This is the first of a series of pieces I’m planning in connection with the upcoming 20th anniversary of the publication of A New Kind of Science.
“There’s a Whole New Field to Build…”
For me the story began nearly 50 years ago—with what I saw as a great and fundamental mystery of science. We see all sorts of complexity in nature and elsewhere. But where does it come from? How is it made? There are so many examples. Snowflakes. Galaxies. Lifeforms. Turbulence. Do they all work differently? Or is there some common underlying cause? Some essential “phenomenon of complexity”?
It was 1980 when I began to seriously work on these questions. And at first I did so in the main scientific paradigm I knew: models based on mathematics and mathematical equations. I studied the approaches people had tried to use. Nonequilibrium thermodynamics. Synergetics. Nonlinear dynamics. Cybernetics. General systems theory. I imagined that the key question was: “Starting from disorder and randomness, how could spontaneous self-organization occur, to produce the complexity we see?” For somehow I assumed that complexity must be created as a kind of filtering of ubiquitous thermodynamic-like randomness in the world.
At first I didn’t get very far. I could write down equations and do math. But there wasn’t any real complexity in sight. But in a quirk of history that I now realize had tremendous significance, I had just spent a couple of years creating a big computer system that was ultimately a direct forerunner of our modern Wolfram Language. So for me it was obvious: if I couldn’t figure out things myself with math, I should use a computer. Continue reading