inserted a hyperlink in a Wolfram Notebook since 1996. But in Version 12.2 there are two important new things with hyperlinks. First, automatic hyperlinking that handles a wide range of different situations. And second, a modernized and streamlined mechanism for hyperlink creation and editing.

Hyperlink creation and editing

Attached Cells

In Version 12.2 we’re exposing something that we’ve had internally for a while: the ability to attach a floating fully functional cell to any given cell (or box, or whole notebook). Accessing this feature needs symbolic notebook programming, but it lets you do very powerful things—particularly in introducing contextual and “just-in-time” interfaces. Here’s an example that puts a dynamic counter that counts in primes on the right-bottom part of the cell bracket:

AttachCell
&#10005

obj=AttachCell[EvaluationCell[],Panel[Dynamic[i]],{"CellBracket",Bottom},0,{Right,Bottom}];
Do[PrimeQ[i],{i,10^7}];
NotebookDelete[obj]

Template Box Infrastructure

Sometimes it’s useful for what you see not to be what you have. For example, you might want to display something in a notebook as J0(x) but have it really be BesselJ[0, x]. For many years, we’ve had Interpretation as a way to set this up for specific expressions. But we’ve also had a more general mechanism—TemplateBox—that lets you take expressions, and separately specify how they should be displayed, and interpreted.

In Version 12.2 we’ve further generalized—and streamlined—TemplateBox, allowing it to incorporate arbitrary user interface elements, as well as allowing it to specify things like copy behavior. Our new TEX input mechanism, for example, is basically just an application of the new TemplateBox.

In this case, "TeXAssistantTemplate" refers to a piece of functionality defined in the notebook stylesheet—whose parameters are specified by the association given in the TemplateBox:

RawBoxes
&#10005

RawBoxes[TemplateBox[<|
   "boxes" -> FormBox[FractionBox["1", "2"], TraditionalForm], 
   "errors" -> {}, "input" -> "\\frac{1}{2}", "state" -> "Boxes"|>, 
  "TeXAssistantTemplate"]]

 

The Desktop Interface to the Cloud

An important feature of Wolfram Notebooks is that they’re set up to operate both on the desktop and in the cloud. And even between versions of Wolfram Language there’s lots of continued enhancement in the way notebooks work in the cloud. But in Version 12.2 there’s been some particular streamlining of the interface for notebooks between desktop and cloud.

A particularly nice mechanism already available for a couple of years in any desktop notebook is the File > Publish to Cloud menu item, which allows you to take the notebook and immediately make it available as a published cloud notebook that can be accessed by anyone with a web browser. In Version 12.2 we’ve streamlined the process of notebook publishing.

When I’m giving a presentation I’ll usually be creating a desktop notebook as I go (or perhaps using one that already exists). And at the end of the presentation, it’s become my practice to publish it to the cloud, so anyone in the audience can interact with it. But how can I give everyone the URL for the notebook? In a virtual setting, you can just use chat. But in an actual physical presentation, that’s not an option. And in Version 12.2 we’ve provided a convenient alternative: the result of Publish to Cloud includes a QR code that people can capture with their phones, then immediately go to the URL and interact with the notebook on their phones.

Publish to cloud

There’s one other notable new item visible in the result of Publish to Cloud: “Direct JavaScript Embedding”. This is a link to the Wolfram Notebook Embedder which allows cloud notebooks to be directly embedded through JavaScript onto webpages.

It’s always easy to use an iframe to embed one webpage on another. But iframes have many limitations, such as requiring their sizes to be defined in advance. The Wolfram Notebook Embedder allows full-function fluid embedding of cloud notebooks—as well as scriptable control of the notebooks from other elements of a webpage. And since the Wolfram Notebook Embedder is set up to use the oEmbed embedding standard, it can immediately be used in basically all standard web content management systems.

We’ve talked about sending notebooks from the desktop to the cloud. But another thing that’s new in Version 12.2 is faster and easier browsing of your cloud file system from the desktop—as accessed from File > Open from Cloud and File > Save to Cloud.

Save to cloud

Cryptography & Security

One of the things we want to do with Wolfram Language is to make it as easy as possible to connect with pretty much any external system. And in modern times an important part of that is being able to conveniently handle cryptographic protocols. And ever since we started introducing cryptography directly into the Wolfram Language five years ago, I’ve been surprised at just how much the symbolic character of the Wolfram Language has allowed us to clarify and streamline things to do with cryptography.

A particularly dramatic example of this has been how we’ve been able to integrate blockchains into Wolfram Language (and Version 12.2 adds bloxberg with several more on the way). And in successive versions we’re handling different applications of cryptography. In Version 12.2 a major emphasis is symbolic capabilities for key management. Version 12.1 already introduced SystemCredential for dealing with local “keychain” key management (supporting, for example, “remember me” in authentication dialogs). In 12.2 we’re also dealing with PEM files.

If we import a PEM file containing a private key we get a nice, symbolic representation of the private key:

private = First
&#10005

private = First[Import["ExampleData/privatesecp256k1.pem"]]

Now we can derive a public key:

public = PublicKey
&#10005

public = PublicKey[%]

If we generate a digital signature for a message using the private key

GenerateDigitalSignature
&#10005

GenerateDigitalSignature["Hello there", private]

then this verifies the signature using the public key we’ve derived:

VerifyDigitalSignature
&#10005

VerifyDigitalSignature[{"Hello there", %}, public]

An important part of modern security infrastructure is the concept of a security certificate—a digital construct that allows a third party to attest to the authenticity of a particular public key. In Version 12.2 we now have a symbolic representation for security certificates—providing what’s needed for programs to establish secure communication channels with outside entities in the same kind of way that https does:

Import
&#10005

Import["ExampleData/client.pem"]

 

Just Type SQL

In Version 12.0 we introduced powerful functionality for querying relational databases symbolically within the Wolfram Language. Here’s how we connect to a database:

db = DatabaseReference
&#10005

db = DatabaseReference[
  FindFile["ExampleData/ecommerce-database.sqlite"]]

Here’s how we connect the database so that its tables can be treated just like entity types from the built-in Wolfram Knowledgebase:

EntityRegister
&#10005

EntityRegister[EntityStore[RelationalDatabase[db]]]

Now we can for example ask for a list of entities of a given type:

EntityList
&#10005

EntityList["offices"]

What’s new in 12.2 is that we can conveniently go “under” this layer, to directly execute SQL queries against the underlying database, getting the complete database table as a Dataset expression:

ExternalEvaluate
&#10005

ExternalEvaluate[db, "SELECT * FROM offices"]

These queries can not only read from the database, but also write to it. And to make things even more convenient, we can effectively treat SQL just like any other “external language” in a notebook.

First we have to register our database, to say what we want our SQL to be run against:

RegisterExternalEvaluator
&#10005

RegisterExternalEvaluator["SQL", db]

And now we can just type SQL as input—and get back Wolfram Language output, directly in the notebook:

Type SQL as input

Microcontroller Support Goes 32-Bit

You’ve developed a control system or signal processing in Wolfram Language. Now how do you deploy it to a piece of standalone electronics? In Version 12.0 we introduced the Microcontroller Kit for compiling from symbolic Wolfram Language structures directly to microcontroller code.

We’ve had lots of feedback on this, asking us to expand the range of microcontrollers that we support. So in Version 12.2 I’m happy to say that we’re adding support for 36 new microcontrollers, particularly 32-bit ones:

Supported microcontrollers

Here’s an example in which we deploy a symbolically defined digital filter to a particular kind of microcontroller, showing the simplified C source code generated for that particular microcontroller:

Needs
&#10005

Needs["MicrocontrollerKit`"]

ToDiscreteTimeModel
&#10005

ToDiscreteTimeModel[ButterworthFilterModel[{3, 2}], 0.6] // Chop

MicrocontrollerEmbedCode
&#10005

MicrocontrollerEmbedCode[%, <|"Target" -> "AdafruitGrandCentralM4", 
   "Inputs" -> 0 -> "Serial", "Outputs" -> 1 -> "Serial"|>, 
  "/dev/cu.usbmodem14101"]["SourceCode"]

 

WSTPServer: A New Deployment of Wolfram Engine

Our long-term goal is to make the Wolfram Language and the computational intelligence it provides as ubiquitous as possible. And part of doing this is to set up the Wolfram Engine which implements the language so that it can be deployed in as broad a range of computational infrastructure settings as possible.

Wolfram Desktop—as well as classic Mathematica—primarily provides a notebook interface to the Wolfram Engine, running on a local desktop system. It’s also possible to run Wolfram Engine directly—as a command-line program (e.g. through WolframScript)—on a local computer system. And, of course, one can run the Wolfram Engine in the cloud, either through the full Wolfram Cloud (public or private), or through more lightweight cloud and server offerings (both existing and forthcoming).

But with Version 12.2 there’s a new deployment of the Wolfram Engine: WSTPServer. If you use Wolfram Engine in the cloud, you’re typically communicating with it through http or related protocols. But for more than thirty years, the Wolfram Language has had its own dedicated protocol for transferring symbolic expressions and everything around them. Originally we called it MathLink, but in more recent years, as it’s progressively been extended, we’ve called it WSTP: the Wolfram Symbolic Transfer Protocol. What WSTPServer does, as its name suggests, is to give you a lightweight server that delivers Wolfram Engines and lets you communicate with them directly in native WSTP.

Why is this important? Basically because it gives you a way to manage pools of persistent Wolfram Language sessions that can operate as services for other applications. For example, normally each time you call WolframScript you get a new, fresh Wolfram Engine. But by using wolframscript -wstpserver with a particular “WSTP profile name” you can keep getting the same Wolfram Engine every time you call WolframScript. You can do this directly on your local machine—or on remote machines.

And an important use of WSTPServer is to expose pools of Wolfram Engines that can be accessed through the new RemoteEvaluate function in Version 12.2. It’s also possible to use WSTPServer to expose Wolfram Engines for use by ParallelMap, etc. And finally, since WSTP has (for nearly 30 years!) been the way the notebook front end communicates with the Wolfram Engine kernel, it’s now possible to use WSTPServer to set up a centralized kernel pool to which you can connect the notebook front end, allowing you, for example, to keep running a particular session (or even a particular computation) in the kernel even as you switch to a different notebook front end, on a different computer.

RemoteEvaluate: Compute Someplace Else…

Along the lines of “use Wolfram Language everywhere” another new function in Version 12.2 is RemoteEvaluate. We’ve got CloudEvaluate which does a computation in the Wolfram Cloud, or an Enterprise Private Cloud. We’ve got ParallelEvaluate which does computations on a predefined collection of parallel subkernels. And in Version 12.2 we’ve got RemoteBatchSubmit which submits batch computations to cloud computation providers.

RemoteEvaluate is a general, lightweight “evaluate now” function that lets you do a computation on any specified remote machine that has an accessible Wolfram Engine. You can connect to the remote machine using ssh or wstp (or http with a Wolfram Cloud endpoint).

RemoteEvaluate
&#10005

RemoteEvaluate["ssh://byblis67.wolfram.com", 
 Labeled[Framed[$MachineName], Now]]

Sometimes you’ll want to use RemoteEvaluate to do things like system administration across a range of machines. Sometimes you might want to collect or send data to remote devices. For example, you might have a network of Raspberry Pi computers which all have Wolfram Engine—and then you can use RemoteEvaluate to do something like retrieve data from these machines. By the way, you can also use ParallelEvaluate from within RemoteEvaluate, so you’re having a remote machine be the master for a collection of parallel subkernels.

Sometimes you’ll want RemoteEvaluate to start a fresh instance of Wolfram Engine whenever you do an evaluation. But with WSTPServer you can also have it use a persistent Wolfram Language session. RemoteEvaluate and WSTPServer are the beginning of a general symbolic framework for representing running Wolfram Engine processes. Version 12.2 already has RemoteKernelObject and $DefaultRemoteKernel which provide symbolic ways to represent remote Wolfram Language instances.

And Yet More (AKA “None of the Above”)

I’ve at least touched on many of the bigger new features of Version 12.2. But there’s a lot more. Additional functions, enhancements, fixes and general rounding out and polishing.

Like in computational geometry, ConvexHullRegion now deals with regions, not just points. And there are functions like CollinearPoints and CoplanarPoints that test for collinearity and coplanarity, or give conditions for achieving them.

There are more import and export formats. Like there’s now support for the archive formats: “7z”, “ISO”, “RAR”, “ZSTD”. There’s also FileFormatQ and ByteArrayFormatQ for testing whether things correspond to particular formats.

In terms of core language, there are things like updates to the complicated-to-define ValueQ. There’s also RandomGeneratorState that gives a symbolic representation of random generator states.

In the desktop package (i.e. .wl file) editor, there’s a new (somewhat experimental) Format Cell button, that reformats code—with a control on how “airy” it should be (i.e. how dense it should be in newlines).

In Wolfram|Alpha-Mode Notebooks (as used by default in Wolfram|Alpha Notebook Edition) there are other new features, like function documentation targeted for particular function usage.

There’s also more in TableView, as well as a large suite of new paclet authoring tools that are included on an experimental basis.

To me it’s rather amazing how much we’ve been able to bring together in Version 12.2, and, as always, I’m excited that it’s now out and available to everyone to use….

Stephen Wolfram (2020), "Launching Version 12.2 of Wolfram Language & Mathematica: 228 New Functions and Much More…," Stephen Wolfram Writings. writings.stephenwolfram.com/2020/12/launching-version-12-2-of-wolfram-language-mathematica-228-new-functions-and-much-more.
Text
Stephen Wolfram (2020), "Launching Version 12.2 of Wolfram Language & Mathematica: 228 New Functions and Much More…," Stephen Wolfram Writings. writings.stephenwolfram.com/2020/12/launching-version-12-2-of-wolfram-language-mathematica-228-new-functions-and-much-more.
CMS
Wolfram, Stephen. "Launching Version 12.2 of Wolfram Language & Mathematica: 228 New Functions and Much More…." Stephen Wolfram Writings. December 16, 2020. writings.stephenwolfram.com/2020/12/launching-version-12-2-of-wolfram-language-mathematica-228-new-functions-and-much-more.
APA
Wolfram, S. (2020, December 16). Launching version 12.2 of Wolfram Language & Mathematica: 228 new functions and much more…. Stephen Wolfram Writings. writings.stephenwolfram.com/2020/12/launching-version-12-2-of-wolfram-language-mathematica-228-new-functions-and-much-more.

Posted in: Mathematica, New Technology, Wolfram Language

6 comments

  1. Congratulations to ALL Wolfram Tem!!

  2. Congrats! Looking forward to Apple Silicon version

  3. I can see how the new functionality of Import[] can be used to build handy utility functions for, e.g., chasing up references in (arXiv) papers. In physics the common referencing style omits the paper’s title; the example code “WebImage /@ Take[Flatten[Values[%]], -2]” shows how a look at the web page gives more useful information (Title, Abstract). Just one example of the increasing power and functionality in 12.2. Congratulations to the whole Wolfram team.
    Barrie

  4. According to most of the documentation, Ctrl-$ was previously assigned to inputting Underscripts, and now it’s assigned to inputting TeX as described in the Just Type TEX section above. What am I missing, and how do I resolve this inconsistency?
    I frequently use Underscripts to type limits and would like to retain the old functionality.

    • Thanks for bringing this to our attention. The new shortcut is Ctrl+Shift+, (comma). This and other shortcuts are visible under Insert > Typesetting > … Although the keyboard shortcut was updated in the menus and in some 12.2 documentation, several documentation references were overlooked. We believe all documentation references should be updated in the upcoming 12.3 release, and in the online documentation at reference.wolfram.com once 12.3 ships.

  5. I’m glad that you are still working on improving the hyperlink UI, but you STILL have not fixed an essential part of this:
    When I print a Notebook to PDF (using macOS 11.4 Print Dialog Box and selecting “Save as PDF”, the hyperlinks are not printed in any sort of user-visible fashion, either in blue or underlined or whatever. And there appears to be no way to change this.
    The links are preserved, in the sense that clicking them in the PDF behaves as expected. But this does the reader precious little good if it’s not obvious that the link can be clicked!