Yet Bigger than Ever Before
When we released Version 12.1 in March of this year, I was pleased to be able to say that with its 182 new functions it was the biggest .1 release we’d ever had. But just nine months later, we’ve got an even bigger .1 release! Version 12.2, launching today, has 228 completely new functions!
We always have a portfolio of development projects going on, with any given project taking anywhere from a few months to more than a decade to complete. And of course it’s a tribute to our whole Wolfram Language technology stack that we’re able to develop so much, so quickly. But Version 12.2 is perhaps all the more impressive for the fact that we didn’t concentrate on its final development until mid-June of this year. Because between March and June we were concentrating on 12.1.1, which was a “polishing release”. No new features, but more than a thousand outstanding bugs fixed:
How did we design all those new functions and new features that are now in 12.2? It’s a lot of work! And it’s what I personally spend a lot of my time on (along with other “small items” like physics, etc.). But for the past couple of years we’ve done our language design in a very open way—livestreaming our internal design discussions, and getting all sorts of great feedback in real time. So far we’ve recorded about 550 hours—of which Version 12.2 occupied at least 150 hours.
By the way, in addition to all of the fully integrated new functionality in 12.2, there’s also been significant activity in the Wolfram Function Repository—and even since 12.1 was released 534 new, curated functions for all sorts of specialized purposes have been added there.
Biomolecular Sequences: Symbolic DNA, Proteins, etc.
There are so many different things in so many areas in Version 12.2 that it’s hard to know where to start. But let’s talk about a completely new area: bio-sequence computation. Yes, we’ve had gene and protein data in the Wolfram Language for more than a decade. But what’s new in 12.2 is the beginning of the ability to do flexible, general computation with bio sequences. And to do it in a way that fits in with all the chemical computation capabilities we’ve been adding to the Wolfram Language over the past few years.
Here’s how we represent a DNA sequence (and, yes, this works with very long sequences too):
✕
BioSequence["DNA", "CTTTTCGAGATCTCGGCGTCA"] |
This translates the sequence to a peptide (like a “symbolic ribosome”):
✕
BioSequenceTranslate[%] |
Now we can find out what the corresponding molecule is:
✕
Molecule[%] |
And visualize it in 3D (or compute lots of properties):
✕
MoleculePlot3D[%] |
I have to say that I agonized a bit about the “non-universality” of putting the specifics of “our” biology into our core language… but it definitely swayed my thinking that, of course, all our users are (for now) definitively eukaryotes. Needless to say, though, we’re set up to deal with other branches of life too:
✕
Entity["GeneticTranslationTable", "AscidianMitochondrial"]["StartCodons"] |
You might think that handling genome sequences is “just string manipulation”—and indeed our string functions are now set up to work with bio sequences:
✕
StringReverse[BioSequence["DNA", "CTTTTCGAGATCTCGGCGTCA"]] |
But there’s also a lot of biology-specific additional functionality. Like this finds a complementary base-pair sequence:
✕
BioSequenceComplement[BioSequence["DNA", "CTTTTCGAGATCTCGGCGTCA"]] |
Actual, experimental sequences often have base pairs that are somehow uncertain—and there are standard conventions for representing this (e.g. “S” means C or G; “N” means any base). And now our string patterns also understand things like this for bio sequences:
✕
StringMatchQ[BioSequence["DNA", "CTTT"], "STTT"] |
And there are new functions like BioSequenceInstances for resolving degenerate characters:
✕
BioSequenceInstances[BioSequence["DNA", "STTT"]] |
BioSequence is also completely integrated with our built-in genome and protein data. Here’s a gene that we can ask for in natural language “Wolfram|Alpha style”:
✕
BioSequence[\!\(\* NamespaceBox["LinguisticAssistant", DynamicModuleBox[{Typeset`query$$ = "hba1 gene", Typeset`boxes$$ = TemplateBox[{"\"hemoglobin, alpha 1\"", RowBox[{"Entity", "[", RowBox[{"\"Gene\"", ",", RowBox[{"{", RowBox[{"\"HBA1\"", ",", RowBox[{"{", RowBox[{"\"Species\"", "->", "\"HomoSapiens\""}], "}"}]}], "}"}]}], "]"}], "\"Entity[\\\"Gene\\\", {\\\"HBA1\\\", {\\\"Species\\\ \" -> \\\"HomoSapiens\\\"}}]\"", "\"gene\""}, "Entity"], Typeset`allassumptions$$ = {{ "type" -> "SubCategory", "word" -> "hba1 gene", "template" -> "Assuming ${desc1}. Use ${desc2} instead", "count" -> "5", "Values" -> {{ "name" -> "{HBA1, {Species -> HomoSapiens}}", "desc" -> "HBA1 (human gene)", "input" -> "*DPClash.GeneE.hba1+gene-_**HBA1.*Species_HomoSapiens---"},\ {"name" -> "{HbaA1, {Species -> MusMusculus}}", "desc" -> "Hba-a1 (mouse gene)", "input" -> "*DPClash.GeneE.hba1+gene-_**HbaA1.*Species_MusMusculus---"}\ , {"name" -> "{HbaA2, {Species -> RattusNorvegicus}}", "desc" -> "Hba-a2 (rat gene)", "input" -> "*DPClash.GeneE.hba1+gene-_**HbaA2.*Species_\ RattusNorvegicus---"}, { "name" -> "{HBA1, {Species -> PanTroglodytes}}", "desc" -> "HBA1 (chimpanzee gene)", "input" -> "*DPClash.GeneE.hba1+gene-_**HBA1.*Species_PanTroglodytes---\ "}, {"name" -> "{HBA1, {Species -> GallusGallus}}", "desc" -> "HBA1 (chicken gene)", "input" -> "*DPClash.GeneE.hba1+gene-_**HBA1.*Species_GallusGallus---"}\ }}}, Typeset`assumptions$$ = {}, Typeset`open$$ = {1}, Typeset`querystate$$ = { "Online" -> True, "Allowed" -> True, "mparse.jsp" -> 0.784118`6.345926417012904, "Messages" -> {}}}, DynamicBox[ToBoxes[ AlphaIntegration`LinguisticAssistantBoxes["", 4, Automatic, Dynamic[Typeset`query$$], Dynamic[Typeset`boxes$$], Dynamic[Typeset`allassumptions$$], Dynamic[Typeset`assumptions$$], Dynamic[Typeset`open$$], Dynamic[Typeset`querystate$$]], StandardForm], ImageSizeCache->{96., {9.5, 14.5}}, TrackedSymbols:>{ Typeset`query$$, Typeset`boxes$$, Typeset`allassumptions$$, Typeset`assumptions$$, Typeset`open$$, Typeset`querystate$$}], DynamicModuleValues:>{}, UndoTrackedVariables:>{Typeset`open$$}], BaseStyle->{"Deploy"}, DeleteWithContents->True, Editable->False, SelectWithContents->True]\)] |
Now we ask to do sequence alignment between these two genes (in this case, both human—which is, needless to say, the default):
✕
|
What’s in 12.2 is really just the beginning of what we’re planning for bio-sequence computation. But already you can do very flexible things with large datasets. And, for example, it’s now straightforward for me to read my genome in from FASTA files and start exploring it…
✕
BioSequence["DNA", First[Import["Genome/Consensus/c1.fa.consensus.fa"]]] |
Spatial Statistics & Modeling
Locations of birds’ nests, gold deposits, houses for sale, defects in a material, galaxies…. These are all examples of spatial point datasets. And in Version 12.2 we now have a broad collection of functions for handling such datasets.
Here’s the “spatial point data” for the locations of US state capitals:
✕
SpatialPointData[ GeoPosition[EntityClass["City", "UnitedStatesCapitals"]]] |
Since it’s geo data, it’s plotted on a map:
✕
PointValuePlot[%] |
Let’s restrict our domain to the contiguous US:
✕
capitals = SpatialPointData[ GeoPosition[EntityClass["City", "UnitedStatesCapitals"]], Entity["Country", "UnitedStates"]]; |
✕
PointValuePlot[%] |
Now we can start computing spatial statistics. Like here’s the mean density of state capitals:
✕
MeanPointDensity[capitals] |
Assume you’re in a state capital. Here’s the probability to find the nearest other state capital a certain distance away:
✕
NearestNeighborG[capitals] |
✕
Plot[%[Quantity[r, "Miles"]], {r, 0, 400}] |
This tests whether the state capitals are randomly distributed; needless to say, they’re not:
✕
SpatialRandomnessTest[capitals] |
In addition to computing statistics from spatial data, Version 12.2 can also generate spatial data according to a wide range of models. Here’s a model that picks “center points” at random, then has other points clustered around them:
✕
PointValuePlot[ RandomPointConfiguration[MaternPointProcess[.0001, 1, .1, 2], Entity["Country", "UnitedStates"]]] |
You can also go the other way around, and fit a spatial model to data:
✕
EstimatedPointProcess[capitals, MaternPointProcess[\[Mu], \[Lambda], r, 2], {\[Mu], \[Lambda], r}] |
Convenient Real-World PDEs
In some ways we’ve been working towards it for 30 years. We first introduced NDSolve back in Version 2.0, and we’ve been steadily enhancing it ever since. But our long-term goal has always been convenient handling of real-world PDEs of the kind that appear throughout high-end engineering. And in Version 12.2 we’ve finally got all the pieces of underlying algorithmic technology to be able to create a truly streamlined PDE-solving experience.
OK, so how do you specify a PDE? In the past, it was always done explicitly in terms of particular derivatives, boundary conditions, etc. But most PDEs used for example in engineering consist of higher-level components that “package together” derivatives, boundary conditions, etc. to represent features of physics, materials, etc.
The lowest level of our new PDE framework consists of symbolic “terms”, corresponding to common mathematical constructs that appear in real-world PDEs. For example, here’s a 2D “Laplacian term”:
✕
LaplacianPDETerm[{u[x, y], {x, y}}] |
And now this is all it takes to find the first 5 eigenvalues of the Laplacian in a regular polygon:
✕
NDEigenvalues[LaplacianPDETerm[{u[x, y], {x, y}}], u[x, y], {x, y} \[Element] RegularPolygon[5], 5] |
And the important thing is that you can put this kind of operation into a whole pipeline. Like here we’re getting the region from an image, solving for the 10th eigenmode, and then 3D plotting the result:
✕
NDEigensystem[{LaplacianPDETerm[{u[x, y], {x, y}}]}, u[x, y], {x, y} \[Element] ImageMesh[\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztmjsKwkAURTNWlm7BXdha2iouwGAUmwhREDuXbgSVfJwPmPfug9wDCuIw 5+BoEpzM8/P6MMmy7DKtn9a727KqdvfNrH6xLS+nY1nsV+W1OBbVIn8Ne7wf hBBCCCFAHNrvwAUWArAF8ACugY2AkRfYCEAWOHSBcykJaaP+C/BNHx0wZEBX EnhLMOAt0pB7A4IfCyIAa5f8iYL1SQGi/niArD4eIO2HB6D95gPE/QyAB0T8 DIAfhtDnIfyJWDQgxS9+JQQ8DnymRwV8Z0f7kQHNFu2A5tyIgPbUkIBujvp3 oNNjN0CpwXSAhj9U4B+vExAaqB4guDTxFRCUN2b/UdK3Dy1vCNo10RUZ2t+p UbP3/qtXtvf3CpT1vi0zNb1vy05Ln4WOtQp6L1b8ID18C8mGH6an34Ifp6cf 7IffyUE//Ug//Gausfu9l8Zj8RNCCCGEEEKIHZ6YpBQS "], {{0, 128}, {128, 0}}, {0, 1}, ColorFunction->GrayLevel], BoxForm`ImageTag["Bit", ColorSpace -> Automatic, Interleaving -> None], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->{54.41406249999983, Automatic}, ImageSizeRaw->{128, 128}, PlotRange->{{0, 128}, {0, 128}}]\)], 10][[2, -1]] |
✕
Plot3D[%, {x, y} \[Element] ImageMesh[\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJztmjsKwkAURTNWlm7BXdha2iouwGAUmwhREDuXbgSVfJwPmPfug9wDCuIw 5+BoEpzM8/P6MMmy7DKtn9a727KqdvfNrH6xLS+nY1nsV+W1OBbVIn8Ne7wf hBBCCCFAHNrvwAUWArAF8ACugY2AkRfYCEAWOHSBcykJaaP+C/BNHx0wZEBX EnhLMOAt0pB7A4IfCyIAa5f8iYL1SQGi/niArD4eIO2HB6D95gPE/QyAB0T8 DIAfhtDnIfyJWDQgxS9+JQQ8DnymRwV8Z0f7kQHNFu2A5tyIgPbUkIBujvp3 oNNjN0CpwXSAhj9U4B+vExAaqB4guDTxFRCUN2b/UdK3Dy1vCNo10RUZ2t+p UbP3/qtXtvf3CpT1vi0zNb1vy05Ln4WOtQp6L1b8ID18C8mGH6an34Ifp6cf 7IffyUE//Ug//Gausfu9l8Zj8RNCCCGEEEKIHZ6YpBQS "], {{0, 128}, {128, 0}}, {0, 1}, ColorFunction->GrayLevel], BoxForm`ImageTag["Bit", ColorSpace -> Automatic, Interleaving -> None], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSize->{32.787499999999774`, Automatic}, ImageSizeRaw->{128, 128}, PlotRange->{{0, 128}, {0, 128}}]\)]] |
In addition to LaplacianPDETerm, there are things like DiffusionPDETerm and ConvectionPDETerm that represent other terms that arise in real-world PDEs. Here’s a term for isotropic diffusion with unit diffusion coefficient:
✕
DiffusionPDETerm[{\[Phi][x, y, z], {x, y, z}}] |
Beyond individual terms, there are also “components” that combine multiple terms, usually with various parameters. Here’s a Helmholtz PDE component:
✕
HelmholtzPDEComponent[{u[x, y], {x, y}}, <|"HelmholtzEigenvalue" -> k|>] |
By the way, it’s worth pointing out that our “terms” and “components” are set up to represent the symbolic structure of PDEs in a form suitable for structural manipulation and for things like numerical analysis. And to ensure that they maintain their structure, they’re normally kept in an inactivated form. But you can always “activate” them if you want to do things like algebraic operations:
✕
Activate[%] |
In real-world PDEs, one’s often dealing with actual, physical processes taking place in actual physical materials. And in Version 12.2 we’ve got immediate ways to deal not only with things like diffusion, but also with acoustics, heat transfer and mass transport—and to feed in properties of actual materials. Typically the structure is that there’s a PDE “component” that represents the bulk behavior of the material, together with a variety of PDE “values” or “conditions” that represent boundary conditions.
Here’s a typical PDE component, using material properties from the Wolfram Knowledgebase:
✕
HeatTransferPDEComponent[{\[CapitalTheta][t, x, y], t, {x, y}}, <| "Material" -> Entity["Element", "Tungsten"]|>] |
There’s quite a bit of diversity and complexity to the possible boundary conditions. For example, for heat transfer, there’s HeatFluxValue, HeatInsulationValue and five other symbolic boundary condition specification constructs. In each case, the basic idea is to say where (geometrically) the condition applies, then what it applies to, and what parameters relate to it.
So, for example, here’s a condition that specifies that there’s a fixed “surface temperature” θ0 everywhere outside the (circular) region defined by x2 + y2 = 1:
✕
HeatTemperatureCondition[ x^2 + y^2 > 1, {\[CapitalTheta][t, x, y], t, {x, y}}, <| "SurfaceTemperature" -> Subscript[\[Theta], 0]|>] |
What’s basically happening here is that our high-level “physics” description is being “compiled” into explicit “mathematical” PDE structures—like Dirichlet boundary conditions.
OK, so how does all this fit together in a real-life situation? Let me show an example. But first, let me tell a story. Back in 2009 I was having tea with our lead PDE developer. I picked up a teaspoon and asked “When will we be able to model the stresses in this?” Our lead developer explained that there was quite a bit to build to get to that point. Well, I’m excited to say that after 11 years of work, in Version 12.2 we’re there. And to prove it, our lead developer just gave me… a (computational) spoon!
✕
spoon = \!\(\* Graphics3DBox[ TagBox[ DynamicModuleBox[{Typeset`mesh = HoldComplete[ BoundaryMeshRegion[CompressedData[" 1:eJxtnXWc18jPx8tii7tbscXdvbi7y0Fxd9crHO7ucMUdDjn8oCzu7rAUO3xx t+ch7ymvpb+7f3iRG9KZJJN8ksnMN3WLrrVaB2iaNiyypoXX5D933Pu6zv// aRzr8Grvj79/SJXlx9+d8Wa9H3+aTZOc/0G3tj7OJn//p6PQ7Tq7DpX48fc6 KTL/+LsVPUDoRv5J93+MNwc/zMC/PwJ9+UT3x3gjxpqcP/7uvjgndN0MeCH0 eeez/vi7lvWa0J2Z494KvcZE4WPt6gk9z2Tho29bl17+/YQoQreyV7ko8wzO kE7GNdhcX75/Na5m/OCTJTiv0OttEbobb3iEH3Qr9V+5hF6muNDtCru//OBv l3mVQ8btyA+fmPabEsL/z9wy7vJGoWsdgyP/4OOaKWX+TrNS8LlZKdwPul5p RyYZ13ot4y93ifqD7oQMTiRyKV8G/g9WhZd59oCuR4NuL4kNvfDdNEJvsp75 f9gb5Qdd01PKeu35t0QOWquvH0UvZYcIH61GCPSc7geZf9bDqeV7E2Khx2E7 1v+Qm53sDxlvxoiJnG+1c37QtdHRdPnuqH7IuVOiB8Ln1Vmhm/oA7OT3Mo+E ntfiuw0KNhb+lWfElnluPFBM1tugdSOZf4SrCWVd97WCQp8xv6F891G6eDK+ Y+QC8t3Af4VuL44WU/Q19o8iMo+PT4XuZpuQVOTcLbvoRY9eXejGwILC3y40 R/RrLN7WQPh8HBZX6KUnix2akW4IXa+bWeZptqudT8Yf+sL4JbFEX1ayCoXk 7xdn8N2B9VOIHg+ORo/N4gjdGr4gscx/7gj0uEyHvj+S0K0Yy9kXV1cJXQ9d k/wH3bVyZRS5/TZNvmu06hVf5NNhGHpZtYD5bH0j8nEirA0S+r+pmX/FyjJ/ 53ZX2RdakeRCd49vEbq9/nfhY8fPLnRrXhGRp11jXXbh86Ys343+W0Th814T +VsHighds3qJHIwyw/II/Wth0a+2d7nwNy7cySXym/yAdS1NJfz1/mYOoUdc CL1Mdpm/3btXkPx/p63Yg7P5oejLbdQ4o8hv7Vf5rlMhmXzXzvY5s4y/hr6c v3LId916idPK90tuZ/7fRop+tRE55Ttm6hrYw5AS2FuJ8olkfcGhQteCZ4v9 OJ8nJhH9zMJvGOETit9wR4VLI/9/En5DezNS/IZTbI/wMfMXRZ7GAOTz55eU 8v+7l0NuZkuRp232k/WaAZuEjz7tgPgNq9zAAFlXB/TiPCmBnYdfFV2+Hy8N eu9ahX3UbOQL2Zc98QNmqn3iB6xX4T7vlfVjJ/r1d+yj+dr1H3T9xGpZrxlz k9ib1mT7BfGvhVJjn1ZU7NZJv/4HXRtPXDBVXNAe/4tfVH7eVH5e69bgqPgb FRcMFResbw/FX3pxxFVxRAtcLfP1/Lbt+e2j1z7Jnz4/r13K8EziSU7ighFx vMQFzdj7p8znHXHEeE0csQLrIO9WxB3t8STizrr1Ig+/H3Mj74gq6/H5Pata SAzhW0v5z474T2fmjUgyPj7+2UoSR/yzvrZ9gKyzG/7f3FlZ/L9W/+pLme95 4ogxc7HIxchtJZN5NibuWDP2iHydSA/Yx3/0EflrD2Mllz8/Epf18J2E7m7+ kEL4qTir3T0udHvK4KTogbhsx7ssdD31zMTyHRXH7WGt4HO5biqhq7ip3d8v dOufq8nk7yrOmnZq9FV9kPBxjo/Hj6XPQhy/nkn8i9XqrMRBO2pB5Ba+agL5 zpFV4m/1YU357rT8Ej+8uPP/H2S95V/Iek0VR4wke1nX0tVC9+KOEWAK3VkV T/7uxSltfRLsYeSoJMInJ37P3JEMve8pK3Rr1iGJg9qES8xzzea48p0Yoxgf eAN76D5N6G7VxCIf6/f+8Fn9VNZl/OtKXHYr9MHO86dNKP8/5VD4ZHkM/UIU +OeJJfLRCwzju8sKCh+t4GZwwpGE+IfOkWPxvb8FtxjVbeZTqZTw0TbOlXhn 9J/EflwXLr78uw6PBLdoE7/x3fRR4gif2MvAOcqudGVXlrevfXbi7VPPrhxl V9p39rXms0PPD9hx0Lv9R1lZl9VzJf4+C3ZiRU2LvhtVkH2qL8Ou9Dx9+a6W YJ7sy3s+O1R+4H/s1vMbMRIht8HdY4o82t5J/YO/cRI5WN8OxIbPH+K3ranI zerwbzyR4+rTsu/0jshZq5YOOVdpK/vUaYQejW2XRJ7apxQBMr4SenRyp0OP WybKfrfHYCfa/ttCt/MPFf9gp1Z2lb2f8LdW9hW/7e7CPu0IpZOg1zuR5E+f nf/0S2pfWGpfOMqPuSnaga/Sl3ov/rZ6TonL2vG+4Jb6nR6LHFskzfCD7tY5 JPHC/Lrlq9DL/Z1e5LYzK3Gz5qjvEj8WzMou9EGhxLU/y98W/g8WI8/DrcEb 9UNkPVbhZMTz/DfxbytCI8o8x/8h8dkZGZ94HaeO0K0Ca9KIPGfUIN6dyhpB +M0eJXHfWjOGuBbznivzSX1N7MjNnITvds7+ReS4dafQnSpZGb+gpcxHM429 EkfaL4J/9Ec3hG6NtiVu3FnFPDeuEblbnxbDJ3A7cX9vbaFrVW7L94205YXu 5Hgu+rCOd38p89pWDNzevpbYoRV9Kn6saVP494nC+A6h0USe/y6Gf4a4UWQd qQoLTrCmDMGeg/pFk39/epTgCi0O+FnbnkDsSTubFVz9LTNxvH3f8DKv8zkE J2vbDqDfEzVkvLNhd34ZF6839pD33AdZz+6hgve06dWR28I6sl5nSmLBvebc eMj5bvXI8r1BmQQnuyNuMP9BHaFP7yl+3pjaCjyzd5Qm3yvcRvyPNfgp87Hy i7ycm1eE7sZlve7+0dHl36fpJDhTa4x87MjFxb41+4HM3/j+G+OfXhR5um8n Co61X5RDL0WaiPydYq0kflmrtxGXr6SUeWqzZgTJv2tsY88FRj2Q+UR9KnFN X5kFO+mQ8ZvYVeHBQjcCajcUvU2/UVzGjQuRuKzt7Cd0t2L4EvK9XkXEnzu3 DwjdXBzPkL8HTMgUdryVfZKM11ZoEpetTn/CP1wW+GSsIfN3Dn6EXqYEfOaB 842UhRv9oNtTrgjd6HDsl/FunzlCNwuWyhyWv/NXIaG7QzOK3KxwB+E/rWYJ 9LsBPx2aQfhrwc2NsHRjSzKhW/kawmf6IfxT553CR9teTvjYu/4hLu/vIuP1 +IElw/KxWjUXurnri/DRvzyW8c78FdAnRysVdrzz2xzoRz/D52ZGieNG3XFC d9eOEbo1Ll7qsOPtHrN++e7P+cw9wfizlYLCzsfZ31ToTrAeFFY+5pzYQrcn lskRdr1uxjXMP+Hb7GHlY6dKwPiTZzKHlaeRcQjz6RZT7MezK1PZlVV0t+Qf np3Yyk6sNWXIz3x2pXW48qxEmPFaJexQG7n3ofg3pXdX6d1KeE/iu2cnWl/s xLo9A3zqsytNrxm6N8x4U9mhFf677GOPv+nZ7fxPkjd4crOU3LRKdSS/8ctB W/T+U4kwcnOU3LTxUaWe4clZz4SctXYJYxj/oUdtbaV/94bRo6v0qM168lD8 nM9OnOCu4lf8dqUNSip0v30aWlzxx347twIO46c9vat9YSxYEi2sfo12W+Hv 1+/sdyXD6svTr14pRqn/0q++/C/sVtmDJ3+tV0HGK/l7+tJP1ysVVl+efo3A KqX+U7/zvzCfO9iDx98uPZ3vKvvx9Ku17/fLPvX0a02c+wvdk48ZaXSpsPLx 5Gm3a1MqrDx/6lef8gufn3q5MaRUWL14+rXPVCv1X/o1dPM/+bjnkyOHmdjJ z/nMU/aj7M2bv55c+Q1ln379+uOCpy/Pz3v61ZR+/XHBswcvjvz020r+jvLb fn15ft7Tr6n0648LmrIHL4747ceLO/71OsqPefKxlHw8v+eXp+c//Xrx/LM3 3lB69Pz/T/7KHrw44s3HUPajzSDuOJlqgZ8bppE8QcuylzpQtMfUt+cUFXxo te0dKPTCO8mbqqfdKXZ/b43UgaxKq8ib0tYVnOykXpZK1mOWJE858/Wj8Nny QfCtXukaedNfVwR3aU3nxRL+M6n3uhG+y/7RnywXXGdfzAwOfDH/ntDbniNP qW2D957OlXqFudDNJPzzJwNf1f5rh+DzJhvTyXwyDmR8+DHU7avUyyrjG79B DqmXCO41P72gznY4EFxUNvSp8HnYUujuzEnMp/LoC0J/vzeLjO9AXmNr7WVd xqETMk+z/Uzkk9EROZih1YTuRt5GvahqXcmzjDWrkH+Uo+Qpu1LKPjTWvooj 479lR/5DDPCqPVTqb/oZ8iBt22HBw9bzhqIXs20dqTeaw25QV4k4L6+M7xyF fKdGYanLaXvm5ZbxKRrLeOtjsNSlnVSZ8sv/3xwb/ByzDn5tbWPh45gxwM/R qc84L5IKH21udOqECajTGSEVc8p395YS/vrVN6/FTq4ULCB8NrynzjYzneBJ 7fvEfPLv+kflux/2S33MeFdN6HqpusLHTbXkkthV3ADhozV7AQ4vtvyO8D/b PI/w2R2e+dwZcF7m+U9SoZv184K3X2TbLXFi9RSZp9NAB29vjodf23WD+Z8t CX8ri9TN9AIZpU7rxq8Azp+b7Zvksb2WiT04u8kfjYRvJR/UblcU+djRdyP/ R1/A+Z/Sizytb3/AZ1NqyTusNInlu8aYDXw33yvJN60v7yU/dQ6vp/6/uTf0 d0Ho9+w74W8VGRVOvn/6tsjN/Csn9tyiOvW7aOPEnp0Rh8D5zddLXqn/3Vnm by2uRP0tRxWhm7ePy/4yMz5U+UsD4W/v/iZ5rj0yEvMsUlDyI2fZSCW3lnz3 sC5ysF9vQT6fz1MHPvjqjcx/R6DoxR6cFjs5FEfyCKezK3Zol7vKeidb72R8 5nyyLjvCcPxVr3nUqZS/svvcp+7RkfqSkxn/Zh+cxv4qtUfonv8xS7yjnla6 gtQ3PH+ltW3E/p0enXrIF1v8m5akAvtu9k3qEjWX4w8XBTK+bwYZ7+1TJ9Iy +BebR/1E7WtD70J9Y/ID2b/mhar4hwOqjpq6uOT1ttVM9KW9pU7rtC4vetTj rBL/ZtzYzHeHbZY6mFbysPCxS4S0ku+9y8z5X661+LGzbVrLuEeTJU9zqvZL IfO/2FHo7sOC5GNRXMmj9dau8HHyPQiS+QTPpB7S/IiMdwaXJx4nusn5XrfT QtfD3yb+FTsA/rl4Hv5ja0hdzwpKJHm9a3cRupHtbxnvNLomcrZe8V2rdm85 7zHDFZbzDrNrwjZC37Oc8Tluiv4dPZXQzQl5hb+RC7qRL5rQ7fG3wBnJ7oqd 2k8DhK7tq0a+sfeU1MeME+mEroebK/jDqAQfbVJsxvcrT/5ZbILUjcxGqRm/ z5Y8x0gdgj2ejM53D9egzpjgiNivMykO9DE9wQF9LgldixAEnzoHyIum8l0r FfI0jrRifOwbIjcnxwWh2yHDmM+hE0K3W1xBX/O2ybrcGnNEbvoG7EHvtE/0 ZdpThG7f6yx8zLyvqJtXz6nL+JrtsJNBN0SebuL8Qjef38SunmUHJ4Uml3NJ Owf6Mq49ChJ64alCd3diV86awuCzEpOlTqutxg6tCdM4t66Wn/rtKcUnS3/R u/PhrvDRJ2In2i7WZT4+BZ+T2JWVsBbnygvLS13Fao3ctAR3sMOcKThPr4Hd 2okrYufTHdGPUwS5aV9PYlcL40s9Ry+AHIzaT7CrlG/ku/Y55KYt+0BeuusF 85+s9l3q46w3RWzh48RiPu7ezqJH/YRJnT8IPer7R4oetT+aCt0eh51ov/WW 8dqFryJX7RB2ZXypI/M2i2giP3ecss/cFYSPu/Zfxj/Azo1h1TnnaDZE6FYu 9oUVw2VfXNoldKfnYOQwqBlyaNtd6l3G5kjI+VMx9u/ljVJ3cj5mxX6SFGK/ vCggcjA72chhSCX6JNxU2Ekw8nSCp2C3H6Kzb1pOgU/MOdSnlgRTN4i1AfkY UeTvetm06DFZRfS4ZAF8qsyR7+qtdsp3zQ5/opdxC/lu3W3oMdpk5P/9nuwv /eRt9PhsOfNoc4d9t+ok9MvtoNeykOeSJchhXAPyiiTphW6v1ZBn+7icl/d0 hY9d4il8qtxmPWODZbxxhvHOoAv4h/NPhe42TyB0s2RM7CPWLfhk3M93N73B HtpVlf/vzDgh63W/d5X1Wt2fs94OTRi/YTD28PtlkY/VcQh66bUCP7CzlNSx rTiL8LenTmMnR5ZRX+2WDbnte4D9d+0k8cJoHRl9vduPnP+tJPV/8wTyd/6q hT/ZvELihdUGfVkHOmDn/3yQ+GKXQL/WH4/xbx3vSrxwNyh7eNgWeoujnAPn a488o2Ln1ul7gmfdmaxXG2Zihz3eSRyxLyAf61tpmY99qIr4PbcM8jTi3IX/ uyLiP7UQ9GIUPIFe2nUUP2/UR4/27XPQ9x6VOGJexx7MD/ng8/cNwWXaaezH OFYTvbd/SnzJGgi+fZQJHD66p9SxzL9qCf4xDh6kH2ZySepk56JRf37RLeAH 3YmcqKjM4yh42yo9mDpUgcdS39YuxxL+9vxUQrcbJqP+FNAIfJWrGDj/96jk 2b+Rf5llPoLnZyagvr2kPDg5SRrBt9rb2eLHrPTkX4Y5nHPnWJuxt97gZONN fMHJ2vTGUld3o5J/2XNPcT5+OVT42MnB23aczI8E1yVYLuty4oDPjTHtt8u6 sjYSut6L/Mu4osk5uGMswT9/ew7+DN/2ntCT55U6k1kF/O9kf3dW+Gx+Qr0w AfmIO3nwWzmHOE6dwBxK3mT1r3xV5tmwH/l6CHmTs3BUsMgn+0zkmZH8xRk9 U+ZvJt5Gvc2XR9u9beoYKu82vbz7flfZv5rKizWVF+uv29NPpfJoTeXRZvkh 1P/Lknc7repL3u2eWCl+2MxLnq4Py0qe3rmDnHv6803nQ0f8ii9/1GfWY7zK Nw2Vb1rDdKF7+amh8lOnYHH4tCX/NQZ2kvH292XiZ9zW5L961v0yfzewLfFx h8qvm0cSORjtX8k5hV5d5ePv99CfkaKQ2KGbVuX1/T5IXm+EJpbx7h5VH6g3 W+oDbp5VxGWF/7VO4H9Pzv584ade4oLnnXb3BM+bJduz3hbgfy0kjsjNerSC fh6VL+gqX/D04uUXtpdfKD3q3XOq87LL1EmvR2FdwQq3Bz4W3G4PW0r86kb+ pd//m/O+bKvBUS7431rfHfmbCUQO2lbyBXNoQ8kXtGEvhO6sIf9yV62S/Msa slDtO/IOt12o6F2b1Aa5+fIUT7/+vMazByvGTvZFl1wyT+1kTOy/Rh/ZF/ay 8NQrBmeTfaeNeSvjjVkZIyC3J5yHnFpHnl5+r+TF5ogI8Lm9nrw4TwPy5aAT 4t/MlOTLdsEA4ePceSp+xlhwhXpCxoec0z0di/9ckUb2tZN0nPDRRraXfe0O Iw91U60Fl8fjPMEtQj5rfq8oduusqCH+x9z/ADt8mIXzwTMV5bt6ZPJo7fue SEIfMlTkbLZJZAq/AjsljhrLPib48adZ8Hkzme/HChKHrDjXpH/JyN5Dxusd O5PvhcQVuj4IuvEkksRpZ2Uu6T+yi6xvhj7uSH6u/bmYvsKILWS8NfaCxF3t y6a71HU+C10rfELyRi19E6Ebm77Bv8Qs6Q+zKk2Q+q1b4z18ehRJI/M7k5g8 d0oXvjueeoER8RXnTY2rwv9DPpmPUyCZ9CnoyesI3S52nvVOeI2dfraQQxZN +Ggvj4q9mJNfyHiz6TvO1ytUFj72kTfIJ+9S5LCzL/vDqtBCxrecI/Nzb2+l P2J8eaHrW6rSt/a4suhHj7eguejl7FrJk62hB7HfrvOErqd/TJ0x9HfhY1Qq LXzcjvUkn9eqPaHuuAQ+xkFNxmvLm4k89d05ZbxVvbXo22g6gnntmyTj7d87 km+/fEI/Zva5QjcXfqC+0Jy+NntTEeFjzN0sfQNam3GiF/tVXCWfedhVlLHE hZOdkU/cf0W/VmB62adOvS5Cd36rRd2nTi7iy5wHIn9tcXby6p4lyYP+eAX/ tEnSCJ9qm+Bz+BP2kGmg2ImbeAe4uPEH+NffLt91tFHgynLNoOfaJ3boTGom dHfnSuxnxGnspPds8rBKWZHz/TQiNy3kC344YkGh2/Yg+hEfRQdfV5uJvl7u FbkZv0UFD0ceh5yHBYmctTdf8VdrDeHjVM9B/+Kig/Jd/V/kr215KvmtcXM7 edtK7EHrulj0q4+JlVboOcthV+0LoddHaYVuNHrNeh/NEfvUSj2nDznpEFmv XuKd9GfYXwMYv74W+yLrUZG/E++2jHcWZQWffxwg/spONZ58J7QOuDpSVnDC l8X0mc970lL+TP+b1D+tRa/A17GuCd0pPEnqmdryUthJFPC/Vvo1+yeDLXm2 tSYyeUTsD4KjrBtrhW6kHwz/FDc4vxkYG3196yB0t2aX97Ifvl8gH7r0m9Ct LzWlv8fNHYV+4z3LqD8cXhYo348/SOKw2ziIda26KThK212Luk3iFMhhdB7q sSXPinzsoXOh//Wv9CfoXW4J3WozjfV+ainno9qUNPCpNr4lcu4vdNN9BJ8x z0SPWpsR9DO1jol+q76Cfn4TfbPXntEP2PMu9FrHpG5oHR2M/RQ7jl19LUWd 6+US+s0iXcaeL1eTfWt+XUC+fji7zN9OkYu49jQC/LbekHlqwTmkHm4sm0z/ T8gz5PwpD31EMw8EyPht9ZBnzlDqxhe+0YebrrmMN3KmeyVy+PeD7CfnaGfk sz0l/e3hXkeSdWf4Hf5DGyE3s81swcWVo6CXeGnFHrTEc6Qv1aj8O/Pvdhi/ Ofqd4GWnxjX83prNsl5r3nn697Oehv5+F31yHfbS333qPvsoaxT6dQ80PCf5 yv5Q6Pps+qW/9xc9m40mMM9wu2SeVt7rYkdmhnnM5/tp+lUutgIfvVD2M+2A yNP8/gmc+3Lrb/LvHuaQvnHNHpgd+fYRuhGVfmUnQz/qIlcLNBX+AzpTF56e gDz7S2XoC7JyftMjm+jXfpVf+Lj57ks+bBVIQJ/Mjlgy3j2wGL8fYUmQfG9C BPEPTvrl8l1jyh9C17ImF7q9tTl9gXfzynfddJkZv3QRdjWKOon2+EsTodeP RTy6WpX6Rvp/ZT76ki7i36y23dl3m18KXftYmjy84hH6PPXoQreWjKAOuy0Q v7T7oczfSXtB/KrzZhJ8dr0QutmrhKxXj7pB+LgJJ4MHyg+Q+Vt59zKfBdDd RCmpg+9bQV9K03DEnXQHRM5Oy9XMp+g3/Ge28sTf46uo9+acjv9cep66Z9lO yG1PZPzw+ar0dZ8fIHRz51K+2yjtO4nTqe8ht/7gNKdEoPQHGNk18oV7scBF V8tJPDYyUT8w3LnQLwWQv8/Mgp1kCkaeR6cRx50b1CWiNUDvIZVFztb5RlLH cE6WRG7t84petMJJn8i8xlnCx/m8C30FjMKPPsgvcjCP98WunlfH3ywLQj7B u4l3dToLH+1TNMZ//MR3i6cHF19JKN81kt7luyNLCf41LhZj/ul6YT8TV0n/ g5ZkDbhifLDoSyuTSL5rBNnggYw6+2hxqPSJG0YC5Nx9Ovpqd+SxzP9zCuwh YWH6IOvep7/95Szoj5MT93vUlTqJOTYacp6+SfaLlikfeWTd8ND/mUX8Hf2W /t9JU6F3vCbzsfdnlnzFnP5G1qv/HRW9FBwk483tsdin12ax3k6xpT/ObvcW /9D5K/KpsFD647Qe4/BjOepyPj7wmsQ9fe4S/FXEcJz3veixTfxT7Tzg0g85 Dwv94ae/JP4kKQSeWdYHfz409XfR14ZdxJdqreV8TYtdUM7BtO5F+W758sfE z75ZL99xFm8Bxz578Fn+/bChMt4qsBX8U32XxGstuSXnn26CYKE7L0eKPVkF 5nBfqulZ+M9ZTt/poVDOO96An91pN7mn9uIB+31EGeYfOZL4fb3RPvLCDSoO xhkq+MStMoR6w/5t4OQWx6hTvVbnMl2Yp/HZZZ73NnIeviEd8++SUPIfzekJ n5jQtbUtsL+BZ5hnzAyM33NexlsV2ot+zHKFob8dKnHO+nibeDcwG3Krr1Pv y7zktuhx9ijkv2mT9MeYbc9xz25BXtb7dSB9ts82U1+ckAO5TcwkcjfmfwI3 /mZDz36BfD9JTPpMruxG/uMSSN3J7L+KOu6ljdD/2HpN9H2vPXV3C7qWaafE RSN/pCCZx27sx+x4nnOjPY/lHMZuvoN8YW9HiXNOZdVPMiUjcgiXmfsVja9y 3tU0L/j54hLp6zUidiR+jU/LfKZkxC5bFxE+zo005Cm7cuMnJ0zHz5/ADq0U k8XvGF+G0U84+Bjz+WulxGVn+jr8fAqVT9ld5X6OVWoE9+wKd5T4ZZ96Gknm V3uknPM6vZoI3W29XfaFc2alnBdbU2cL3dhXHjwZ9ZucF1s5+sp+t8ZGkv5z J2E36RNwjzbE71XKh73+U4I+hz1VGB+zpOjdKbBBztPNcCF8V7/AefqbPAVl /La9xNnyHWWezocQ4W8FbsbPBwyjL/dPS8a7J2ZCj1MN+16QU+hOvQbIecVw +vavxhI+xsAq6OtzCrkv4PQ/wTn4iQr4t7jtqC9lu8j4zXWhP5ol9xqMDKmE vxm7BHy0kfBpnF/4OPcL45+fvxY+RuuszD8j+tWrReNezIxYIgd3Xjr4PxvM +XWzw0K3U2WHXjka5+zRMwh//Z+c7K+ASdybeFKFvo4HWfC3fx4ibi6YBv/m 4cEbdc+LfRrNkqKXT4mJX/UOSV3DqLpT+LhxQ8EhiY5If7lV70l+5nkZPPbw ptQPnSHIR3v7WfRl7a53RvZp8nrYQ9MRyD/THvZLkyzC3xrZh/lPaiX2Y0QN xK4S90FuzaLS59PrltDN3GOIj6VnU9/Odod+lZYdkf+UvtzvuLEc+RRuj9zO 3qafL91c5tmPfPn/8TN2myhQ9Gh/bs48dzzgPlGMcOi9wiHi2uuMkeTfdWyG XR17gd0m/CZ+xjkbGT6ps4GTbz+RPEefOE/6N5x1Kh+Zk4D7OUeHZJP1Hs/M ucnLyfiXA82l78UIrkOeMj4PuHDGKvpbSjYSul6/B31p9/IK3Y1uknc0/Mj9 rPATpY/FrZMKfO6+BR8HX4T/ZPJBve2LIJlPkRP02xQvR175fj/3lrM+57u9 qjGfdGtkXdqRh0K3KjYjLi9KwXxGVKRvpEA94tTEavTVBdSmT6ZzW/x/9Tiy X6ze3+irqTqA8fESix6dL3+L/3E+d4WuVQGPduhDP0/FU+SbhZm/Pv8YfS/T npK/jEkpebV+sJ/IWX/yDX9+/iTzPzNd+mesPIlZ17kA+g7fIzf9bRb4nB8O /U0Z5NA9PPla7UX0SxTcyD2UbNRV9BFr8MsRgmX+etHExLWjXZFP0PLc8Adv 6PWyoN9mU/CHtyrhz+NGFLpRNyH7JVIR9BLSjj7IPjvoK/sWD/v5NF7m4wb1 Fz1qTcOBM1fPl/3uFIvBOcv6jEK3A+fhH+JXpA688RP+ds/4s3KeMmYt51bl LuFXZ+WSeG+8/khdN/SJ0LWxJcBXSYfDf34C6l3po4k/cQtSfzaK3xT++vm/ uXd0JAV9oC+eC92cu0/irD4/EvT8m+AfqTf3Kaya9Fc2P8h+LDA1koy7VIJ+ zBf1iZv9P4mfN2/T92pNZl/bB5OCY1asZ10R8QNamkf4n/tphI9ZQfn5WvGw w5Y56A891gEcFTwOPxN5KPyntsMvFY8u8cgp+AT+r/9gfOhD8uFHwSIHe+Yo /NvJN/RJLo1JP37M3synSUbqTj0mIM/ZvcEnc3twz6t+LuhTGhCX+x2Kwnz3 0/d9pB163P1R/J6+7zj1+QEV8Nv5Xwkfu2hP7mHEqo9+t7+jz+pqfvj/3hs5 R9oodCcP/bZ2tFlNmE9j4e82H8H4JDr45J9Psq/tzAZ6b5EDvbRPJ/fj7DjX oW/PSl657ZT4W7dOIeTZIw3y37WPevfxCcw/f3H43EohfFy9KnYYkTirXVyM 3062g3sMJVQcP94IPjb3NsyXlYm/myOmlH/fYibf3TWDPDFGMZGP+Vdm+n// 2YM8c2UQ/KO3eMN6d1IP1Pefon6n9eZ8JPxJ6niTP3AP9v2iwvLnwwDqfqNj CX41csWU8w6jEn5Gu58wSP7cdptznKBE8LnylPvz03Jwv6feV3Dvomz4pVmF 5bzGTY6fdyMkpM54ZT7nvKuUf8hxAvrXrkJ335Rl/sNC06GnUWI/+vzCzGf0 br47pDb0Fvglt1ZH6npBx7Cfm3Whj1d4tP0Dzpuy4d+M1iH4sUpj0HvzhPjD xGmpJzbOzTnyq8z45/XH4R+aFv4piZtm6WTwCenKPbJg6rf6yuf487LfiqCn ZvjtJoHgsWLpkNtfDZFn3b744UzHhe60IM465wvDP4Eh83HHEZf1njPpvxrd nPPxgsQjq3QD4tHVvvjP9P2Ja3My4x9mJeL8OrQN8kmaln0RfTf2HNoUesa8 zOfjbfxDNuKsOf0f6qQhv7OvmxKv7XrfguS7+Wahx0b0Odhrrt6mLn2B+2h9 otDnkCy29FVYAamRj92hIXrJ8Y/gvdDhUq82m90Vul55i9RttJubqc88GMX5 45Locu5i/dace3ZZh/LeQvcmcp/fiZVRzuP+fyH0CQzOIvdDjMQB7MsC8YS/ NbYyfB5sYn8M7ch3Ny8nTy6Uk3Ol6KM4ZyxST+qtTpwA+tc6Ned8c+5lzn06 zqBuHDKIvt9cg6lHVf8kdu2u/Ab/+W8kD7WORhH5WaPuCN1tEon3KPQW8Bl/ ET6ZslAX1QpS50/RmH6SnlHJb/M15RxnaSVwYJGyXyXexSgv8jH/eUQfyNT4 /4oc0uXkPDreV+QZ6/sX5H+e/q5+XeiXmJhM+mudV+V51+VYTM5Vv+5ZJPFx XTzwxvbo8AnsIPI0r07lvC54NHwiZeHdlaov6NtPPhE7ufNF+l7MhQPSCJ8D 6n2MuuQLlttY6qx6cGeh2xHGhAp+KPhd5K1frwvOXxWPeumM05zbLOpLX0d4 hzp48FHO095FwE6WlpL6u1GpsdTJTPM19P2n6UP6cpr5B9xgnm506ldX2wTI v1tvCl1f91H0YiU5Kvo0x4TDHvbFpm4W8QJxNa8FPWVM5rH3oeAXvdYYWZdz sbDk11qt8HelTnA1PuuNso6+mi1FD8j4rg9U/tuKOuGp0tKn47TvTf2q5Tju wR4MT/0y0Shwztyk1LtOPZP8yb6APRi1Q6iPRU1Pv0y2Nshz9VDqh2UGiP71 vonI4z7GkPcxLD0bcrXykL8XW818vqcTP2TGww6NtgW5F1F/FPcbFg9HL21P w//Ze+x830Lmc/I753ptMnDOEzWQew2NUvIOzJv49KcEPqHvPbfLOe/fh9mn ZX7DPr/E5x2P4LGv5XyhwzbmczubnEM4dxLJ/3f6PcU+lx3gnHviJtGbPak9 8mzcnjp/aH38z25wo73tmNSrzfHPec+heDTOEf64zvskIefEj2mlqGOYT7JI fdJMkJpz2Mt32I85Jsh89NPDOT/NZhHfv8bkXn1+4qe2gfFGjAGcm0S7Sh+O uQb+3cvSJzd3gOxfo3k97PnmCfmudbIE9erByv4/NuQ85k548Utm0Dzk3C2/ yMXcmJ18cVA58FXr7aIv49EwiUvm24vkHbefgB9+Zx3a4prExz0H6TMvNEDO je1ueemj29iXeSzNyr4f9Aac0Dke/eSVZ4ifsJtw3qc9+h0+yWqx3wOSM75n dfKOD005t7/yO/2lbU/yfkS9h+DruPTrGj060b/68aycvzkli9J/+E9f6m7v n1Dn7JKZvr7AWPRRl4rGvaUB04m/JfqQh1Z7xbnGmBHM58R34uMCcJn57Aby GVeAPt12w7lvMeQZ+e/hFcSb7s/5bs/60JuFAz98GXpR/GWv1fA5WSBI6E0X P5d41XMe530DuwludB69Ffm7V0LAS03ag2eqRMYfXK5LvO5u847Jgq34J5vz PvN2Z/LiYxvFj+lGDb67VOG0BFPo13p/gfXmnEt/dZeI9EdlSIp8/twk83Qe jpK4o0eeA94b0wlc6hbiXP7P18wn/BL0fikW59on8tAvHXCbc6/WaekLtmeD ixZ35HzoW0r636Zxfq1fDGW94Vpwvz495+b62fPYSYN6vHNlcd7qxMkNzrzd lP7YlJyrOklfiPzt9lOp3zZehR1+es268tygv7Ul+tXmq/sUn8cS393h8Dne Hf6t7mMXAdiVPq0W9tYzPfWVfZ3YF5cWiH2aZzeAc58FUE/I2ELqb+6LIPpY P+wBlza7Ql6QbxnnmJOzgdPe/y3j7ewhMl83I3JzEy2mvhf8jnv6MTmvd573 F/uzPql+/2iRoB8swP3P4qPor3BqKP4nycuOKftfWB47LD6QOmGGmODWCofA 839MlO+and6wHy/uxD6HvBa6Y86iX6J/Ouz/ayzqxSsLidyc1Lmxt1ufwaUp 4GMEfkY+8zZz77FFUfpMQqoz/5ffqUMWPwuenLYFORzYLvmaHvMIfQvBwdQ9 UqyOxPgSvFd0KSL8W3+UPFqr14j7iIujIIeERcl/U72V8wdnOzjfHpgNvF3r Af0Rz+dQJwm8rO7Vl30u9YlpOZBDzmbcMyrdkvspr7cizyJxmP/qdcwnVW3G OyoPzbRB8I4x8wvrapFE1qV9WCp9sm6x9Ozr+UN5XyDeLe4Pbd/FfEZPQ+/j O/DextIKyC35MfLxk2O4VxQ4hfjyKbbU7Q1rJu+YZWtKnh6aXOonRpZTUv9x AodSJ4lBf6xTcDP32lLfA4e8Sc65S6+jghutj/HIo7OfpL5xYDB8BuqczxYv wDshc2JRf7sUkTrtb9TVNWcFdbP0jHerP1R9evGom9V4CH3T2ieCn5q43Ivp Tn1br9iQ89fEJQWXut9Tcx7daaf0n+j5zki9zm5DX5yZI46cB+mzi0D//Qzn C6kriZ7cNjWFv1FyJXKY/17qTva3R3L/1HqWk7p30sYS/9x1NaU/SBvUn/rY owf0e327J/hT77cCuwpPPdAdt4i+v2b9oUcZzP6JEE/6rfRSO8kH3/SUuGC/ 2sB91bK3yO/OnZH9Zc9bIfLX6kRH7/8sp++tcjKJp04x8nHjTnzqGz3zSp+X nqkV/udcqNiJ+34v99HuTob+oAt9e1sb8U7diqPUsatUwK46t5T52NdWU0eK 2EPioj2oMfcFBvxLPSRbV94HHKnzPt4ljfx9/gHqySuK8G7P+t9Y76YOsn8s pyDyy3CLOlvdDnIu6xyKy33AfpHJ93Pkl3uIRo8knCcXnA49UQ3OrVakFrzh bt6Onbw5wP0rNzbvJu6tjh0u/0LeFG0658/Rj1D/cVeLfp3qg7gf3YRzAW1m z1sSv0uPTyH0aWOpy9VbJfvLyZJO8JJZ6ArnAo1Gyfm6Xq+pyNmOnw89xrMj yZ+H3tO/dlv124SGoz72agf9AnWLcM417Ap4cnYX3kdsGo76UrsV4OFVaXhv 7WNC+jMXVuF8P8kUcF+8HNRRz9Zm/D/LObe/sRfcW6Qm699O35zV+R3+4csu +hrjHpZ1ObfSI58nkfBrvRdzX3s9dGvUB/qIjjxBbiXTMt6wyaM/9ufdpGXL 8HuLBwbJ/188VfJ9K9xN7PD3I/TbVdKoOxXehnyW3AQ/FB4vdTA3tA/7aG8/ 4nXtmvRdf42N3ZYfJvVbZ/8H+oSzfMNfTbxAPCp9Rupd+oVw0HN/5R2H+9m5 l/HwDnXIyJrsR2Nbduo2Le6w3tVr8L/J48r83XHLsNsBY+RcTzvWXOZjZTkI n6tjqfNcaUQdrxl9m87KddxjzZmbut8idQ4SCL7UYqSXfN+MPwE5DElKvHj3 SPhrWUrhB9bEpv7f5CH95MsDiRcNjsj89dgtqLcEjMOfrxkp/tAaGSzrtbdd h778N94d67dc5mNX64efDJdG8LGzOSpyO0m910kdS+KN8zwe7+vE7Uz+lSX2 bc4Hm3E/pWIQ9rbt5B36KCz0vnQ/fNJ8lvsR2ptlsi6zzALs//Ni+jRa3hK5 6QuTs68bDeL8N2NbmaeZKiX2NjAd/XVXcwh/80Yy1Uf9grgfMkzm79RQ/S0Z mxG/tG4yfyd6dvx/y7OCD+xogwSH6BFS099VYanUN4xwCamrjAikP/afsoIb jFeluE+38jV9QQsaS33A+r0R+d3JjdST8w89IP4tcyX6ddOwLrv/bqmbGRvr Q0+yDzuZFU7qEUbmueDeLqzXurv3sIzftYL7CI8Uff4lzusfPeddLPss/A90 JS/SQ4RutqZPzGi7QvpOjKY9yBe6bOJ8p5BO/965mtjPxwbYYc07nFPcHgvO XDkJP99ottizdisD8nkXDnuuGlHwgBGvscjBnXqVfZphFeez+Uz6XdfTl2JF z8h+2XuE97Le0L/hlOvPuXnMijIf7c/h7LtlfeG/rgb3LCK3Vn5gF/wnZeH+ aZuK+P89q3lHZtA7vhtH3Tu4GpN6xd8zJK7ZpZKR1wcfoc+tYWlwUch46ngJ 79B3F/4b/nVgVuoDw4PTyLj+k4k7C89Qr2jgit+3uzag73jTMeobeYYl53td BZ+YdXTqVCdbURfrM4534f4pRP0kSXTqQjmb0G8SbzP0w8Xo6z49kTzg9Wnq V7Fvix/X3A2zxe5yfmI+N5pS14szn3d0/0kCboz5GRwwP6K8q+HU7KrWNZf7 Dh3cK4KzKtWAz/BPQtffTwPnvupHvWX+Se41DI7G+yFLTjN+Wm/qdENKSXxw m0fADxTLS796/rjy78zaHalfjXiM3PJU4L3cqH3xV8knEXe7XUHetZPhZ9KG CH9zSz7uR69MyLrqrea93EpZiC/5UzKfdW8ljhpdF4u/sjMcgP/zeqIXY9QS 8T9mhuO8/zzgFPG7zij2y+SM1HmO/S3z0N73JH+JM5Y68LPT1OtORmdfX/xE n2f3+OhlySDu7TaNx757tp/7FAe/ki+n7kZ9uHc/3gW+VYn6cIyW+NtEp2U+ zsJ44vec0j2p/0TYJXI0qnXnftOmY+hxcGvukU5fwr2hvZ2oL2Wbyj3SqmeD 5O9HkZvb8SX3QYq7nBc9PEl9tdc18EGWP8mnyxaE3igy9nkvNffC3yfDTwZc Bcf/U4/vRtgKPkk3Qb7rNnK4R7B2O3545hr0vXAU+Xf2+/jV3ZbQzdfqHnzl duCWAWOZ5y7krz/JQF/KkE/Y28Xy+IEFbfF7W5sLvrc/nCXP2zMQO8z4gD6A bz3IZ8vT56llK857NKd2YOeNZqOvSQd5jyOYd8u18KewtyS7yBPevAanfN/E fl+Rnfs4pVby3bjpyS9qDSBPMLnvZn+dihyenAZvLb/FO96JdjGfyIN432HX X9wHnL2X/tKv67g/Upl7K+bTtPQhx3rDvu7cR71XkwvcuCo544tMpR78Zzfk 2XU58owbi3eBUjxhniOny7qcQJt36Fvs4Vw4dA/r3ZNX3jN2+u33+ja5V9JV Z58lUfH96kvw8deT2FEU+o7scBORw7FZUh/Vkp/FDssf5N3MlYekX8btMg/+ J05zLyntZ/o9tw9h/oVeCt29Pk76wqy1JnXFPhc4j1sdzLlJ+evUf9I0An+m Gsl+fLFXvaswR9WL0rKPxmym3rX2MPWgXbz3YOatD73WW+pH/fIRvx5TdzWW twXH3jxJXE7P+wBOw/Dc08im+i0TfeS7aVfJ/rEb5giS/9/mq3rHowjvFAfc oB7w7DHr+kj9yJh1irwz4WHo17nH4ow7S1wtuBX+nVaAGzNfpg42/aK613+X vz9pzHsk9R5Qd61osN7hVzgv2P0HdbDMk6hDXh9CXd20mWci8Lz9kXcv7DM7 kPPIvNSRSn8Et4w6Tt2j7ArBq1qhN/i3zeWZT+xQ+hevT6QOOS8H6yrQGTz8 8RR1wp3oUetfh+/OHYKfu4/enQ1nqCseWyV2qI2+RD3z/z2s/PklptijOQI9 anmpKxrR+/KO0zr0bk84QL0vW4+AH3Q70GE+uWZRHw7uILjPfaDu19dJLuu1 7c6yv9yiOZHnwiapkNNz3vEOqgCfTg84B190B/zQmHvxpj0N+dRtmkbmH2c4 69LGYlfRInDuOlvJP+AAdempL+RcUV+t9JvytujX3h9Cv2QT7MF+vZS+siqX 6B/5hF1p1s0g4Xc1tdThjVTYpxtzJeccN8rxzu7Apdh5QHPqUIUagJd1Vdc9 M5x7H4mKUgcrSD3WKpqWd4lPdD4ouCJvOua5Tb2fPDYInHOU9zrMzYWo16Ub KfdWzEi8g2Gl7U3f5ugb3AtJER0+GfIKbrRqzBe7tRd+x042rOL+bOal0v9i 9+NdArdzBMkfrUlbqJfWqoZecrZAjzXiSD5kFRuLHqMkk7zSnhkhkow7MQe5 1epFvhl6kO+ajRn/IgF6rFhT+u2tW38in6W1yEd2DeQ8p3gM9LKiP3XgLws5 t0xbC7v6fpzztg0WeCP6EuQzayb3lDNMpW+56kDs/N4M+mnHbSDOLuZ9GLd8 Tb77IhF4fkhavhtrFOd8U/NyblBa+cnh+dDXzAKcfzVFznbwBN7TfvOWen7f hXy3TVfekY55kzzodiPkuSwN5yAjG0gcNyMgTzdZSuqfGQyxU/1LVeS2tz1+ 4yb9g2Y69Gi/3kS9vXIO7L3BDOJChcScu53R6MeY0AK8MTCJ1Hm04kXpD+l0 gLjZ6Ax95m1eUjeImoY40mqF1E2s9i2413xhFnWDyJ1lP5hxeX/UqLCE/PRD 4b/lHP8e/VFalQ3kI9uu8P7exYzkmz0PUp/sc4J4+WAw9KK3yWuqrJH7X0ai T+Tj/eNSd7qZXeozTvRk3Hdu/4T8biH3WKwMd8nr2x+hLjd822Xhk3AN+fu6 yuSJvRawT3LQd6R3SwifQ+G4B1S6DHx6r6LudOAa9zuebGI+bbOBr9a1Jw9q /4r+jT050MvUzKJH5/B2wc/2Uuh6cFHqgSevyHijcyfqOc8nsU8HVKTeEqEN 9aIH96hz9q7GfOqmYb9X7Uy+2XgBdYZLWbDnV6HUc3aepk6Sojv1kCia7Bdr /l/UHzZ3oz6fOAF+42N8foclz2LqilNDebdt0jb6rJKsh553lbzH6rTJSD9M FeqQzqDK4heMRPHEfoxYI6n7PdxN3ftjYd4PznaP+bS8KX01zvG05MUr1X1M Y9kl0df5mrzD0KIVdd2pq6TPQMtemzy3DecpenAZqefYe/aBbyemYD6r0kr9 1Kz8p8RTK95+6mwta0odz8membxei67qzFl4fzb2Z5Gns3U3fI6fkPqGNrid 0PU6W6FH63ld7HZxa5GnfvE99a6yqemLiJqIus2Ljsy/dXfeUY/FO1R6hjj4 q9M9pJ7mDChJXWIu9qn/dZ977juqUVdJz30lY8DDNDL/PiUYX3oDdZLch+hP aNqb33npcRk7j3KUfK1GXta7YYPYrbtpBOfQn3R+r2fZ74zXfwenlhtNfe9N AerA7UsQt5JlYl0hDdlf0V9RH6gcgfdVCtKXbqYvAv6euYTvjs3JvhiYRkff sSWfcIu1xQ47nKbPqfh2qTNo8btwbpW8J7+DELGt1NWdnfBxAzLIPtK7cx5h 3p+D/ANyEKdnJ6Jvfwf3Zewyi7Hz/fvkvMZIsInxJ8bKuY8RqM6Dxs6kbvM1 PHW/p3N4z7DpffzSkMVy3q+bxegTHriR+s/1r3L/1C5vSh3DCFyGvW0pzDs7 K4uzrsfHkee1r9fEzt9Xh//anure68pI8p2phbiHfaoH9tPkNnGt63fysBL0 yTsVzvO7FO1Kcj87CeeS1u7K4h/0Cy75X6O5xIUEhYkLVzT6q6NnIs9acgk/ P7wZ5xS/HSdv7ZST+0pZz9MvvaAt+dS8ZsSRPby3qS0ugF3F3iD+UO93jryk Mn3Ibo+E3LvM1ojzkb01sLdPd8UPu0WXyfmOeSIp5195ilM/T56O+fR4jp1n riH7y0m0XOhG7kTUtRpvpW5fYQf8V3OuYY8ZLrjQuV+S87jly+DffIf072m9 12InF5iPmTAqednybtQVjt9g3wU8l7+bK+Omke9e3MI+3Rifuv/xOZJHGouT qv7nmLJ/9fSNOW9qmgY7nNeR/rAeo4SP3nkg++XUSM51klI/s6/Gxi9t2S1+ SX9ZnHpGvmbEwTolkNu2EeSXqYphz9fHgKcrIn+3yxfi7+nVIjf7cx/O11KN QP57jqOXceSX9ryd6D3CGvEPdtkM1C1u/osdds/AO1MxojPfW1+JX9FDBTeb 3wvibzaxr90+76WvUv86mr6aZNz71o+mEPt3ZiQU+ZlV6LPVFqfjfuOnHIx/ 1sXz/1Kft40E1CezqHPDjfnlfMpNfpN3Gq467EfjlOAH27ov9u+WOcy+/nRO /L+WtqOszzUm8e7Qlpu8C5q2WpD8ffEIfqcjtLT4E3toYs7rU83kfZ5MreSd WH1rdPLLwlF5t7PzSxmvV6hJX0HiCLzDk2wj9w2/FiOPHPq5jowvOZbfWdiz l/zpz3nM51pEeb9bvzySeF5iLt8tmoz69tn3nG+kjcV7Ph8GiZ9xc1Ev1R/F YHz3mdz7G11Yxlu7utaW+U4+zr2AF9Op51zsInRjbkPOr6ttk35b/XJDmadW clck9HCe34d52Ejo9u1sQnffTaLumq6T8NGvh+M+ZMoT5HNL68l4t2lL+o2y P4berLmMt+PVIx+JekTk716ryPhL4fF7ycOJfOwaNZFbkSDeBw9eQb6+oi3r esV9KDvDwHT/pUdtZVI539ZK/qp3Lf84wRd+vWg5y+0s8R96/H+ASR1d6d32 9L7iAfcvfXaiDX8Y7r/Wqx2aL/dT/fPXKp2iv0Kt11Tr1ZaW5HdgriMfW8lH K3OdeydK/oaSv10hbeT/kr+WZlaksPp1DaXfxlW41+WzB2Ma9yc8u9KVXVnX rxNXffbp3ABX6uHOVRD6+I3k6VemSl+zpV+CfnYL+c6nAtLnaS6dUlXk36oG dna5k7y/5TjjhK4lr0Ddo9L6q9KvEveq8LEqa+ShQe3J66/OkPHG7IfcW4y6 QfRmD/27hvzZ7hb2+nAY94lXbxK64/B7UlrUQDlv1zauZ3zXIvCxDk6XdXe+ Lt81993inPTQcs4p8s9h/vuOkK9FXcJ3ms1mPttiw2frLPbHpWvCx32Xgd8/ +hABuR3eJt+1djlyb9HdsJB9mg+60yYQvxAlBvdvNharJXzjx2Ef7WxIv0PH 4kI3dh7ld68ez+HfDS0idDP1A/LHLtsjCX1fbsbXK0F9dmZxeU/DvV4A/ncq U3/IN5k44NOv+/p36nl+fQ3uxn0vpV9T6dcodgJ/qOxBV/bglOPdif+Rf9Xp Gf5LX/b6FMqvol9L6dd5W4z+T2UPmrIHo8I2+u/89jOoivhz/3qNe/gZTz66 ko/x7ntQWHkaSp7G6Sep/0svWrJrKf5Lj1a9nNQDfPagTUd+nv1oyn7MZuvx /5cish+nHmcfFVB+rBdxQZu7Fj7K7+nvv+E39g9gPyq/pJf5A/pM6sCeH7Pb jMH/r1kt8vL8nvl1Cn6y+Rb4ZMRPav0+Cl1/Eok+HxW/nMufhG7cvovfV/7B aTxE6E6tB8hdxS93xu/Q01LHsz0/cyki/vPjGfpUVfzSdkcSutl3Hf2Cyl/Z BUPwq/M3Uf/0/FuGm0K33lykXqzil9E5Cn7vRSnijfKfWsfb0GdUoP7p+c/c 8Yl3F2ZDP4A/d/KGMr6vTV1G+Wd9779C10JmiT1ZS5Q/fxyDdbWaEiT0isr/ +/RoKRzi17vt4RafXjxc4dejh0M8vZue3j3couzE8uxE4Rz/er147c3fUvN3 VPz1r9f04rVPPl5898vfww9++RsKP/yPfj184rMHD8/47UpXuMhV9qkr+/Tw ldH4T9mP2shzvMOo/JtbZB70kqfp91X+yhxWTPapm3Ur79Aq/6a1KY3/r7lT 9bXjD7VKs/E/h/7gXQPlf8yqhdjv8XiH1vNXdpS++MMhdXmvWPk3y+0vdLPW Ys4LlT80rg0WujGQd3R15T+15zPku05i3iP7Gb+e58M/f/vIelX8Mg7nJ66F v0Tfs/I/zoiZwsdO+IJ3apS/0g/0ku/qF+/RF63il1W3N/75u8P7RMrvGckf 1ZQ/b22iv1r5Sbv5Q6Fr4y8hdy9+VXkidOsK77r/9LfR3whd3zMPe1L+2X4Z Cr3fDPq6PX/u0692FXzi6cv09FVF4Q2lXz0b+tUugU+0or/ag/YRPOOX/0/8 oPRlK315eMOvX0PhE0vZg67swYkCntGV/djKfkyFf7z1mmq9mhevffLRphPf PXnaSp62hweUXnSlFw9X+PXo4RDPHhxlDx6e8ezHVvbj4R+zTH9wYy3e57TK PZbzGutSB/zbyxe8T7IwI3n/9Lv4saqpwcm7m/M7q31e4MfcQdKfYw0txvsx 4yqB/ysQl615KeXcRIvSGHrjhdQnk9+We0PW3kPg4ZcziSvBywJ+0O1+F/nu 6Er0uY0ZTT/skcLiZ9ybpYmziWpI35AzoSz+Z9lzcMuSMuSjZzPCP2cczncK XpfxbuTk+KVOzRm/7yXrulUdv/p8D+cRZdPwXlq8fIyvco/5LJjFO8qlDeJs 4m+q76uq9IFrVRrih4tf5Dzi0xLJm51zyZD/w3z4zfLI3whcAP8d6r6nkqfx eBX0mdFThpW/ZWTm9ywS10v6i77KJue7JRrSH/CF7+on3uO3zRZpfpnnpvT4 +Tb30oRdr/MlgHhU7rkedr168VjglpUbU4aVpxYhJ3yiVUkdVv5mpO3Iv/Hd pGH1qMcsjD3ky4nelT0YK5fin2dMUL8HUUXO/c0PlfDzv/dh/za4Tv/a5dX4 gcFx8W81V8p9R/dkbfbv1i/cT+lRhe8+G81+/5t31bXhr7lP9G4Y9A+t2L+j w8k9QmP9dnBylGD27/U93OOb1pb9lYP7GNbqb8h/wG/QXzZlfIpz6l2TjfiN ij3xS4X687vcZWfy3TmLOce/3og6X+9JNZA7vyNlzSglcnCXRwXfnq7I+Mrd sf828YRub1mA/DeOFDvRywSAn+PdA/8ky8V7S/M/4f9XN0IOpcbz7mv24cSd Ww/0X+S85QTzH/QO+1F6saevAlf3clKElZu+cAnxcXADPaycnQYD0cuq5mnC 6sUYcYi8Zgb3YrRa6NHMlZX1DtlHnmgwT3NMOvD/2vXJw67LCUpOnpX3bqqw 8jESLkCeM98Qt5Q8rb17ySuPxBY5WAXRi7a2O3rsrO5tJUeP/7N/9TLYnW8/ Ot/OgEfU/rXV/jXbJ8J/+/a7dgd/7/ef7uCYxDffftFT7uWde5//NBer3zlR +85R+06v8wxcoPynFoL/dF6HsJ98+9cYsUDo3n531X53f3vCvTe//8yRnbit /Inp+ZNCV4ljPn9iPk4Df59fsi9coI/L58ec2FPBEb745cnfH488eXrxy61C /PLk78U7TcU7T19+v+191+/nHW+eKl6YXrxQ6/Xiha3ihaXW68UjR8UjT57+ +OXJ34uD7ijioKdHL57aKp569mD69+mZHZx3+/a103sI99d8+869VoPfhfDt UzPDO/rf1L421L629JvMU/kBW/kB68gQcKLPf+qDZ9K/5POf9t9pwCm+fadN vUwc8O/T+GXJA5T/tJT/dNu8ZX/593vdDdiJzz+Y8R8if7//3JcZufn8jBlT R27KL7mDlV/acI56iy9OeXLWfXHNPY1e/HHHVHLzxylTydkf1zy9+OOgo/To +XnT8/NqnoYvLnjr8uKLruKLJx9/PPLk6cU1R8U1Ty//EweVHt2y8UvLnysO k/cOnUreMDKO0K3YB/luqvX8nk/RhEI3lsclj67wCn+8JJGclzp3uKfpTFtE fpEjgdDNkg+JI4snsU/3xoGe9V/1bhL7yDyVCP5XhpKHrltFXtYeuhNtOfZQ +zV4c24SzvOPLcI+r68hP0oO3Yx9iPOJLbW5d/ipAedkqzPhR3qsZ3zSRkJ3 I1UDn7SLLN8x79xhfhM+I+dz6zm/7X6Xvxe+TB2h/Tr49PkN/sl2wcfQgmR8 ntvUC0a1k79rZWrz7x934LtdumKXE7pwP7TfNcZ3S847VL1y4wdah1CvyZgS PTadzL6O25LfoX3UDT/bfmzmsHq0lR61SWkFB3p611aid83IumLvf+mlRyB4 QOnR8vR4r98Nwb1K767Su1a4Fr+3ouzEVHZipd8l5zNGKOvVurJerYPG74b7 5m/tuCU453/WWzWH4Bm/fKys8QWfePJ3lPy1NHf5/Q0lf9eTf6az1PGUfm2l X6fxJ85VfPZgZJzPewjKrixlV+5sk3Mkn326sRw5N3Djtq36g48Zbgf93zfW yb2rn/Q/uV+tDT7KuyCFqpf/8ad16S9+dyTKQ8E5bkFFL5iTfscOvFOix4OP tTiE9wsCQ/cJHlN87Kt14WO8min1twSjDeGX+SL+PfHj0yKfFNA1fRz4ZmL5 APn3mdX4m2PIZ9NdiBP2u8aVGfRbq9+f9b5rxoqR87/obslU9Jk9LBs5rHzc qCvh82VeJKHH4LvOnNLgqubwsWOpeX5ry/xT5aFPIaHN+bx2kPh3qg7vWgVC dxfa+NM46ne3S0LX0+fGb+rXqFeEKvr2f8Efi2fL/QVnjKLHeMj4smnlHQ+/ fo184VmHJwelLzvxtpxh6Z5+zSGPsoaVg2cP5vXm9M365O/uqMI78359lS3J Owp+/e7IkSGs/H/aQ/ilxH+lR1vZj5H3PXVHtV5Nrdca0JO45pOPVXhGjv+S p9t1UdB/6cUIaZj6v/TozFmcOqwcPHvQBvOute6zHzdcCHy+xiBeuFHxV4H/ SN5nhESB/nWkzMOKu4x739kCiVN/0F/tHP6d963rxsDvLclKvbT0H/ilpRp+ cjs40nISyHizUUT2e9UM8HnVivd+ln2hD+j1V+J+lSHcyxwTQJ/U6krIYc0e 2b9m0DzxM2bfstyLCKzH73NtnQB93iV+Z3BNP/qJEhyVdZpjh5FXmEGJmE8w 8aRnfuJ9rLfQj1nCR++Tl300zaVvYvRp4tZxl/nU3Ml7J504DzCbtSSu3P1L 1mVG6s37NOu2Yg/7JjD/4Oe8b9cslPqnii9a5ddCdyatxD6jKL2Me4B8bkZF vz2JL87bJ/TrLW6bM6z8tRQvGd+yFvyPoC+zw3v498iKncdDv1ab48yzQG3e uVDxxay2j/gym/5Xx5t/BfCus593rCxvvUVXU7cukpG+cxVfzJF/817M5hcy 3lHyNLP+DZ8Yh5i/J88/d6GXJo9z/KKvhSuZz6JU7DulX2ffO/rjim0ELyo7 0UM/865hmvHYlbI3b7/o3y4iv5u/xhetQG6hO7v+pc9F7SO9yyre+doxXN2n VvR8Vbn/4Isverqe3EddN4o+II9P48fcx3s1hj6gRexr/c0Q6dtz3rVP8ePv 9hboZkBx7rHkncn7JwcU/eBt+hR98cX5/TDvkjyblSbsd92txfk9pFj8jupP /5YgCfMZWy51WDnYIYtY7814wsfuq+bZ6Dz3ZyosYV0ToNub14n92H9noA8q /FL64y43xs8HTZV1OfWX0E83cSj2k3cw969XMd4NzIYdfj6Dfp1lvHvqTKJf 04svJaAbUZ4yfkuhhGH1ZX8/D39PX2pd1pEm3DPZjX7twsqvbmqHHSo5m1Wh G04G9t179OLJzYo7jXUpPXryN68nQ85K70bXRfjzoOzZw87TibgY/59hbY6w 6zXWQHfKrMgZVm56CxXftY+5wsr5p//Xn9H3qfTlyUFr0CpPWP06Ac94Z/Fe b+JaTnCsEf2J0N1WZ6B7+HPFbfbXsHvIoRB41Ul2j/1zfgx0hW/1AY/gczwx 8lf5iB0CXd8UiXukCu85f93i/nfMbNjVNZWPZHehP0mK/1G40Wp0E/+cpA9y VvmIVfgG/uFJS+7JKPxpnltEnFtbEDtReNUtBd24VEnoXj5ihVwBD5vZsDeF h82hS+CTIwB5eni4+nL8XrMV4FKFt63i55nngHN8V+Fzw+f/vTzR9unFyyud sb/6fy/vM/zyV3mipy9D6cvLK3Wffn/mocr/a8r/e/mUVYr5a2r+Xn7kVvOt V+VTbpFf/b+Xf3nytJU8f+Z3lk+eKr/z68vLH/369fLN/7ETlbf67c3Lf/3+ 38OfP/2/WRdco/DkT/8/6wT+3MOfPv/veHjV88NN6Jv38OFPPzwtA3pTeNK+ pvBnyt3cj/Xw51nlf9I1h67wqt//azur/PJdPcNHcJMvj9Cbdiv4X3QrS1Pm ExDyC5403/wLH4Un7dtqPg8i0C+u8gv3looLf/N7hx4uNWbz7rIx3yZ+KRzr LIeundxEn7fKL4zO0N0oHVhXt0VBMl75f1P5/5/4Ob3ikzAWcVDh7Z9+T+nL 8vJBz082Q7/WIPJHT866krOl8jhT6cVRevHyvv/Ro67yRCV/V+ndyysN3zy9 POh/1ptK5VM+uXl52f/IOSV53M+4pvRlqHzwZxxU+rW9/LESONNVONN+nhjc pPCh1hN8qL86By5ODp50FJ60buXDPyn8qSv86a4ZD+724X+3XFLsU+ExU+Ex N+gG/Hz437K4D+XhOsPDdbMPkv9l9uH/XWvJ/3z4UG/VG7rCk5bCk3YVm/tf Cv9bCv9bH8ALfrxqND0NPQt41VV4VasYEb9R3oeHnwWo33Hz4edVO3lf0Zd/ OZ78ffmUJ08tO/mXq/IvT/6mL18zlL78eYf3XX+e8nOevnzn53rHkO8YKt/5 uV6VT1kqn/opz02/5l+e/A1/Hufp0ZcPevbw0/94OK3zWeKJ5688XPe0H3Qf 7nKm86cfp1mFd/I+gA/XWdlzg1t9OFAr/jVXWP6uwtXOlrT5wvL3cLVbdtcv 39U93BV+YN6w69JSg9OctbfBLwpXGwpXm3UzgV98eM8a94R46MOHVtyixGcf rtYu9YHuw5nO4XHoxYdL9Xetf6nDaCrf8eT803/mJz/y9OLPUzy5eXmNpvIa T87+PMjTiydnTeVNrtKjH+d783RWki9oUcgXvHX58w5PProvT/Hk6c93PL3o /vxI6VGbXqGmzOevu/z72Lw/4NH1uOATZ1zmXGHp1ubRfDdPGuof5bvVlvEJ K+DnZ/H+g/Wwq9C1R4uwsyR/Uu/ZDl1vpYMHrmX6hb/+qATrVPHdozvJajHP 7impK1/iu8ZxLd8v41dA14bHxc6D1PhOS+oJn6AF+GM13pq8SOjWbH7HV3t8 nvi+Nl9d4V+bd3O0O/yugtYxP/TIp/KH5aNdWQD/D5fAcQ8nUbfOmVfGOxdi c4/u/UvopWfLeHvDfPErdh3e5dDe5JLx5os74LGbX4kjm3LDJ1Nb+DxviJ9L NVf4GLWCqG+NP541rNwMpUejQGXeAfPp3aodLO8t+PWidavAvSifHq3ee2S8 pfRuKL1rD0eeKBGGv2cn2o110H3rdRpl516dmr+p5m+V6sb5vm+91olVgnP+ Rz5DZlNnU/J3lfy1ydM2SL9Zjl/lrzkLHclrlH51T7/tl0cSOfnswa3QhT5Y v13VLRsprJw9+9QylYGuxWko6wu/X+6vWodL8XsaUcJDn/+Nd8f255N1Weky C926uAv6heTcJwgd10DWGyG33EfV1hSXe6jaxcFCd+c3g15vD30dXfsI3U6+ S+jWw578Tleqcg2RG+9//bTbHcWgh+zhu3NS8s7WsoXwX5y8aNjxxtLZQjcq poK+7wO/z1N0T335bstOck/Sub6Ee7Fv9wnd3NSycFg+1vGtQrfGT+R9tJzP L8m6Fq+BPq8E92w/fuH+e6MN8C91TsZb+75K34hfnu7TouwLn/z1i5c5H/PJ x+hzAryn5Ol48iz/gHNjn/ytKZWDnP/Ql317DXhCzdNS8zSfhnJu4FuX9SVh zrByMJUc7IAPQWHlaSl5GiNGcv7pk79bORf+artPj5dU35C3369GYp9uWcB7 2x796UH8dnV+X9fz507sP9gvTx/xPoznB57vJ748nPMLH2tyd/ajGz5tWLqT axbx98vgNDJO+W0nf3Zw/huN8d7+qllH3acdyHjlt61+S9HL0pGp+R771Dh/ SuTpVg2kLqT2tVMmIfK/G074eH7b2RuKveUeAV35DWv/V+jTEvNuk/Lbdvyy zHNyX+Sj/JJxaAT5xGLuEXp+zElWHH1lSpv0FznEtODv88NO+Rv4vc3oxfPD VqIC2KfPD1vNphcJK3/PDzt3LxUOqy+Pv5s3BXhc6fenHz45gN+H8Plh609+ R8Sbv7devVj5YmHX6/lh7fC/0H1+2OmZGz5Knp4ftkdOLBpWnp4ftkL3Fwmr L88PO7e6s6+Vfj07sStGZr8oO/lph88r856gsjfPD5txy/F7LUtfU3dVfsMp 2Uvofj/srErI+OPleYdT+QEt4A9538GZWYt31JXfsM8c5D2IRhlEDp6fMZeH h88Dnx+ON5zx0VLwu7WeHy5zid//iNeMd/uVH9bK7+S9xcnrsTflB+y3+ZhP n0voS/kNI2U49Ds1Cu/0Kz9srTf4nZiV79CL8j+OtpHxFYuzr5W/Mjp3hb/f D6fJyPwPTJZzDc/fmhdnw38Zcv7pVyfUL/aLfJQ8XTtZ8bDy/OlXA9vyLoaS v/ddc21IkbDf9eZvP1zI+25q/p4ctP1dsU8lh5/+M1Io8+yr5Kb8p1s+FetV 8v+5T7t9J+7UAi/9tLfOjfhdmSvgHM9/GiFx8MMuuMjbv2brrcSRXnt+4eMU WMK6fLjXiDiFdzoUrviJexc3/jWOr/DwWEW+Ww984vlP7X5dI+x4z3/qMSrz XklFcI7nP91bn/n9G4WLfvrPvrFK/PJdtd/1P7PCR+Euz39ah4KRs8Jdnj+x rrYWuofrfvrPdh+xQ4UD/8d/jv81H/H04uUvnv80PP+p8gtP/oaSv5ePWD59 OSp/8evXy3f8/tNRuN0/f1fhcG+9plqvqXD7//hPhfP98rRVHuH5T0+ehsoj PP+puejLy1MMv35VXuPZiansxMuP/Pam9VB0ta+tz3/x+1UejvL5Tw93efvX KP1U6B4u8va7caYv/lDhKM9/6kdL4oc93KX8p6X8p4fTfvrP9UGci/pwrJYi IfU/hX88/2m+XVMy7PifOLbOAubv4SjlN5ziAYxXuMvzn/rFmL/w+Ynf1rvo S+E3v//8ifc8/1l/PXSFDw2fnLUj5AuGTz6Wh/M9XKrk6eUFnvxNJX8vj/if 7yr8/BOHq/l7ONwvBw/Paz65/cT/yn/qnvxVHuHHOVqW77l/oSt84tyvSr1B 7UfXwzNbqlB38eEfo+C3X/h4+NNa3zBfWLqp8ICxOyH5q/KfWgGFPws2YLwP V5iNEjDejz9jz2M+Pnyi3W+s6mEKfyo842y4Qr3Fjz/rJ+W7Przk3llAHunV DTy8NDIe/JU/0Tw8tvwYdTAffrNGm7/I5yf+V/L343lPnp4/dD38r+Tvzxc8 fflxr/fd/8HJap7eek2Ftx213p/40MPbar2WD8978jR8+N+Tvz+PsJQe/fmI Zw+aD7eYrdU5tg+HaBtXUYfx45aWT4lHPpzjTL+NP/fhPVdrxvgdv+IN7Y8c 1AO9vLvcTvX7efvRrw+3OI0nIGc/zkkzl/qqD+/p7S4iZx9esmo8QO9e3urh q+e7ODfw4WdPPoYP93rr/R+crOTjx9WePL3vOh6eVN/15ul6uFTN049vvfVq fjzsyUf5JUPhapHz/wEkD2Z0 "], { Polygon[CompressedData[" 1:eJxN3Qm8jWW7x3F7r7X3zpRZxjJljoRMGTKTIVPmZKbMQ2RMkYoUUcZmU4aQ BtFAaTBUokEkFJlFMqbO9X+f33XWfT7nf577fD/3da33vt/n2WutZ+21Fe4x uPWg5HT2P1nSpYvZIcmi/z9G4liKJTXwZCzNckPgqVh6at1vwDJYMloykczY jdF/hP/3jFgaPd2zYCnUuqdiWS3ZLNlJDiynJVfg2bA0errnwm6k1j0Lltty kyUPyYulZ43uN2Fp9HS/ActJrXsuLJ8lv6UAKYjdbLkl8PxYIUvhwG/BilDr XhgrailmuZUUx0pYSgZeDCtET/eS2M3Uut+CZWXfSpHSmPauTOA5sEL0dC+D laDWvSSmc6Ws5TaSESvCGt3LYoXo6V4Yu5Fa9zJYOUt5y+2kAnaHpWLg5bFK lsqBV8TupNa9MlbFUtVSjVTHaljuCrwqVome7ndhd1DrXhHLyr7VJLUw7V3t wEtjlejpXhurQa37XZjOlTqWu0kx7E7W6F4Hq0RP98pYCWrda2N1LfUs9UkD rKGlUeD1sMaWJoE3wppS694E07Wq6+4e0gzTtdc88LxYY3q6N8caUuveCMvK vrUg2TDtXcvAa2GN6eneEstJrXtzTOfKvZZWpCrWlDW634s1pqd7E6wGte4t sdaWNpa2pB12n6V94G2wDpaOgbfHOlHr3hHrbOli6Urux7pZHgi8C9aBnu4P YPdR694e627pYelJemG9LX0C74F1oKd7H6wbte4PYH0t/Sz9yYNYJ9bo3g/r QE/3jlhvat37YA9ZBlgGkkHYYMuQwAdgQy3DAh+CDafWfRg2wjLS8jAZhY22 PBL4SGwoPd0fwQZT6z4E686+jSFjMe3duMB7YUPp6T4OG02t+yOYzpXxlgmk CzacNbqPx4bS030Y1o1a93HYRMujlknkMexxy+TAH8WmWJ4IfDI2lVr3J7An LU9ZnibTsOmWZwJ/CptCT/dnsMepdZ+MdWffZpBnMe3dc4GPxabQ0/05bDq1 7s9gOldmWmaRkdhU1ug+E5tCT/cnsNHUuj+HPW+ZbZlDXsBetMwNfDY2zzI/ 8LnYAmrd52O6VnXdLSSLMF17LwX+IDaPnu4vYS9S6z4X686+vUx6YNq7VwJ/ FptHT/dXsN7Uur+E6Vx51fIaeQpbwBrdX8Xm0dN9PjadWvdXsNctb1gWkyXY UsuywN/AllveDHwZtoJa9zexlZZVltXkLWyNZW3gq7Dl9HRfiy2l1n0Zts7y tmU9eQd71/Je4G9jy+np/h62hlr3tdj7lg2WD8hGbAVrdN+ALaen+5vYu9S6 v4dtsnxo+Yh8jH1i2Rz4h9gWy6eBb8Y+o9b9U2yr5XPLF+RL7CvLtsA/x7bQ 030b9gm17puxdezbdrID097tDPwdbAs93XdiX1Hrvg3TufK15RuyCvuMNbp/ jW2hp/un2Bpq3Xdi31p2Wb4ju7E9lu8D34X9YPkx8O+xn6h1/xHba/nZso/s x36xHAj8Z+wHerofwPZQ6/49to59+5UcxLR3hwLfgf1AT/dD2C/Uuh/AdK4c tvxGPsd+Yo3uh7Ef6On+I/YVte6HsN8tRyxHyR/YMcvxwI9gJywnAz+OnaLW /SSma1XX3WlyBtO1dzbwjdgJerqfxY5R634cW8e+/UnexrR35wI/iJ2gp/s5 7F1q3c9iOlfOW/4iP2OnWKP7eewEPd1PYr9Q634O03stvW+6QP7G9F7iYuAN sEuWy4FfxK5Q634Z03uVq5Zr5F7sH8v1wK9il+jpfh1rSq37Rexfy3+W/920 siQlRZZsx1hSwv/DLtHTPYbpsZOC+dexuI1TLKkkLSmyK6zRPQVTr1gw/zKW TK275sh0r+EGO6Ynus8gy2DjjIFrjiyTJXPgGTHdC1Cte2bsRjtmsWQl2ZIi y27JEXgWLBM93XNgGah1z4j9y77lJLkw7V3uwDVHlome7rnpn51a9xyYzhXd 97gpKcpVzh+tLXNSwqtjmejpnpn+/3COuefG9Fpfr9vzJEXJmxSZXsvmS0r4 Y1h+GxcIXHNkBal1L4DptfLNdryF6HWyrJCNCweuOYXolS/wwpgeW7Xu+TDt tfatCCnK/mvvigWei/3MT0/3Ylghat0LYzpXbrUUJ1mwgqzR/VYsPz3dC2DZ qXUvhum9bgk7liR6nysrZePSgWuOrIylbOClMb0XVa17WUzXqq6720i5pMh0 7ZUPPA0rQ0/38lgpat1LY9pr7dvt5D/+O9HeVQi8KPtZhp7uFbBkat3LYzpX 9L77jqQoN2NaW9mkhI/CytDTvSz9C1HrXgGraKlkqUzuxKpYqgZeCatmqR54 VawGte7VsbssNS21SG2sjuXuwGti1ejpfjdWhVr3qlhdSz1LfdIAa2hpFHg9 rBo93Rthdah1vxtrbGliaUruwWqwRvcmWDV6ulfHGlLr3ghrZmluaUFaYvda WgXeHGttaRN4K6wtte5tsHaW+yztSQeso6VT4Pdhrenp3gm7l1r3Vlhd9q0z 6YJp77oG3gBrTU/3rlhHat07YTpX7rd0IzWxtqzR/X6sNT3d22B1qHXvij1g 6W7pQXpivSy9A++O9bH0Dbw31o9a975Yf8uDlofIAGygZVDgD2J96Ok+COtF rXtvrC77NpgMwbR3QwPvgvWhp/tQbCC17oMwnSvDLMPJfVg/1ug+DOtDT/e+ WEdq3YdiIywjLQ+TUdhoyyOBj8TGWMYG/gg2jlr3sZiuVV1348kETNfexMDv wcbQ030iNppa90ewuuzbo6Qepr2bFPgQbAw93SdhDal1n4jpXHnM8jh5EBvH Gt0fw8bQ030sNpBa90mYPmvU54aTk6JMwfRZ2hNJCS+ITbXxk4Frjuwpat2f xPRZ3dN2nEb0OZ1suo2fCVxzptPricCfwfTYqnV/Apthx2ctz5GZSZHNsjwf +LPYVHq6P49Np9b9GWy2ZY7lBfIi9hRrdJ+DTaWn+5PYLGrdn8fsf9PNtf8z jyTzFmS+/Z8FgWuObKFlUeALMH0Wrlr3RdhLdnzZ8gp5NSmy1yyvB/4ytpCe 7q9j86l1X4DNYN/eIIsx7d2SwGdiC+npvgR7jVr31zGdK/rcf2lSlKcxrW1R UsIzYwvp6b6I/tOpdV+C6bMufW61LCnKckyf5byZlPB22Aobrwxcc2SrqHVf iele82o7vkX0OZFsjY3XBq45a+j1ZuBrMT22at3fxGawb+vI2+y/9m594Iux FfR0X4+todZ9LaZz5R3Lu+RlbBVrdH8HW0FP95XYa9S6r8d0r/89O75PdJ9f tsHGHwSuObKNlk2Bf4DpXrxq3Te5JUXX3Yfko6TIdO19HPiL2EZ6un+MbaDW /QNsBvv2CXkW095tDvxtbCM93Tdjs6h1/xjTuaLPHbYkRVmNaW2bkhK+CNtI T/dN9F9Drftm7FPLZ5at5HPsC8uXgX+GfWXZFviX2HZq3bdhOyw7LV+Tb7Bv LbsC34l9RU/3XdgX1Lp/iX1n2W3ZQ77HfrD8GPhu7Ct6uv+IfUut+y7sJ8te y89kH7adNbrvxb6ip/s27Adq3X/E9lt+sRwgv2IHLYcC/wU7bPkt8EPY79S6 /4YdsRy1/EGOYcctJwI/ih2mp/sJ7CC17oew79i3k+QUpr07Hfj32GF6up/G jlPrfgLTuXLGcpbsxH5nje5nsMP0dP8N+5Za99PYn5ZzlvPkL+yC5e/Az2EX LZcC/xu7TK37JeyK5arlGvkHu275N/Cr2EV6uv+LXaDW/W/sO/btP6IXAd+x d0nJCT+FXaSnu+Zc5LHTBfP/xXSuJJvHyFHsMmt015zL9E8K5l/C9NhHg/ma I4vbMcWSStKSI7vBkj7wFCyDJWPg6bFM1LpnxHSt6rrLnBzlRkzXXpbkhO/D MtDTPQv9b6DWPT32HfuWlezmvxPtXbbANec6/bMEno3+emzVumfBdK5kt3EO chXLxBrds7PeDPR0z4hd5xxzz4bltGMuS25yU3JkeSx5A8+F5bPkDzwvVoBa 9/xYQcvNlltIIaywpUjgN2P56OleBMtDrXterKilmOVWUhwrYSkZeDEsHz3d S2KFqXUvgpWylLaUIWWxAqzRvTSWj57u+bES1LqXxG6zlLOUJ7djFSx3BF4O q2ipFPgdWGVq3Sthd1qqWKqSalh1S43Aq2AV6eleA6tArfsdWFH27S5SE9Pe 1Qq8OFaRnu61sOrUutfAdK7UttQhN2OVWaN7bawiPd0rYYWpda+F3W2pa6lH 6mMNLA0Dr4s1sjQOvCHWhFr3xlhTyz2WZqQ51sLSMvB7sEb0dG+JNaDWvSFW lH27l7TCtHetA6+JNaKne2usBbXuLTGdK20sbUkVrAlrdG+DNaKne2OsOrXu rbF2lvss7UkHrKOlU+D3YZ0tXQLvhHWl1r0LpmtV1939pBuma++BwMtinenp /gDWkVr3TlhR9q07KYZp73oE3grrTE/3HlgJat0fwHSu9LT0IvdgXVmje0+s Mz3du2AtqHXvgemzLn1u1Ts5Sh9Mn+X0TU645sj62bh/4Joje5Ba9/6YPit6 yI4DiD4nkg208aDANWcgvfoGPgjTY6vWvS822I5DLEPJsOTIhltGBD4E60dP 9xHYQGrdB2EjLQ9bRpHR2IOs0f1hrB893ftjw6l1H4Hps95H7DiG6HNe2Vgb jwtcc2TjLRMCH4fps1jVuk/AJtrxUcsk8lhyZI9bJgf+KDaenu6TsbHUuo/D BrNvU8gTmPZuauDDsPH0dJ+KPU6t+2RM54o+d34yOcpDmNY2ITnh2bDx9HSf QP+B1LpPxfRZlz63eio5ytOYPsuZlpzwO7HpNn4mcM2RzaDW/RlM95qfteNz RJ8TyWbaeFbgmjOTXtMCn4XpsVXrPg0bzL49T2az/9q7OYE/gU2np/scbCa1 7rMwnSsvWF4kj2IzWKP7C9h0ero/gz1OrfscTPf659pxHtF9ftl8Gy8IXHNk Cy2LAl+A6V68at0XuSVH191L5OXkyHTtvRL4aGwhPd1fweZT674AG8y+vUqG YNq71wKfjS2kp/tr2HBq3V/BdK7oc4fXk6M8i2lti5ITPgFbSE/3RfSfSa37 a5ju9eu+/RvJURZjupe9JDnhmiNbauNlgWuObDm17ssw3Wt7044riO6Ty1ba eFXgmrOSXksCX4XpsVXrvgRbbce3LGvI2uTI1lneDvwtbCk93d/GVlLrvgpb b3nH8i55D1vOGt3fwZbS030Zto5a97cx3et8344biO5zyj6w8cbANUe2yfJh 4Bsx3Yv83z1S/EPsIzt+bPmEbE6ObIvl08A/xjbR0/1T7ANq3Tdiq9m3z8hW THv3eeBrsU30dP8c20Kt+6eYzhXdd/0iOcqbmNb2YXLCP8I20dP9Q/qvpNb9 c0yf9epz2y+To3yF6bPMbckJ74ltt/GOwDVHtpNa9x2YPiv92o7fEH1OKvvW xrsC15xv6bUt8F2YHlu17tuw1ezbd2Q3+6+92xP4Vmw7Pd33YN9S674L07ny veUH8jG2kzW6f49tp6f7DmwLte57MP2uw492/Ino9xxke238c+CaI9tn2R/4 z5h+F0G17vsxXau67n4hB5Ij07X3a+DvYfvo6f4rtpda95+x1ezbQfIWpr07 FPhubB893Q9h66h1/xXTuaLfuzicHOVrTGvbn5zwDtg+errvp/+31LofwvSz Rt+b+C05yu+YvktwJDnhL2BHbfxH4JojO0at+x+Yvqtw3I4nyKvpIjtp41OB a85Jeh0J/BSmx1at+xHstB3PWM6SP5MjO2c5H/gZ7Cg93c9jJ6l1P4X9Zblg +ZtcxI6xRvcL2FF6uv+BnaPW/Tym91qX7HiZPMrvJF6x8dXANUd2zfJP4Fcx fRdIte7/YNft+K/lP6IvZ8uS7JgcS/i/2DV6uidjV6h1v4qdZt9isSjxWGTa u5RYwv/ErtHTPYX+SdS6a45M54q+95Qai3Kcc0pr0xrdp2HXeFz3f3jMk5xj 7poj07023TdLi0W5IRaZ7iWljyX8diyDjTMGrjmyTNS6Z8R0ryqzHW8kuk8l y2LjrIFrThZ6pQ88K6bHVq17ekx7rX3LRrKz/9q7HIHH2c8M9HTPgWWh1j0r pnMlpx1zEZ0nskys0T0n681AT/eMWBK17jkw3WvObcebiO4z/+/+s43zBq45 snyW/IHnxXQvWLXu+bG/uO4KxKIUjEWma+/mWMIvYvno6X6z96fWPS+mvda+ 3ULO8N+J9q5Q4NnZz3z0dC+EneNnlPvNmM4V3fcuHIuSmXNKa8sfS3ghLB89 3fPTPwu1/z8f03st/d5UkViUoph+l6hYLOGjsFttXDxwzZGVoNa9OKbfVSpp x1JEv6ckK23jMoFrTml6FQu8DKbHVq17MaysHW+zlCPlY5HdbqkQ+G3YrfR0 r4CVpta9DHaHpaKlEqmMlWCN7hWxW+npXhy7nVr3Cphea95pxypEv2coq2rj aoFrjqy6pUbg1TD9LqBq3Wtgd9mxpqUWqR2LrI7l7sBrYtXp6X43VpVa92pY WfatLqmHae/qB14eq05P9/pYHWrd78Z0ruj3HhvEopTEtLYasYQPwKrT070G /UtT614f071m3TduGIvSCNO91MaxhHfAmti4aeCaI7uHWvemmO7VNrNjc6L7 tP+7/2/jloFrTgt6NQ68JabHVq17Y6ws+3YvacX+a+9aB14Pa0JP99ZYC2rd W2I6V9pY2pKa2D2s0b0N1oSe7k2xOtS6t8b0WUs7O95H9DmLrL32PHDNkXW0 dAq8A6bPQlTr3gnTtarrrjPpEotM117XwCtjHenp3hVrT617B6ws+3Y/uQ3T 3nULvBXWkZ7u3bDbqXXviulc0ec+D8SiNMO0tk6xhDfHOtLTvRP9W1Dr3g3T a03dt+8ei3KJ16S6l90jlnDNkfW0ca/ANUd2hdeo7r0w3WvrrXryMNbXxv0C 15y+9OoReD9Mj61a9x5Yfx0tD5EBscgGWgYF/iDWk57ug7C+1Lr3w67zuncw GYJpbb0CT8d6e9LTvRf9B1LrPgjTc62eN4cS3eeU6blkWOCaIxuumsCHYboX qVr3EZjO9ZHad6LnKdkoy+jAR2LD6ek+GitBrfswrD/79ggZg2nvxgY+ABtO T/ex2Chq3UdjOld033VcLEpvTGsbEUv4y9hwerqPoH9fat3HYvpZo89tx8ei tMP0WeaEWMLrYxNt/GjgmiNrT637o5g+K51kx8eIPieVPW7jyYFrzuP0mhD4 ZEyPrVr3CVh/9m0KeYL9195NDXwMNpGe7lOxx6l1n4zpXNHPvSfJSKw9a3Tv gk2kp/uj2Chq3adieq+l901PkXK8J9N7iacD1xzZNMv0wJ/G9LsIqnWfjula 1XX3DNH7FJmuvRmBa85Aej0d+AwsE7XuT2P92bdnyYOY9u65wJ/AptHT/Tls ILXuMzCdK/q9i5mxKJMwrW16LOHVsGn0dJ9O/8epdX8O02tN3becFYtyJ6Z7 ec/HEq45stk2nhO45siqUus+B9O9whfs+CLRfULZXBvPC1xz5tLr+cDnYXps 1bo/j8234wLLQrIoFtlLlpcDX4DNpqf7y9hcat3nYXqto9e9r5BXsaqs0b02 Npue7nOwl6h1fxnTvTbdN3stFkX3+WW6l/R6LOGaI3vDxosD1xyZ7sW/H/RZ jOm97hIbLyUXsGU2Xh645iyj1+uBL8f02Kp1fx2bz769SVaw/9q7lYEvwt6g p/tKbBm17ssxnSv63GFVLMoLmNa2OJbwzdgb9HRfTP+51LqvxHSvQb+3tjoW JTem3+V6K5bwm7A1Nl4buObI8lDrvhbT75qss+PbRL8nJltv43cC15z19Hor 8HcwPbZq3d/C5rNv75L32H/t3fuBr8DW0NP9fWw9te7vYDpXdN9jA1mC5WGN 7gVZ7xp6uq/FllHr/j6m91p63/QB0e/5yPReYmPgmiPbZPkw8I2YfhdHte4f YrpWdd19RPQ+RaZr7+PAX8U20dP9Y+weat03YvPZt0/IAkx7tznw97BN9HTf jL1ErfvHmM4V/d7RlliUdZjW9mEs4d2wTfR0/5D+66l134zpd030dws/jUX5 DNPf8tsaS3gF7HMbfxG45si+pNb9C6yo1Xxlx22kTrrIttt4R+Cas51eWwPf gemxVeu+Fdtpx68t35BvY5HtsnwX+NfY5/R0/w7bTq37Dmy3ZY/le/ID9iVr dN+DfU5P9y+wXdS6f4fps/Yf7fgT0d/5lO218c+Ba45sn2V/4D9j+lucqnXf j/1ixwOWX8nBWGSHLIcDP4Dto6f7YWwvte4/YzvZt9/I75j27kjg32L76Ol+ BDtErfthrGi66O+OHo1F+QrT2vbHEl4c20dP9/30306t+xFM37XQ9yb+iEU5 hum7BMdjCf8VO2Hjk4FrjuwUte4nMX1X4bQdz3iSIjtr4z8D15yz9Doe+J+Y Hlu17sexnezbOXKe/dfe/RX479gJerr/hZ2l1v1PTOfKBcvf5AB2ijW6X8BO 0NP9JHaIWve/MH3X6KIdLxF9z0h22cZXAtcc2VXLtcCvYPoukGrdr2G6VnXd /UOuxyLTtfdv4D9gV+np/i92mVr3K9hO9u0/8jWmvdMfRHY/j12lp7vmXOWx vw78X0znir73lBSPchrT2rRG92+wq/R0v8Zj6rFPB/M1R6bP2vV3A5LjUWLx yPRd+ng84S2xFBunBq45sjRq3VMxfVf/BjumJ/qeviyDjTMGrjkZ6BUPPCOm x1atexzLZMfMlhtJlnhkWS3ZAs+MpdDTPRuWgVr3jFh2Sw5LTpILS2ON7jmw FHq6p2JZqXXPhul3DXPb8Saiv7Mhy2PjvIFrjiyfJX/geTH9LQzVuufHCtix oOVmcks8skKWwoEXxPLR070wloda97xYJvatCCmKae+KBZ4Fy0dP92JYIWrd C2M6V/R3P26NR7kB09ryxxNeG8tHT/f89M9ArXsxTN810veGisejlMD0XZqS 8YSnYaVsXDpwzZGVoda9NKbv6pS1421E39ORlbNx+cA1pxy9SgZeHtNjq9a9 JJaJfbudVGD/tXd3BF4UK0VP9zuwctS6l8d0rlS0VCIFsTKs0b0iVoqe7qWx QtS634Hpu3aV7Xgn0ffsZFVsXDVwzZFVs1QPvCqm78Kp1r06pmtV110Nclc8 Ml17NQPPhVWjp3tNrAq17lWxTOxbLZIZ097VDrwCVo2e7rWxrNS618R0ruh7 f3XiUcpiWlv1eML/warR0706/ctR614b02tN/d7m3fEoep0p0+8y1o0nXHNk 9WxcP3DNkem1oGrd62P6XasGNm5I9HuSskY2bhy45jSiV93AG2N6bNW618Wa 2LGp5R7SLB5Zc0uLwJti9ejp3gJrRK17Y0yvdfS6t2U8yr2Y1lY/nvCDWD16 utenf3Nq3Vtgeq7V82Yrot9zk+m5pHXgmiNrY2kbeGtMv4umWve2mM71dpb7 iJ6nZO0tHQJvh7Whp3sHLI1a99ZYE/atI+mEae86B94Ma0NP985Ye2rdO2A6 V/R7d13iURpgWlvbeMIPYG3o6d6W/o2ode+M6WeNvrfbNR6lMqbvst4fT/hf WDcbPxC45siqUOv+AKbvyna3Yw+i78nKetq4V+Ca05Ne9wfeC9Njq9b9fqwJ +9ab9GH/tXd9A++EdaOne1+sJ7XuvTCdK/q514+0w6qwRve7sG70dH8Aa0+t e19M77X0vql/PIq+5y7Te4kH4wk/xvuLh2w8IHDNkem76Kp1H+AWi667geQC 71907Q0KXHOa0+vBwAdhp3iP4/4g1oR9G0yasv/auyGB98Eeoqf7EKw5te6D MJ0r+t790HiU7pjWNiCe8GPYQ/R0H0D/ntS6D8H0WlPfWxkWj5Ib03c5hscT rjmyETYeGbjmyPJQ6z4S03dFHrbjKKLvichG2/iRwDVnNL2GB/4IpsdWrftw bIwdx1rGkfHxyCbosQMfi42gp/tEbDS17o9geq2j172PkklYHtbofgs2gp7u I7EJ1LpPxHSvTffNHotH0fe8ZLqX9Hg84Zojm2zjKYFrjkzfxVKt+xRM73Wf sPFUsof3v0/a+KnANedJej0e+FOYHlu17o9jY9i3p8k09l97Nz3w8dhkerpP x56k1v0pTOeKvnf2TDzKw5jWNiWe8MewyfR0n0L/0dS6T8d0r0F/t2RGPMpF 7knob3k8G0/459hzNp4ZuObILnOPwn0mpr81MMvGzxP9nRDZbBvPCVxzZtPr 2cDnYHps1bo/i41h314gL7L/2ru5gU/DnqOn+1xsNrXuc7Dd3PeYF4/yBKa1 zYwn/Dr2HD3dZ9L/SWrd52J6r6X3TfOJ/s6DTO8lFgSuObKFlkWBL8D0txhU 674I07Wq6+4lovcpMl17Lwc+CVtIT/eXsTLUui/AxrBvr5CxmPbu1cBfxBbS 0/1VbAK17i9jOlf0dydei0eZhWlti+IJ1xzZQnq6L6L/bGrdX8WSoltB6V6P R3kD079ltTie8Di2xAZLA9cc2TJq3Zdi+rd2ltvxTaJ/J0u2wsYrA9ecFfRa HPhKTI+tWvfF2Co7rra8RdbEI1trWRf4amwJPd3XYSuodV+JvW1Zb3mHvIst Y43u67El9HRfiq2l1n0dVld//8qO75N66SLbYOMPAtcc2UbLpsA/wPRvEanW fRP2oR0/snxMPolHttmyJfCPsI30dN+CbaDW/QNsFfv2KfkM095tDXwNtpGe 7luxzdS6b8F0rujfXfo8HmU5prVtiie8GbaRnu6b6L+CWvet2BeWLy1fkW3Y dsuOwL/Edlq+DnwH9g217l9j31p2Wb4ju7E9lu8D34XtpKf799h2at13YKvY tx/Ij5j27qfAP8N20tP9J2wPte7fYzpX9lp+Jh9h37BG973YTnq6f41tptb9 J2yfZb/lF3IA+9VyMPD92CHL4cAPYr9R634Y07Wq6+53cgTTtXc08HexQ/R0 P4r9Sq37QWwV+/YHWY1p744F/iN2iJ7ux7C11LofxXSuHLecILuw31ij+3Hs ED3dD2N7qHU/hulvbevfjToZj3IK07+ldDqe8EHYGRufDVxzZH9S634W07/V dM6O54n+nSbZXza+ELjm/EWv04FfwPTYqnU/jf1tx4uWS+RyPLIrlquBX8TO 0NP9KvYXte4XsGuWfyzXyb/Yn6zR/R/sDD3dz2JXqHW/iulvTf5nx//98cqU 6N9ZkyXZODkl4Zoji1nigSdj+rfQVOsex1LsmGpJIzekRJbekiHwVCxGT/cM WBK17snY3+xbxpQomTDtXeaUhF/GYvR0z0z/9NS6Z8B0rujffbsxJco5zimt LZ6S8PuxGD3d4/T/i3PMPTOWxY5ZLdlI9pTIclhyBp4Vy2XJHXhO7CZq3XNj eSx5LflIfqyApWDgebFc9HQviOWg1j0npr3Wvt1MbsG0d4UCz8R+5qKneyGs ALXuBTGdK4UtRUgqdhNrdC+M5aKne24sPbXuhbCilmKWW0lxrISlZODFsFKW 0oGXxMpQ614au8Z1VzYlym2Yrr1yKQn/FytFT/dy9C9BrXtJTHutfStPLvLz R3t3e+C3sJ+l6Ol+O3aFn1Hu5TCdKxUsdxCdJ3lYW+nAK2Cl6OleGitArfvt mF5r6t9tqZgSRa8zZfq3TCqlJPxvrLKN7wxcc2R6Laha9zsx/VsLVWxclejf SZFVs3H1wDWnGr0qBV4d02Or1r0SVsOOd1lqklopkdW21An8LqwyPd3rYNWo da+O6bWOXvfenRKlLqa13ZmS8E+wyvR0v5P+tal1r4PpuVbPm/VSoujfuZDp uaR+SsJP8fzSwMYNA9ccmf4tCtW6N8R0rjeycWPyD89fTWzcNHDNaUKv+oE3 xf7kOc69PlaDfbuHNGP/tXfNA6+FNaCne3OsCbXuTTGdK/p3N1qkRKmCaW0N UxJeDmtAT/eG9K9GrXtzTD9rWlruJcWwVpbWgbfE2ljaBt4aK0Gte1usneU+ S3vSAeto6RT4fVgberp3wlpR694aq8G+dSZdMO1d18CbYW3o6d4V60iteydM 54p+7t1PGmElWKP7bay3DT3d22JNqHXvium9lt43dUuJ8gCm9xLdUxK+Deth 456Ba46sF7XuPTFdq7ruehO9T5Hp2usTuObUplf3wPtgemzVunfHarBvfcld 7L/2rl/gXbAe9HTvh9Wm1r0PpnOlv+VBch/WizW698d60NO9J9aRWvd+mF5r 6u+WP5QS5T9ek+pveQ9ISbjmyAbaeFDgmiNLotZ9EKa/FT7YjkOI/k64bKiN hwWuOUPpNSDwYZgeW7XuA7DhdhxhGUkeTolslGV04COwgfR0H40NpdZ9GKbX Onrd+wgZgyWxRvcbsIH0dB+EjaLWfTSme226bzY2JYr+zr9M95LGpSRcc2Tj bTwhcM2R6W/xq9Z9Aqb3uhNt/CjRfSrZJBs/FrjmTKLXuMAfw/TYqnUfhw1n 3x4nk9l/7d2UwB/GxtPTfQo2iVr3xzCdK/p3B55IiTIY09ompCT8VWw8Pd0n 0H8ote5TMN1rmGrHJ4nuM8iesvHTgWuObJpleuBPY7oXoFr36dgzdpxheZY8 lxLZTMuswGdg0+jpPgt7ilr3p7Hh7NvzZDamvZsT+GRsGj3d52AzqXWfhelc 0X2PF1KiTMS0tukpCT+CTaOn+3T6T6LWfQ6m91p63/QimYvpvcS8wLNj8y0L Ap+HLaTWfQGma1XX3SJSGNO191LgY7D59HR/CbuJWvd52HD27WUyAtPevRL4 bGw+Pd1fwUZR6/4SpnPlVctrZAa2kDW6v4rNp6f7Amwmte6vYDrXdd/s9ZQo b2C6l7Q4JeEHsCU2Xhq45siWUeu+FNO9quV2fJPoPpVshY1XBq45K+i1OPCV mB5bte6LsVV2XG15i6xJiWytZV3gq7El9HRfh62g1n0l9rZlveUd8i62jDW6 r8eW0NN9KbaWWvd1mF7rvGfH94nuM8s22PiDwDVHttGyKfAPMN0LVq37JuxD O35k+Zh8khLZZsuWwD/CNtLTfQu2gVr3D7BV7Nun5DNMe7c18DXYRnq6b8U2 U+u+BdO5ovven6dEWY5pbZtSEr4b20hP9030X0Gt+1bsC+255SuyDdtu2RH4 l9hOy9eB78C+odb9a+xbyy7Ld2Q3tsfyfeC7sJ30dP8e206t+w5sFfv2A/kR 0979FPhn2E56uv+E7aHW/XtM58pey8/kI+wb1ui+F9tJT/evsc3Uuv+E7bPs t/xCDmC/Wg4Gvh87ZDkc+EHsN2rdD2O6VnXd/U6OYLr2jgb+LnaInu5HsV+p dT+IrWLf/iCrMe3dscB/xA7R0/0YtpZa96OYzpXjlhNkF/Yba3Q/jh2ip/th bA+17scw/azR+6aT5D1M7yVOBa45stOWM4GfwjZQ634G03uVs5Y/SX/snOV8 4Gex0/R0P4/1otb9FPaX5YLlb3IRu2S5HPgF7DQ93S9j56h1P4/pXNfPvSvk KraBNbp/gp2mp/sZ7BK17pcx3Wu4ZvmHtMSuW/4N/Br2X4r+GFrC/8VaUeuu ObIkOyZbYiSeGlmKJTXwZOw/erqnYnrseDD/X+wv9i0tNcoNqZFp79KnJvwi pl6pgaenfwq17qn859G5ovseGVKjnOX8acUa3Ttg//G47unof45zzF1zZBnt mMmSmdyYGlkWS9bAM2HZLNkDz4rloNY9O5bTksuSm9yE5bHkDTwXlo2e7nmx LNS6Z8W019q3fCQ/pr0rEPgN7Gc2eroXwPJQ654X07lS0HIzScZysEb3glg2 erpnx1KodS+A6blWz5u3pEYphOm5pHBqwrdhRWxcNHDNkRWj1r0o9iHX3a2p UfZy/eraK56a8KtYEXq6F6e/Hntv0Kcwpr3WvpUgFzDtXcnA87OfRejpXhK7 xM8o9+KYzpVSltIkF+dPMdboXgorQk/3olgeat1LYvpZo89NyqRGucbPH32W UDY14cWx22xcLnDNkV3nZ5R7OUyfVZS38e2kAlbBxncErjkV6FU28DswPbZq 3ctiFe1YyVKZ3JkaWRVL1cArYbfR070qVoFa9zswnev6uVeNVMe0tnKBx7Hb 6Olejv5VqHWvium9bg073kX0OaOspo1rBa45stqWOoHXwvRZoGrd62B327Gu pR6pnxpZA0vDwOtitenp3hCrSa17Lawi+9aINMa0d00CvxOrTU/3JlgDat0b YjpX9Lln09Qo5TGtrU5qwvNjtenpXof+Fah1b4LdY2lmaU5aYC0t9wbeDGtl aR34vVgbat1bY20t7Sz3kfZYB0vHwNthrejp3hFrSa37vVhF9q0T6Yxp77oE 3hhrRU/3LlgHat07YjpXulruJ3WxNqzRvSvWip7urbEG1Lp3wfRcq+fNbuQB TM8l3QO/Eeth6Rl4d6wXte49MV2ruu56k4KYrr0+gVfHetDTvQ+Wg1r37lhF 9q0vqYRp7/oF3hnrQU/3flgVat37YDpX+lseJO2wXqzRvT/Wg57uPbEO1Lr3 w/SzRvfNHkqNUgPTvaQBqQmfiw208aDANUdWk1r3QZjuVQ224xCi+1SyoTYe FrjmDKXXgMCHYXps1boPwIbbcYRlJHk4NbJRltGBj8AG0tN9NDaUWvdhmM51 /dx7hIzBarJG9/rYQHq6D8JGUes+GtO9Nt03G5saRfeZZbqXNC414ZojG2/j CYFrjkz3gqcGfSZgeq870caPkvXYJBs/FrjmTKLXuMAfw/TYqnUfhw1n3x4n k9l/7d2UwB/GxtPTfQo2iVr3xzCdK7rv/URqlMGY1jYhNeHPYePp6T6B/kOp dZ+C6V7DVDs+SXSfQfaUjZ8OXHNk0yzTA38a070A1bpPx56x4wzLs+S51Mhm WmYFPgObRk/3WdhT1Lo/jQ1n354nszHt3ZzAJ2PT6Ok+B5tJrfssTOeK7nu8 kBplIqa1TU9N+BFsGj3dp9N/ErXuczA91+p580UyF9NzybzAW2DzLQsCn4ct pNZ9AaZrVdfdItIV07X3UuBjsPn0dH8Ja0Ot+zxsOPv2MhmBae9eCXw2Np+e 7q9go6h1fwnTufKq5TUyA1vIGt1fxebT030BNpNa91cwneu6b/Z6apQ3MN1L Wpya8APYEhsvDVxzZMuodV+K6V7Vcju+SXSfSrbCxisD15wV9Foc+EpMj61a 98XYKjuutrxF1qRGttayLvDV2BJ6uq/DVlDrvhJ727Le8g55F1vGGt3XY0vo 6b4UW0ut+zpM73Xfs+P7RPeZZRts/EHgmiPbaNkU+AeY7gWr1n0T9qEdP7J8 TD5JjWyzZUvgH2Eb6em+BdtArfsH2Cr27VPyGaa92xr4GmwjPd23Ypupdd+C 6VzRfe/PU6Msx7S2TakJ341tpKf7JvqvoNZ9K7Ypna3H8kVqlC+xz/R3q1IT /jG2TfsauObIdlDrvh1bqb9RZcevPeki+0brCFxzvqHXV4F/i+mxVev+FbaK fdtFvmP/tXe7A/8M20ZP993YN9S6f4vpXNlj+Z58hO1gje57sG30dN+ObabW fTf2uq3hBzv+SN5IF9lPNt4buObIfrbsC3wvtjRdVOu+D9O1qutuP/klNTJd ewcCfxf7mZ7uB7CfqHXfi61i334lqzHt3cHAv8N+pqf7QWwtte4HMJ0rb1kO pUbZiWlt+1IT/hb2Mz3d99H/G2rdD2L6WaP7ZofJe5juJf0WuObIfrccCfw3 bAO17kcw3as6avmDlMKOWY4HfhT7nZ7ux7Fi1Lr/hp2wnLScIqexM5azgZ/E fqen+1nsGLXuxzGd6/q59yc5h21gje6fYL/T0/0IdoZa97OY3uuet/xFMmEX LH8Hfh67aLkU+N9YFmrdL2GXLVcsV8k17B/L9cCvYBfp6X4du0Ct+9/YCfbt X/Ifpr1Ll5bw09hFerprzkUe+7/Ar2M6V3TfOyktylEsC2t0vwm7SE/3S5ge +2gwX3Nk39pwtyU5LUosLbKf9P2CtITvxlJsnBq45sjSqHVPxbZazQ12TE8O p4ssg40zBq45GegVDzwjpsdWrXscO8G+ZUqLkjktMu3djWkJ/w9Loaf7jfTP QK17RkznShY7ZiVXOH/SWKN7FtabQk/3VOwfzjH3GzE91+p5M1talA/TRabn kuxpCdccWQ4b5wxcc2SfpItq3XO6cd3lSouyh+tX117utISfw3LQ0z03/fXY e4I+2THttfbtJnIS097lCTwz+5mDnu55MD22at1zYzpXvrTkTYtyA+eU1pYz LeFfYjno6Z6T/hmodc+D6WeN7pvlS4tynp8/upeUPy3hD2AFbFwwcM2RXeBn lHtBTPeqbrbxLaQ/VsjGhQPXnEL0yh94YUyPrVr3/FgROxa1FCO3pkVW3FIi 8KJYAXq6l8AKUeteGLvMz72SaVFKYVpbwbSEX8MK0NO9IP2LU+teAtN73dJ2 LEN0n1lW1sa3Ba45snKW8oHfhulesGrdy2O327GC5Q5SMS2ySpbKgVfAytHT vTJWllr327Ai7NudpAqmvasa+K1YOXq6V8UqUeteGdO5ovve1dKi3IxpbeXT Et4eK0dP9/L0L0Ste1Xsd7tm/rBUT4tSAztluSst4X9gNW1cK3DNkdWm1r0W ttdq6tjxbnI+XWR1bVwvcM2pS6+7Aq+H6bFV634XVoR9q08asP/au4aBV8Fq 0tO9IVaXWvd6mM6VRpbGpAJWmzW6N8Jq0tO9FlaJWveGmJ5r9bzZhOxKF5me S5oGrjmyeyzNAm+K7UkX1bo3w3St6rprTvQ8JdO11yJwzSlOr6aBt8DSqHVv ihVh31qSopj27t7AG2D30NP9Xqw4te4tMJ0r+y2t0qLUwbS2ZmkJ34/dQ0/3 ZvSvS637vf6fJzW6b9Y6LUppTPeS2qQlfC7W1sbtAtccWVlq3dthuld1nx3b E92nknWwccfANacDvdoE3hHTY6vWvQ3WyY6dLV1I17TI7rd0C7wz1pae7t2w DtS6d8R0ruvn3gOkO1aWNbpXxNrS070ddj+17t0w3WvTfbMeaVF0n1mme0k9 0xKuObJeNu4duObIdC94atCnN6b3un1s3Jesx/rZuH/gmtOPXj0D74/psVXr 3hPrxL49SB5i/7V3AwLvivWip/sArB+17v0xnSu67z0wLcp9mNbWOy3hz2G9 6Onem/4dqHUfgOlewxLLoLQous8gW2EZnJbwJdgQGw8NXHNkuhegWveh2PtW M8zGw8mGdJGNsPHIwDVnBL0GBz4S02Or1n0w1ol9e5iMYv+1d6MDfwgbQk/3 0dgIat1HYjpXdN/jkbQofTCtbWhawn/BhtDTfSj9+1HrPhrTc62eN8eQI+ki 03PJ2MA1RzbOMj7wsdixdFGt+3hM16quuwlEz1MyXXsTA++OjaOn+0SsNrXu Y7FO7NujpDOmvZsU+ChsHD3dJ2H3U+s+EdO5csbyWFqUYZjWNj4t4WewcfR0 H0//EdS6T8L+D5xUQL0= "]]}, Method -> { "EliminateUnusedCoordinates" -> True, "DeleteDuplicateCoordinates" -> Automatic, "DeleteDuplicateCells" -> Automatic, "VertexAlias" -> Identity, "CheckOrientation" -> Automatic, "CoplanarityTolerance" -> Automatic, "CheckIntersections" -> Automatic, "BoundaryNesting" -> {{0, 0}}, "SeparateBoundaries" -> False, "TJunction" -> Automatic, "PropagateMarkers" -> True, "ZeroTest" -> Automatic, "Hash" -> 3484284089288049788}]]}, TagBox[GraphicsComplex3DBox[CompressedData[" 1:eJxtnXWc18jPx8tii7tbscXdvbi7y0Fxd9crHO7ucMUdDjn8oCzu7rAUO3xx t+ch7ymvpb+7f3iRG9KZJJN8ksnMN3WLrrVaB2iaNiyypoXX5D933Pu6zv// aRzr8Grvj79/SJXlx9+d8Wa9H3+aTZOc/0G3tj7OJn//p6PQ7Tq7DpX48fc6 KTL/+LsVPUDoRv5J93+MNwc/zMC/PwJ9+UT3x3gjxpqcP/7uvjgndN0MeCH0 eeez/vi7lvWa0J2Z494KvcZE4WPt6gk9z2Tho29bl17+/YQoQreyV7ko8wzO kE7GNdhcX75/Na5m/OCTJTiv0OttEbobb3iEH3Qr9V+5hF6muNDtCru//OBv l3mVQ8btyA+fmPabEsL/z9wy7vJGoWsdgyP/4OOaKWX+TrNS8LlZKdwPul5p RyYZ13ot4y93ifqD7oQMTiRyKV8G/g9WhZd59oCuR4NuL4kNvfDdNEJvsp75 f9gb5Qdd01PKeu35t0QOWquvH0UvZYcIH61GCPSc7geZf9bDqeV7E2Khx2E7 1v+Qm53sDxlvxoiJnG+1c37QtdHRdPnuqH7IuVOiB8Ln1Vmhm/oA7OT3Mo+E ntfiuw0KNhb+lWfElnluPFBM1tugdSOZf4SrCWVd97WCQp8xv6F891G6eDK+ Y+QC8t3Af4VuL44WU/Q19o8iMo+PT4XuZpuQVOTcLbvoRY9eXejGwILC3y40 R/RrLN7WQPh8HBZX6KUnix2akW4IXa+bWeZptqudT8Yf+sL4JbFEX1ayCoXk 7xdn8N2B9VOIHg+ORo/N4gjdGr4gscx/7gj0uEyHvj+S0K0Yy9kXV1cJXQ9d k/wH3bVyZRS5/TZNvmu06hVf5NNhGHpZtYD5bH0j8nEirA0S+r+pmX/FyjJ/ 53ZX2RdakeRCd49vEbq9/nfhY8fPLnRrXhGRp11jXXbh86Ys343+W0Th814T +VsHighds3qJHIwyw/II/Wth0a+2d7nwNy7cySXym/yAdS1NJfz1/mYOoUdc CL1Mdpm/3btXkPx/p63Yg7P5oejLbdQ4o8hv7Vf5rlMhmXzXzvY5s4y/hr6c v3LId916idPK90tuZ/7fRop+tRE55Ttm6hrYw5AS2FuJ8olkfcGhQteCZ4v9 OJ8nJhH9zMJvGOETit9wR4VLI/9/En5DezNS/IZTbI/wMfMXRZ7GAOTz55eU 8v+7l0NuZkuRp232k/WaAZuEjz7tgPgNq9zAAFlXB/TiPCmBnYdfFV2+Hy8N eu9ahX3UbOQL2Zc98QNmqn3iB6xX4T7vlfVjJ/r1d+yj+dr1H3T9xGpZrxlz k9ib1mT7BfGvhVJjn1ZU7NZJv/4HXRtPXDBVXNAe/4tfVH7eVH5e69bgqPgb FRcMFResbw/FX3pxxFVxRAtcLfP1/Lbt+e2j1z7Jnz4/r13K8EziSU7ighFx vMQFzdj7p8znHXHEeE0csQLrIO9WxB3t8STizrr1Ig+/H3Mj74gq6/H5Pata SAzhW0v5z474T2fmjUgyPj7+2UoSR/yzvrZ9gKyzG/7f3FlZ/L9W/+pLme95 4ogxc7HIxchtJZN5NibuWDP2iHydSA/Yx3/0EflrD2Mllz8/Epf18J2E7m7+ kEL4qTir3T0udHvK4KTogbhsx7ssdD31zMTyHRXH7WGt4HO5biqhq7ip3d8v dOufq8nk7yrOmnZq9FV9kPBxjo/Hj6XPQhy/nkn8i9XqrMRBO2pB5Ba+agL5 zpFV4m/1YU357rT8Ej+8uPP/H2S95V/Iek0VR4wke1nX0tVC9+KOEWAK3VkV T/7uxSltfRLsYeSoJMInJ37P3JEMve8pK3Rr1iGJg9qES8xzzea48p0Yoxgf eAN76D5N6G7VxCIf6/f+8Fn9VNZl/OtKXHYr9MHO86dNKP8/5VD4ZHkM/UIU +OeJJfLRCwzju8sKCh+t4GZwwpGE+IfOkWPxvb8FtxjVbeZTqZTw0TbOlXhn 9J/EflwXLr78uw6PBLdoE7/x3fRR4gif2MvAOcqudGVXlrevfXbi7VPPrhxl V9p39rXms0PPD9hx0Lv9R1lZl9VzJf4+C3ZiRU2LvhtVkH2qL8Ou9Dx9+a6W YJ7sy3s+O1R+4H/s1vMbMRIht8HdY4o82t5J/YO/cRI5WN8OxIbPH+K3ranI zerwbzyR4+rTsu/0jshZq5YOOVdpK/vUaYQejW2XRJ7apxQBMr4SenRyp0OP WybKfrfHYCfa/ttCt/MPFf9gp1Z2lb2f8LdW9hW/7e7CPu0IpZOg1zuR5E+f nf/0S2pfWGpfOMqPuSnaga/Sl3ov/rZ6TonL2vG+4Jb6nR6LHFskzfCD7tY5 JPHC/Lrlq9DL/Z1e5LYzK3Gz5qjvEj8WzMou9EGhxLU/y98W/g8WI8/DrcEb 9UNkPVbhZMTz/DfxbytCI8o8x/8h8dkZGZ94HaeO0K0Ca9KIPGfUIN6dyhpB +M0eJXHfWjOGuBbznivzSX1N7MjNnITvds7+ReS4dafQnSpZGb+gpcxHM429 EkfaL4J/9Ec3hG6NtiVu3FnFPDeuEblbnxbDJ3A7cX9vbaFrVW7L94205YXu 5Hgu+rCOd38p89pWDNzevpbYoRV9Kn6saVP494nC+A6h0USe/y6Gf4a4UWQd qQoLTrCmDMGeg/pFk39/epTgCi0O+FnbnkDsSTubFVz9LTNxvH3f8DKv8zkE J2vbDqDfEzVkvLNhd34ZF6839pD33AdZz+6hgve06dWR28I6sl5nSmLBvebc eMj5bvXI8r1BmQQnuyNuMP9BHaFP7yl+3pjaCjyzd5Qm3yvcRvyPNfgp87Hy i7ycm1eE7sZlve7+0dHl36fpJDhTa4x87MjFxb41+4HM3/j+G+OfXhR5um8n Co61X5RDL0WaiPydYq0kflmrtxGXr6SUeWqzZgTJv2tsY88FRj2Q+UR9KnFN X5kFO+mQ8ZvYVeHBQjcCajcUvU2/UVzGjQuRuKzt7Cd0t2L4EvK9XkXEnzu3 DwjdXBzPkL8HTMgUdryVfZKM11ZoEpetTn/CP1wW+GSsIfN3Dn6EXqYEfOaB 842UhRv9oNtTrgjd6HDsl/FunzlCNwuWyhyWv/NXIaG7QzOK3KxwB+E/rWYJ 9LsBPx2aQfhrwc2NsHRjSzKhW/kawmf6IfxT553CR9teTvjYu/4hLu/vIuP1 +IElw/KxWjUXurnri/DRvzyW8c78FdAnRysVdrzz2xzoRz/D52ZGieNG3XFC d9eOEbo1Ll7qsOPtHrN++e7P+cw9wfizlYLCzsfZ31ToTrAeFFY+5pzYQrcn lskRdr1uxjXMP+Hb7GHlY6dKwPiTZzKHlaeRcQjz6RZT7MezK1PZlVV0t+Qf np3Yyk6sNWXIz3x2pXW48qxEmPFaJexQG7n3ofg3pXdX6d1KeE/iu2cnWl/s xLo9A3zqsytNrxm6N8x4U9mhFf677GOPv+nZ7fxPkjd4crOU3LRKdSS/8ctB W/T+U4kwcnOU3LTxUaWe4clZz4SctXYJYxj/oUdtbaV/94bRo6v0qM168lD8 nM9OnOCu4lf8dqUNSip0v30aWlzxx347twIO46c9vat9YSxYEi2sfo12W+Hv 1+/sdyXD6svTr14pRqn/0q++/C/sVtmDJ3+tV0HGK/l7+tJP1ysVVl+efo3A KqX+U7/zvzCfO9iDx98uPZ3vKvvx9Ku17/fLPvX0a02c+wvdk48ZaXSpsPLx 5Gm3a1MqrDx/6lef8gufn3q5MaRUWL14+rXPVCv1X/o1dPM/+bjnkyOHmdjJ z/nMU/aj7M2bv55c+Q1ln379+uOCpy/Pz3v61ZR+/XHBswcvjvz020r+jvLb fn15ft7Tr6n0648LmrIHL4747ceLO/71OsqPefKxlHw8v+eXp+c//Xrx/LM3 3lB69Pz/T/7KHrw44s3HUPajzSDuOJlqgZ8bppE8QcuylzpQtMfUt+cUFXxo te0dKPTCO8mbqqfdKXZ/b43UgaxKq8ib0tYVnOykXpZK1mOWJE858/Wj8Nny QfCtXukaedNfVwR3aU3nxRL+M6n3uhG+y/7RnywXXGdfzAwOfDH/ntDbniNP qW2D957OlXqFudDNJPzzJwNf1f5rh+DzJhvTyXwyDmR8+DHU7avUyyrjG79B DqmXCO41P72gznY4EFxUNvSp8HnYUujuzEnMp/LoC0J/vzeLjO9AXmNr7WVd xqETMk+z/Uzkk9EROZih1YTuRt5GvahqXcmzjDWrkH+Uo+Qpu1LKPjTWvooj 479lR/5DDPCqPVTqb/oZ8iBt22HBw9bzhqIXs20dqTeaw25QV4k4L6+M7xyF fKdGYanLaXvm5ZbxKRrLeOtjsNSlnVSZ8sv/3xwb/ByzDn5tbWPh45gxwM/R qc84L5IKH21udOqECajTGSEVc8p395YS/vrVN6/FTq4ULCB8NrynzjYzneBJ 7fvEfPLv+kflux/2S33MeFdN6HqpusLHTbXkkthV3ADhozV7AQ4vtvyO8D/b PI/w2R2e+dwZcF7m+U9SoZv184K3X2TbLXFi9RSZp9NAB29vjodf23WD+Z8t CX8ri9TN9AIZpU7rxq8Azp+b7Zvksb2WiT04u8kfjYRvJR/UblcU+djRdyP/ R1/A+Z/Sizytb3/AZ1NqyTusNInlu8aYDXw33yvJN60v7yU/dQ6vp/6/uTf0 d0Ho9+w74W8VGRVOvn/6tsjN/Csn9tyiOvW7aOPEnp0Rh8D5zddLXqn/3Vnm by2uRP0tRxWhm7ePy/4yMz5U+UsD4W/v/iZ5rj0yEvMsUlDyI2fZSCW3lnz3 sC5ysF9vQT6fz1MHPvjqjcx/R6DoxR6cFjs5FEfyCKezK3Zol7vKeidb72R8 5nyyLjvCcPxVr3nUqZS/svvcp+7RkfqSkxn/Zh+cxv4qtUfonv8xS7yjnla6 gtQ3PH+ltW3E/p0enXrIF1v8m5akAvtu9k3qEjWX4w8XBTK+bwYZ7+1TJ9Iy +BebR/1E7WtD70J9Y/ID2b/mhar4hwOqjpq6uOT1ttVM9KW9pU7rtC4vetTj rBL/ZtzYzHeHbZY6mFbysPCxS4S0ku+9y8z5X661+LGzbVrLuEeTJU9zqvZL IfO/2FHo7sOC5GNRXMmj9dau8HHyPQiS+QTPpB7S/IiMdwaXJx4nusn5XrfT QtfD3yb+FTsA/rl4Hv5ja0hdzwpKJHm9a3cRupHtbxnvNLomcrZe8V2rdm85 7zHDFZbzDrNrwjZC37Oc8Tluiv4dPZXQzQl5hb+RC7qRL5rQ7fG3wBnJ7oqd 2k8DhK7tq0a+sfeU1MeME+mEroebK/jDqAQfbVJsxvcrT/5ZbILUjcxGqRm/ z5Y8x0gdgj2ejM53D9egzpjgiNivMykO9DE9wQF9LgldixAEnzoHyIum8l0r FfI0jrRifOwbIjcnxwWh2yHDmM+hE0K3W1xBX/O2ybrcGnNEbvoG7EHvtE/0 ZdpThG7f6yx8zLyvqJtXz6nL+JrtsJNBN0SebuL8Qjef38SunmUHJ4Uml3NJ Owf6Mq49ChJ64alCd3diV86awuCzEpOlTqutxg6tCdM4t66Wn/rtKcUnS3/R u/PhrvDRJ2In2i7WZT4+BZ+T2JWVsBbnygvLS13Fao3ctAR3sMOcKThPr4Hd 2okrYufTHdGPUwS5aV9PYlcL40s9Ry+AHIzaT7CrlG/ku/Y55KYt+0BeuusF 85+s9l3q46w3RWzh48RiPu7ezqJH/YRJnT8IPer7R4oetT+aCt0eh51ov/WW 8dqFryJX7RB2ZXypI/M2i2giP3ecss/cFYSPu/Zfxj/Azo1h1TnnaDZE6FYu 9oUVw2VfXNoldKfnYOQwqBlyaNtd6l3G5kjI+VMx9u/ljVJ3cj5mxX6SFGK/ vCggcjA72chhSCX6JNxU2Ekw8nSCp2C3H6Kzb1pOgU/MOdSnlgRTN4i1AfkY UeTvetm06DFZRfS4ZAF8qsyR7+qtdsp3zQ5/opdxC/lu3W3oMdpk5P/9nuwv /eRt9PhsOfNoc4d9t+ok9MvtoNeykOeSJchhXAPyiiTphW6v1ZBn+7icl/d0 hY9d4il8qtxmPWODZbxxhvHOoAv4h/NPhe42TyB0s2RM7CPWLfhk3M93N73B HtpVlf/vzDgh63W/d5X1Wt2fs94OTRi/YTD28PtlkY/VcQh66bUCP7CzlNSx rTiL8LenTmMnR5ZRX+2WDbnte4D9d+0k8cJoHRl9vduPnP+tJPV/8wTyd/6q hT/ZvELihdUGfVkHOmDn/3yQ+GKXQL/WH4/xbx3vSrxwNyh7eNgWeoujnAPn a488o2Ln1ul7gmfdmaxXG2Zihz3eSRyxLyAf61tpmY99qIr4PbcM8jTi3IX/ uyLiP7UQ9GIUPIFe2nUUP2/UR4/27XPQ9x6VOGJexx7MD/ng8/cNwWXaaezH OFYTvbd/SnzJGgi+fZQJHD66p9SxzL9qCf4xDh6kH2ZySepk56JRf37RLeAH 3YmcqKjM4yh42yo9mDpUgcdS39YuxxL+9vxUQrcbJqP+FNAIfJWrGDj/96jk 2b+Rf5llPoLnZyagvr2kPDg5SRrBt9rb2eLHrPTkX4Y5nHPnWJuxt97gZONN fMHJ2vTGUld3o5J/2XNPcT5+OVT42MnB23aczI8E1yVYLuty4oDPjTHtt8u6 sjYSut6L/Mu4osk5uGMswT9/ew7+DN/2ntCT55U6k1kF/O9kf3dW+Gx+Qr0w AfmIO3nwWzmHOE6dwBxK3mT1r3xV5tmwH/l6CHmTs3BUsMgn+0zkmZH8xRk9 U+ZvJt5Gvc2XR9u9beoYKu82vbz7flfZv5rKizWVF+uv29NPpfJoTeXRZvkh 1P/Lknc7repL3u2eWCl+2MxLnq4Py0qe3rmDnHv6803nQ0f8ii9/1GfWY7zK Nw2Vb1rDdKF7+amh8lOnYHH4tCX/NQZ2kvH292XiZ9zW5L961v0yfzewLfFx h8qvm0cSORjtX8k5hV5d5ePv99CfkaKQ2KGbVuX1/T5IXm+EJpbx7h5VH6g3 W+oDbp5VxGWF/7VO4H9Pzv584ade4oLnnXb3BM+bJduz3hbgfy0kjsjNerSC fh6VL+gqX/D04uUXtpdfKD3q3XOq87LL1EmvR2FdwQq3Bz4W3G4PW0r86kb+ pd//m/O+bKvBUS7431rfHfmbCUQO2lbyBXNoQ8kXtGEvhO6sIf9yV62S/Msa slDtO/IOt12o6F2b1Aa5+fIUT7/+vMazByvGTvZFl1wyT+1kTOy/Rh/ZF/ay 8NQrBmeTfaeNeSvjjVkZIyC3J5yHnFpHnl5+r+TF5ogI8Lm9nrw4TwPy5aAT 4t/MlOTLdsEA4ePceSp+xlhwhXpCxoec0z0di/9ckUb2tZN0nPDRRraXfe0O Iw91U60Fl8fjPMEtQj5rfq8oduusqCH+x9z/ADt8mIXzwTMV5bt6ZPJo7fue SEIfMlTkbLZJZAq/AjsljhrLPib48adZ8Hkzme/HChKHrDjXpH/JyN5Dxusd O5PvhcQVuj4IuvEkksRpZ2Uu6T+yi6xvhj7uSH6u/bmYvsKILWS8NfaCxF3t y6a71HU+C10rfELyRi19E6Ebm77Bv8Qs6Q+zKk2Q+q1b4z18ehRJI/M7k5g8 d0oXvjueeoER8RXnTY2rwv9DPpmPUyCZ9CnoyesI3S52nvVOeI2dfraQQxZN +Ggvj4q9mJNfyHiz6TvO1ytUFj72kTfIJ+9S5LCzL/vDqtBCxrecI/Nzb2+l P2J8eaHrW6rSt/a4suhHj7eguejl7FrJk62hB7HfrvOErqd/TJ0x9HfhY1Qq LXzcjvUkn9eqPaHuuAQ+xkFNxmvLm4k89d05ZbxVvbXo22g6gnntmyTj7d87 km+/fEI/Zva5QjcXfqC+0Jy+NntTEeFjzN0sfQNam3GiF/tVXCWfedhVlLHE hZOdkU/cf0W/VmB62adOvS5Cd36rRd2nTi7iy5wHIn9tcXby6p4lyYP+eAX/ tEnSCJ9qm+Bz+BP2kGmg2ImbeAe4uPEH+NffLt91tFHgynLNoOfaJ3boTGom dHfnSuxnxGnspPds8rBKWZHz/TQiNy3kC344YkGh2/Yg+hEfRQdfV5uJvl7u FbkZv0UFD0ceh5yHBYmctTdf8VdrDeHjVM9B/+Kig/Jd/V/kr215KvmtcXM7 edtK7EHrulj0q4+JlVboOcthV+0LoddHaYVuNHrNeh/NEfvUSj2nDznpEFmv XuKd9GfYXwMYv74W+yLrUZG/E++2jHcWZQWffxwg/spONZ58J7QOuDpSVnDC l8X0mc970lL+TP+b1D+tRa/A17GuCd0pPEnqmdryUthJFPC/Vvo1+yeDLXm2 tSYyeUTsD4KjrBtrhW6kHwz/FDc4vxkYG3196yB0t2aX97Ifvl8gH7r0m9Ct LzWlv8fNHYV+4z3LqD8cXhYo348/SOKw2ziIda26KThK212Luk3iFMhhdB7q sSXPinzsoXOh//Wv9CfoXW4J3WozjfV+ainno9qUNPCpNr4lcu4vdNN9BJ8x z0SPWpsR9DO1jol+q76Cfn4TfbPXntEP2PMu9FrHpG5oHR2M/RQ7jl19LUWd 6+US+s0iXcaeL1eTfWt+XUC+fji7zN9OkYu49jQC/LbekHlqwTmkHm4sm0z/ T8gz5PwpD31EMw8EyPht9ZBnzlDqxhe+0YebrrmMN3KmeyVy+PeD7CfnaGfk sz0l/e3hXkeSdWf4Hf5DGyE3s81swcWVo6CXeGnFHrTEc6Qv1aj8O/Pvdhi/ Ofqd4GWnxjX83prNsl5r3nn697Oehv5+F31yHfbS333qPvsoaxT6dQ80PCf5 yv5Q6Pps+qW/9xc9m40mMM9wu2SeVt7rYkdmhnnM5/tp+lUutgIfvVD2M+2A yNP8/gmc+3Lrb/LvHuaQvnHNHpgd+fYRuhGVfmUnQz/qIlcLNBX+AzpTF56e gDz7S2XoC7JyftMjm+jXfpVf+Lj57ks+bBVIQJ/Mjlgy3j2wGL8fYUmQfG9C BPEPTvrl8l1jyh9C17ImF7q9tTl9gXfzynfddJkZv3QRdjWKOon2+EsTodeP RTy6WpX6Rvp/ZT76ki7i36y23dl3m18KXftYmjy84hH6PPXoQreWjKAOuy0Q v7T7oczfSXtB/KrzZhJ8dr0QutmrhKxXj7pB+LgJJ4MHyg+Q+Vt59zKfBdDd RCmpg+9bQV9K03DEnXQHRM5Oy9XMp+g3/Ge28sTf46uo9+acjv9cep66Z9lO yG1PZPzw+ar0dZ8fIHRz51K+2yjtO4nTqe8ht/7gNKdEoPQHGNk18oV7scBF V8tJPDYyUT8w3LnQLwWQv8/Mgp1kCkaeR6cRx50b1CWiNUDvIZVFztb5RlLH cE6WRG7t84petMJJn8i8xlnCx/m8C30FjMKPPsgvcjCP98WunlfH3ywLQj7B u4l3dToLH+1TNMZ//MR3i6cHF19JKN81kt7luyNLCf41LhZj/ul6YT8TV0n/ g5ZkDbhifLDoSyuTSL5rBNnggYw6+2hxqPSJG0YC5Nx9Ovpqd+SxzP9zCuwh YWH6IOvep7/95Szoj5MT93vUlTqJOTYacp6+SfaLlikfeWTd8ND/mUX8Hf2W /t9JU6F3vCbzsfdnlnzFnP5G1qv/HRW9FBwk483tsdin12ax3k6xpT/ObvcW /9D5K/KpsFD647Qe4/BjOepyPj7wmsQ9fe4S/FXEcJz3veixTfxT7Tzg0g85 Dwv94ae/JP4kKQSeWdYHfz409XfR14ZdxJdqreV8TYtdUM7BtO5F+W758sfE z75ZL99xFm8Bxz578Fn+/bChMt4qsBX8U32XxGstuSXnn26CYKE7L0eKPVkF 5nBfqulZ+M9ZTt/poVDOO96An91pN7mn9uIB+31EGeYfOZL4fb3RPvLCDSoO xhkq+MStMoR6w/5t4OQWx6hTvVbnMl2Yp/HZZZ73NnIeviEd8++SUPIfzekJ n5jQtbUtsL+BZ5hnzAyM33NexlsV2ot+zHKFob8dKnHO+nibeDcwG3Krr1Pv y7zktuhx9ijkv2mT9MeYbc9xz25BXtb7dSB9ts82U1+ckAO5TcwkcjfmfwI3 /mZDz36BfD9JTPpMruxG/uMSSN3J7L+KOu6ljdD/2HpN9H2vPXV3C7qWaafE RSN/pCCZx27sx+x4nnOjPY/lHMZuvoN8YW9HiXNOZdVPMiUjcgiXmfsVja9y 3tU0L/j54hLp6zUidiR+jU/LfKZkxC5bFxE+zo005Cm7cuMnJ0zHz5/ADq0U k8XvGF+G0U84+Bjz+WulxGVn+jr8fAqVT9ld5X6OVWoE9+wKd5T4ZZ96Gknm V3uknPM6vZoI3W29XfaFc2alnBdbU2cL3dhXHjwZ9ZucF1s5+sp+t8ZGkv5z J2E36RNwjzbE71XKh73+U4I+hz1VGB+zpOjdKbBBztPNcCF8V7/AefqbPAVl /La9xNnyHWWezocQ4W8FbsbPBwyjL/dPS8a7J2ZCj1MN+16QU+hOvQbIecVw +vavxhI+xsAq6OtzCrkv4PQ/wTn4iQr4t7jtqC9lu8j4zXWhP5ol9xqMDKmE vxm7BHy0kfBpnF/4OPcL45+fvxY+RuuszD8j+tWrReNezIxYIgd3Xjr4PxvM +XWzw0K3U2WHXjka5+zRMwh//Z+c7K+ASdybeFKFvo4HWfC3fx4ibi6YBv/m 4cEbdc+LfRrNkqKXT4mJX/UOSV3DqLpT+LhxQ8EhiY5If7lV70l+5nkZPPbw ptQPnSHIR3v7WfRl7a53RvZp8nrYQ9MRyD/THvZLkyzC3xrZh/lPaiX2Y0QN xK4S90FuzaLS59PrltDN3GOIj6VnU9/Odod+lZYdkf+UvtzvuLEc+RRuj9zO 3qafL91c5tmPfPn/8TN2myhQ9Gh/bs48dzzgPlGMcOi9wiHi2uuMkeTfdWyG XR17gd0m/CZ+xjkbGT6ps4GTbz+RPEefOE/6N5x1Kh+Zk4D7OUeHZJP1Hs/M ucnLyfiXA82l78UIrkOeMj4PuHDGKvpbSjYSul6/B31p9/IK3Y1uknc0/Mj9 rPATpY/FrZMKfO6+BR8HX4T/ZPJBve2LIJlPkRP02xQvR175fj/3lrM+57u9 qjGfdGtkXdqRh0K3KjYjLi9KwXxGVKRvpEA94tTEavTVBdSmT6ZzW/x/9Tiy X6ze3+irqTqA8fESix6dL3+L/3E+d4WuVQGPduhDP0/FU+SbhZm/Pv8YfS/T npK/jEkpebV+sJ/IWX/yDX9+/iTzPzNd+mesPIlZ17kA+g7fIzf9bRb4nB8O /U0Z5NA9PPla7UX0SxTcyD2UbNRV9BFr8MsRgmX+etHExLWjXZFP0PLc8Adv 6PWyoN9mU/CHtyrhz+NGFLpRNyH7JVIR9BLSjj7IPjvoK/sWD/v5NF7m4wb1 Fz1qTcOBM1fPl/3uFIvBOcv6jEK3A+fhH+JXpA688RP+ds/4s3KeMmYt51bl LuFXZ+WSeG+8/khdN/SJ0LWxJcBXSYfDf34C6l3po4k/cQtSfzaK3xT++vm/ uXd0JAV9oC+eC92cu0/irD4/EvT8m+AfqTf3Kaya9Fc2P8h+LDA1koy7VIJ+ zBf1iZv9P4mfN2/T92pNZl/bB5OCY1asZ10R8QNamkf4n/tphI9ZQfn5WvGw w5Y56A891gEcFTwOPxN5KPyntsMvFY8u8cgp+AT+r/9gfOhD8uFHwSIHe+Yo /NvJN/RJLo1JP37M3synSUbqTj0mIM/ZvcEnc3twz6t+LuhTGhCX+x2Kwnz3 0/d9pB163P1R/J6+7zj1+QEV8Nv5Xwkfu2hP7mHEqo9+t7+jz+pqfvj/3hs5 R9oodCcP/bZ2tFlNmE9j4e82H8H4JDr45J9Psq/tzAZ6b5EDvbRPJ/fj7DjX oW/PSl657ZT4W7dOIeTZIw3y37WPevfxCcw/f3H43EohfFy9KnYYkTirXVyM 3062g3sMJVQcP94IPjb3NsyXlYm/myOmlH/fYibf3TWDPDFGMZGP+Vdm+n// 2YM8c2UQ/KO3eMN6d1IP1Pefon6n9eZ8JPxJ6niTP3AP9v2iwvLnwwDqfqNj CX41csWU8w6jEn5Gu58wSP7cdptznKBE8LnylPvz03Jwv6feV3Dvomz4pVmF 5bzGTY6fdyMkpM54ZT7nvKuUf8hxAvrXrkJ335Rl/sNC06GnUWI/+vzCzGf0 br47pDb0Fvglt1ZH6npBx7Cfm3Whj1d4tP0Dzpuy4d+M1iH4sUpj0HvzhPjD xGmpJzbOzTnyq8z45/XH4R+aFv4piZtm6WTwCenKPbJg6rf6yuf487LfiqCn ZvjtJoHgsWLpkNtfDZFn3b744UzHhe60IM465wvDP4Eh83HHEZf1njPpvxrd nPPxgsQjq3QD4tHVvvjP9P2Ja3My4x9mJeL8OrQN8kmaln0RfTf2HNoUesa8 zOfjbfxDNuKsOf0f6qQhv7OvmxKv7XrfguS7+Wahx0b0Odhrrt6mLn2B+2h9 otDnkCy29FVYAamRj92hIXrJ8Y/gvdDhUq82m90Vul55i9RttJubqc88GMX5 45Locu5i/dace3ZZh/LeQvcmcp/fiZVRzuP+fyH0CQzOIvdDjMQB7MsC8YS/ NbYyfB5sYn8M7ch3Ny8nTy6Uk3Ol6KM4ZyxST+qtTpwA+tc6Ned8c+5lzn06 zqBuHDKIvt9cg6lHVf8kdu2u/Ab/+W8kD7WORhH5WaPuCN1tEon3KPQW8Bl/ ET6ZslAX1QpS50/RmH6SnlHJb/M15RxnaSVwYJGyXyXexSgv8jH/eUQfyNT4 /4oc0uXkPDreV+QZ6/sX5H+e/q5+XeiXmJhM+mudV+V51+VYTM5Vv+5ZJPFx XTzwxvbo8AnsIPI0r07lvC54NHwiZeHdlaov6NtPPhE7ufNF+l7MhQPSCJ8D 6n2MuuQLlttY6qx6cGeh2xHGhAp+KPhd5K1frwvOXxWPeumM05zbLOpLX0d4 hzp48FHO095FwE6WlpL6u1GpsdTJTPM19P2n6UP6cpr5B9xgnm506ldX2wTI v1tvCl1f91H0YiU5Kvo0x4TDHvbFpm4W8QJxNa8FPWVM5rH3oeAXvdYYWZdz sbDk11qt8HelTnA1PuuNso6+mi1FD8j4rg9U/tuKOuGp0tKn47TvTf2q5Tju wR4MT/0y0Shwztyk1LtOPZP8yb6APRi1Q6iPRU1Pv0y2Nshz9VDqh2UGiP71 vonI4z7GkPcxLD0bcrXykL8XW818vqcTP2TGww6NtgW5F1F/FPcbFg9HL21P w//Ze+x830Lmc/I753ptMnDOEzWQew2NUvIOzJv49KcEPqHvPbfLOe/fh9mn ZX7DPr/E5x2P4LGv5XyhwzbmczubnEM4dxLJ/3f6PcU+lx3gnHviJtGbPak9 8mzcnjp/aH38z25wo73tmNSrzfHPec+heDTOEf64zvskIefEj2mlqGOYT7JI fdJMkJpz2Mt32I85Jsh89NPDOT/NZhHfv8bkXn1+4qe2gfFGjAGcm0S7Sh+O uQb+3cvSJzd3gOxfo3k97PnmCfmudbIE9erByv4/NuQ85k548Utm0Dzk3C2/ yMXcmJ18cVA58FXr7aIv49EwiUvm24vkHbefgB9+Zx3a4prExz0H6TMvNEDO je1ueemj29iXeSzNyr4f9Aac0Dke/eSVZ4ifsJtw3qc9+h0+yWqx3wOSM75n dfKOD005t7/yO/2lbU/yfkS9h+DruPTrGj060b/68aycvzkli9J/+E9f6m7v n1Dn7JKZvr7AWPRRl4rGvaUB04m/JfqQh1Z7xbnGmBHM58R34uMCcJn57Aby GVeAPt12w7lvMeQZ+e/hFcSb7s/5bs/60JuFAz98GXpR/GWv1fA5WSBI6E0X P5d41XMe530DuwludB69Ffm7V0LAS03ag2eqRMYfXK5LvO5u847Jgq34J5vz PvN2Z/LiYxvFj+lGDb67VOG0BFPo13p/gfXmnEt/dZeI9EdlSIp8/twk83Qe jpK4o0eeA94b0wlc6hbiXP7P18wn/BL0fikW59on8tAvHXCbc6/WaekLtmeD ixZ35HzoW0r636Zxfq1fDGW94Vpwvz495+b62fPYSYN6vHNlcd7qxMkNzrzd lP7YlJyrOklfiPzt9lOp3zZehR1+es268tygv7Ul+tXmq/sUn8cS393h8Dne Hf6t7mMXAdiVPq0W9tYzPfWVfZ3YF5cWiH2aZzeAc58FUE/I2ELqb+6LIPpY P+wBlza7Ql6QbxnnmJOzgdPe/y3j7ewhMl83I3JzEy2mvhf8jnv6MTmvd573 F/uzPql+/2iRoB8swP3P4qPor3BqKP4nycuOKftfWB47LD6QOmGGmODWCofA 839MlO+and6wHy/uxD6HvBa6Y86iX6J/Ouz/ayzqxSsLidyc1Lmxt1ufwaUp 4GMEfkY+8zZz77FFUfpMQqoz/5ffqUMWPwuenLYFORzYLvmaHvMIfQvBwdQ9 UqyOxPgSvFd0KSL8W3+UPFqr14j7iIujIIeERcl/U72V8wdnOzjfHpgNvF3r Af0Rz+dQJwm8rO7Vl30u9YlpOZBDzmbcMyrdkvspr7cizyJxmP/qdcwnVW3G OyoPzbRB8I4x8wvrapFE1qV9WCp9sm6x9Ozr+UN5XyDeLe4Pbd/FfEZPQ+/j O/DextIKyC35MfLxk2O4VxQ4hfjyKbbU7Q1rJu+YZWtKnh6aXOonRpZTUv9x AodSJ4lBf6xTcDP32lLfA4e8Sc65S6+jghutj/HIo7OfpL5xYDB8BuqczxYv wDshc2JRf7sUkTrtb9TVNWcFdbP0jHerP1R9evGom9V4CH3T2ieCn5q43Ivp Tn1br9iQ89fEJQWXut9Tcx7daaf0n+j5zki9zm5DX5yZI46cB+mzi0D//Qzn C6kriZ7cNjWFv1FyJXKY/17qTva3R3L/1HqWk7p30sYS/9x1NaU/SBvUn/rY owf0e327J/hT77cCuwpPPdAdt4i+v2b9oUcZzP6JEE/6rfRSO8kH3/SUuGC/ 2sB91bK3yO/OnZH9Zc9bIfLX6kRH7/8sp++tcjKJp04x8nHjTnzqGz3zSp+X nqkV/udcqNiJ+34v99HuTob+oAt9e1sb8U7diqPUsatUwK46t5T52NdWU0eK 2EPioj2oMfcFBvxLPSRbV94HHKnzPt4ljfx9/gHqySuK8G7P+t9Y76YOsn8s pyDyy3CLOlvdDnIu6xyKy33AfpHJ93Pkl3uIRo8knCcXnA49UQ3OrVakFrzh bt6Onbw5wP0rNzbvJu6tjh0u/0LeFG0658/Rj1D/cVeLfp3qg7gf3YRzAW1m z1sSv0uPTyH0aWOpy9VbJfvLyZJO8JJZ6ArnAo1Gyfm6Xq+pyNmOnw89xrMj yZ+H3tO/dlv124SGoz72agf9AnWLcM417Ap4cnYX3kdsGo76UrsV4OFVaXhv 7WNC+jMXVuF8P8kUcF+8HNRRz9Zm/D/LObe/sRfcW6Qm699O35zV+R3+4csu +hrjHpZ1ObfSI58nkfBrvRdzX3s9dGvUB/qIjjxBbiXTMt6wyaM/9ufdpGXL 8HuLBwbJ/188VfJ9K9xN7PD3I/TbVdKoOxXehnyW3AQ/FB4vdTA3tA/7aG8/ 4nXtmvRdf42N3ZYfJvVbZ/8H+oSzfMNfTbxAPCp9Rupd+oVw0HN/5R2H+9m5 l/HwDnXIyJrsR2Nbduo2Le6w3tVr8L/J48r83XHLsNsBY+RcTzvWXOZjZTkI n6tjqfNcaUQdrxl9m87KddxjzZmbut8idQ4SCL7UYqSXfN+MPwE5DElKvHj3 SPhrWUrhB9bEpv7f5CH95MsDiRcNjsj89dgtqLcEjMOfrxkp/tAaGSzrtbdd h778N94d67dc5mNX64efDJdG8LGzOSpyO0m910kdS+KN8zwe7+vE7Uz+lSX2 bc4Hm3E/pWIQ9rbt5B36KCz0vnQ/fNJ8lvsR2ptlsi6zzALs//Ni+jRa3hK5 6QuTs68bDeL8N2NbmaeZKiX2NjAd/XVXcwh/80Yy1Uf9grgfMkzm79RQ/S0Z mxG/tG4yfyd6dvx/y7OCD+xogwSH6BFS099VYanUN4xwCamrjAikP/afsoIb jFeluE+38jV9QQsaS33A+r0R+d3JjdST8w89IP4tcyX6ddOwLrv/bqmbGRvr Q0+yDzuZFU7qEUbmueDeLqzXurv3sIzftYL7CI8Uff4lzusfPeddLPss/A90 JS/SQ4RutqZPzGi7QvpOjKY9yBe6bOJ8p5BO/965mtjPxwbYYc07nFPcHgvO XDkJP99ottizdisD8nkXDnuuGlHwgBGvscjBnXqVfZphFeez+Uz6XdfTl2JF z8h+2XuE97Le0L/hlOvPuXnMijIf7c/h7LtlfeG/rgb3LCK3Vn5gF/wnZeH+ aZuK+P89q3lHZtA7vhtH3Tu4GpN6xd8zJK7ZpZKR1wcfoc+tYWlwUch46ngJ 79B3F/4b/nVgVuoDw4PTyLj+k4k7C89Qr2jgit+3uzag73jTMeobeYYl53td BZ+YdXTqVCdbURfrM4534f4pRP0kSXTqQjmb0G8SbzP0w8Xo6z49kTzg9Wnq V7Fvix/X3A2zxe5yfmI+N5pS14szn3d0/0kCboz5GRwwP6K8q+HU7KrWNZf7 Dh3cK4KzKtWAz/BPQtffTwPnvupHvWX+Se41DI7G+yFLTjN+Wm/qdENKSXxw m0fADxTLS796/rjy78zaHalfjXiM3PJU4L3cqH3xV8knEXe7XUHetZPhZ9KG CH9zSz7uR69MyLrqrea93EpZiC/5UzKfdW8ljhpdF4u/sjMcgP/zeqIXY9QS 8T9mhuO8/zzgFPG7zij2y+SM1HmO/S3z0N73JH+JM5Y68LPT1OtORmdfX/xE n2f3+OhlySDu7TaNx757tp/7FAe/ki+n7kZ9uHc/3gW+VYn6cIyW+NtEp2U+ zsJ44vec0j2p/0TYJXI0qnXnftOmY+hxcGvukU5fwr2hvZ2oL2Wbyj3SqmeD 5O9HkZvb8SX3QYq7nBc9PEl9tdc18EGWP8mnyxaE3igy9nkvNffC3yfDTwZc Bcf/U4/vRtgKPkk3Qb7rNnK4R7B2O3545hr0vXAU+Xf2+/jV3ZbQzdfqHnzl duCWAWOZ5y7krz/JQF/KkE/Y28Xy+IEFbfF7W5sLvrc/nCXP2zMQO8z4gD6A bz3IZ8vT56llK857NKd2YOeNZqOvSQd5jyOYd8u18KewtyS7yBPevAanfN/E fl+Rnfs4pVby3bjpyS9qDSBPMLnvZn+dihyenAZvLb/FO96JdjGfyIN432HX X9wHnL2X/tKv67g/Upl7K+bTtPQhx3rDvu7cR71XkwvcuCo544tMpR78Zzfk 2XU58owbi3eBUjxhniOny7qcQJt36Fvs4Vw4dA/r3ZNX3jN2+u33+ja5V9JV Z58lUfH96kvw8deT2FEU+o7scBORw7FZUh/Vkp/FDssf5N3MlYekX8btMg/+ J05zLyntZ/o9tw9h/oVeCt29Pk76wqy1JnXFPhc4j1sdzLlJ+evUf9I0An+m Gsl+fLFXvaswR9WL0rKPxmym3rX2MPWgXbz3YOatD73WW+pH/fIRvx5TdzWW twXH3jxJXE7P+wBOw/Dc08im+i0TfeS7aVfJ/rEb5giS/9/mq3rHowjvFAfc oB7w7DHr+kj9yJh1irwz4WHo17nH4ow7S1wtuBX+nVaAGzNfpg42/aK613+X vz9pzHsk9R5Qd61osN7hVzgv2P0HdbDMk6hDXh9CXd20mWci8Lz9kXcv7DM7 kPPIvNSRSn8Et4w6Tt2j7ArBq1qhN/i3zeWZT+xQ+hevT6QOOS8H6yrQGTz8 8RR1wp3oUetfh+/OHYKfu4/enQ1nqCseWyV2qI2+RD3z/z2s/PklptijOQI9 anmpKxrR+/KO0zr0bk84QL0vW4+AH3Q70GE+uWZRHw7uILjPfaDu19dJLuu1 7c6yv9yiOZHnwiapkNNz3vEOqgCfTg84B190B/zQmHvxpj0N+dRtmkbmH2c4 69LGYlfRInDuOlvJP+AAdempL+RcUV+t9JvytujX3h9Cv2QT7MF+vZS+siqX 6B/5hF1p1s0g4Xc1tdThjVTYpxtzJeccN8rxzu7Apdh5QHPqUIUagJd1Vdc9 M5x7H4mKUgcrSD3WKpqWd4lPdD4ouCJvOua5Tb2fPDYInHOU9zrMzYWo16Ub KfdWzEi8g2Gl7U3f5ugb3AtJER0+GfIKbrRqzBe7tRd+x042rOL+bOal0v9i 9+NdArdzBMkfrUlbqJfWqoZecrZAjzXiSD5kFRuLHqMkk7zSnhkhkow7MQe5 1epFvhl6kO+ajRn/IgF6rFhT+u2tW38in6W1yEd2DeQ8p3gM9LKiP3XgLws5 t0xbC7v6fpzztg0WeCP6EuQzayb3lDNMpW+56kDs/N4M+mnHbSDOLuZ9GLd8 Tb77IhF4fkhavhtrFOd8U/NyblBa+cnh+dDXzAKcfzVFznbwBN7TfvOWen7f hXy3TVfekY55kzzodiPkuSwN5yAjG0gcNyMgTzdZSuqfGQyxU/1LVeS2tz1+ 4yb9g2Y69Gi/3kS9vXIO7L3BDOJChcScu53R6MeY0AK8MTCJ1Hm04kXpD+l0 gLjZ6Ax95m1eUjeImoY40mqF1E2s9i2413xhFnWDyJ1lP5hxeX/UqLCE/PRD 4b/lHP8e/VFalQ3kI9uu8P7exYzkmz0PUp/sc4J4+WAw9KK3yWuqrJH7X0ai T+Tj/eNSd7qZXeozTvRk3Hdu/4T8biH3WKwMd8nr2x+hLjd822Xhk3AN+fu6 yuSJvRawT3LQd6R3SwifQ+G4B1S6DHx6r6LudOAa9zuebGI+bbOBr9a1Jw9q /4r+jT050MvUzKJH5/B2wc/2Uuh6cFHqgSevyHijcyfqOc8nsU8HVKTeEqEN 9aIH96hz9q7GfOqmYb9X7Uy+2XgBdYZLWbDnV6HUc3aepk6Sojv1kCia7Bdr /l/UHzZ3oz6fOAF+42N8foclz2LqilNDebdt0jb6rJKsh553lbzH6rTJSD9M FeqQzqDK4heMRPHEfoxYI6n7PdxN3ftjYd4PznaP+bS8KX01zvG05MUr1X1M Y9kl0df5mrzD0KIVdd2pq6TPQMtemzy3DecpenAZqefYe/aBbyemYD6r0kr9 1Kz8p8RTK95+6mwta0odz8membxei67qzFl4fzb2Z5Gns3U3fI6fkPqGNrid 0PU6W6FH63ld7HZxa5GnfvE99a6yqemLiJqIus2Ljsy/dXfeUY/FO1R6hjj4 q9M9pJ7mDChJXWIu9qn/dZ977juqUVdJz30lY8DDNDL/PiUYX3oDdZLch+hP aNqb33npcRk7j3KUfK1GXta7YYPYrbtpBOfQn3R+r2fZ74zXfwenlhtNfe9N AerA7UsQt5JlYl0hDdlf0V9RH6gcgfdVCtKXbqYvAv6euYTvjs3JvhiYRkff sSWfcIu1xQ47nKbPqfh2qTNo8btwbpW8J7+DELGt1NWdnfBxAzLIPtK7cx5h 3p+D/ANyEKdnJ6Jvfwf3Zewyi7Hz/fvkvMZIsInxJ8bKuY8RqM6Dxs6kbvM1 PHW/p3N4z7DpffzSkMVy3q+bxegTHriR+s/1r3L/1C5vSh3DCFyGvW0pzDs7 K4uzrsfHkee1r9fEzt9Xh//anure68pI8p2phbiHfaoH9tPkNnGt63fysBL0 yTsVzvO7FO1Kcj87CeeS1u7K4h/0Cy75X6O5xIUEhYkLVzT6q6NnIs9acgk/ P7wZ5xS/HSdv7ZST+0pZz9MvvaAt+dS8ZsSRPby3qS0ugF3F3iD+UO93jryk Mn3Ibo+E3LvM1ojzkb01sLdPd8UPu0WXyfmOeSIp5195ilM/T56O+fR4jp1n riH7y0m0XOhG7kTUtRpvpW5fYQf8V3OuYY8ZLrjQuV+S87jly+DffIf072m9 12InF5iPmTAqednybtQVjt9g3wU8l7+bK+Omke9e3MI+3Rifuv/xOZJHGouT qv7nmLJ/9fSNOW9qmgY7nNeR/rAeo4SP3nkg++XUSM51klI/s6/Gxi9t2S1+ SX9ZnHpGvmbEwTolkNu2EeSXqYphz9fHgKcrIn+3yxfi7+nVIjf7cx/O11KN QP57jqOXceSX9ryd6D3CGvEPdtkM1C1u/osdds/AO1MxojPfW1+JX9FDBTeb 3wvibzaxr90+76WvUv86mr6aZNz71o+mEPt3ZiQU+ZlV6LPVFqfjfuOnHIx/ 1sXz/1Kft40E1CezqHPDjfnlfMpNfpN3Gq467EfjlOAH27ov9u+WOcy+/nRO /L+WtqOszzUm8e7Qlpu8C5q2WpD8ffEIfqcjtLT4E3toYs7rU83kfZ5MreSd WH1rdPLLwlF5t7PzSxmvV6hJX0HiCLzDk2wj9w2/FiOPHPq5jowvOZbfWdiz l/zpz3nM51pEeb9bvzySeF5iLt8tmoz69tn3nG+kjcV7Ph8GiZ9xc1Ev1R/F YHz3mdz7G11Yxlu7utaW+U4+zr2AF9Op51zsInRjbkPOr6ttk35b/XJDmadW clck9HCe34d52Ejo9u1sQnffTaLumq6T8NGvh+M+ZMoT5HNL68l4t2lL+o2y P4berLmMt+PVIx+JekTk716ryPhL4fF7ycOJfOwaNZFbkSDeBw9eQb6+oi3r esV9KDvDwHT/pUdtZVI539ZK/qp3Lf84wRd+vWg5y+0s8R96/H+ASR1d6d32 9L7iAfcvfXaiDX8Y7r/Wqx2aL/dT/fPXKp2iv0Kt11Tr1ZaW5HdgriMfW8lH K3OdeydK/oaSv10hbeT/kr+WZlaksPp1DaXfxlW41+WzB2Ma9yc8u9KVXVnX rxNXffbp3ABX6uHOVRD6+I3k6VemSl+zpV+CfnYL+c6nAtLnaS6dUlXk36oG dna5k7y/5TjjhK4lr0Ddo9L6q9KvEveq8LEqa+ShQe3J66/OkPHG7IfcW4y6 QfRmD/27hvzZ7hb2+nAY94lXbxK64/B7UlrUQDlv1zauZ3zXIvCxDk6XdXe+ Lt81993inPTQcs4p8s9h/vuOkK9FXcJ3ms1mPttiw2frLPbHpWvCx32Xgd8/ +hABuR3eJt+1djlyb9HdsJB9mg+60yYQvxAlBvdvNharJXzjx2Ef7WxIv0PH 4kI3dh7ld68ez+HfDS0idDP1A/LHLtsjCX1fbsbXK0F9dmZxeU/DvV4A/ncq U3/IN5k44NOv+/p36nl+fQ3uxn0vpV9T6dcodgJ/qOxBV/bglOPdif+Rf9Xp Gf5LX/b6FMqvol9L6dd5W4z+T2UPmrIHo8I2+u/89jOoivhz/3qNe/gZTz66 ko/x7ntQWHkaSp7G6Sep/0svWrJrKf5Lj1a9nNQDfPagTUd+nv1oyn7MZuvx /5cish+nHmcfFVB+rBdxQZu7Fj7K7+nvv+E39g9gPyq/pJf5A/pM6sCeH7Pb jMH/r1kt8vL8nvl1Cn6y+Rb4ZMRPav0+Cl1/Eok+HxW/nMufhG7cvovfV/7B aTxE6E6tB8hdxS93xu/Q01LHsz0/cyki/vPjGfpUVfzSdkcSutl3Hf2Cyl/Z BUPwq/M3Uf/0/FuGm0K33lykXqzil9E5Cn7vRSnijfKfWsfb0GdUoP7p+c/c 8Yl3F2ZDP4A/d/KGMr6vTV1G+Wd9779C10JmiT1ZS5Q/fxyDdbWaEiT0isr/ +/RoKRzi17vt4RafXjxc4dejh0M8vZue3j3couzE8uxE4Rz/er147c3fUvN3 VPz1r9f04rVPPl5898vfww9++RsKP/yPfj184rMHD8/47UpXuMhV9qkr+/Tw ldH4T9mP2shzvMOo/JtbZB70kqfp91X+yhxWTPapm3Ur79Aq/6a1KY3/r7lT 9bXjD7VKs/E/h/7gXQPlf8yqhdjv8XiH1vNXdpS++MMhdXmvWPk3y+0vdLPW Ys4LlT80rg0WujGQd3R15T+15zPku05i3iP7Gb+e58M/f/vIelX8Mg7nJ66F v0Tfs/I/zoiZwsdO+IJ3apS/0g/0ku/qF+/RF63il1W3N/75u8P7RMrvGckf 1ZQ/b22iv1r5Sbv5Q6Fr4y8hdy9+VXkidOsK77r/9LfR3whd3zMPe1L+2X4Z Cr3fDPq6PX/u0692FXzi6cv09FVF4Q2lXz0b+tUugU+0or/ag/YRPOOX/0/8 oPRlK315eMOvX0PhE0vZg67swYkCntGV/djKfkyFf7z1mmq9mhevffLRphPf PXnaSp62hweUXnSlFw9X+PXo4RDPHhxlDx6e8ezHVvbj4R+zTH9wYy3e57TK PZbzGutSB/zbyxe8T7IwI3n/9Lv4saqpwcm7m/M7q31e4MfcQdKfYw0txvsx 4yqB/ysQl615KeXcRIvSGHrjhdQnk9+We0PW3kPg4ZcziSvBywJ+0O1+F/nu 6Er0uY0ZTT/skcLiZ9ybpYmziWpI35AzoSz+Z9lzcMuSMuSjZzPCP2cczncK XpfxbuTk+KVOzRm/7yXrulUdv/p8D+cRZdPwXlq8fIyvco/5LJjFO8qlDeJs 4m+q76uq9IFrVRrih4tf5Dzi0xLJm51zyZD/w3z4zfLI3whcAP8d6r6nkqfx eBX0mdFThpW/ZWTm9ywS10v6i77KJue7JRrSH/CF7+on3uO3zRZpfpnnpvT4 +Tb30oRdr/MlgHhU7rkedr168VjglpUbU4aVpxYhJ3yiVUkdVv5mpO3Iv/Hd pGH1qMcsjD3ky4nelT0YK5fin2dMUL8HUUXO/c0PlfDzv/dh/za4Tv/a5dX4 gcFx8W81V8p9R/dkbfbv1i/cT+lRhe8+G81+/5t31bXhr7lP9G4Y9A+t2L+j w8k9QmP9dnBylGD27/U93OOb1pb9lYP7GNbqb8h/wG/QXzZlfIpz6l2TjfiN ij3xS4X687vcZWfy3TmLOce/3og6X+9JNZA7vyNlzSglcnCXRwXfnq7I+Mrd sf828YRub1mA/DeOFDvRywSAn+PdA/8ky8V7S/M/4f9XN0IOpcbz7mv24cSd Ww/0X+S85QTzH/QO+1F6saevAlf3clKElZu+cAnxcXADPaycnQYD0cuq5mnC 6sUYcYi8Zgb3YrRa6NHMlZX1DtlHnmgwT3NMOvD/2vXJw67LCUpOnpX3bqqw 8jESLkCeM98Qt5Q8rb17ySuPxBY5WAXRi7a2O3rsrO5tJUeP/7N/9TLYnW8/ Ot/OgEfU/rXV/jXbJ8J/+/a7dgd/7/ef7uCYxDffftFT7uWde5//NBer3zlR +85R+06v8wxcoPynFoL/dF6HsJ98+9cYsUDo3n531X53f3vCvTe//8yRnbit /Inp+ZNCV4ljPn9iPk4Df59fsi9coI/L58ec2FPBEb745cnfH488eXrxy61C /PLk78U7TcU7T19+v+191+/nHW+eKl6YXrxQ6/Xiha3ihaXW68UjR8UjT57+ +OXJ34uD7ijioKdHL57aKp569mD69+mZHZx3+/a103sI99d8+869VoPfhfDt UzPDO/rf1L421L629JvMU/kBW/kB68gQcKLPf+qDZ9K/5POf9t9pwCm+fadN vUwc8O/T+GXJA5T/tJT/dNu8ZX/593vdDdiJzz+Y8R8if7//3JcZufn8jBlT R27KL7mDlV/acI56iy9OeXLWfXHNPY1e/HHHVHLzxylTydkf1zy9+OOgo/To +XnT8/NqnoYvLnjr8uKLruKLJx9/PPLk6cU1R8U1Ty//EweVHt2y8UvLnysO k/cOnUreMDKO0K3YB/luqvX8nk/RhEI3lsclj67wCn+8JJGclzp3uKfpTFtE fpEjgdDNkg+JI4snsU/3xoGe9V/1bhL7yDyVCP5XhpKHrltFXtYeuhNtOfZQ +zV4c24SzvOPLcI+r68hP0oO3Yx9iPOJLbW5d/ipAedkqzPhR3qsZ3zSRkJ3 I1UDn7SLLN8x79xhfhM+I+dz6zm/7X6Xvxe+TB2h/Tr49PkN/sl2wcfQgmR8 ntvUC0a1k79rZWrz7x934LtdumKXE7pwP7TfNcZ3S847VL1y4wdah1CvyZgS PTadzL6O25LfoX3UDT/bfmzmsHq0lR61SWkFB3p611aid83IumLvf+mlRyB4 QOnR8vR4r98Nwb1K767Su1a4Fr+3ouzEVHZipd8l5zNGKOvVurJerYPG74b7 5m/tuCU453/WWzWH4Bm/fKys8QWfePJ3lPy1NHf5/Q0lf9eTf6az1PGUfm2l X6fxJ85VfPZgZJzPewjKrixlV+5sk3Mkn326sRw5N3Djtq36g48Zbgf93zfW yb2rn/Q/uV+tDT7KuyCFqpf/8ad16S9+dyTKQ8E5bkFFL5iTfscOvFOix4OP tTiE9wsCQ/cJHlN87Kt14WO8min1twSjDeGX+SL+PfHj0yKfFNA1fRz4ZmL5 APn3mdX4m2PIZ9NdiBP2u8aVGfRbq9+f9b5rxoqR87/obslU9Jk9LBs5rHzc qCvh82VeJKHH4LvOnNLgqubwsWOpeX5ry/xT5aFPIaHN+bx2kPh3qg7vWgVC dxfa+NM46ne3S0LX0+fGb+rXqFeEKvr2f8Efi2fL/QVnjKLHeMj4smnlHQ+/ fo184VmHJwelLzvxtpxh6Z5+zSGPsoaVg2cP5vXm9M365O/uqMI78359lS3J Owp+/e7IkSGs/H/aQ/ilxH+lR1vZj5H3PXVHtV5Nrdca0JO45pOPVXhGjv+S p9t1UdB/6cUIaZj6v/TozFmcOqwcPHvQBvOute6zHzdcCHy+xiBeuFHxV4H/ SN5nhESB/nWkzMOKu4x739kCiVN/0F/tHP6d963rxsDvLclKvbT0H/ilpRp+ cjs40nISyHizUUT2e9UM8HnVivd+ln2hD+j1V+J+lSHcyxwTQJ/U6krIYc0e 2b9m0DzxM2bfstyLCKzH73NtnQB93iV+Z3BNP/qJEhyVdZpjh5FXmEGJmE8w 8aRnfuJ9rLfQj1nCR++Tl300zaVvYvRp4tZxl/nU3Ml7J504DzCbtSSu3P1L 1mVG6s37NOu2Yg/7JjD/4Oe8b9cslPqnii9a5ddCdyatxD6jKL2Me4B8bkZF vz2JL87bJ/TrLW6bM6z8tRQvGd+yFvyPoC+zw3v498iKncdDv1ab48yzQG3e uVDxxay2j/gym/5Xx5t/BfCus593rCxvvUVXU7cukpG+cxVfzJF/817M5hcy 3lHyNLP+DZ8Yh5i/J88/d6GXJo9z/KKvhSuZz6JU7DulX2ffO/rjim0ELyo7 0UM/865hmvHYlbI3b7/o3y4iv5u/xhetQG6hO7v+pc9F7SO9yyre+doxXN2n VvR8Vbn/4Isverqe3EddN4o+II9P48fcx3s1hj6gRexr/c0Q6dtz3rVP8ePv 9hboZkBx7rHkncn7JwcU/eBt+hR98cX5/TDvkjyblSbsd92txfk9pFj8jupP /5YgCfMZWy51WDnYIYtY7814wsfuq+bZ6Dz3ZyosYV0ToNub14n92H9noA8q /FL64y43xs8HTZV1OfWX0E83cSj2k3cw969XMd4NzIYdfj6Dfp1lvHvqTKJf 04svJaAbUZ4yfkuhhGH1ZX8/D39PX2pd1pEm3DPZjX7twsqvbmqHHSo5m1Wh G04G9t179OLJzYo7jXUpPXryN68nQ85K70bXRfjzoOzZw87TibgY/59hbY6w 6zXWQHfKrMgZVm56CxXftY+5wsr5p//Xn9H3qfTlyUFr0CpPWP06Ac94Z/Fe b+JaTnCsEf2J0N1WZ6B7+HPFbfbXsHvIoRB41Ul2j/1zfgx0hW/1AY/gczwx 8lf5iB0CXd8UiXukCu85f93i/nfMbNjVNZWPZHehP0mK/1G40Wp0E/+cpA9y VvmIVfgG/uFJS+7JKPxpnltEnFtbEDtReNUtBd24VEnoXj5ihVwBD5vZsDeF h82hS+CTIwB5eni4+nL8XrMV4FKFt63i55nngHN8V+Fzw+f/vTzR9unFyyud sb/6fy/vM/zyV3mipy9D6cvLK3Wffn/mocr/a8r/e/mUVYr5a2r+Xn7kVvOt V+VTbpFf/b+Xf3nytJU8f+Z3lk+eKr/z68vLH/369fLN/7ETlbf67c3Lf/3+ 38OfP/2/WRdco/DkT/8/6wT+3MOfPv/veHjV88NN6Jv38OFPPzwtA3pTeNK+ pvBnyt3cj/Xw51nlf9I1h67wqt//azur/PJdPcNHcJMvj9Cbdiv4X3QrS1Pm ExDyC5403/wLH4Un7dtqPg8i0C+u8gv3looLf/N7hx4uNWbz7rIx3yZ+KRzr LIeundxEn7fKL4zO0N0oHVhXt0VBMl75f1P5/5/4Ob3ikzAWcVDh7Z9+T+nL 8vJBz082Q7/WIPJHT866krOl8jhT6cVRevHyvv/Ro67yRCV/V+ndyysN3zy9 POh/1ptK5VM+uXl52f/IOSV53M+4pvRlqHzwZxxU+rW9/LESONNVONN+nhjc pPCh1hN8qL86By5ODp50FJ60buXDPyn8qSv86a4ZD+724X+3XFLsU+ExU+Ex N+gG/Hz437K4D+XhOsPDdbMPkv9l9uH/XWvJ/3z4UG/VG7rCk5bCk3YVm/tf Cv9bCv9bH8ALfrxqND0NPQt41VV4VasYEb9R3oeHnwWo33Hz4edVO3lf0Zd/ OZ78ffmUJ08tO/mXq/IvT/6mL18zlL78eYf3XX+e8nOevnzn53rHkO8YKt/5 uV6VT1kqn/opz02/5l+e/A1/Hufp0ZcPevbw0/94OK3zWeKJ5688XPe0H3Qf 7nKm86cfp1mFd/I+gA/XWdlzg1t9OFAr/jVXWP6uwtXOlrT5wvL3cLVbdtcv 39U93BV+YN6w69JSg9OctbfBLwpXGwpXm3UzgV98eM8a94R46MOHVtyixGcf rtYu9YHuw5nO4XHoxYdL9Xetf6nDaCrf8eT803/mJz/y9OLPUzy5eXmNpvIa T87+PMjTiydnTeVNrtKjH+d783RWki9oUcgXvHX58w5PProvT/Hk6c93PL3o /vxI6VGbXqGmzOevu/z72Lw/4NH1uOATZ1zmXGHp1ubRfDdPGuof5bvVlvEJ K+DnZ/H+g/Wwq9C1R4uwsyR/Uu/ZDl1vpYMHrmX6hb/+qATrVPHdozvJajHP 7impK1/iu8ZxLd8v41dA14bHxc6D1PhOS+oJn6AF+GM13pq8SOjWbH7HV3t8 nvi+Nl9d4V+bd3O0O/yugtYxP/TIp/KH5aNdWQD/D5fAcQ8nUbfOmVfGOxdi c4/u/UvopWfLeHvDfPErdh3e5dDe5JLx5os74LGbX4kjm3LDJ1Nb+DxviJ9L NVf4GLWCqG+NP541rNwMpUejQGXeAfPp3aodLO8t+PWidavAvSifHq3ee2S8 pfRuKL1rD0eeKBGGv2cn2o110H3rdRpl516dmr+p5m+V6sb5vm+91olVgnP+ Rz5DZlNnU/J3lfy1ydM2SL9Zjl/lrzkLHclrlH51T7/tl0cSOfnswa3QhT5Y v13VLRsprJw9+9QylYGuxWko6wu/X+6vWodL8XsaUcJDn/+Nd8f255N1Weky C926uAv6heTcJwgd10DWGyG33EfV1hSXe6jaxcFCd+c3g15vD30dXfsI3U6+ S+jWw578Tleqcg2RG+9//bTbHcWgh+zhu3NS8s7WsoXwX5y8aNjxxtLZQjcq poK+7wO/z1N0T335bstOck/Sub6Ee7Fv9wnd3NSycFg+1vGtQrfGT+R9tJzP L8m6Fq+BPq8E92w/fuH+e6MN8C91TsZb+75K34hfnu7TouwLn/z1i5c5H/PJ x+hzAryn5Ol48iz/gHNjn/ytKZWDnP/Ql317DXhCzdNS8zSfhnJu4FuX9SVh zrByMJUc7IAPQWHlaSl5GiNGcv7pk79bORf+artPj5dU35C3369GYp9uWcB7 2x796UH8dnV+X9fz507sP9gvTx/xPoznB57vJ748nPMLH2tyd/ajGz5tWLqT axbx98vgNDJO+W0nf3Zw/huN8d7+qllH3acdyHjlt61+S9HL0pGp+R771Dh/ SuTpVg2kLqT2tVMmIfK/G074eH7b2RuKveUeAV35DWv/V+jTEvNuk/Lbdvyy zHNyX+Sj/JJxaAT5xGLuEXp+zElWHH1lSpv0FznEtODv88NO+Rv4vc3oxfPD VqIC2KfPD1vNphcJK3/PDzt3LxUOqy+Pv5s3BXhc6fenHz45gN+H8Plh609+ R8Sbv7devVj5YmHX6/lh7fC/0H1+2OmZGz5Knp4ftkdOLBpWnp4ftkL3Fwmr L88PO7e6s6+Vfj07sStGZr8oO/lph88r856gsjfPD5txy/F7LUtfU3dVfsMp 2Uvofj/srErI+OPleYdT+QEt4A9538GZWYt31JXfsM8c5D2IRhlEDp6fMZeH h88Dnx+ON5zx0VLwu7WeHy5zid//iNeMd/uVH9bK7+S9xcnrsTflB+y3+ZhP n0voS/kNI2U49Ds1Cu/0Kz9srTf4nZiV79CL8j+OtpHxFYuzr5W/Mjp3hb/f D6fJyPwPTJZzDc/fmhdnw38Zcv7pVyfUL/aLfJQ8XTtZ8bDy/OlXA9vyLoaS v/ddc21IkbDf9eZvP1zI+25q/p4ctP1dsU8lh5/+M1Io8+yr5Kb8p1s+FetV 8v+5T7t9J+7UAi/9tLfOjfhdmSvgHM9/GiFx8MMuuMjbv2brrcSRXnt+4eMU WMK6fLjXiDiFdzoUrviJexc3/jWOr/DwWEW+Ww984vlP7X5dI+x4z3/qMSrz XklFcI7nP91bn/n9G4WLfvrPvrFK/PJdtd/1P7PCR+Euz39ah4KRs8Jdnj+x rrYWuofrfvrPdh+xQ4UD/8d/jv81H/H04uUvnv80PP+p8gtP/oaSv5ePWD59 OSp/8evXy3f8/tNRuN0/f1fhcG+9plqvqXD7//hPhfP98rRVHuH5T0+ehsoj PP+puejLy1MMv35VXuPZiansxMuP/Pam9VB0ta+tz3/x+1UejvL5Tw93efvX KP1U6B4u8va7caYv/lDhKM9/6kdL4oc93KX8p6X8p4fTfvrP9UGci/pwrJYi IfU/hX88/2m+XVMy7PifOLbOAubv4SjlN5ziAYxXuMvzn/rFmL/w+Ynf1rvo S+E3v//8ifc8/1l/PXSFDw2fnLUj5AuGTz6Wh/M9XKrk6eUFnvxNJX8vj/if 7yr8/BOHq/l7ONwvBw/Paz65/cT/yn/qnvxVHuHHOVqW77l/oSt84tyvSr1B 7UfXwzNbqlB38eEfo+C3X/h4+NNa3zBfWLqp8ICxOyH5q/KfWgGFPws2YLwP V5iNEjDejz9jz2M+Pnyi3W+s6mEKfyo842y4Qr3Fjz/rJ+W7Przk3llAHunV DTy8NDIe/JU/0Tw8tvwYdTAffrNGm7/I5yf+V/L343lPnp4/dD38r+Tvzxc8 fflxr/fd/8HJap7eek2Ftx213p/40MPbar2WD8978jR8+N+Tvz+PsJQe/fmI Zw+aD7eYrdU5tg+HaBtXUYfx45aWT4lHPpzjTL+NP/fhPVdrxvgdv+IN7Y8c 1AO9vLvcTvX7efvRrw+3OI0nIGc/zkkzl/qqD+/p7S4iZx9esmo8QO9e3urh q+e7ODfw4WdPPoYP93rr/R+crOTjx9WePL3vOh6eVN/15ul6uFTN049vvfVq fjzsyUf5JUPhapHz/wEkD2Z0 "], {Hue[0.6, 0.3, 0.85], EdgeForm[Hue[0.6, 0.3, 0.75]], EdgeForm[None], Specularity[ GrayLevel[0.2], 30], TagBox[Polygon3DBox[CompressedData[" 1:eJxN3Qm8jWW7x3F7r7X3zpRZxjJljoRMGTKTIVPmZKbMQ2RMkYoUUcZmU4aQ BtFAaTBUokEkFJlFMqbO9X+f33XWfT7nf577fD/3da33vt/n2WutZ+21Fe4x uPWg5HT2P1nSpYvZIcmi/z9G4liKJTXwZCzNckPgqVh6at1vwDJYMloykczY jdF/hP/3jFgaPd2zYCnUuqdiWS3ZLNlJDiynJVfg2bA0errnwm6k1j0Lltty kyUPyYulZ43uN2Fp9HS/ActJrXsuLJ8lv6UAKYjdbLkl8PxYIUvhwG/BilDr XhgrailmuZUUx0pYSgZeDCtET/eS2M3Uut+CZWXfSpHSmPauTOA5sEL0dC+D laDWvSSmc6Ws5TaSESvCGt3LYoXo6V4Yu5Fa9zJYOUt5y+2kAnaHpWLg5bFK lsqBV8TupNa9MlbFUtVSjVTHaljuCrwqVome7ndhd1DrXhHLyr7VJLUw7V3t wEtjlejpXhurQa37XZjOlTqWu0kx7E7W6F4Hq0RP98pYCWrda2N1LfUs9UkD rKGlUeD1sMaWJoE3wppS694E07Wq6+4e0gzTtdc88LxYY3q6N8caUuveCMvK vrUg2TDtXcvAa2GN6eneEstJrXtzTOfKvZZWpCrWlDW634s1pqd7E6wGte4t sdaWNpa2pB12n6V94G2wDpaOgbfHOlHr3hHrbOli6Urux7pZHgi8C9aBnu4P YPdR694e627pYelJemG9LX0C74F1oKd7H6wbte4PYH0t/Sz9yYNYJ9bo3g/r QE/3jlhvat37YA9ZBlgGkkHYYMuQwAdgQy3DAh+CDafWfRg2wjLS8jAZhY22 PBL4SGwoPd0fwQZT6z4E686+jSFjMe3duMB7YUPp6T4OG02t+yOYzpXxlgmk CzacNbqPx4bS030Y1o1a93HYRMujlknkMexxy+TAH8WmWJ4IfDI2lVr3J7An LU9ZnibTsOmWZwJ/CptCT/dnsMepdZ+MdWffZpBnMe3dc4GPxabQ0/05bDq1 7s9gOldmWmaRkdhU1ug+E5tCT/cnsNHUuj+HPW+ZbZlDXsBetMwNfDY2zzI/ 8LnYAmrd52O6VnXdLSSLMF17LwX+IDaPnu4vYS9S6z4X686+vUx6YNq7VwJ/ FptHT/dXsN7Uur+E6Vx51fIaeQpbwBrdX8Xm0dN9PjadWvdXsNctb1gWkyXY UsuywN/AllveDHwZtoJa9zexlZZVltXkLWyNZW3gq7Dl9HRfiy2l1n0Zts7y tmU9eQd71/Je4G9jy+np/h62hlr3tdj7lg2WD8hGbAVrdN+ALaen+5vYu9S6 v4dtsnxo+Yh8jH1i2Rz4h9gWy6eBb8Y+o9b9U2yr5XPLF+RL7CvLtsA/x7bQ 030b9gm17puxdezbdrID097tDPwdbAs93XdiX1Hrvg3TufK15RuyCvuMNbp/ jW2hp/un2Bpq3Xdi31p2Wb4ju7E9lu8D34X9YPkx8O+xn6h1/xHba/nZso/s x36xHAj8Z+wHerofwPZQ6/49to59+5UcxLR3hwLfgf1AT/dD2C/Uuh/AdK4c tvxGPsd+Yo3uh7Ef6On+I/YVte6HsN8tRyxHyR/YMcvxwI9gJywnAz+OnaLW /SSma1XX3WlyBtO1dzbwjdgJerqfxY5R634cW8e+/UnexrR35wI/iJ2gp/s5 7F1q3c9iOlfOW/4iP2OnWKP7eewEPd1PYr9Q634O03stvW+6QP7G9F7iYuAN sEuWy4FfxK5Q634Z03uVq5Zr5F7sH8v1wK9il+jpfh1rSq37Rexfy3+W/920 siQlRZZsx1hSwv/DLtHTPYbpsZOC+dexuI1TLKkkLSmyK6zRPQVTr1gw/zKW TK275sh0r+EGO6Ynus8gy2DjjIFrjiyTJXPgGTHdC1Cte2bsRjtmsWQl2ZIi y27JEXgWLBM93XNgGah1z4j9y77lJLkw7V3uwDVHlome7rnpn51a9xyYzhXd 97gpKcpVzh+tLXNSwqtjmejpnpn+/3COuefG9Fpfr9vzJEXJmxSZXsvmS0r4 Y1h+GxcIXHNkBal1L4DptfLNdryF6HWyrJCNCweuOYXolS/wwpgeW7Xu+TDt tfatCCnK/mvvigWei/3MT0/3Ylghat0LYzpXbrUUJ1mwgqzR/VYsPz3dC2DZ qXUvhum9bgk7liR6nysrZePSgWuOrIylbOClMb0XVa17WUzXqq6720i5pMh0 7ZUPPA0rQ0/38lgpat1LY9pr7dvt5D/+O9HeVQi8KPtZhp7uFbBkat3LYzpX 9L77jqQoN2NaW9mkhI/CytDTvSz9C1HrXgGraKlkqUzuxKpYqgZeCatmqR54 VawGte7VsbssNS21SG2sjuXuwGti1ejpfjdWhVr3qlhdSz1LfdIAa2hpFHg9 rBo93Rthdah1vxtrbGliaUruwWqwRvcmWDV6ulfHGlLr3ghrZmluaUFaYvda WgXeHGttaRN4K6wtte5tsHaW+yztSQeso6VT4Pdhrenp3gm7l1r3Vlhd9q0z 6YJp77oG3gBrTU/3rlhHat07YTpX7rd0IzWxtqzR/X6sNT3d22B1qHXvij1g 6W7pQXpivSy9A++O9bH0Dbw31o9a975Yf8uDlofIAGygZVDgD2J96Ok+COtF rXtvrC77NpgMwbR3QwPvgvWhp/tQbCC17oMwnSvDLMPJfVg/1ug+DOtDT/e+ WEdq3YdiIywjLQ+TUdhoyyOBj8TGWMYG/gg2jlr3sZiuVV1348kETNfexMDv wcbQ030iNppa90ewuuzbo6Qepr2bFPgQbAw93SdhDal1n4jpXHnM8jh5EBvH Gt0fw8bQ030sNpBa90mYPmvU54aTk6JMwfRZ2hNJCS+ITbXxk4Frjuwpat2f xPRZ3dN2nEb0OZ1suo2fCVxzptPricCfwfTYqnV/Apthx2ctz5GZSZHNsjwf +LPYVHq6P49Np9b9GWy2ZY7lBfIi9hRrdJ+DTaWn+5PYLGrdn8fsf9PNtf8z jyTzFmS+/Z8FgWuObKFlUeALMH0Wrlr3RdhLdnzZ8gp5NSmy1yyvB/4ytpCe 7q9j86l1X4DNYN/eIIsx7d2SwGdiC+npvgR7jVr31zGdK/rcf2lSlKcxrW1R UsIzYwvp6b6I/tOpdV+C6bMufW61LCnKckyf5byZlPB22Aobrwxcc2SrqHVf iele82o7vkX0OZFsjY3XBq45a+j1ZuBrMT22at3fxGawb+vI2+y/9m594Iux FfR0X4+todZ9LaZz5R3Lu+RlbBVrdH8HW0FP95XYa9S6r8d0r/89O75PdJ9f tsHGHwSuObKNlk2Bf4DpXrxq3Te5JUXX3Yfko6TIdO19HPiL2EZ6un+MbaDW /QNsBvv2CXkW095tDvxtbCM93Tdjs6h1/xjTuaLPHbYkRVmNaW2bkhK+CNtI T/dN9F9Drftm7FPLZ5at5HPsC8uXgX+GfWXZFviX2HZq3bdhOyw7LV+Tb7Bv LbsC34l9RU/3XdgX1Lp/iX1n2W3ZQ77HfrD8GPhu7Ct6uv+IfUut+y7sJ8te y89kH7adNbrvxb6ip/s27Adq3X/E9lt+sRwgv2IHLYcC/wU7bPkt8EPY79S6 /4YdsRy1/EGOYcctJwI/ih2mp/sJ7CC17oew79i3k+QUpr07Hfj32GF6up/G jlPrfgLTuXLGcpbsxH5nje5nsMP0dP8N+5Za99PYn5ZzlvPkL+yC5e/Az2EX LZcC/xu7TK37JeyK5arlGvkHu275N/Cr2EV6uv+LXaDW/W/sO/btP6IXAd+x d0nJCT+FXaSnu+Zc5LHTBfP/xXSuJJvHyFHsMmt015zL9E8K5l/C9NhHg/ma I4vbMcWSStKSI7vBkj7wFCyDJWPg6bFM1LpnxHSt6rrLnBzlRkzXXpbkhO/D MtDTPQv9b6DWPT32HfuWlezmvxPtXbbANec6/bMEno3+emzVumfBdK5kt3EO chXLxBrds7PeDPR0z4hd5xxzz4bltGMuS25yU3JkeSx5A8+F5bPkDzwvVoBa 9/xYQcvNlltIIaywpUjgN2P56OleBMtDrXterKilmOVWUhwrYSkZeDEsHz3d S2KFqXUvgpWylLaUIWWxAqzRvTSWj57u+bES1LqXxG6zlLOUJ7djFSx3BF4O q2ipFPgdWGVq3Sthd1qqWKqSalh1S43Aq2AV6eleA6tArfsdWFH27S5SE9Pe 1Qq8OFaRnu61sOrUutfAdK7UttQhN2OVWaN7bawiPd0rYYWpda+F3W2pa6lH 6mMNLA0Dr4s1sjQOvCHWhFr3xlhTyz2WZqQ51sLSMvB7sEb0dG+JNaDWvSFW lH27l7TCtHetA6+JNaKne2usBbXuLTGdK20sbUkVrAlrdG+DNaKne2OsOrXu rbF2lvss7UkHrKOlU+D3YZ0tXQLvhHWl1r0LpmtV1939pBuma++BwMtinenp /gDWkVr3TlhR9q07KYZp73oE3grrTE/3HlgJat0fwHSu9LT0IvdgXVmje0+s Mz3du2AtqHXvgemzLn1u1Ts5Sh9Mn+X0TU645sj62bh/4Joje5Ba9/6YPit6 yI4DiD4nkg208aDANWcgvfoGPgjTY6vWvS822I5DLEPJsOTIhltGBD4E60dP 9xHYQGrdB2EjLQ9bRpHR2IOs0f1hrB893ftjw6l1H4Hps95H7DiG6HNe2Vgb jwtcc2TjLRMCH4fps1jVuk/AJtrxUcsk8lhyZI9bJgf+KDaenu6TsbHUuo/D BrNvU8gTmPZuauDDsPH0dJ+KPU6t+2RM54o+d34yOcpDmNY2ITnh2bDx9HSf QP+B1LpPxfRZlz63eio5ytOYPsuZlpzwO7HpNn4mcM2RzaDW/RlM95qfteNz RJ8TyWbaeFbgmjOTXtMCn4XpsVXrPg0bzL49T2az/9q7OYE/gU2np/scbCa1 7rMwnSsvWF4kj2IzWKP7C9h0ero/gz1OrfscTPf659pxHtF9ftl8Gy8IXHNk Cy2LAl+A6V68at0XuSVH191L5OXkyHTtvRL4aGwhPd1fweZT674AG8y+vUqG YNq71wKfjS2kp/tr2HBq3V/BdK7oc4fXk6M8i2lti5ITPgFbSE/3RfSfSa37 a5ju9eu+/RvJURZjupe9JDnhmiNbauNlgWuObDm17ssw3Wt7044riO6Ty1ba eFXgmrOSXksCX4XpsVXrvgRbbce3LGvI2uTI1lneDvwtbCk93d/GVlLrvgpb b3nH8i55D1vOGt3fwZbS030Zto5a97cx3et8344biO5zyj6w8cbANUe2yfJh 4Bsx3Yv83z1S/EPsIzt+bPmEbE6ObIvl08A/xjbR0/1T7ANq3Tdiq9m3z8hW THv3eeBrsU30dP8c20Kt+6eYzhXdd/0iOcqbmNb2YXLCP8I20dP9Q/qvpNb9 c0yf9epz2y+To3yF6bPMbckJ74ltt/GOwDVHtpNa9x2YPiv92o7fEH1OKvvW xrsC15xv6bUt8F2YHlu17tuw1ezbd2Q3+6+92xP4Vmw7Pd33YN9S674L07ny veUH8jG2kzW6f49tp6f7DmwLte57MP2uw492/Ino9xxke238c+CaI9tn2R/4 z5h+F0G17vsxXau67n4hB5Ij07X3a+DvYfvo6f4rtpda95+x1ezbQfIWpr07 FPhubB893Q9h66h1/xXTuaLfuzicHOVrTGvbn5zwDtg+errvp/+31LofwvSz Rt+b+C05yu+YvktwJDnhL2BHbfxH4JojO0at+x+Yvqtw3I4nyKvpIjtp41OB a85Jeh0J/BSmx1at+xHstB3PWM6SP5MjO2c5H/gZ7Cg93c9jJ6l1P4X9Zblg +ZtcxI6xRvcL2FF6uv+BnaPW/Tym91qX7HiZPMrvJF6x8dXANUd2zfJP4Fcx fRdIte7/YNft+K/lP6IvZ8uS7JgcS/i/2DV6uidjV6h1v4qdZt9isSjxWGTa u5RYwv/ErtHTPYX+SdS6a45M54q+95Qai3Kcc0pr0xrdp2HXeFz3f3jMk5xj 7poj07023TdLi0W5IRaZ7iWljyX8diyDjTMGrjmyTNS6Z8R0ryqzHW8kuk8l y2LjrIFrThZ6pQ88K6bHVq17ekx7rX3LRrKz/9q7HIHH2c8M9HTPgWWh1j0r pnMlpx1zEZ0nskys0T0n681AT/eMWBK17jkw3WvObcebiO4z/+/+s43zBq45 snyW/IHnxXQvWLXu+bG/uO4KxKIUjEWma+/mWMIvYvno6X6z96fWPS+mvda+ 3ULO8N+J9q5Q4NnZz3z0dC+EneNnlPvNmM4V3fcuHIuSmXNKa8sfS3ghLB89 3fPTPwu1/z8f03st/d5UkViUoph+l6hYLOGjsFttXDxwzZGVoNa9OKbfVSpp x1JEv6ckK23jMoFrTml6FQu8DKbHVq17MaysHW+zlCPlY5HdbqkQ+G3YrfR0 r4CVpta9DHaHpaKlEqmMlWCN7hWxW+npXhy7nVr3Cphea95pxypEv2coq2rj aoFrjqy6pUbg1TD9LqBq3Wtgd9mxpqUWqR2LrI7l7sBrYtXp6X43VpVa92pY WfatLqmHae/qB14eq05P9/pYHWrd78Z0ruj3HhvEopTEtLYasYQPwKrT070G /UtT614f071m3TduGIvSCNO91MaxhHfAmti4aeCaI7uHWvemmO7VNrNjc6L7 tP+7/2/jloFrTgt6NQ68JabHVq17Y6ws+3YvacX+a+9aB14Pa0JP99ZYC2rd W2I6V9pY2pKa2D2s0b0N1oSe7k2xOtS6t8b0WUs7O95H9DmLrL32PHDNkXW0 dAq8A6bPQlTr3gnTtarrrjPpEotM117XwCtjHenp3hVrT617B6ws+3Y/uQ3T 3nULvBXWkZ7u3bDbqXXviulc0ec+D8SiNMO0tk6xhDfHOtLTvRP9W1Dr3g3T a03dt+8ei3KJ16S6l90jlnDNkfW0ca/ANUd2hdeo7r0w3WvrrXryMNbXxv0C 15y+9OoReD9Mj61a9x5Yfx0tD5EBscgGWgYF/iDWk57ug7C+1Lr3w67zuncw GYJpbb0CT8d6e9LTvRf9B1LrPgjTc62eN4cS3eeU6blkWOCaIxuumsCHYboX qVr3EZjO9ZHad6LnKdkoy+jAR2LD6ek+GitBrfswrD/79ggZg2nvxgY+ABtO T/ex2Chq3UdjOld033VcLEpvTGsbEUv4y9hwerqPoH9fat3HYvpZo89tx8ei tMP0WeaEWMLrYxNt/GjgmiNrT637o5g+K51kx8eIPieVPW7jyYFrzuP0mhD4 ZEyPrVr3CVh/9m0KeYL9195NDXwMNpGe7lOxx6l1n4zpXNHPvSfJSKw9a3Tv gk2kp/uj2Chq3adieq+l901PkXK8J9N7iacD1xzZNMv0wJ/G9LsIqnWfjula 1XX3DNH7FJmuvRmBa85Aej0d+AwsE7XuT2P92bdnyYOY9u65wJ/AptHT/Tls ILXuMzCdK/q9i5mxKJMwrW16LOHVsGn0dJ9O/8epdX8O02tN3becFYtyJ6Z7 ec/HEq45stk2nhO45siqUus+B9O9whfs+CLRfULZXBvPC1xz5tLr+cDnYXps 1bo/j8234wLLQrIoFtlLlpcDX4DNpqf7y9hcat3nYXqto9e9r5BXsaqs0b02 Npue7nOwl6h1fxnTvTbdN3stFkX3+WW6l/R6LOGaI3vDxosD1xyZ7sW/H/RZ jOm97hIbLyUXsGU2Xh645iyj1+uBL8f02Kp1fx2bz769SVaw/9q7lYEvwt6g p/tKbBm17ssxnSv63GFVLMoLmNa2OJbwzdgb9HRfTP+51LqvxHSvQb+3tjoW JTem3+V6K5bwm7A1Nl4buObI8lDrvhbT75qss+PbRL8nJltv43cC15z19Hor 8HcwPbZq3d/C5rNv75L32H/t3fuBr8DW0NP9fWw9te7vYDpXdN9jA1mC5WGN 7gVZ7xp6uq/FllHr/j6m91p63/QB0e/5yPReYmPgmiPbZPkw8I2YfhdHte4f YrpWdd19RPQ+RaZr7+PAX8U20dP9Y+weat03YvPZt0/IAkx7tznw97BN9HTf jL1ErfvHmM4V/d7RlliUdZjW9mEs4d2wTfR0/5D+66l134zpd030dws/jUX5 DNPf8tsaS3gF7HMbfxG45si+pNb9C6yo1Xxlx22kTrrIttt4R+Cas51eWwPf gemxVeu+Fdtpx68t35BvY5HtsnwX+NfY5/R0/w7bTq37Dmy3ZY/le/ID9iVr dN+DfU5P9y+wXdS6f4fps/Yf7fgT0d/5lO218c+Ba45sn2V/4D9j+lucqnXf j/1ixwOWX8nBWGSHLIcDP4Dto6f7YWwvte4/YzvZt9/I75j27kjg32L76Ol+ BDtErfthrGi66O+OHo1F+QrT2vbHEl4c20dP9/30306t+xFM37XQ9yb+iEU5 hum7BMdjCf8VO2Hjk4FrjuwUte4nMX1X4bQdz3iSIjtr4z8D15yz9Doe+J+Y Hlu17sexnezbOXKe/dfe/RX479gJerr/hZ2l1v1PTOfKBcvf5AB2ijW6X8BO 0NP9JHaIWve/MH3X6KIdLxF9z0h22cZXAtcc2VXLtcCvYPoukGrdr2G6VnXd /UOuxyLTtfdv4D9gV+np/i92mVr3K9hO9u0/8jWmvdMfRHY/j12lp7vmXOWx vw78X0znir73lBSPchrT2rRG92+wq/R0v8Zj6rFPB/M1R6bP2vV3A5LjUWLx yPRd+ng84S2xFBunBq45sjRq3VMxfVf/BjumJ/qeviyDjTMGrjkZ6BUPPCOm x1atexzLZMfMlhtJlnhkWS3ZAs+MpdDTPRuWgVr3jFh2Sw5LTpILS2ON7jmw FHq6p2JZqXXPhul3DXPb8Saiv7Mhy2PjvIFrjiyfJX/geTH9LQzVuufHCtix oOVmcks8skKWwoEXxPLR070wloda97xYJvatCCmKae+KBZ4Fy0dP92JYIWrd C2M6V/R3P26NR7kB09ryxxNeG8tHT/f89M9ArXsxTN810veGisejlMD0XZqS 8YSnYaVsXDpwzZGVoda9NKbv6pS1421E39ORlbNx+cA1pxy9SgZeHtNjq9a9 JJaJfbudVGD/tXd3BF4UK0VP9zuwctS6l8d0rlS0VCIFsTKs0b0iVoqe7qWx QtS634Hpu3aV7Xgn0ffsZFVsXDVwzZFVs1QPvCqm78Kp1r06pmtV110Nclc8 Ml17NQPPhVWjp3tNrAq17lWxTOxbLZIZ097VDrwCVo2e7rWxrNS618R0ruh7 f3XiUcpiWlv1eML/warR0706/ctR614b02tN/d7m3fEoep0p0+8y1o0nXHNk 9WxcP3DNkem1oGrd62P6XasGNm5I9HuSskY2bhy45jSiV93AG2N6bNW618Wa 2LGp5R7SLB5Zc0uLwJti9ejp3gJrRK17Y0yvdfS6t2U8yr2Y1lY/nvCDWD16 utenf3Nq3Vtgeq7V82Yrot9zk+m5pHXgmiNrY2kbeGtMv4umWve2mM71dpb7 iJ6nZO0tHQJvh7Whp3sHLI1a99ZYE/atI+mEae86B94Ma0NP985Ye2rdO2A6 V/R7d13iURpgWlvbeMIPYG3o6d6W/o2ode+M6WeNvrfbNR6lMqbvst4fT/hf WDcbPxC45siqUOv+AKbvyna3Yw+i78nKetq4V+Ca05Ne9wfeC9Njq9b9fqwJ +9ab9GH/tXd9A++EdaOne1+sJ7XuvTCdK/q514+0w6qwRve7sG70dH8Aa0+t e19M77X0vql/PIq+5y7Te4kH4wk/xvuLh2w8IHDNkem76Kp1H+AWi667geQC 71907Q0KXHOa0+vBwAdhp3iP4/4g1oR9G0yasv/auyGB98Eeoqf7EKw5te6D MJ0r+t790HiU7pjWNiCe8GPYQ/R0H0D/ntS6D8H0WlPfWxkWj5Ib03c5hscT rjmyETYeGbjmyPJQ6z4S03dFHrbjKKLvichG2/iRwDVnNL2GB/4IpsdWrftw bIwdx1rGkfHxyCbosQMfi42gp/tEbDS17o9geq2j172PkklYHtbofgs2gp7u I7EJ1LpPxHSvTffNHotH0fe8ZLqX9Hg84Zojm2zjKYFrjkzfxVKt+xRM73Wf sPFUsof3v0/a+KnANedJej0e+FOYHlu17o9jY9i3p8k09l97Nz3w8dhkerpP x56k1v0pTOeKvnf2TDzKw5jWNiWe8MewyfR0n0L/0dS6T8d0r0F/t2RGPMpF 7knob3k8G0/459hzNp4ZuObILnOPwn0mpr81MMvGzxP9nRDZbBvPCVxzZtPr 2cDnYHps1bo/i41h314gL7L/2ru5gU/DnqOn+1xsNrXuc7Dd3PeYF4/yBKa1 zYwn/Dr2HD3dZ9L/SWrd52J6r6X3TfOJ/s6DTO8lFgSuObKFlkWBL8D0txhU 674I07Wq6+4lovcpMl17Lwc+CVtIT/eXsTLUui/AxrBvr5CxmPbu1cBfxBbS 0/1VbAK17i9jOlf0dydei0eZhWlti+IJ1xzZQnq6L6L/bGrdX8WSoltB6V6P R3kD079ltTie8Di2xAZLA9cc2TJq3Zdi+rd2ltvxTaJ/J0u2wsYrA9ecFfRa HPhKTI+tWvfF2Co7rra8RdbEI1trWRf4amwJPd3XYSuodV+JvW1Zb3mHvIst Y43u67El9HRfiq2l1n0dVld//8qO75N66SLbYOMPAtcc2UbLpsA/wPRvEanW fRP2oR0/snxMPolHttmyJfCPsI30dN+CbaDW/QNsFfv2KfkM095tDXwNtpGe 7luxzdS6b8F0rujfXfo8HmU5prVtiie8GbaRnu6b6L+CWvet2BeWLy1fkW3Y dsuOwL/Edlq+DnwH9g217l9j31p2Wb4ju7E9lu8D34XtpKf799h2at13YKvY tx/Ij5j27qfAP8N20tP9J2wPte7fYzpX9lp+Jh9h37BG973YTnq6f41tptb9 J2yfZb/lF3IA+9VyMPD92CHL4cAPYr9R634Y07Wq6+53cgTTtXc08HexQ/R0 P4r9Sq37QWwV+/YHWY1p744F/iN2iJ7ux7C11LofxXSuHLecILuw31ij+3Hs ED3dD2N7qHU/hulvbevfjToZj3IK07+ldDqe8EHYGRufDVxzZH9S634W07/V dM6O54n+nSbZXza+ELjm/EWv04FfwPTYqnU/jf1tx4uWS+RyPLIrlquBX8TO 0NP9KvYXte4XsGuWfyzXyb/Yn6zR/R/sDD3dz2JXqHW/iulvTf5nx//98cqU 6N9ZkyXZODkl4Zoji1nigSdj+rfQVOsex1LsmGpJIzekRJbekiHwVCxGT/cM WBK17snY3+xbxpQomTDtXeaUhF/GYvR0z0z/9NS6Z8B0rujffbsxJco5zimt LZ6S8PuxGD3d4/T/i3PMPTOWxY5ZLdlI9pTIclhyBp4Vy2XJHXhO7CZq3XNj eSx5LflIfqyApWDgebFc9HQviOWg1j0npr3Wvt1MbsG0d4UCz8R+5qKneyGs ALXuBTGdK4UtRUgqdhNrdC+M5aKne24sPbXuhbCilmKWW0lxrISlZODFsFKW 0oGXxMpQ614au8Z1VzYlym2Yrr1yKQn/FytFT/dy9C9BrXtJTHutfStPLvLz R3t3e+C3sJ+l6Ol+O3aFn1Hu5TCdKxUsdxCdJ3lYW+nAK2Cl6OleGitArfvt mF5r6t9tqZgSRa8zZfq3TCqlJPxvrLKN7wxcc2R6Laha9zsx/VsLVWxclejf SZFVs3H1wDWnGr0qBV4d02Or1r0SVsOOd1lqklopkdW21An8LqwyPd3rYNWo da+O6bWOXvfenRKlLqa13ZmS8E+wyvR0v5P+tal1r4PpuVbPm/VSoujfuZDp uaR+SsJP8fzSwMYNA9ccmf4tCtW6N8R0rjeycWPyD89fTWzcNHDNaUKv+oE3 xf7kOc69PlaDfbuHNGP/tXfNA6+FNaCne3OsCbXuTTGdK/p3N1qkRKmCaW0N UxJeDmtAT/eG9K9GrXtzTD9rWlruJcWwVpbWgbfE2ljaBt4aK0Gte1usneU+ S3vSAeto6RT4fVgberp3wlpR694aq8G+dSZdMO1d18CbYW3o6d4V60iteydM 54p+7t1PGmElWKP7bay3DT3d22JNqHXvium9lt43dUuJ8gCm9xLdUxK+Deth 456Ba46sF7XuPTFdq7ruehO9T5Hp2usTuObUplf3wPtgemzVunfHarBvfcld 7L/2rl/gXbAe9HTvh9Wm1r0PpnOlv+VBch/WizW698d60NO9J9aRWvd+mF5r 6u+WP5QS5T9ek+pveQ9ISbjmyAbaeFDgmiNLotZ9EKa/FT7YjkOI/k64bKiN hwWuOUPpNSDwYZgeW7XuA7DhdhxhGUkeTolslGV04COwgfR0H40NpdZ9GKbX Onrd+wgZgyWxRvcbsIH0dB+EjaLWfTSme226bzY2JYr+zr9M95LGpSRcc2Tj bTwhcM2R6W/xq9Z9Aqb3uhNt/CjRfSrZJBs/FrjmTKLXuMAfw/TYqnUfhw1n 3x4nk9l/7d2UwB/GxtPTfQo2iVr3xzCdK/p3B55IiTIY09ompCT8VWw8Pd0n 0H8ote5TMN1rmGrHJ4nuM8iesvHTgWuObJpleuBPY7oXoFr36dgzdpxheZY8 lxLZTMuswGdg0+jpPgt7ilr3p7Hh7NvzZDamvZsT+GRsGj3d52AzqXWfhelc 0X2PF1KiTMS0tukpCT+CTaOn+3T6T6LWfQ6m91p63/QimYvpvcS8wLNj8y0L Ap+HLaTWfQGma1XX3SJSGNO191LgY7D59HR/CbuJWvd52HD27WUyAtPevRL4 bGw+Pd1fwUZR6/4SpnPlVctrZAa2kDW6v4rNp6f7Amwmte6vYDrXdd/s9ZQo b2C6l7Q4JeEHsCU2Xhq45siWUeu+FNO9quV2fJPoPpVshY1XBq45K+i1OPCV mB5bte6LsVV2XG15i6xJiWytZV3gq7El9HRfh62g1n0l9rZlveUd8i62jDW6 r8eW0NN9KbaWWvd1mF7rvGfH94nuM8s22PiDwDVHttGyKfAPMN0LVq37JuxD O35k+Zh8khLZZsuWwD/CNtLTfQu2gVr3D7BV7Nun5DNMe7c18DXYRnq6b8U2 U+u+BdO5ovven6dEWY5pbZtSEr4b20hP9030X0Gt+1bsC+255SuyDdtu2RH4 l9hOy9eB78C+odb9a+xbyy7Ld2Q3tsfyfeC7sJ30dP8e206t+w5sFfv2A/kR 0979FPhn2E56uv+E7aHW/XtM58pey8/kI+wb1ui+F9tJT/evsc3Uuv+E7bPs t/xCDmC/Wg4Gvh87ZDkc+EHsN2rdD2O6VnXd/U6OYLr2jgb+LnaInu5HsV+p dT+IrWLf/iCrMe3dscB/xA7R0/0YtpZa96OYzpXjlhNkF/Yba3Q/jh2ip/th bA+17scw/azR+6aT5D1M7yVOBa45stOWM4GfwjZQ634G03uVs5Y/SX/snOV8 4Gex0/R0P4/1otb9FPaX5YLlb3IRu2S5HPgF7DQ93S9j56h1P4/pXNfPvSvk KraBNbp/gp2mp/sZ7BK17pcx3Wu4ZvmHtMSuW/4N/Br2X4r+GFrC/8VaUeuu ObIkOyZbYiSeGlmKJTXwZOw/erqnYnrseDD/X+wv9i0tNcoNqZFp79KnJvwi pl6pgaenfwq17qn859G5ovseGVKjnOX8acUa3Ttg//G47unof45zzF1zZBnt mMmSmdyYGlkWS9bAM2HZLNkDz4rloNY9O5bTksuSm9yE5bHkDTwXlo2e7nmx LNS6Z8W019q3fCQ/pr0rEPgN7Gc2eroXwPJQ654X07lS0HIzScZysEb3glg2 erpnx1KodS+A6blWz5u3pEYphOm5pHBqwrdhRWxcNHDNkRWj1r0o9iHX3a2p UfZy/eraK56a8KtYEXq6F6e/Hntv0Kcwpr3WvpUgFzDtXcnA87OfRejpXhK7 xM8o9+KYzpVSltIkF+dPMdboXgorQk/3olgeat1LYvpZo89NyqRGucbPH32W UDY14cWx22xcLnDNkV3nZ5R7OUyfVZS38e2kAlbBxncErjkV6FU28DswPbZq 3ctiFe1YyVKZ3JkaWRVL1cArYbfR070qVoFa9zswnev6uVeNVMe0tnKBx7Hb 6Olejv5VqHWvium9bg073kX0OaOspo1rBa45stqWOoHXwvRZoGrd62B327Gu pR6pnxpZA0vDwOtitenp3hCrSa17Lawi+9aINMa0d00CvxOrTU/3JlgDat0b YjpX9Lln09Qo5TGtrU5qwvNjtenpXof+Fah1b4LdY2lmaU5aYC0t9wbeDGtl aR34vVgbat1bY20t7Sz3kfZYB0vHwNthrejp3hFrSa37vVhF9q0T6Yxp77oE 3hhrRU/3LlgHat07YjpXulruJ3WxNqzRvSvWip7urbEG1Lp3wfRcq+fNbuQB TM8l3QO/Eeth6Rl4d6wXte49MV2ruu56k4KYrr0+gVfHetDTvQ+Wg1r37lhF 9q0vqYRp7/oF3hnrQU/3flgVat37YDpX+lseJO2wXqzRvT/Wg57uPbEO1Lr3 w/SzRvfNHkqNUgPTvaQBqQmfiw208aDANUdWk1r3QZjuVQ224xCi+1SyoTYe FrjmDKXXgMCHYXps1boPwIbbcYRlJHk4NbJRltGBj8AG0tN9NDaUWvdhmM51 /dx7hIzBarJG9/rYQHq6D8JGUes+GtO9Nt03G5saRfeZZbqXNC414ZojG2/j CYFrjkz3gqcGfSZgeq870caPkvXYJBs/FrjmTKLXuMAfw/TYqnUfhw1n3x4n k9l/7d2UwB/GxtPTfQo2iVr3xzCdK7rv/URqlMGY1jYhNeHPYePp6T6B/kOp dZ+C6V7DVDs+SXSfQfaUjZ8OXHNk0yzTA38a070A1bpPx56x4wzLs+S51Mhm WmYFPgObRk/3WdhT1Lo/jQ1n354nszHt3ZzAJ2PT6Ok+B5tJrfssTOeK7nu8 kBplIqa1TU9N+BFsGj3dp9N/ErXuczA91+p580UyF9NzybzAW2DzLQsCn4ct pNZ9AaZrVdfdItIV07X3UuBjsPn0dH8Ja0Ot+zxsOPv2MhmBae9eCXw2Np+e 7q9go6h1fwnTufKq5TUyA1vIGt1fxebT030BNpNa91cwneu6b/Z6apQ3MN1L Wpya8APYEhsvDVxzZMuodV+K6V7Vcju+SXSfSrbCxisD15wV9Foc+EpMj61a 98XYKjuutrxF1qRGttayLvDV2BJ6uq/DVlDrvhJ727Le8g55F1vGGt3XY0vo 6b4UW0ut+zpM73Xfs+P7RPeZZRts/EHgmiPbaNkU+AeY7gWr1n0T9qEdP7J8 TD5JjWyzZUvgH2Eb6em+BdtArfsH2Cr27VPyGaa92xr4GmwjPd23Ypupdd+C 6VzRfe/PU6Msx7S2TakJ341tpKf7JvqvoNZ9K7Ypna3H8kVqlC+xz/R3q1IT /jG2TfsauObIdlDrvh1bqb9RZcevPeki+0brCFxzvqHXV4F/i+mxVev+FbaK fdtFvmP/tXe7A/8M20ZP993YN9S6f4vpXNlj+Z58hO1gje57sG30dN+ObabW fTf2uq3hBzv+SN5IF9lPNt4buObIfrbsC3wvtjRdVOu+D9O1qutuP/klNTJd ewcCfxf7mZ7uB7CfqHXfi61i334lqzHt3cHAv8N+pqf7QWwtte4HMJ0rb1kO pUbZiWlt+1IT/hb2Mz3d99H/G2rdD2L6WaP7ZofJe5juJf0WuObIfrccCfw3 bAO17kcw3as6avmDlMKOWY4HfhT7nZ7ux7Fi1Lr/hp2wnLScIqexM5azgZ/E fqen+1nsGLXuxzGd6/q59yc5h21gje6fYL/T0/0IdoZa97OY3uuet/xFMmEX LH8Hfh67aLkU+N9YFmrdL2GXLVcsV8k17B/L9cCvYBfp6X4du0Ct+9/YCfbt X/Ifpr1Ll5bw09hFerprzkUe+7/Ar2M6V3TfOyktylEsC2t0vwm7SE/3S5ge +2gwX3Nk39pwtyU5LUosLbKf9P2CtITvxlJsnBq45sjSqHVPxbZazQ12TE8O p4ssg40zBq45GegVDzwjpsdWrXscO8G+ZUqLkjktMu3djWkJ/w9Loaf7jfTP QK17RkznShY7ZiVXOH/SWKN7FtabQk/3VOwfzjH3GzE91+p5M1talA/TRabn kuxpCdccWQ4b5wxcc2SfpItq3XO6cd3lSouyh+tX117utISfw3LQ0z03/fXY e4I+2THttfbtJnIS097lCTwz+5mDnu55MD22at1zYzpXvrTkTYtyA+eU1pYz LeFfYjno6Z6T/hmodc+D6WeN7pvlS4tynp8/upeUPy3hD2AFbFwwcM2RXeBn lHtBTPeqbrbxLaQ/VsjGhQPXnEL0yh94YUyPrVr3/FgROxa1FCO3pkVW3FIi 8KJYAXq6l8AKUeteGLvMz72SaVFKYVpbwbSEX8MK0NO9IP2LU+teAtN73dJ2 LEN0n1lW1sa3Ba45snKW8oHfhulesGrdy2O327GC5Q5SMS2ySpbKgVfAytHT vTJWllr327Ai7NudpAqmvasa+K1YOXq6V8UqUeteGdO5ovve1dKi3IxpbeXT Et4eK0dP9/L0L0Ste1Xsd7tm/rBUT4tSAztluSst4X9gNW1cK3DNkdWm1r0W ttdq6tjxbnI+XWR1bVwvcM2pS6+7Aq+H6bFV634XVoR9q08asP/au4aBV8Fq 0tO9IVaXWvd6mM6VRpbGpAJWmzW6N8Jq0tO9FlaJWveGmJ5r9bzZhOxKF5me S5oGrjmyeyzNAm+K7UkX1bo3w3St6rprTvQ8JdO11yJwzSlOr6aBt8DSqHVv ihVh31qSopj27t7AG2D30NP9Xqw4te4tMJ0r+y2t0qLUwbS2ZmkJ34/dQ0/3 ZvSvS637vf6fJzW6b9Y6LUppTPeS2qQlfC7W1sbtAtccWVlq3dthuld1nx3b E92nknWwccfANacDvdoE3hHTY6vWvQ3WyY6dLV1I17TI7rd0C7wz1pae7t2w DtS6d8R0ruvn3gOkO1aWNbpXxNrS070ddj+17t0w3WvTfbMeaVF0n1mme0k9 0xKuObJeNu4duObIdC94atCnN6b3un1s3Jesx/rZuH/gmtOPXj0D74/psVXr 3hPrxL49SB5i/7V3AwLvivWip/sArB+17v0xnSu67z0wLcp9mNbWOy3hz2G9 6Onem/4dqHUfgOlewxLLoLQous8gW2EZnJbwJdgQGw8NXHNkuhegWveh2PtW M8zGw8mGdJGNsPHIwDVnBL0GBz4S02Or1n0w1ol9e5iMYv+1d6MDfwgbQk/3 0dgIat1HYjpXdN/jkbQofTCtbWhawn/BhtDTfSj9+1HrPhrTc62eN8eQI+ki 03PJ2MA1RzbOMj7wsdixdFGt+3hM16quuwlEz1MyXXsTA++OjaOn+0SsNrXu Y7FO7NujpDOmvZsU+ChsHD3dJ2H3U+s+EdO5csbyWFqUYZjWNj4t4WewcfR0 H0//EdS6T8L+D5xUQL0= "]], Annotation[#, "Geometry"]& ]}], MouseAppearanceTag["LinkHand"]], AllowKernelInitialization->False], "MeshGraphics3D", AutoDelete->True, Editable->False, Selectable->False], Boxed->False, DefaultBaseStyle->{ "MeshGraphics3D", FrontEnd`GraphicsHighlightColor -> Hue[0.1, 1, 0.7]}, ImageSize->{146.89453125, 65.}, Lighting->{{"Ambient", GrayLevel[0.45]}, {"Directional", GrayLevel[0.3], ImageScaled[{2, 0, 2}]}, {"Directional", GrayLevel[0.33], ImageScaled[{2, 2, 2}]}, {"Directional", GrayLevel[0.3], ImageScaled[{0, 2, 2}]}}, Method->{"ShrinkWrap" -> True}, ViewPoint->{-0.8210990470283575, -1.5825192155271903`, \ -2.8760092641464716`}, ViewVertical->{-0.0560615742118108, -0.9954523220018678, \ -0.0770180142433145}]\); |
The core of the computation is a 3D diffusion PDE term, with a “diffusion coefficient” given by a rank-4 tensor parametrized by Young’s modulus (here Y) and Poisson ratio (ν):
✕
pdeterm = DiffusionPDETerm[{{u[x, y, z], v[x, y, z], w[x, y, z]}, {x, y, z}}, Y/(1 + \[Nu]) { {{ {(1 - \[Nu])/(1 - 2 \[Nu]), 0, 0}, {0, 1/2, 0}, {0, 0, 1/2} }, { {0, \[Nu]/(1 - 2 \[Nu]), 0}, {1/2, 0, 0}, {0, 0, 0} }, { {0, 0, \[Nu]/(1 - 2 \[Nu])}, {0, 0, 0}, {1/2, 0, 0} }}, {{ {0, 1/2, 0}, {\[Nu]/(1 - 2 \[Nu]), 0, 0}, {0, 0, 0} }, { {1/2, 0, 0}, {0, (1 - \[Nu])/(1 - 2 \[Nu]), 0}, {0, 0, 1/2} }, { {0, 0, 0}, {0, 0, \[Nu]/(1 - 2 \[Nu])}, {0, 1/2, 0} }}, {{ {0, 0, 1/2}, {0, 0, 0}, {\[Nu]/(1 - 2 \[Nu]), 0, 0} }, { {0, 0, 0}, {0, 0, 1/2}, {0, \[Nu]/(1 - 2 \[Nu]), 0} }, { {1/2, 0, 0}, {0, 1/2, 0}, {0, 0, (1 - \[Nu])/(1 - 2 \[Nu])} }} }, <|Y -> 10^9, \[Nu] -> 33/100|>]; |
There are boundary conditions to specify how the spoon is being held, and pushed. Then solving the PDE (which takes just a few seconds) gives the displacement field for the spoon
✕
dfield = deformations = NDSolveValue[{pdeterm == {0, NeumannValue[-1000, x <= -100], 0}, DirichletCondition[{u[x, y, z] == 0., v[x, y, z] == 0., w[x, y, z] == 0.}, x >= 100]}, {u, v, w}, {x, y, z} \[Element] spoon]; |
which we can then use to find how the spoon would deform:
✕
Show[MeshRegion[ Table[Apply[if, m], {m, MeshCoordinates[spoon]}, {if, deformations}] + MeshCoordinates[spoon], MeshCells[spoon, MeshCells[spoon, {2, All}]]], Graphics3D[Style[spoon, LightGray]]] |
PDE modeling is a complicated area, and I consider it to be a major achievement that we’ve now managed to “package” it as cleanly as this. But in Version 12.2, in addition to the actual technology of PDE modeling, something else that’s important is a large collection of computational essays about PDE modeling—altogether about 400 pages of detailed explanation and application examples, currently in acoustics, heat transfer and mass transport, but with many other domains to come.
Just Type TEX
The Wolfram Language is all about expressing yourself in precise computational language. But in notebooks you can also express yourself with ordinary text in natural language. But what if you want to display math in there as well? For 25 years we’ve had the infrastructure to do the math display—through our box language. But the only convenient way to enter the math is through Wolfram Language math constructs—that in some sense have to have computational meaning.
But what about “math” that’s “for human eyes only”? That has a certain visual layout that you want to specify, but that doesn’t necessarily have any particular underlying computational meaning that’s been defined? Well, for many decades there’s been a good way to specify such math, thanks to my friend Don Knuth: just use TEX. And in Version 12.2 we’re now supporting direct entry of TEX math into Wolfram Notebooks, both on the desktop and in the cloud. Underneath, the TEX is being turned into our box representation, so it structurally interoperates with everything else. But you can just enter it—and edit it—as TEX.
The interface is very much like the += interface for Wolfram|Alpha-style natural language input. But for TEX (in a nod to standard TEX delimiters), it’s +$.
Type +$ and you get a TEX input box. When you’ve finished the TEX, just hit and it’ll be rendered:
Like with +=, if you click the rendered form, it’ll go back to text and you can edit again, just as TEX.
Entering TEX in text cells is the most common thing to want. But Version 12.2 also supports entering TEX in input cells:
What happens if you + evaluate? Your input will be treated as TraditionalForm, and at least an attempt will be made to interpret it. Though, of course, if you wrote “computationally meaningless math” that won’t work.
Just Draw Anything
Type Canvas[] and you’ll get a blank canvas to draw whatever you want:
✕
Canvas[] |
We’ve worked hard to make the drawing tools as ergonomic as possible.
Applying Normal gives you graphics that you can then use or manipulate:
✕
GraphicsGrid[ Partition[ Table[Rasterize[Rotate[Normal[%], \[Theta]], ImageSize -> 50], {\[Theta], 0, 2 Pi, .4}], UpTo[8]], ImageSize -> 500] |
✕
GraphicsGrid[ Partition[ Table[Rasterize[Rotate[Normal[%], \[Theta]], ImageSize -> 50], {\[Theta], 0, 2 Pi, .4}], UpTo[8]], ImageSize -> 500] |
When you create a canvas, it can have any graphic as initial content—and it can have any background you want:
✕
Canvas[Graphics[ Style[Disk[], Opacity[.4, Red], EdgeForm[{Thick, Red}]]], Background -> GeoGraphics[ Entity["MannedSpaceMission", "Apollo16"][ EntityProperty["MannedSpaceMission", "LandingPosition"]]]] |
On the subject of drawing anything, Version 12.2 has another new function: MoleculeDraw, for drawing (or editing) molecules. Start with the symbolic representation of a molecule:
✕
Molecule[Entity["Chemical", "Caffeine"]] |
Now use MoleculeDraw to bring up the interactive molecule drawing environment, make an edit, and return the result:
It’s another molecule now:
The Never-Ending Math Story
Math has been a core use case for the Wolfram Language (and Mathematica) since the beginning. And it’s been very satisfying over the past third of a century to see how much math we’ve been able to make computational. But the more we do, the more we realize is possible, and the further we can go. It’s become in a sense routine for us. There’ll be some area of math that people have been doing by hand or piecemeal forever. And we’ll figure out: yes, we can make an algorithm for that! We can use the giant tower of capabilities we’ve built over all these years to systematize and automate yet more mathematics; to make yet more math computationally accessible to anyone. And so it has been with Version 12.2. A whole collection of pieces of “math progress”.
Let’s start with something rather cut and dried: special functions. In a sense, every special function is an encapsulation of a certain nugget of mathematics: a way of defining computations and properties for a particular type of mathematical problem or system. Starting from Mathematica 1.0 we’ve achieved excellent coverage of special functions, steadily expanding to more and more complicated functions. And in Version 12.2 we’ve got another class of functions: the Lamé functions.
Lamé functions are part of the complicated world of handling ellipsoidal coordinates; they appear as solutions to the Laplace equation in an ellipsoid. And now we can evaluate them, expand them, transform them, and do all the other kinds of things that are involved in integrating a function into our language:
✕
Plot[Abs[LameS[3/2 + I, 3, z, 0.1 + 0.1 I]], {z, -8 EllipticK[1/3], 8 EllipticK[1/3]}] |
✕
Series[LameC[\[Nu], j, z, m], {z, 0, 3}] |
Also in Version 12.2 we’ve done a lot on elliptic functions—dramatically speeding up their numerical evaluation and inventing algorithms doing this efficiently at arbitrary precision. We’ve also introduced some new elliptic functions, like JacobiEpsilon—which provides a generalization of EllipticE that avoids branch cuts and maintains the analytic structure of elliptic integrals:
✕
ComplexPlot3D[JacobiEpsilon[z, 1/2], {z, 6}] |
We’ve been able to do many symbolic Laplace and inverse Laplace transforms for a couple of decades. But in Version 12.2 we’ve solved the subtle problem of using contour integration to do inverse Laplace transforms. It’s a story of knowing enough about the structure of functions in the complex plane to avoid branch cuts and other nasty singularities. A typical result effectively sums over an infinite number of poles:
✕
InverseLaplaceTransform[Coth[s \[Pi] /2 ]/(1 + s^2), s, t] |
And between contour integration and other methods we’ve also added numerical inverse Laplace transforms. It all looks easy in the end, but there’s a lot of complicated algorithmic work needed to achieve this:
✕
InverseLaplaceTransform[1/(s + Sqrt[s] + 1), s, 1.5] |
Another new algorithm made possible by finer “function understanding” has to do with asymptotic expansion of integrals. Here’s a complex function that becomes increasingly wiggly as λ increases:
✕
Table[ReImPlot[(t^10 + 3) Exp[I \[Lambda] (t^5 + t + 1)], {t, -2, 2}], {\[Lambda], 10, 30, 10}] |
And here’s the asymptotic expansion for λ→∞:
✕
AsymptoticIntegrate[(t^10 + 3) Exp[ I \[Lambda] (t^5 + t + 1)], {t, -2, 2}, {\[Lambda], Infinity, 2}] |
Tell Me about That Function
It’s a very common calculus exercise to determine, for example, whether a particular function is injective. And it’s pretty straightforward to do this in easy cases. But a big step forward in Version 12.2 is that we can now systematically figure out these kinds of global properties of functions—not just in easy cases, but also in very hard cases. Often there are whole networks of theorems that depend on functions having such-and-such a property. Well, now we can automatically determine whether a particular function has that property, and so whether the theorems hold for it. And that means that we can create systematic algorithms that automatically use the theorems when they apply.
Here’s an example. Is Tan[x] injective? Not globally:
✕
FunctionInjective[Tan[x], x] |
But over an interval, yes:
✕
FunctionInjective[{Tan[x], 0 < x < Pi/2}, x] |
What about the singularities of Tan[x]? This gives a description of the set:
✕
FunctionSingularities[Tan[x], x] |
You can get explicit values with Reduce:
✕
Reduce[%, x] |
So far, fairly straightforward. But things quickly get more complicated:
✕
FunctionSingularities[ArcTan[x^y], {x, y}, Complexes] |
And there are more sophisticated properties you can ask about as well:
✕
FunctionMeromorphic[Log[z], z] |
✕
FunctionMeromorphic[{Log[z], z > 0}, z] |
We’ve internally used various kinds of function-testing properties for a long time. But with Version 12.2 function properties are much more complete and fully exposed for anyone to use. Want to know if you can interchange the order of two limits? Check FunctionSingularities. Want to know if you can do a multivariate change of variables in an integral? Check FunctionInjective.
And, yes, even in Plot3D we’re routinely using FunctionSingularities to figure out what’s going on:
✕
Plot3D[Re[ArcTan[x^y]], {x, -5, 5}, {y, -5, 5}] |
Mainstreaming Video
In Version 12.1 we began the process of introducing video as a built-in feature of the Wolfram Language. Version 12.2 continues that process. In 12.1 we could only handle video in desktop notebooks; now it’s extended to cloud notebooks—so when you generate a video in Wolfram Language it’s immediately deployable to the cloud.
A major new video feature in 12.2 is VideoGenerator. Provide a function that makes images (and/or audio), and VideoGenerator will generate a video from them (here a 4-second video):
✕
VideoGenerator[Graphics3D[AugmentedPolyhedron[Icosahedron[], # - 2], ImageSize -> {200, 200}] &, 4] |
To add a sound track, we can just use VideoCombine:
✕
VideoCombine[{%, \!\(\* TagBox[ DynamicModuleBox[{Audio`AudioObjects`audio$$ = HoldComplete[ Audio[CompressedData[" 1:eJxc3XXcZUlxN/DtdRdYXAe3oAF25zkPcHEPEDxAGIKFYAESJMgeWGyxRYMF GHRxJ7vzXOTiFjywOEOw4O7y1rfu/Cbzef/oe849p6W6urq7uurXfbbd5X63 uPv+++233wMPrZ9b7Hjw4gEP2PHQvz3Yn7vtuPeVrnhvL0eF5z1m7HfCeOF0 g8XLp1vNr5n+YX7z9IBxxvTw8a7pUYt3T48b75seO793Omn17ulf5l3TXcdb phstXjFtLl40XWb17OmC49Tp3Ksndzhq8bjpyNVjp8MWJ08Hrubpt+Ph09fn +02r+c7T1nzH6U3jth3ePN92esf4u+lj892mn46HTMfNT5guOj9juuJ43nTD 1cunv5lfNd129dq+Xn/1smmxeMl0sfHM6ZyrJ01/mR81fXt+wPSR+a7TS8fN p6fM150eP19retDYPv3r2Jj+ab7y9I/zX09/O19yWswXnC41zlZpzzqdfxwz /dV89srz4tPt5stMD52nTvv2+fbTj8eDp2Pmx08XWT19usL83Omq8wumv149 b7r04tnTRRfPmM6yesJ0yOIxXZ9fzQ+bvjn+efrOeOD03fmB09fG/bqO/z3f a3r/uMv02vlW09Pn60+PmK82PWRMxb9rdXj5uMX04XHX6WfzQ7oOeHWexVOm i8/PnC6xembzUlnnm586Hbd4wnTweMz0p/mRHVc5yn3rfLvpLeN20xvGbaZ7 j6tMrxm3mk4e15x+MT+0+fqYedH1u+A4ttIfMJ1rPnK69bj0dPdxpenB80bf e3ed+ULNp3+eT2gePGCcWG1/qem84+jpe+OXG8vxtY3Pjx9svGN8eeOG4xUb 9x7v2Dh5vHfjc+P7G8eOQ6dzj6Omc8xHFK1HT9vmY6frzRcuublCl6Ed8P2S 8/HT2ebDp8uMs083G5eYHjY2pyeP63bAe89uOC463Xy+xHSD+SLTpeezTUfN B08HzftPPx+/23A9yzis6b34vG4/9Cn7suMcJS9n6eeXm8/RcS4yzrL3eqX5 XNNfj3NP0zj/tH2cb7rauMB0/XGR6S7jCtM8X2P69HzP6QLz06brLV42PWp+ 9/Qfi0+UPH2r+PyL6WeL306H7Dxg8y+Lv0z/u/hlP3/++K/pHxZvni63+Pfp S+M+0z3mK5UM/Kx48YSNKm/jJeNm26sznV7XXXceb9r1pnHmrtuO1+26xrjg iYeOAzfOPp60sf8YLXdvG7efDlo8err8eG7V/xXTPVdvrXY4fXrYalnyuzX9 8+L06Y6LN0zXXL2k5XHMJ7Xs4JEyqx9snDDOu/GNcf/t1xgvOfGkcY0zqpwz 9hsnnVHdeb8q/8S631682HjPuPPGNF608cLxiQ3ycNNx8emJ87WnD8x3mf4w P6L700XGM1ruts2nThdePL34+5TprPMTpz+OR7Y8P3xcrWg9Z8n+HzeeOz7e 8vC98aCNa48LbZw6PlzlnLr91HH97YeOk7dXm25/z/jGiVX29nOOJ2+v+Nur HZqOm45XbZwyPrDxlfHjjUPmA6bzzEdNG/P5ul3uNC433W2+4lR5Tp8a39sg K/cdV+1+fPvxV/381+MPLZfyeMn41MbLx2c2il8bVxsv3qgxZKNo3Tht3HLj U+OeXV7xZ+My4zn9/kXjkxvoJ19Xnc/T8nmb+dLTPcdfT48ei+kZ4wbTf8w3 7fHk9fOtp/fNO6Zd447Tf85/Nz11XK9lWt+5yjjPdNh84PSN8dONB41d1Q4v 7LZN2TceF9u4w7hst0/xYuN149ZN26XGs+v/aRt3GW/uOvx0/HZD/clo6NGH /m7+q+6H+jC5JetHj0Om348/bXxr/LzK+WbX/17j7V128Xjj9HGHapcbFz3b u3zyVm2wXdscOPYvHpx9487j8lXunTr+NcfOjaeOD218eHxrI2OEPqqNrzjO 1e1SeUzK++j49saTxwc3aj7odNJ/fNx9467jinV/5MaR4+CNksFu85PGe05v GRwnnR4ZqLbY/oTx/paD6h/abftDxnJ7lb29+sj24sP2Sid9y6u+hHdkq8a3 jZLtfib+JcazthfflXNCjXW7qpxdld+uonWreL1V48rW/ccJW08Y1+77aof+ X2PwVrXN1g/Hv26VXPS1ZGOr8tiq9t8qGndVvt1/ige7qr12VVvt0perj+46 bXxuV8nOLvnJp+J3+OV42NZVxgu2ijdb1aZbVb/lH8eft2qcWpac7Q3VfstK v1UyuPXosdr6yrjvVvFsV/Fxq+q69brx+a3qO1tV3la12S59WP2KJ2fUWNtl Hj9O2Tp6PH6r5o+uQ8n0VvXzrfeO3Vtnjh9ufWb871bJxtbp4yt9X+26PGY+ ZLlrfHVrzPst3za+tFXz+Vb1263irfrvMnZU/t1/har3dmPHPcfbui+XzPh/ RuW/C3/rfdXxpOL1aVs1F2zJU52PH4cvq08sq08vPz6+s1VzRrXB+7fuPt66 VfP5Vo2RWy8cN92qsbvq+8IaHy/fvCUnxsdqw5KVU/H/hMqveY7f6NR2JdfN n+3jPzrf6vdd15KJrZLPru8vx+/7Obq8+9L40VbNTUvvhWrDfi+4f+X47Fbp NVs1lm6VnOHlrhrDduG7q7GbXJElZeP3w8Y7O9/SJ5ZXmM+5LFlZ1hy3rHlr eaFx3PK4+dDmhTbHl+o/W98Zv+hQ82bT+bXxk63vj1+V/Hyv5O/M5mHVv2mq fl31XW7VOLl13fGyaqeXdlD2Lcaru27VF1teyBta/jz+slXz77L0muUF5mOW 1YeWV58vsKz5fXmteduy2m1ZY0LTeolx/LLqtCQz6q2OJf8bzxof3TDfGttr LN6ouE1fzeXLD45/WNb8s9x/zMsvz/dZ1ji5JN8XGk9H9xn1fOOD4396PDfG VntuVFvuKh1i1+HjoKbl2fMNlzVGLR87X3OJ1huPV+L3GSUDNS69aaP6UM1P N62yX75d/6v5ptu66Nmq+W6r9JCtonGrxp9q27tU/W+9VeVuoYE8kHntj+fk Xvjh+HXzqWR568Dx6O433xoPKH7ffqvo6+fvGl/fOmI+aFlj+rLG325T/CG/ JYNbNcZtkYXqb9vNp5W/ea7HAXJdOkH3PX2e7Nf8vtS20lc/3qqxvoP6Vl/r cNnx71s1J3U/qrG0+6O6oFH/Kp2vn59/PG3r1uO1XQY50dbyJj81LnT+tx+v 7/GHrOiTZEefIAel7yxLrpc11y9rbli+aPzN8mnz9ZYPnE9c3nZcZnndceFl 6U7LGn87jTLeML7QvHzN+O+tt4wv9jM8qvZt+a0xcq8s43fNx1vSk/fS85YX no/rvlBzyLLmtaV+cuX53MvSz5Y1hi9rLlsaiw6Yx1J67VRy13WL/Aslly3v xrc7jTd2W91/nN79Vb8V8F1epYN2n1O28kovbFnXnv6XHtj1JHc1ry3JpDZ3 NSZrMzKmjuhSH3Wpua3rUnPw8kbzRbsf4WetL5aPmq++LB1hWXPTsvST7u/6 Vs3ZyzvOl12W/C53zjdrXmuHWns0faXndqgxv/+TGWXjY82jHU8/rjG5+eOK DnXEox+P32wZU8i5cYe8Curvuf6i/Yz7xj5lqIsxQt3MQ6UzLzfn8y9vMl9s Wbp3txXaa/7vd9rKVR+v8br/o6308B7j8cs4p+3kSx7Slt7jBXrOOh/WQbvj Y+nhPR7V+NLl+o+npY8uqz/1GIU3/muv0vk6nmf4L5Se1HJ1zbFtWbpwxy2d qWXsxPm8zWvvjDlpd3XBP31CHckE3qBJXvqBvKUzDuCnd9Lhi5AxPX281iXN E/elX/VYr220Ix7gvzTaEw3kET2l63Z5rtqgxsqmudYkzRdBfdBDftVDfHHQ hO/kwNjsqm/qq8ZGc4g+q19oD22DZnXVJ+QhT30fb2uttqy1SF9rndyy++/z jZa1Duy2JyvyMobq7/qHcUcZxqTSu3u8IXPGpBrvWzaN1cYJfevs44jmE36h 6RPju/1cHzM+Z1xHu7HH/KbP33f8Z+tJ+rzx0xjgnbFeeWiRl3FX3vgikHUy R1a1uavxXBzy76pPaa/Sp7cEdJPhjGXqIm9juPFPuWhUV/QI6DUG4Ye02qLW NHvnevd4Jy/98TnjYz12lc7edaMXGbuN27ccr+lx3pxvrv/r8fye184ynthz Qa0teq4573jqVq3Teu4qPbjjJQ2elU7c+iW60C6gz9hOB3RPL9Ke4mhDtHnn mSC9Z+KJ47946ktv0vbagB5kvjFW00PIo3rrD3hrnsITPHAlF3iCH2TDc20o eK5N8ZhMaWvzPJ2H3lVr0J67zY94oL7KVnfzQq1juo7GUW1J5o1F+p8xnywL 3plj7jre0ryVjt5Ozt3TDYqvdNITzfP04Bp7W/ek55cc93vrhOpDRfONe+4V 6AryrHVzt9Ujx7u7nc33tfbud3QW+mzlTYbo9rtq7Kg8j299Xptqa2sDeVu3 3HJcqtc11ig1VpgPtuikNXZWe1+jdeNnjRt2PM/kXe1Hr28duvLYRZ8u2aBf n1h51FrrGq7qWGu1/freWo0Ors41VvWaLTyQxjrB1dpeXtZg1nbieC4+3a10 5+3WE9YRyrPus2az3rPGs95ztQastuiQNSQbgTWfNbP1s7XsyeOa/d+6terZ Ngdr+2qPDXpn6Ugdql/0+tratNpgj61lrjXjXTdePm7R62N5ybPm5o2is/Pw 3tq81lVtx3EtOdsomjsfeql8S2fbKH10o/plX0sG6aq9ni/druh9w0b1l9af 2SWqjrU+fkvbO0qX2aixrNfbNcZtlL7fNrRq+15z17zTNiG2j2qvtp89cly9 7YdseTUml179N20rZTcqPbntFKWDTKWfti2HXcLanX2k5L7X8OxebD3Fy7ax sC2ws91nvkrnW2vKtiOyyb537Gjb5e/mh0/Ft7Y3/Xk8avrqfN+2E7GBsIuU XLadle0OnWyb/zJvn/5t3pxqnTQ9c75B08NeIi66S8efqu2mV8y36DzUQV3Y ldjgSt6nM8e926bGpsuO6rly3znfqe2l7DD+u75r/P300XG3thuz/7qWTHQd 3j3//fRf892n6svT/84Pmmqd3/WoPj0dunrMVP1wOtfiydOF56dP1cYdLjk/ q216V148f7rKah2uPD+//19p8bzp8qt/n6r9p4utntG2uG2LU6eSuem8q6dM JW9Tydp0/OqJU8nPdNbFE6fDx2Ong1ePnmrsmg6bT95rC2c/Vj572/kWT50u tDp1uuzqOdNVFy9oO9915pdOi/kl03VXL52utdg51fjX79jD0Xue+SltFz7H 4kmdxwUWT2ta2My9v9TqWW23Riu7oqv81Wdj/o+2qd9m8drpbxevnm69es30 94s3TjXWTjvmN033WLy1ryXH09/Nr59uv3pdxyvZLhl6VdvgSx+fas7qdzsW 6zR3m98y1fw83XF+w3SH1evbZnnn1Rs7b1dx7zG/dfqn+e3T/eb/bLvmvcc7 pn9cvK2vNUZO91v8Z8e53eJ1XX7Nh9PNVq9a0zq/errN/Nr2NXh2i9Vp07Xm ndPNF6e13fZZq49Mj1+8b3rMYjXVWNV5iIvWB41d7bN49vzRks33T/+62tW+ iyctPlB96mPTyxafnl48f3J60eoT01NXHyy5ff/0xMX7p2cuPjK9dPWptsNW P66++O5+X/235PsjU/Xlzput9tGr90xPX3x4et7i49Nr5/+eXjD/1/SU+YP9 rNbp/X/n4lPTq+bPTqetPmt9XH3ho00Te/NLx6erL39iet788ekZqw932lrX TU9efaD6/4eb1ifNH+i8XP998bGm9+WrT0+vWX1uevXic3193eq/pxp/ptcv Pj+9avHZ6mufqX73qa4fuzUaXrL6ZIfXLv57esXiM9MLFvV8/tT0ytVnptIh O8hv1+orTe9q8Y0aG7461Rxd/e3b0xnzV6a3z1/q9PJ7/urj06mrD01PW3yo adUWped0eaUrTG+ez5zevDhz2lp8dXrX6mtTzTHT++bd1Y+/2XnWnN35uv/4 6tvTh+b/qb787ba1f2L1nem/Ft+Z3r34eqevOa3GjS81jfiIb3ipnkLNI80D 4fXz55sn2qPG2+kNq893eOv8xc5DeM/q61231fyN6Z2Lr00fWHxz+sjiW9PH Ft+eamyeSv+rceQ7NUZ9s/nwocX/7A3L1VebJkFa+ajX+xa7p/euvjF9dPWt 6ZOL705fnH84fXHxwxrPflLj6I+n761+MX1r9TP2+xrnfj79YP5V+xl+Mf9u +tHi1zXGfnn6yfybGoP/WGPw2Dx42wGb++/eb7N0qel/5p9NX55/NH138Yvp 16vfs8NPP139ZvLu24uft49CftK7fn3xky73O6ufT99c/bTjKL90oL4vfWza vfhpvxPH/9LfOm3p5VOtZZq2n69+O/1m8YfpD/Ofpj8s/jTt996/NH2/Xf1h +s38h6bD89Ltp18tft/xhR+ufsV/sw71/3eLP05/mf/S6Q9cjc1DFgdsHrza f/OAHWPTsz+v/tz5qNv3V79sWppHi19NP179up97j479V/tt/mnx55qj9tsc i/020YGHaPjl6ncdHx9+sfgdm/l00M79Nw/dfcDmUYuDN4/dduhmrQk2a62w WXrf5jE7D9k8YnFQv5dnrSc6D7xVB/wW8AiPPZO/8mp91fGVoSw86bapq+fo ++PqT11v9dtv236b2lU57tWnn4/9mgfKRTd+/Wz+7VRrkS7zf+df1tz4o6l0 5/7fcca6fGn33zY2D1rsv3ngtv03a33adTl8dWBfSw9uOaq1T9OCLul+v1q3 G/55d8iOdZyDdlSb7BydV62V+r/7Axaj38v38G0HbR69++DNo3YevHnk6qDN 0t02j9t5aAf8xNujdhzc/D58HNQBfcftKN5vO6zbQBvqH8aCr61+3PJeenvH Odvi8L6SD2VLf9bFYZvn23H05jm3HdnlHrY4sHmGxsN2Htj0oEVb48nYsZaR P81rufKM3HmvrqV7dRy8I8P6Bp6Ic/Du/TsemvHCf/VpuSm60Llv3Wut3zJ0 zOKQ9bPdJU/jwA7oPGbHIf3uLKtDN4/fdvjm2XYcvnnO1RGb51gcsXmu+ciu 0/Grw9ayuOOg5rGy0aB8gS9SWx66OmDzsB0HdpseNh+4Dnv+txzXe3HRcPTq 4KZV+cctSt63HbJ59t2HNy+P333YZq2VN8+6c31/7O5D1nXavW7bI+Z13dTB NUHb4cHZV1WH3Udsnmdx1OYFdx/T4QI7j9k8/7Z1ONfOI7uO8lY+vhy67cDu 9+iLfEU+8emInQe1/KIBH9CPjtQDjWfdcVjX4eyj+DcfsXnu1ZGb55uP3ty2 OHbzvNuO3jz3tqM2z77tiG4r/CaLqWOtMzbPtePIzfPvPnrzQuO4zW07jm2a L7R7fb3AjmM6j/PsPKrzl/e5x1GbtYbcvOjOs2xeatvZNi81zrZ5ycXxm7Vm 27zkzuM3rzyfu/+rP7m97O6zb553HL154Z3HbV58cda+XnjHcZsXXB2zeZ75 qL6/xOqsm5faffzmxVZn+T9eFS/Rjj735ERd8ZpcqE/zo/hC3vGwr/Oad2QG 37ShuqL7Aouq27aq585ju47qm3Y67+6j1uUtjmz+kA99c28/LnklB32v/bat 2wAN/qNHO8hDO3d7lDxHLvAe/WgyXpBT/bjHpNW63fVf44BxUj81Lhk/jefG TL73HpOqH7SM7FjnoY5kPf1P3vhAnqTT33ssHn/oMdRYaTw1vnruKihHmcrX 73v8rLFBQGOPJe9d09FzXo0T5iX4APNugrnTnGXOdDVHGKMzT/d4tHNdT2OO sce8bu7Tv5SX+pB3/FLPpmHHOi5ajNXy7Pm15mhzuTkcPd9Y/aRp+8r4cesa /n9h8YMOZ44f1tru+63XfH71/emzi//te+HT8/daV6GL0Xk+Pr4zfXL+Lv97 P5PujMVXOvzn4sutM+4aX23d2RxIv/n04nu1Jvt661XPWX20dUw6GD2JTkQX pN/SDemNdLV3z1+vtecXp7cvvrRXD5b21fPnOj69+uTVqvVg+vCzFx9tnfoJ q/fVWvOd08PGOxuLRPcUnw54yvhA6/vWAo9dvLf1+BeOTzQ9L1yt9XL6vTjy lq91gXu6PLzTg1ZrzNND5+X0iPldvb6xjoH7+Mf5bR2sVaxvrIGsn2ClPBPX uuZui7f0u7+f1+msp8S3nvqbxas6XH+8vNcv15tf1vc3ml/RaxvrlhvML59u Nk7rNY5n1j23WqzXRNZw1xgvaSyUtaJ1nXVi1qrWfFdYPLfXjPuuZa801//x gg4nrF4wnbh4YQfvr7Z6Ud9fffHi9bM9cS43r9ePgjUybIh1LwyW/9adMCN/ Na/fWxt7B0tyofH0fmeNao1szWrdfY55vXa1Xu618Xhc40z8F+RvHX3E/NjG WrFDHDI/psPvxyMac8U28PnxT425YrOw9v/kfI/pC/M/TZ+d/7F05X9uu4X3 3xsPmn40/2vbNWDM8j/2AfdwHjBB8FPCMYvHr7FXtYaHCYO7YptQ9u75/p3H x8fda731t22bec64Ua2z/qYxI2wd7l8937LxWWwSaPvg+Ie2S7BXvHG+TeO0 xIHdEl8+bCRsO+wk7DueP3u+YWOznjZfr9ai12gMChwXew9sGzzQLcYlG0fl 2S3HpaZ7jSt3vAfOJ+6ND0MjwHvBjKnv38+X68AmJC+4E/Yi97cdl+l7mBT4 LPi5mjOrrQ6bYL/gsmq8aTwKHIsA21Tj0kaNd8bFxtrU+D3VHNxYkhqrG8sC Kya/E+fzlixfsG1VsFz+w4vBnsB5sY/VmNpYodJ9N2p82njTOHOj1pdtX7v9 eH3b19jo2AAPHo/ZOHw8tq9nGU/kg95rG4ydkC2PjY9tr2Rv423j9htPHtdt GyOMicAeCTNT42ZjU2LbhHG5/zh9e8nn9uqf2y8/ntv3a5zVqY1fqTF5O+xN 1X27vOBu2EDlwwYqvfelP/Q7WB12TziXYF+Kv43due14XWMwlCMNmygMz0PG 1PTC9sgPLXAa7K1wI5W+7b4Vh+33BDZcdMFDweCghU0ZbqbK3KVMvne2UZie PViQthezz/LRs4myn7Lbwt7wgdf1DLbwasNd7OJ84meOe/MP7GI3r37f+bMd swfjIYyYfGE/2KivPy7Sdu6iYQvmgH0bHoZdHFZEXuzYsBnie8ZeLp043sMw wOfA27F933O8rePC8MCaoIPtXny2c/fFg118+2zqyscP/9n62drRw1ZfbbTX Zl9t1f9jk2d3Z6fns+fDh6fg1ykZbD8FHw5fTcnZVsld43f49Pl0+DL4NeIv gAeAkYFJ+u14OMxBY4GUqTw0CHjjGV8CTJD48pMvvMQNxyvab1687qv/8lY+ +uAKlC3wrfB5KI9/5fRxh63luFP7IvxHnzjqALPA78Lvw2/Fh3Lv8Y6uo7qK Ix/+C/dowhN1du8Z+uTB54Veviw+LNdqp71lCPh4h/GG9o25CnxkcAHKRYN6 8U/xIfLrwUbx46BJGfx13vO98Vnxx/AbScun5x3/Kf+W8vhs+NGUKZ781Ue7 aCf080Xy40nD78o/yIfFhyY/5chDGfLg74uPtHSc9q0pE/6Gz6z0k86L707e +Mon5T//G7wQvxVfFhwAXzKfMh82f7AA7+MdPANfFowFXyjfJ5wDvyv8kzL5 6tDPt/qgsav5hT8wW8riw5YP/xk/qXLlw6emDHnzo/Nn813zU99qvlRjCfiQ ay5qHzbfNjwUX7i2kS9/Lx+he5gPfj8+2WAF+IrRz1+LflgNV770/Idn4M+G WYAFiP/cvcB3z9eNT3ALaE0aAZ6Bz5cPmu+YbxItnqmnMuAq4AL43vnK1a3m yeVt5kt3cF9zbfvOYQbgDuSLfj5neAcYDvgBV9gE7SUuvsgbXXzVrvAD+Kt8 AUYBdkvcGouW95ivtLzPfJVljQfLGvu7fPHkjfc75ss3JgW2CvYE/fH/i6Nc fCE3eK28c81HNgZF/NIXugz1fMR8teUTxrWXjxvXatwF3kqrncX55/mE5aPH YlnjZJcdGfBMGuEx86JphHGA98Azz2ALnjnfYFn6TP+v+aSfwZOpV81hnScc CNxH6SNL+DOYpRoPly8dN1++dr7VcjXfefmB+S7LD83/sHznfKdl6VnL0pk6 zxrDl3ebr9htQx4jH3Am8sdH2JyHzlPnXfrQ8n7zVZvXrrAQntWc0EG9njRf Z/n8cZMup/SFLgueCl3qoD7qhW9wQaeM6yyfPl9/+bz5xt1m4td4vXzBfJPG YL1svnmnV3fx0aP9lIcPpU8unzqu1+/VuXTE5avmv228EUxR6Yb9XnvP8zWa 7uShXVzVz72gTV3V99/mza4PPqJB3u7PmO+wfPN82+Vbxu2ap/i7Nd+x36uH uqK/9ISuH0xZ6U2dHx6gBf/hoYTHz9fqNDVHLUvX7Xzc40fptR3k9Ylxj2XN N8vSUVu2yJg2xFPp8TTl6Auu6vqwsdn8IiP6ovTSqjf8CnrEFcSD25IvORC/ 5tTGDpE3Y5Z+LninPykLJgku577jqp0e/2C9yGfwQsYIOCT9Ndgl6eRFDskT 2sgiWj2XjnynLP1Pm6EVD9VX+5IN9cB/VzzXv/CXXPrvihfal+yQXX3vTuNy 3QeUoX7wPsoKfo3cSJu2jOyiRR76Cewa3okv77S1uPCc2ocsCegN7/FJW0qH d/LTNuE9+vBI2Le/aVc0pc31OUFfUmfp8Fl/zvhqTDMXCNoCpgx/Bfept6BO 2kLQrnihzniBf2hFp7Yxd8COGJdhDGFWYFjM2bAmcELmDZgTmDCYFzgnY3qw wPIw7qPTvGuekKe+pnxjkzmZjmDOh6VRlnTmMvOt9/QF9+YFGC3taexWhnLl bx7BE3O4+dYVXgfulO5HB6Vz0QHpGd6Zf+VPZ6F3wLEEa0U/QI8rvci9utIJ zM8CvSQ4HrgedQzula4lLxid4F7pUzA96BD8h3mBnaFfwcjQtT437tU6o6v1 BJw93ZRuTu+F1aa3l94Dz7OrdKtd8DT0YuuN0n0bv239A+NubWKNII7rGuf9 4caXw8zQ9atdd8G4e1762q41zgc+/oKwv72OkScsjWfWL9ZZ8M/WQdZZFe9E oWS112zWe9aQMC8lP73/wT1svTWWtZ21pWB9JB0sDVyN9RyMjStsznp9d2yt 907oPTUwNHAscC3WsPaY2OtijWa/BMyL/SjwMj8c/9r4mVqnNi7Gmrn0497L YV+Q9/KqsanXo6XbwZD0f/s8rKetpeFeiof17Du9f8Ua3L4a+dgnBkMe7Av8 TNbfyrBPxrq9dM3Ge0sDOyNP+Bhref/lZz1fa5fecwIv87rx+Q7W/+wA7Av2 wpSe2nvFSo/bYIuwJ4cNwrvSs7usaoON0u27jJLJ3sNSa5jOW57VTxr3Lr38 5M1ewf5gb1nsFLAz7CvsJTWW9N4vNpLYXK47Ltz7eEoHbBrQZA8TmkvH7H1s 9vDYmxYsjj0+bDT2OcH7CPbxBVdj7xNbjr1Pyij9bCo9pW0+MENsM/a9sZ3Y k8SO4uqd/VTsN2w77EP2OcEYZb9TyVPbgOyVhCOC12FvggkqHaNxO6VztA2L rYpNiq3Knk1x/Gebqvmj7Vb287FTVR/Zi/WB1WH3KtlrrI/9nzXfT6W3dYDh YUeDLYLzgQmSxr141f+nL873bvuefOCAlA9DhD6B7a3mx94bhz7YIuWws315 vk+ntdcy9j7/2QnZENnl2ATZ/OCDfjke1lgh+Cf37I32W8IXVb/uOtmz5709 oPZhKg/v1Fkc8dks2Q1hq2qsb5uhcmB/4IPYQM++OmU6evW4konHT+ean9xY oLE4qTFCbI/spmym4ooj7hGLx05nW5zSWJ/tqxdON129sm21l56f3TZWe1ft w2WHtXcVtsl921vHKVOt0/u9q/xd7fNjp62xeLri6rmdL1tyrcsbeyQfe3yn 1X+0vRpGiV2aHZrdmk2bDVxg5/afDfvm82klr6/sOLBMbNZXn1/cNmvPpLfP GG7owYut6e8Wr2+7ObwQDI93ymErv85ijYeyT1Kd2cLtCxbv1uO1jTtSnnvl t5284l57tbPTwjDBL8nTvmU2fNijtvWv3tm2fjb/h6y2GovEZi+efNWpxo69 2CY2fTgj9n3x2P7t3XTvGjwUe3/qgzfKhrmCZ0IPnBNck/fq7h7teCbwC7jy A+Cn+tibfePVKzqvvTit8fo1hqvoue/qHdN9Fu/outU43f6Mhy6WXa95fk/7 OmCc+EXgiu61eltjm+CO4Iv4Wp6y+OD0T4u3dz3k3/vAV6c3j8TlJ3nk6l3T Kav3t0+F34XPhj+IHwZ+yP8XLz7ZvheYIGVK+4jFu9pvg+d8K2h63Oq9TYt4 NT92GjgmAdYHnkne/EYwWTVmT29cfKF9R/xNcEGNKVp8s/FD8DqN7Vl8teOh CV6KD4ifCV0vm/8POyQf8fmp+L74xuCO+Mb4xfjE4HlggIIFcoX7US78ksCP Jp4AQwQnJB5fGTr5ueB7lMOv9qnVd6czVz+wh3SND1r8ePrcal02fBU6+avs S37wvNU8xzMYNFgzPIFn4neDOYJVEmCn/EefsvHnHavi0+rL7b9D/4dX/4e9 qnl8etvqi91usGDwXNoFTo98kGuyRf7d33v19pqblh0Hjo1f702rLzQGCsYL XgtfYMWU99bFFxuDJX9tgOd8fTBn7mHf1EWA3Wq8VoXGr1V8ODf8IAewZ9qK X1Fbqy/fI0wVf+f/LH7W/k7+yw+uvjl9ZbXGzMAxBU8Gd/eW1ZmNN4P54D/9 zOp7zQfyF2we3sq/9IPOj9+ULHx58aNus2CM+D/VmfzhszrjB6wbWRJXgN+C 4YFvwyv4O/KNljfOX2g+qSvMHjlXf/g5dZev+mtD8toyVvnwzaojbBLfL/wT HBK/N1yRK+wWP3eHxTrwIcMRoal5tPpx8w0eBxavMXHz11q2lIPHePuj+dcd 2pdeZfFn84/DP/Gzyxuv8RWOLL7wxpUtfrUXd0betZf+pk3wjkx2X6q6xU/9 pdUaP6cN0Vk6Zj8X4tv2Dp5OfUIXOhob9d51gHmCAYCjQoO+hnfylq//eMGf jt5g1eBu+NzbVz+PTRgAPm/vPYNZ4NeHIeLT58s/dnXIXgxFrQ/6Cl8BCwF/ AucDO8HXDwvDvw+XhXZ5JzR+rPKGaYCZgG+AV2tsyrYjGp8hwBLBvtT6r3Eq MCtwHMHMHL77wMYnwXfAY8EHkQ38aZzTvMYYKQvOAb4ORqExZLAWMB+7D+48 4UqC6wl+CeZFCFYG9gMW5KzzYU2neuMJ7E7jo3av8St4hbbgAGGD/G98yc41 TklZfV0c2Xk13mg+avMcO9ZlNJ5qtcaT4U3jl8bBjdfSHjBU6oKXwSwGF9LY uz04OFc8IcfaVoBl1Jca+7hYYx/hyfAIr8gDzBpcnKu+4NqYsXmNlWu8GfzG WMtH2lI7wHnAO7knC/A7wel1/pUvjGCHkmH18F5+2lA+rnAjgrqHv3gBQ+J9 8IYwI7Aq+pRxCCbE2KYv6W/Gwy/MP+i+BFsCt0Ku8RKdQtpHHT1vmZnX/V+/ 0X/0MRgUY4m+rT837rfmPeOK+8bN1vhiDDdXoEEafVE+cJ/GKG1gzIVRlRee Nc5z9bvG6vb8uvpKj1PqpW/LRxrYXzhoc4l5peft1e6Oa7w2N8rDOKQs6fDH mK7PB7NpLDPmmy/fO3b3PI9eGJt3jC/3vPbc1cdap4KHbrxJjeHmEHiVx8/v a8yK9+ZX2GW6jTkCRoZegBb4GnOQ/+YC+Rr74ZjNB3QY+ou5H76afkCHMWeY S+G16Uh0L//l7Zn/0kc/k95VXPOP9D2P13M6GB2Qbjcv3tNYeXoAjD7dll4I 997YmNLl4OPpAq0711X8B85nTPeZ39G6A11B/H9bvLP1RlcBtgdGhz7qXCFl OWOIXkivoPMoQ37yoa8rW950XLrtvyx2dYDpR8cDF2f0/gL6L72brnKn1XpP grUC3dt6gv58u/l1vddBvtKijZ6s/Oi32gxt7unP6iF/5ffaoPRv+dHZrYns Sbj2eGnjcuju1krKsgaht99y9erez4A2axF7Styrw2PmVQd1sadCwG800r/v Pt7a+CLlZm1lHZQ9EPA79q8I1nAnzmtcj7UbPM81Vi+ebrJ4Za+lpIMvskfi uuNlvQ6DH4L3acyPfOZ1Xpcaz25cT+N7Fuu9JXnvTKQ+FwkGaF6vH4Xso5GX q3Uj+vBFOucb5SrACln/OjfKnhh7XM6/Wq9Lzzaf0s+tlcURrI+ti8WDR3KV B9yRM5TwFQ5K3dHbfKh17Oa8XsNaL8NCeYdea+Tey1NrYbifA8eje/1u/c9e AEPEdmD9DiskwAMJ1vXewRsJ3x//0u+t/Z2bIx97gQR7jw5fndy4pgMWc5/p JMg/e53ggZ4/btL7p+B92F/YGOzPEoftgk2D3eL0cYe2l4gjDfuDNPaMwRA5 y4Ythl3GM3GcScUewR7DpsNmIg37E7sWmxT7kX1kzp6543zZtg/Z1yUeew9c kjLZXJyZA18Ee8T+Bctz43Gx6crzuauvXLXjs41I6zwm9jE2L7gpWCr2EnVj 71J2zmlSLrsY2xVbmfOeao52pk3b15xVA0fkvAn2QHY150+IxxbGruUsq5wf xA4GVwS/VDpYn91zwlhjj9jVlH31+QJNn3tlXmve1udFSVfzTp+jxYbHNug8 qpx9JU/3bITsbuxzbHLOsVJn+/vYEAX0oR8uCk6q5sK2Z9oPeNr4XJ+z5awd 9lXnbznnx3vnPak/myIMFfrl49wtNLH7KU+7Kad0wcZayafmlrZ3sn/au/jb 8fC2D8P62E/5lXHfxkyV/Dcmil328uO5vaeRDdb5Quy3bKg1zvcZUngtlK7d uC9YLzZU9XAuEZur9Fccz9u7JzNnMLH9CjW2tg3WlW1YWTlXiC3aGSTsz9U+ beNGt/weOd69EdwZ3rDfnjo+vHHr8dq2abM5wyplbyebt3s2bPmrp7zEgYf6 3LhX7/90xQv28ePHKX2+lrxgx/ADX9iT2au9lwYuzR5P7ejcE+dQ2UNqf6oz UEqe++rcovV+2pNOuMZ4yRnr/bP33168tb+2/QB8A+Jpm+pve8+wwg8B/9jF tQU7OX6hlX2fbV+ADWO3hx2DCeNnqPV/+x4EZy8pB84MxgyGjL0/ODQB75XN nwBn5myYGkdaXrSFMsSXHsZNnnwSe/YUn7HnvKJdziPznJ8DTTB28j1z3Lvk +JHVfg/o+imHHKqzMsRTLj+GevNjeA+XZm8wHJs6rX0oxzYWje9l7YM5qX0x e86gOoEvBQ32LNuX7N5e5PhZ7F1e7/U+6QR+HOfO7Ovjcc2ZUHvyFPf0PT6f 073jY3J2FKwZv1K1f9+7OptKHiVn3ebOh4OB0zbaPGcuoQ9Gz5lIcGl1beyU M6pgy5x345woWDPn4sCDwaPxW8HD8YvxhwnwaZ7D39mjDivHTyY+f5f/4vB3 KcszefCpwdQpM+fkwI7BmMGE4fee/eInSAeLhqb1WVvv77OyXNHnXBvvqu22 4l9TBnpgxOQNF6Y+KcceeXWVvuSl97DD6sEors/52u8EOEr+NJhL/EUDvybc GP8i3ya8Fj9icHbO90Ij3x4aYAPlq97KQbP64If3nsEHrvfZn9w+QfhBcuHq TCPnB8H4wa3xrcKjwXi5wqjBoakLHKH9+fySylB/Z5LB9uGJ87D4MwW8cM6U 9skef+2hXdAvneCcIG0Ex6fefKf8tvynweJ5Lp5zBGAIyQ//ac4TCH6S3MhT G0jHN+t8MOcwwJ7BtzkvAV4MJk4b8dnis3LF13ZwbrCGMHp4AP/mv/f4g0/S w9zxCz9jfKRxcHzpsGawXXBfzoxwvgR/OPwizCBZCiaRP5i/mE+bzzp+Z2dO 8JvDlcGX8X2jG7YNto5vPWd48FvDRsDdwes5P0KbwdvJz1lc4jp/gizlLCZ+ bD5y9eLXdgaIMvjP4cjg5dABbwd3FUwArABfO76SEThDdYMl1G7uyS4e5swL vPIMbfgFpycokz/eWRwwj2jFRxhE+D4YRG0Go8mHD1sJ56kfksVgSeFsa3xt ucBfsoPXaODrhweUtzzDY+XhLwwA7Bx8GexenokXHGP6gXpoK1hINOEBbIB2 EFcZzllxLglsICxezg6Bx9OmMBdwFcFa4GfOLJGndiGPxhM8dZ82wjO4RlgN 8gUzB/8GqwfHAJtIHmA81EXQbtqSXObcGDSpr7rihTzVV7vivTrAQcA/kD3l 5TwaAdZOnuoDP+k/rKCgbHWXFt+df4Jn6iEYR9RNP8q5Mfom3uFB2gWmD73y QhNMMVrJOGwNrAj5JFPmFrgK/Uo/ggPBb7Ijf3KujuJLB8MCf6IM9VQ//EO/ dPCOOU8LTgZt6XfkCfZV3t5J6z0a9UHYFm3s7B1tnP6bfq3dtIHzh5xJk3Ni tK2xR5uTc+OCvgMfrJ8JOUvMuTbGFeXhnTzIKXnMeYzoE0+fJl+Rf/RJE7ws nLLxDC5a/YybsMbaSj/SpyP7xg9jtTHY2K8PGs/NqfgvrT6vXdFrXESb8Udd 9F1pzQXmHufl0UGcz0IPoX+Yz4zl4hmrzEvGZlfjpTNizP1rTPwFG68Cf09/ oSvBtURfgXNZ63B37jLoTDkDUhrzLn1LGvO9OQ0evdZNXQYcjjmTPkSXQSud h+4As+KenogG5cHumOfNva5wO3vm+g7B8NA7lAuPowzp5LXn/JkNui28jf0Z dDt7DOBj6AvO7VNP+wHoEnvO8mv61udN7te6OL2Cfkn/pIPTeemc9mVkjwa9 mr5Ob8eX6CP0W2nR4hwbezLW+zxO3r7nTOATE9CMvv//XFzrBmfKOBvWOcvF s15bWNeULPU6yvqNzp89LoK1CIyN/S7wP+t1yX0b02PtQ9e2lrF+sQa0FrSO sTasuatxMjA21T82qg/0OsYaTlxrHfnKQ75wRvRxuruzdayliq+97rGOk876 EM7H2k7wLGfiOP8GRsi5tdaSzpJGS81VXV/5VB/YiyHyXFz19x9vxHOWjjyt j63BrKXhgJwzLdg/ZP1rzWwdXX24abK+hvlx9o41tbNyBGtp2B/YHGvn7Fey trXWFNcalw1A3nBBOVvaml+IvYA9oPSrtlHYv5Q9UDm715oZ3WjQBvYzwQmh 0b1ryVTLgLWtsuCCnK/DJnOj+aJdPlqt99ltYJA8r/mFD63XxXjCPsAW4Xxs e7bkbY2O5+KQLXgoPI3dgY0Bz9gYnCPEruFcZvYkWB0YmJwTfoX5nM0v9h78 YFNh44Cd0h744z/eiMe2453/7CTyYetx5hFbEjuQM4PgiNiIYIucNWTfmz1r bDn2qLE3wUSxD8FE2a/mqh3Yn7xXBlsO+4vz3p39jkZBOdKzj7FRsYmxRbGx wSS5h0OCM2K7ChYLvdLBT+EJG5f9dM5CYmuC3WIP017q5J3z0J3RZO+d+Nrx sfM1Oy6bnfJfNt9879lIOT/J+eTOVZJ3sGF5njOX0ORsJ7gumDDnubNjOSeb bct/7afueAL7ZS8gWtkElY+/7HvOps95UnBt2oc9Dk+Vob3VGR5N2c61dyY4 nsgTHo4sOsOKLLK5KZ/Mxr5mvNE30OEMKu2LF7HX4ZmAHhg0eynRiS71xit7 J9lJ2S7ZIF8w36R5py7u2TvxCu/Rikfu0ShvsoXPzomyh5TNlh2WXdY+VNf9 VydNvx7/1rZcNmBnU31m/GPvNYVNy3lZ8Gieu2enZXe1jxP96kZ2gk+DoyNn cHDOt7I/9efjoV0G27LyXNmG4c5+M/9b25HtNWX3JZPqjnZ5Rg7wJvyCh1NO sHJwbuzSZBqN8sA78oa3bLnswq72rsLN6QNszOoMf8fOLD6+6Yf6HzyhNhW0 tfb0nOyw2/qeAF6TCbJJnvRz8uM9mdbuxhT8Esj2k+br9JUsai95GjMyvrBN k2t5kh+yi7fGCjg833CATcR3NMA4skuziZI745MxCX7TeFPr7rals+PDCOK/ Nsl3JXLWWuqO1/qOMUo5bOjGCVhGNnH7e/HeHmT1IHvGYLTCONrPzHfhDC97 oeH97Cv2DQkYRP4B8iZv9OEbWo0pxirPtZ/6kiO+A2nJCpnlY+i91OOUxhrC DcIr5lsV6gdDSMZd4Rg9097qzF8h8F2IT9YFvgkyiCd8B2iAw/ROvXIum//6 FdrIH9mTv/zQcdD86LUPZA8NfC2+b+GMNvXQFvLCT5hL9dMe6ub8NL6gYBfV ke8HT+0NP2Ceu6/wy8hLOphOdeyz2Io39pUfNT+ufUj2mgePiWfHrh7f+En3 Qp+xNtb+Jn4oZWgv30tIOa7aC8/ka887fxl/Ez9TsJR9dtx4ZmM85Sm032rP WXLtv1o9o7//IQ4/GB6pk3aBgeWPck4efvoWCHrwkBzxw/FpwYG6l8/FF89s vx1/ICynMwDQw0fJL+l7KrCRfHPo5QdDE9rUH84UTXybfIR8hXyNMJP8r/yj pau1D9d/Pt+7rN7U2Mg+92B+c2Md+T+dUcAP6Yw7WFLfmUEXGvkOleOMAc+n 8aLGiPJTJigfHfL4q8VzOvDdNTZ1flH7GtWDf0/+fRZC8cO3W/gt8VgZcK7+ K9P5eMqDq0RnYzn34Dmd9wBLikd8o/yJysNPfkP89Fzg64VtDS3a3fkL2kKZ na7oRQ/61I+vGC+V7XwHOFb4T3hLWFCYUCF+a/7ixocWnc7GS/s5M6L0+vV5 gZUnvrnyN8OOig+7Ch8KZ6td+MP5ruUPR0oeQnef91CySo7JAf+qMw5hhtWF nGhP7SFveaAPTe2THutzLZwjoX7oQosr+fFc2+CH/qBdyACZ1VZ9JsX8wjVv qz0FMtr+87HGCuesDXLW+Nrx+n7Hp4+fyiHn/L7813zJ+rq+ZBwwFhkP9WNz Llw1LLdxxHkU5gF9Tx+DvdW2/OV9VuRq/e0hvCG/ZFIgu854lI88jDX6Jr+v sUGe5nu+YmOZcUx/FgfWu/3n/OElK3ihT4tjPNIWvsdCdo2fxgJzOZ3HOCc/ 301yTd3QYpzkD+ePR7u21Ya1puuAx9pD3yHXF1w9rcfVLnfx+NZDlCcEf27M NWahR17dbmM9vvG7a0+8MRYaV43Z+I4nxl5+fLQYa1M/Z2fmTE5jbsZleZgr 0GF+M56bp427xkA6Us4L6XpW/fTnrlvJTcYZ/VLfI3d4SB7kj+/O59TO2o0e iJ/aybxlTjJ34KXxEJ3agrySK3w11ivbN4TUB5/MOeg0l5kP6Wz0L4E+Zx5U N3WXN57SB8iV70ChzXP8bjqrbcUln9oXHwQ0mg/obPYZ0I3pf/QVuh35oKfS R+gx9Hl1QxsZwT96qPnbnE5/NcfjAZ1U/dEr2BOBR9rhG+P+PTfTZekj0SPp A85lpQeoO/qkde6KeVN+ZDf7P3IGrHykwadcc0+XtafDVf2yZqHfZX+K98E0 WJ/SveiudHv6Ch7Y10KHdZWevmydQEej29Gn5Ulnp1dbo7nmzBV6qbLVEy3R Uej+yqFn06G0Rb4XRB8X5J01nTLlJV95KQ8tyV/wn16LBnofHZouS3/OuS50 56wt5EMftR6iw9Np6Yf0Rfk455cuKa21mfUrvTr5oIHMoFH51nT0a+tGNgx2 EXYQ+5h8K4gNxTqOzYKNgY2FXQQGA1bCWjtYBHo7nZvuTv6E2EvcW5uztdg7 5uxkGAh2GjYa9h32KDYLZTh3hg4vX+mtLbMfiq2BLULZ7AzsK7AG7FV85Www 4lvDshmw98BFsE/Jn93EGlmI3YdNTBx1ZmNiEyldp+1RbDfsUflukvUxvsrf OpfNg80ILsG+Nnvh7JtTJ2XBa1ivawNrIXKhHbOmzjef2KZgC/BD2Wxm9rCh wTMYDPmxF2kPbYN/6FMvNh42JzYs9h00sUOxR8GNSMvGwzYEy4LH3tm/pj21 jSubFb5obzYqvHGNPY89iZ1P+ymLDc5azblB2ghPrNvgatjIYHTICtuUeNZn ZIZNSzvC27C3qZN6Ko+NCi/VnX1QXcVBf9JZ29n3RiZ8T0v+2gdehy1Ou6o/ Gtm5yIWyvIvNz3tYFrzT7uSfzc+VbOETXI98yaJyyaU64R/eiU/G7CVUBjqV LU/5o1kcWCT5kBd8Fl9b6mvSXHg+rvkgnba2jhTXOputJd8HU1dx0WNPoPqj UTkCuSZz2iNrd3xiJ8p31+Cg2M7SP8VlQ9Nm8leu+qEX3dpL/5UvGqyzyb81 KzqNW+xd1sDsO8YvZaTvkgnp9AO2qYxt0rKVie+59+gwhuC1uuCd+qEheeCJ vmQ8M+YZbzPuwrDpn2hDJ7uWvKTXps6j0t/kmzYV8k02dAjoZ+vAQ2OksQQv yXawc/neoDbAT2OuOUTfNo6jkb0y44QxxHfk7BE1xpDNY+b1PlHyqx3EV578 2NXkr/7o1l+l11f08YxVxkyyrb3UkV1a/eStTGMmeVdvfFAW3hr3ybL89WNj g74hvrjyUTd04Cn7BDsLvuAVedCf2ZyVxb8QeZYXmQmf8FE89mxyyodgvDLu s9GynbILsrfim3Y139NB6D7u2fb0b3U1TunXoVNZ6kWGyZOxlW1Qe5EDchgZ 0x7a3nylX5FD87ez4egV5lDjfHB88tfHXdl48Ef91Jks6FtkEp+MgWgwH6o3 /uJT/A76vjbQFwVxtbH5LDZzbQ3vaKzSfvhEZozJxha+AuM7WYgcGDM8x3/+ EGOTOOIba8wB6JYvGuQtXp6nTsojZ+TK+GS+Vr5x0nPvjQ3qo47BcaqHNghO EU38D/w+mcfcm0f4n7wnJ6mnPOVtHgxO0pwNiyhtfEbmHvOR9pdG3zEmkwNt RTbUHa/Ni74ZKY25Szp72fW78FMdg/dUNprwFY3SmufMee7lIaDLvBS/FN47 u84758zpS+gia8ZJMkhu0YTH5M84Z3zUB8kVWcnc6Upu4lvRX7QVedMO2oZe 9tLx6a4P+ugfroJ+iG66AV6SAfxSb/WMHJIzfR/f5E1OxDMPays+OD4/38Pg A+RnDJaPX5Kvka/StzEEeEVYRWcO8EFqMzzBJzzCa3wPnjP6iX7sGf2Lbkiv if5FD5KHuuJ75Il+AK8Jx8pvyVdKD+QvVFZ8eZElvlBpag3bWE+4UHXhP3V2 Aqwj/GO+F8IPqt78keoG46o+/vseqjqqP5wqrCm8pkAHhd/ENwGmlm8Vbfm2 iHv5CMk3PmCYV31Ee2pHOiG+6Ifqg0/6Od+tvuFbJHzJfMOwk/Ca/NP82f7z 5cKNBudLvyKrOdvRvfam45IduFqYXv+N0eRee+gXaCArxjjptCd/PHyoswLx Uv3wBc/o5HC9fOz4rS31wdALL8unDluKZphR+F3ptIH6aVv8EMhmdDq84D/m u873WH1H1NmG2k7++Ky90cK/rG3ULzJApsmAuNqGb51vnu99/c3dF7Y8o0Nb ucdHbS5vZZNR4xJ+4Zv28IyskmFyGyy1tqSH63P6vX7On6vPGw8yJ5nHzOn6 ZOb34NG1mXnemGFuFd88RVc1jpIP+gEZ0db6k3bUtsYsY6J3xgRjivHSWC5f OoIy/adHmKfyvVpjlXvPvDdukwl9F11opu9n7UWPMR/So8z97uOnFcfVfOy5 K39LfDzxlfJ50SvpdPRWaZSjrtELza3md2XQv8zl/FHxS7nSK/iU/edv4tex DueTsk+CLYNtgB5rvWxtne8E0yPNb8ZKPMFv+rj1tP0OfLtop7OI7zm9Q7ny yp4DOoKg7uZM9ZAvnohD5xPoxfRo9VZ/edGF6JV0LzqifOhl+J35Vx7qbn3J JsDGI9Cb2E88Z2fABzoP3SM6nbzpzjlXQzr2Gv5H/JKOTpX6qD8a6Vj8eexP 4rOTxCbDviQf7akt8Ud9cv6JfNk/tAHdHR+9o+PhQ3zKfI78g/ghnbgCOwb7 B78c+5KgPLYp7cfXKR7e8WFrG3YedhQ2FPpe/GvsRdljI7Av+c/GE78XfyNb FRsYe4y8IwP72mTyLWl2W7okPyEbWr5vxKakTGXLjz1LfLar2A751JSf81f4 utGtLLKGp+xbOXOFH1dZfNbsfGxU2TfE1iA+XmtjbUYeyYH1k7jo8Fyb6ot4 TidXZ22qHP1D2dLgLR55x8bnnn2OvLiix7NgHDzLOcfKsZayfjCmWAuSTT5E /VBdyRSeals2t5zbQrbwmb1Lm6b/aVu0k39X75SjD0aerKfoY8Za9SP/nqFF nfV34486awO2UTY/AW/VQVvgA96QSUE5ZCw2QPzQVuRav9FnlKds46jy8+1v 4430+MKuK2gLvCMPkbeMWcpVR33BmGZcRLd+FexIMB36qHk6fRxf5JH9XcbY YEL46eVjzDY26HfGpdh0zFFoJTNkwDgqP2UYi3J2NJ01WCljJb3VvOUa+4c5 h+5p/DammsfoytYNxvPMNcrVPupjLaZOaDNvmves2Y2Bxn8BngmOyVyAbmtU eSgj84U1gjVo6mcsj13BnGX+IC/qpo7W8QI+kXsySaY8yxifb9XHZoE2vPCM bGVdq521n3vPyGTGfXxHT/BM5jrtnHTamSyxlUgTmwBdLBg4czK+4oH/1kTi 4VdsbuInrvWItjCPWw+Yw+Xluu96Q1zPlYd3dBR9B4/Vj2yjHQ/VX9rYVa1N 6T0CXY0+a91iXZJzuOh0WYt55kqvoPfQ4/2n/9I16ZziC9pb+j06aK+DrCnp xXQeZdK/YN7oZXRYz63r6NbosS703j3djO6Eh2SSLJMlMqLe1inosH+NXgiP CRNJt4bFzDcKnTcOa0c3pMvTA1MWuzAdkh4u0Enpjmwg9EI8Z9vTF/QX7WIt S5/DG1dtQR9VB2e3yYP+rg+QOfYVur06W39Yq1gzaRP9gA6P32gKfpB+ae2L 59Za6oh/cIkC3dt/7Wc94CrgnTWP+tOLrWE8Z0tns6VruuKd+qANL9lJtRXd GN/lqW7aR1prBLRJT1a8Izfe+Z91pPbwX1x2DzKRM9gE//FWoIPjmTaxHpSn tQT917hgrc1+oZ/oG+SbTUb7Z8zRp/BQ0Df0NXJO9vCVHJJXbRk7mry0h7bU N5QVO6Rxz3+8yTpf/Oj5ysgZ+uKQj9gQ0U+/z5l52hEN+rN1vH6rrwvBj+qf 7DTujTnGE2O/+YveadwxxrLrkEH0ZFyh57N1aIOczRf9Hw/VUVloV9d8MwAt se/ISz0EPMRjdkh1JSdkPO2B32TFOk9d8Vhb4+2+tirl4A9dGO2CuVYdjFnq oQz9KjZ7PEKr9s5Zf+ZI9Tc2Z640xuOLeW7ffc/RuZUZe40y5WPewVvzSfZV uzfOR7fKNxfka16l1wvxLeX7DPjDd6IO5k68Uf/Yqsh48MrkkLxkDjUHxU+l LHmi39yKbvSTbzw23pEN7WKOkL+xFp+0LznHO+/0gfi0cs6gOgps/3QE8xZ9 xHyab0+Yt9CALtfoGnhnPjZ/ZuxSLhq0VezWaMzeZ/1HwBdzG/nWvnjlv6t6 mZfie8iaC2/UVdvn+xP4pkzjErkm58Yg44RgHDHW6HfGX+nwUHubA4NRdK8u gnFDuXiqDP3aGIaX1t90gZzzmLmQncyYR7bxyTyLfn1KXcmOttRn6bxklZxE 51I362D8iF0ge9z1B3w0VqoTe4Ur2UGbOpujjJPsF8YSvI+epAw8NRbKn+wE a00u1Ev+0SXi53KPr8YA9TYemG9ik1a+8dwz84R8zEPo1O/NE5kD6AOxX3ie dor+gNfaSp/wzjiljsZH8xr7n/mX/Sl2IXMku6WrOdt8ig/0BOXGl0cW0YYn sc3oG9kTryxjmLnMfGneVFb2O7BL0key7x9/1Td7/NGPbmWqj/fkBf35Dop6 xJ5Df2CjMr+bg/1n42TjUk92KDqAuU+eeBq9St9Gt7Fc/uhi35IWT/ABzWxG ysRr7UWOyQC50lf1OW3LBqtvyBtf9GFB/ug272o7cTzzn/2UvU0d8N45Acqk q9Dh8D86XXze+kj2UMhH0FaRWzynu7A9sxuyUdsXw77HPujbJvkWNPsfWz17 JVkg8+zdAt7hJ7uturEnOjOArZA99dBxcut+7Lz4n7MOYhvW7njpv7zQoww6 ElnLvn5l0qHwP/ZBba6e7tWbPoUfeIY/8tO+ymHLRGfO5Y1tk31S/ehl9NTs 30Ev+6Y6+a/+7vMtbDyj22oP7eIZm7/9UbUe6jMB2FjtjbLPy54o9mb7qNia nUtgH79y6cXOXVC+e3uJnPPgPALf22E3tpfKHirP2YKdC2B/lDLxGF1o0oae sQujxZkBgrzs0bLHyndnsnesrmfYx+ZbPc4PWMe7fLef+umTfAhkRl+lE2oH Ie2FL+REOjS4127ots/M3nHnH9h7xrat3mjGJ2Xa++/bQmjXbvLWNmTKM/Kv zYOxID/klazyQygXX8gr2SODyiDHruz79pM5N1qbrL9DtD7rQv3ISHwngrLU U//wjoywc5MB5zQ4j0EbaJvscWO7x2c04B15MHaiVT9Fu3lRPzWu8TkFI2Kt k3FVP1dvNnZrI3JPnsXNusx6BJ/E0UbxL5FzfUV76ZvSGdOMs/imTP2f70S+ 2i9jmX6YPiYOOo19xlrjVs6Ttp403qqP/KRRR+Xhpau6uEeP8THfekeXsd1a Rl3Y2HNmSny08lee/1nvKs8z84lx2ZymfDqAugUPZYwzBhsPsj6yTo3/VH2M u+an6MPG4Pis6WtC1v3mnIzl5gVyge/mcuMNPYKeJT2dM75h+lbOtgk2hi5k LUEniE2N/sGOEVtX7N70BHqGOtNh6a94Qac1n1pryNO6mz2JbhVsCRsh+5Rn 8qcX04/oNNZt0Y/VW/3ki9f5PpkyzLPyz3k+9GR1pMvlPG16oSsdOXak6O/R cenU6hfdNd9Ko3vIO3Yuz9GHTnHp/sFOWGvQ3dSJfct/dqesA5Sj7OBhlCPQ 4+iLaKNzxj4XvErscEJ0ZHTgaXz04sSelv11wW3RkenF2lV74JG0+JG9P/m+ nHbwLPRoY3ImTfR114RgioK/ITdkQplkLr6M2EfjA48uL130YDx2T4eht2t3 umYwBHRN9fYua2rjEznWZ/gB6OjaR//Rz9hUjBN0M/JCbowX+oaxw5ws32CR 6D/B2dCD0E821C17D7UJXusX6igu+dTn1V0fUU/9l75j3DSu6g/0aOWotzaJ XUq+wVHFThpZVQ4epi2zzo6+7qofaAv3kVUyFgyfesQ2714byw+vghdAB/rT NuomfXgRvBuajUd4GcxF8E/GXWNWvhMYvFf8jvINJhU/tDU+GfuMW8YRcqqd 1c0YlH25+jB68W1f7B05IQOuGb/2xZdJl7VxZBAfI6OCPNGmvuzPeJ9vBWS9 ph7GJWVobzqdOSJ6hnmZXEU/p+PhBVm1RpUWP5SrLLSh07oQ/cEFrXX7e/Uc oi6xV8VemfPHrC+81z+k9wxf8UR5wUZlHIlf1jjnXexUytWeyss3DtyTp4wV ZAT9gjL1Jf0werx5zLisHckFOoNJJTvyMI6Qc/+F2A7FETfYxNizYytVjvKM DWQ0MkSmYmcL9tWYQA68RzN+kxly76ptyYAxEz3GnZzppt7msGCh5Ym+2F0y P+FhfN/4aMwTF43W/OYpfMy6Cg3kJ/4hcogP0uGlPqMv6EvaUHp04KNxTFto X7xAGz4Hx0Uf0W/oa8rGq4zHaNd+GR9in1UO2TU20UGMT/Qcegh9JfZAa0j/ 0YYfeIRX+mZweepEnozv/pNV/Qn/BfwV8CL7+4OVMOdoU3ywnsh6Un/jXwxu AK/VRXq8Mx6zbZorjWNkKfNFMOYCuWY3wAs8Ura6yEM683T2d8tT/0C78c9V /zcme4dGachR9sTSX8iEttWewUGYT6XJ9z2CBZRenvSG7Hs3jxhj6ETsP3yc bEh8g3xTwcIGW85+yW9EvzDPyw/d8pSfQK+JPVJ7eL/vmYjGNuOcMdE75fN5 KdP+AT5Ovk4+7+zjgKfIPhO+bvTwdfOd8t3ytbuHSeDnlYcgv/jUs59632v8 38FtSMvnnz0j/LZ8pnzmcAHK5P9Gm2foEvje0QZTal+WYL+L/Sv2ytgPY9+O /WP2M9nTZQ8O/7N7z+1psmfSGaX5Bkfv/1s9u/cd2Ttkf5Q9Pvbz2BMlr5wD 6j+/Ozr4xe3F4m+2p8ge2exHtyfW3lzPusz5lL17huwhsiep9yUt1vuS7Kmy z8weHvTagwaLAYNgPzgfOx+6PO1ntX9JXPuD7N2x/+rA1TrkHn/k9ZP5we2H t9cHxkCwD4Z/XBn83v7b42x/lbjqipf2XtlbZq+dfV5HLR7XPMBPfEGDuNkL jxZ7iOSD99rHnrfsS9JO2buNRz+Y12ex2nuHVld7/uSvDtLaQ6vtss8NT12V b18YXvQe4tV6X7Sy0u7aRt3UOd+cVh7eKEsde99btZH9XtrAfyH7kpWBJve9 T2peP89eL0FZ5NAVP/DFe3un5en72fay2W9n73DL2mr9jRey4X14bR+WNnRV D1flKTd7srMvTTr7F/FE+/jvufooGx329+Vb2crwHG3pI9LiB7nSRmTC/jP4 DX3ef5gUstp71ldPaP6oqzbEd3sN+1vjVS9yrh80z+pd9slpQ/XJOQmCdsm+ Nn2fDNo7iOfolg+6yDB5sP/Q/k57XrWX+mlT9JJN+/AE5WgPe+nQoc7o3rd/ uaovvvWYUTxvfu/5lrm4eEtG9O/m2Z528UwbkBG8kI92J/v6KHrT19SJvJN9 soIWe0/VRR2aN9UG+Y66dklf0I+kT5vIN3Kmn/qPR67kXn/CDzTY8559iPLx XL3JvzTygdHP95f0D/yCmdHegnMCzAk5a8VePXKBJuOw/OSNL9l7jzfazz06 09+1s/TGG2Xk3AC045v6SNN9sNrePZ6Kg794g258xBvvsl844542I8vKcy4G mrPn0ZxjXjH3mmftc8y5Iug1rqMLjeqOTvcwRcZhPHIV8t0r8TwXYMXyLSxt JW905swQ/CfbruLhN/7mjIbg1NAqBFcGW2SezDe/zDswdOZnc6h5URyYN3TA pEknb0HfkhYOSn/OHkLzsHkVj6RVL1f4NyHnp6ALjcogC57ji/jo1q4J4ioD fkyg2+WeDuFqfocPg4ODL4TLgm3id8xZPXyRfLjwjXREekO+X0ZXolvsiyEL poeOlTNAPE/6/BfoX3S76GlZO1sD0HnplfRf+lPwrsG60r2yP8t/76Wx9ond zvok+/bo/ewW1ojxu8WfT0cNZij6GTwYPSq4UbTm/CX6njTB62TvHL0TzejI OkTdtK81Jd2XHYRuTU9WDtmJHAQ3oA6ueCgE70p/t+6h38eOGCwIW6C1mXWM dYO6BZOnHemxyvcMj61zrOmsDeTjal0YXHLWD/T9rMOz1sJX6w3vY7OzXoIF id8yGIX4I+VrXRHfN/qyhtFeWV8qS3xrL+1mLYSW7OnBF+msGbJfVl7WI/iE XuuD0BjbqHZHu4BfbCHWKf5nj6GgHHRrw7SjsuRp3WVNy04SnDleeueZ+Opo DRbfevgQnJ62zb4xAc2x+ZJpNkXrIP89DzaM7LuyEeoP1j3Kj80Hz9FvHaZd /M/aH8/VAe3yt5aCzbO+yfcUY0eFN9AH2FDFJS/qrQxl6XPKVyf2d+Wxd6hH MOZkXohdx1hCxuHvrEPFV0dlsoNKo6ys8fEl2Gxl5Wx4PFd/az3x0Yhmcm1c MfYYv8wpwZyEFrzFT2ljV7eWzjou2JTsc/OOnMZmlb1lsZGh1ZpP+wQDq43c x+ZAPq0Dpcl4gf7ssYutVtzgYOSp7WOnt7ZVFn7hvbyC0SCr2V9KvrR17ML4 pp5oT38J/ZFjtKA52ARXMmoc0Afjmw+u0H/jhsDGQd7SpzNOuI+saLfsjRRi 7w2WUj2yLxPd+rp82bWUpV/GPmPs9j8Yv3xPIFg/ZSpb/uiIjTV1yfcAjJ3Z E6afsPnI0zgVXxbbajAG/FHsM2xu5JQMaevst2KP5DdjS8EX4yC/Sc5h5J9j A893WNmR5MmWyV7OVi1tfNnZX8Q+xDbpnn9MGfFFsv+imb0oPj0+RXgU/i9l oN19ziuM7VR698FWyBcd4kgPu+AZX10wHvx0/J18uu75PRMH9pI/Em3yk4c0 /Hzi5tu1/Hx87PKXnn+Sb5o/ne/Utwf4vp1v755/NngBPln7ovh1+XD5iD3P 3jOBv1w62AJ+7uzZcu8d37l7ZXnHt2/PE39szgbl40cTv6ky7UnLdxD4XwX0 aiM+2WBfglXFI/gBfIMnyTcW1FsbqTNfMb7JS3r5oUHZ+bZCzvzn4xbUE02e oYcfXd185yF4jHx3QIAj4Od/7rhxP8cXPm984vPm6+bfhz24w7js3m8ho8H5 rTCxnxrf2+4cV3lrF3n5zx/Pp+6/oHyYAz573yAQ8hwd+SZCvrFsbxkMhHI8 E5/fnJ9ckLfn3quLuM6Jzbmx1a8b7wA/gZaa59qHLyhLOnXK9xnkp77wC+LW eNZn3zqb13mzzrKFffBdgWrDuv+w70f31X48AT4BFiHBd6qdRYt/sBP5RgGe wS3kmwviuKJdnnAP4vhuhfNupXEGr7J8ZwEN+W614DsHcBKuzhf2zQPfXoDP cO7wnu8LnLH+nkOfE3zi+tvXb+ogD+fpeu4s3Upz4jrNSSeuv8V9s/5ud40T u4qmPue/5vM+0z/fPyiZ7bOGq8xdzkT2zLnA0nlXNPeZw84Jdl6yc5c9d0ax fKX1jXDnEPtOuKuyihf9bQBn9/t+QJ4J0vr2uLORlSNP91XHPo9ZHWBV8i1x ZyNXm+5yZjFahMq3z14+bXxOO/QZy85rd6Y0+vHJN0bwFi+V76x3Z747V9k3 KPBWvfDEuc3oRBeaUhf0+0a6gJ970vZ5yfk+hnOY1cG3EXxzwrcenGntmwZ4 42xovHV1VrMrvqrzmrcf7m9l+A6FOipbWfgrb3S5R4u0+WY7OuWLP9rG+dfh n++N+E4HucCnPWdNb498OO+avOBzvrVOFvd806MDGVv3nWO7Tzn/ek+cljuy jL/6mufOcJaX/74t4nsi4mkrV8/kQdYFZ2jnm+7aSnr9RVjn+Y3e96qP6YuC /gVXlf4p6FvOoF6fd/2e7nvi6dv6JhnRJ31r3hiTc6nhgeB5BGONsRNOy/hr jIKzMn4Zc4wzvg9j7IE7sgfaeGQM810bY585DQ7K2C0P471gz6687Ak31mfs NyZ7Zvw2RpszjPnyNebAKSnLnGVONHcYX43HyjMHKM8cA4ul3OQPs2eeMhfB MAnZmy6N/+bInJcN62ZeFz97gl2Dp8vea3OjOT+4TfMeHJMr/cY9XUfZ0gvm UDSaf9TJ3GtupifALwnew/5lvg1GU5nwRGjIudrBK9FJlGdu9g5t0viPPldp PUMr3YVuJA/+MZhBuIb47Kzd7UWhQ9G7xBOyvwMuDPaITpd8BP+zj8ZVWjhT 5fnPh+0/fRFN6oaufbGQ7tWbTkVfC2aKTude3sr3DPZJfqFF3dGHV8GW0Tnh tOiYfI+wY9E3+Svpu3Rguqv3fJ54kW9k0S3di+95Ap1UXP5493Cm2X/gv/zg u4IVswb3HIaKvzRnlaNbH1E3smvdYg3CjpAzz/FDuyuLvYD+jSbt7B3+qke+ t0UvplcrAx/EtbbB35yLEbwsmr1Hi/LwjK3A2sO6Df10eunkiUdsDHzFgv/a gc83+7H4gqWhm+O/9UPOOPcuvAj+Oucq4Sv+ZE+Q9sFjNCnHc/zI+fTacd/4 4gb/pr2Ci7OOyPqEf1pcceQpr6xDyIn4nqENjeovXTDF6JSf9dS+9ch5YPIN Bt1z94I85YVWfJGH/zkbwfrTuhAPtS97jqv1mnfZ7+ZeOdIH34KH2duGH+od nKJrcE7aTRp5WFdlTe05OqSP/cg15yd4FzwBOly9C27Os5xpH7zCGnv4gL1+ /mDfrFOly54sfSPnxQmw8ZGZYG+sv3MOFzqyPyg4nWAYcu4B2Q12J5gSdjJl q7v6oDf5ioPPnofvwfygPVgg6/h98WnZt5W9SvvSIT9p5Rdbonys4XM+gDzQ kL2TypR3sA1C8E2CstnerPmlT1y2AXgM6/1g+bKnS52VEdyNtbm2Y0d1FdCc fRbBWwraJefAiBMsXXgkPpuDequvq/9kJ7KSMym0gedkTBvrh9mjl71h+QYC udV/IlPBEMWemXNp5KkMshSMv3z1u+ybIEv6r3IFeWSvUOhVD/fBfWqP7FfJ eVfKyvl4aX82JXbEnENm/DRPkWntxl4Hr8n2Jx+0knm81Z45s0t7xWYif+3M xsN2FXsnG513OYuQ7YvdS9nsNOxp4rCBxa6tTp7Jjz1HH5QuZwqxj7ItSm/e iR2PXZA9jh0u9klleY7mnNMPZ8K2ad+Wuu57lkbwuPwL7pXFPi9f/IAzyTcC +F4Etkz+B5hLPjO+Ez4aedvbnP3o9vTnTMqcc8934Tn8R86LYIeVB78Nn4+r dPAhfDtwJXxb/EN8VXxEfML8SXxYfF/8VZ6LZ3+9tPEtCfLwXzrX4EbkwTfF fxV/pjz5vuJrcyaC8xu849/iR/OMz45fla8zOAnxBH5Zvla+UO/4RvkG+QBz 9gHfIh8mLAJftrjSySc+aL5YflA+W/Hin+YT5suUJ18efApa+Lj51eMf5W8U Dw6DPxRegD9YPnzQnjfWYXFy+5v5rD0TRzn89AI/as5p946vOs/bx1rP80z5 ylI/fnIYA/gD/lv+8pzXLsAewN3ADyi/Q8VRjz5LeM9Z7wK/Ol9+n+e7OqXT ei+u84lhZTyHo8l5xP4LOWsYfsc75wjD+uAbrIVzssWD2xHgCMQX17tzzE/q eM5HFi/fAOi0FZQFr9PfQK4ypBHk75n7fA/Zf/k4s7npKTpcnVHc5VRc9QmO o8+Z3sMPfJI2eAbfWVYufIV7ofPZQ496hB/4LMBhoB8P0ADvlDidZnFqp+sz pec1P9DsP554Jj465SM+zIrz5z278Pz0xmJ03hXQJB2+ha/iohE/5JdzlNGO T3BXMDHeq7c+ARMBV+FMdOdWi0NegmchD87CzvevlesduUFv0zWe1WeXK185 fZb1WNPsGRyMvuC/s+adde5sbDzo7wss1nLkrG/n4TuXWnt4lzbxPQD1hHuR Z3+DoPiubfFYPfFcnvlGgWtkEs/QK03kKG2FZvzwzFWdkwceKl//wcecdU62 tI+69jnglU6dtSn+qqe28F4bdX/cU4bnaNKH1V055DFlBbvU/Rg/x/pZ+jVa 8q2Hzmuxll1pxO++We899wyOqXFKY31utvTaRAheSECrviGOMaa/A7FYf/9F aMzWYv2djL04qLoaw4LZggtpDFblm7PEG982r7GC8D/BtsHleCYfYyS68m1w cTzLueCekSFxyaV0jVsrWQzGSiDT5i75i6vNyA1+iG/MD4ZGHLSjzTNzj7HW O30CJsa8Yg4IVq6/YV7P4WKCjQkeT4CHgfmBXYNF8c6cAXMTfIo4/ge7l2+k K8e85L95LsE8FmwPPIu5z1wjvvkrOCjvcl67OHCMsC/Bvzj3CH8yh8LgeA6H A8tinpROgBfyzhlFsCfSep8zq8zVrsHlmDPFC+Yo3wHy39wdbCk9AL4G9gbG xblOdAzBc7oDnI13zpiCeYk+4l0wqzm/PN8X8p6ek+9j0X/oQfQe+A7P6FN0 LTpZvhWU80/d08H4sV3pcuLyd9PTcmZSzh2j59F/6XJ0QnpdvsslP+lyBpFA V5ROnnzXwSWjE33888p0L2+6HV0Onej2LDTC9uIpHdJZVdYR9Fu6KgwQPQsG CR/puHRbOi6fPB2OHpjvh9Fj+cbVRd7qgH6YHVgVdNHT1VNeaBSHLooOtOEP fTlnBWQ/mOf5/pW81AEv6KXKgkvg/xbo8PhFn845EK7BKISP2it4BnTC76AB L9XJ85xr5T1eK881WCX3eCmNKx4LOSM5V3WFhZKfdP7nfLTkpf3gopKfZ+qR MnLWsv/wEfIil+J5jkb051x6z+UtT/EiI9paHv6r477Yde/Ece+Z+5yHFLnx LDQrz3u0iI+vytMHYfacLZaznOQhTc7Awu+cGaYN5Umecnae+/QDebrP9wPk gx/hMfkWrF30afHICjm1flAWHKG+Li/1DK4FDWgiz+LpWzkvO2dQ5Ry48CJ9 U/mRE7zAS/nLJ/i2tLM8BG3hfc4B817e+oF6hw/6hD6ILs8zHrlXhnVUMHjq riz1F/ItBO+9c35czuyWjzLQ4B25DO5fudKiM99PiPykzdI/0Oyd+5y1Hx6l /+BVxkF1zbjjmu/sZY2bcdFVnHyzzniXPZCucBX6c/ZSZO+q9W3OQtfXjRfZ wyFtzk4RVxzP5SeOcSNjhfGDvYEMeG+tLb+MI9J7hg7Psp/U/+SrLPnC9+Tb fsYtaT3Lnhb4oXzrLZgdmCPjn6vn6JGG7cF/4y+7SL4FkXM4lJdvqQV3FhsP 2wj7hHEarbA77FrZpxosWTCV+QYm+wka2cfYaozJ+lTqIq132ROcvW1kUTnG e/ZKNiHluQ8uC+bIfMIuo5ycbZ0zcthf0IAW75TFDhfcj3mKfU7ZsU9mb1z2 q+VdzkuSLld5Ze929p+yz8XGxm6mHcyJscOxrbnmHFf2NvFjC853D3Kuc75R ICgr50KzkQres2OxieXMcfm7lyZ75+MXcS9+7N45l4p9zn+2r9jcc0ZW7OXi sfezzbuyrwls6mz2fFh8RfwEOXss53yxhXvPR8E+lzNePI8fi8/Ls3wDlU+G /8vznCWtHPfyydnS0vNpeeadsvkm+bDkFbs+nsiXj0cafjs+GOnYK+XHv8I3 5x5N/Fji8G/F5wZPlfPVlMH/KA6bo2d8gDmXQny+yuCf3IvPVyi+dMpLwL98 R0Tc+N/kiTZ+Tb4mPidYH3mquzylceXTi++O39OVHzO+SFf55OwY+Qji5Wya nA8ueMZ/K4jHJ+tsCHnmDBNpg7/ynO/Uc2nF9Z/fON8qDmYq53R4nrM0YJbc wynxS/PRxjcNqwRb5B7uxz3MEH91vn/Mf81P7p5fHN4HJgjeh/8aLgdmhr/d OdjB9MD6wOs4RwMmyXvP/ReHv13IeSjB3cD18I/D1XgGd+Mqb759vnxp4IL4 /+GE+PjRgiY+fGWJ557/ns89GCP+dfGkUR9XPmv+a20pPjwAHMse/M12/ONT Fw82Sv6wR/AI4uMrHz4sAVrhivK9axgBecMcrOt9Wp/HAucAr4B+vNYuMF4w YvBYAv7BK8Fn4Cc+KQNPlAs/4b+2CZ4MH/Abr/BXXZJfzplJO2hz/NDG8hAH jzyXH+wY+t2jEdZBICPqC5OgbrBieCCfnFVD7shkMHDkUt3wgU/YO9gA957v K89kVf75HnewdPKEa4DpCzZQWu+Sv7S+QSSO9PLzzr0yYB+UKSRf/UQbJ2// 5SFod3nCUXjnzH3v3ec8m5y54r9+6j5YB2OwsWlfHIGxJ+MaP7f74DCMP8Ys Y6txkV/XWO8+35Ew/mW8zfcYzAPupTdum2eMw8pGo7T5BkHOIpBO2cZVWAfz R3AB3nmO5pzDYm4yR8mXz1pwb14wlxj7ped3jg86vumc64I2c1jOsERTzswU PMve6nw3PN9U4SM2b+aM9+ynd29+zjxtXjZX5yzM+HvpDdLI1zs8Eld5fODi Zd+3eT9zfL4t5d4cn/P3pZOXfHI2g+c5HzL32YNu/hZynmuuwV1kj3poE9zn uyau+W4O/gQPoN3xPN8J8FybaDf54qGQM+E8z3c71AetOT9Ue2m7+PbzDQl8 QXvwA+qKdtfgI9CmPEH58s6Za/lWj6s84ruMLkQPUJeUSy+Tt3yUn3Nzg40W h8yqK6yPPqffmJP59eiV9M3oVfqi8V2d830feh4Z1wf1H/HomkLOtPOO7Lon Q+lf6I3+SW9UF/H0F/0i5wHQs71TN/Sa1+mCObMI3/SLYIki9/JWN/Sqn7yD 7SDz+2J+pAmWJN+ryHfKpMs3SDxPXfHKs2B2lIE+VzLkmf/q6l65dCf30qJX Psa15EWvw0/jFR7IW52MQcY8acTzHm3Se26sUVbk17NgrITokvLK2BeMlrJD gyBd8gqWK3Gkg6MK5kpe4ntnHPTOGOweZk1dvEdr8GDBwUmLH+KgLWcFey+N e+nkrf5ooCfKX/l4oW7BwQX35F6ewd7DMtJl0/bkwZySM8GUk/OUg5tDD12W vilOdHTv0SCNctCmTjl7UDw0BPcnTeKnzjkTLOeDqW94kLrLWxz3nudsucwn +CF95rKcXZjvy4TH2TuBzzmX0X9xo9PjQ/ie9UHOf0xaz8VHk3kZLcEZJk54 L51y1A2N/nuHLvkqD6+Dq3ReG7xj9hbAPdIbcsYgnYJekv0HwWXSIzyzDhDP NboGPYUuSDfxLt9pgUGlY9Hz6GR0tuhodFO6knTwqLCudEH6FlwpXdc9fY8O H2w/PVA8urJ49DvlKJPOlz0KntO5QoMy3EdPtHYQXxx6obUFfU0d1Ss6GV7R tfLNGjxLWynTGiB6d846iezYg5H9CeiRH1nSpvRFeF26vTpmz4Xn+KSe+I8v 0uEn/dN4rH2DMZVXzgOEK6Yrqx8dMjpqsK7qQN/LOi34V0H5ZENb00E90054 4pn29l4gE+QhZ1mSs6w5910bqr+rd8HNRi7JbOT2/+8j7nPmpr5G3vVDY2PW 3NmjhM8ZN91La9zN3iPtIY3xVVnGcOnlp78bq41rxr6M5/mmp/k1Z8/nubLM YTlXRzl0SfmYy8xH3tMbzGl0FO+DgTUnR6/NGdnisv/ku5T57qX7fA/M+5zF Zy7OnrWcr5Rz09iWxMkZ8dIGsyVftj52MfatnIXEPggPJw49hT3Tu3wTjz0t 54OxB8qHvY59i20QrTkzHA6ObS175LLP1XO2OPqFq/Jz/pi4bInZn5uzqXKu U74fIZ4yc/Zc9uXCS8FTiWu/IVsfeydbYvY65hsP2Y+YM6bZTfNtP/G9c89G ue95eZ6ze+abQPm+hTixv+asnuzXZDNl7xQX7irniLPv5ozBBG3AJiqtwJaa PefKcJU237f0LGljf933O5T77l3Hm5z5x66b72DmW4uxXavXvn4w9fJ+3/MQ 2WXFz/dYUlfPg0XL3l555nx0dZaerV5gn2evz/dC2Lj3/Z4HW7zn4SH7P99A 8G3q67285cvWrmz5qLM0+f4lHw968Ved4CfVgWzwUfPRCHyL8iNn4vFX8H3w aSiXDOKhfNHDxxF/Fv8BWtHNr6FMcdVbfflK8j0fdUcn+vkr+Etg3/ia+IDY 2VMP/JCOb0VZ4uf8OjTxDWU/sv/xK/O55HtU/CHi8OnEf4IGNLryzSRdvvvE n5O65ds1fE38N/FTawc+GD4acb3jQ5AvfvCbaBO88l6Qf76fHT9q/GLqwu8T GpSDl3gSPKM44ubcqfgP48/2zjN+LHHEj4/M//j9hPip3OeqneJXjl/LeRXi koP4zPJNqfirvBNPgEFUvjTKdO/sBb64PJc33xm54+cUnH3lPx8mX2O+3y4d OfTfOzTwOUoD/wjPgPfGcHgGGARngcBPwDhKB58gDT9mvnEFCxHsJL8nrGEw kuLBQcA+8OPz8zsnhC8/Z3fBUDorJN9c920rmAt5yF8a72A3YDjgJHP2FMxG zreC//DMe1gNz9AITxmcCTwjrEjOBYJ7hIGBocz5Kt7Bh4gHfwLL4jmsjbhw L9LBqbjCrcDKeA5DE9xMAsyMd3kuDkyMMuFqct6Q5/A0nuVsLs9yvhKcpjrB yqiTsp3BA9ODzpy7pB5o91450nsXbCi8jHfqI66xC19yxs//Y+rL42NI3v91 IgiCRhB3u+Med5h6WiOIe9xhg17XZq214w5raXcQjDvuRhD3uCPz1Gw7NwjG nXXtIGzsWoa1Np91/Koqu7/X94/n1d3TZ1U99Tzv91NP1fDnceHP5u/lv/Hr /qu7/9YI4r/xOuftwvWEtxFvM577yq/j38jr6L91h3gd/LeOGP8W/v7/m4fz 37v/71pEPL+Hv4N/439rBvH24Ft+jj+DP5vX7X9rLvGcJ17m/9YM4zlbYk0o Y67I6eK5YXzNKZ6TynO0eJ/j+s5zBfg1PHeP55/xnDb+HVyHuF7y9/McMH4P Lwv/Dq5n/Jr/1lH7L3eM1x2vE14WXj+8vLzt+Hf9lyfG38W/neslrzP+Dbyv 8DbkdcTPceFl5XXBn8XfIdaVMmb//xxdXj//yX/5vnyf9yn+Tv5sfsz7Fa9n /l283/A65e3L65B/73/rTvEtLx/P1/1v/SGuP7z8fJ+XlZeD55Tx/sCP+Vbk vf27XhgXfv9/eag8j5HnOvK8S74WGF83j+dA8t94viXP0+Q5hvw3nsPIcxH5 vljvzFghclf5+boWE2n1/8+5bKltYLhuA8Nv65lfXSdyPvnvTbVksd/USBb7 /L1NrHVC+D6/np/jx1HGRubDt9g7WKa9vWEyPLJTSF8r1d5P2yNySeOMA/YR lpv5I7c9XjvK/MRxO+PSzJccZzjjBPMX6fy/re2J2ln7Euuc2GfYn9nY88xf nrOv1S4J2aBl2jdamfbths9+wLptT9ce2E9bv9jPW4/tP1lP7D7tV/tNK4fp 9kvWdjlCrlu/8rlb9sfWa9a+b+zZ2huxfWIEOIa3vzVy7ZKejwS0v+3PrDdC KphhJEQPIhF6URKuFyal9FBSwipISpmhJFwrTCpoYYThaVLdlEkVrThhGJpU tMJIVas4Ybia1LFKkUizNKlrlSb1rXDS2CpLmlkRhGFkAlZl0lapShjOIzF6 DdLTrE0ceh3CMArpr9QjA/31SD+tLonV65M4vSEZbtqEjNabklFWEzJGb06+ 9bcgzO+TyUobMtXfhiRodjLdJGSmppJ5ZjshC8z2ZIHenizWo0mS3pEstToS hl8I85dkjdWFrDW7Eua7yEarO9muO8g2xUF2W33Ifq0/OewfSI6YseSEOZic UuIImkOIpQ8jZ/06uWSOJJnmKOLTvyK3zK/JXWsMuaOPIcxeCWH9kTyUxpGH yjjyi8VE+Y4we0ee+p3kV2UiydEmkpfaZML6CfnLmkaY/pPP+kwS7DRIiDab hLhnk4LOOUJC9bmksG0eKWLkSdEA2+rzCOvDpIjGjqX5pKjFtvJ8UsSdtxXH fia2+SRMn0+KyQsIs1kkzD2fFHcuICUDC0lJJZGU9ieScGMRYX2MlPMtZm29 hJRXkkh5KYm1ZxKpKC0lFVxs62diW0oq+5aSKq5lRNGWE8VkYiwnrI+RmvoK Utu5ktS1rSYNXGtIY9s6wvoGaepIJs1s60kzXzJp4VtPWigbSIvAetJczxOx 72Risn15A2nl30DaaJuYfmwmbQNbSHu3STpb20lXVwrp5k8hPR27SC9rF+nt 3036KntIX3kP6WfsYXqzlzBuL/b7K2xrsnMSE9se0sedSvr79pCByj4S69hH WD8kQ50HyWDHfjIi4CZj3cfJdAPJdCeSyYFTTI88YjvVn05mOCmZ47LIQusM maedJj9IXjJZTidTZQ9JcHrI9xaKa2boVOwzHk9mGJTMtn4ki5RzZLHrHEky zxOX8yeSrF8mm1xXyDabj2x3+Mg22Ue22q4xvfORHX4f2avdIvvdt8ke302y 3ZV3bpP7irhuh3yd7A7cIKnmTbLXvEX2+W8Rt3aXHHFkkVP++4QGHpIzmp+c 0x+TC+YTcsnIJpeVZ+Sa7znxuX4lPuNXctV8Tq46n5MrvmfksvyMXHJnk0uu 7LxrA9kk082uDzwnN5UX5K70O7mnvSSP9FdC/MZr4ne8Jr/4X5HHtgBhdoT4 NXYsv867xv1KHD9xBUi24w35XfqL/Cr/SX4z3pHfrXfkD99fTNffk1cuJuZ7 cfyH9Rf53ca20nvyWvmbvJFzyVs9l/zt/4f8o38kn3yfSJCVD4LjJcgfFQQh ZhAUsJjYgqGgFgwFcthvriAIdkkQJEsQ7GSiM0lk19uCxPlCUn4oooVAmFYA ijsKQvH4glAii4mPSYAdpxWEYrZ/RSoIYfEFIMxRAIoG2D2xbD+BiZvdq7Nr 3QVBji8EJTMKQamEUCidEQrhMYUh3FUYSkcUzttPZpLAjkOZRBaGUjGhwDge yLH/3ucMhVLuUHEuPK0wlE0tAhGxRaG8EgbMfkKF1DCo6GdbV95+hbT/s68x SQyD8oGiEOFmksbuyy0KFeLZPbZiUFkpDhWVYlAxqhjUyJKhZkJJqJNRCmon loKa7pJ54ioJNWxMJLavMXGw/VwZqmtMYvLuqe0uBZExpaFuRDjUc4ZDfVsZ aBhZFmyJ5aBpTAQ0jY8Q2yahbOtmksBEZ+Jgv+WyazS2nxwBzXKYyOWheUJ5 aGGVh5YJFaBVgImtIrS2mPgqQpSRt20dWgnaJFYCu1UJSExlII7KAJFVoG1E VdASmKQxcVWF9gkKtAtVoL3BxMnEZOJiv/nYeWdVaOvLu6dtThVQXWw/69+t jZ1PrQrtcvKe1S4y774OlgLRsdWgY4CJUh06xTAxmDirQ8eo6hDtrgbRjmrQ IYNdn8zeoyigxbLnS1UBbFWAuCqDPaoyMJ8GrSOY+FlZFLa1sbJIrAwR7N0K e6fJvj2Wvc//7/tC2Tviq4t3dsxg79CqQfs09nxJgba5VcR94tkR/4qVVzfM bwL4KoOqVwEthj3XYGXJYJLFJOrfb5TZNvXfumH11V7P++52VtW8c7zcuUxs 1fK2Etv68u7ldcrrhn+HqHNe93pe3XeIYN+dUw06yzWgq6MmdIusBT1Ca0Mv pQ443HWgd2gkOFx1oFdWbegh14ZuWTWhi68GxBg1oFMiK6/G6jO1GnSKrS4k JrkGdItgz8itBb0kdn9EJPSLrwv9EutC/wy2TagLfaPqQp+YSOht1RHX9Ipg 7zLqQN+sSOieUAt6JtSGaGc16JpQE7rH1ILeuXWgXyy7JzkS+rgjxbcwbAGO WHaPFQkDc+rBwND6MCCxHvSX60E/F3tXVl1xPCCeHSeze52R0DO2NnR31oLu qbWgaywrR1RNiEmsAV2kmtDVycqeUxN6xrBnp9UWddDdrAXdFFaWrFrgiGFl sUVCXx8Tf6T4fl4v4toodq2LXRtaC2Jia4j27xD6r34xnW7nz9PPtlae7gp9 VvJ0W5xLrprXjhl5uszbtr2DScy/7RbB2s39r/4nVxG6Yo9k+uliOhnJ+phW SfS5qBgmjn9FrwitJLZ1Mklk+pvDJIpdF1sR7IF/+2Qq0zuFPTOBSSITM29f 9IHYykLvW0VUhOaO8tAsI6//N8kqB7Z4Jlo5aGLl2Y4mcp7daGKLEHaiiRIh ztkc5aBhbhmoH1oG6iWHQ2RyaagTyUQqDbUNZsMSSkGtKLZ1MkkuBXVymY3S 2fkIdj6VncvKs2XVE2So5isBilYCqvqKQxWjOFTOKQZVYtl+cnGomsUkip3L ZccmOxdVHCqlMZuZk2djyyYXgfDYwlAyq5DwE9z2F7OY/U9gtt9kNlxm9ttg 9juLbZOZuJh9dxeCYhEFobAtBELcQfBJ+Uz+9OWSly7mAwNvybPAG/Kr9Zb8 Lv9F3gT+JrnuDySfnE/4K+7PQmPyQ8GYYAhOkOCD9In8z/pA3mn/I6/978lv 7neEYXXywPxDyCPtFXlqBYRP5T4zYP7rN7Vc8sb3N3nryBV+Nsf1J3nqC4h7 brleCL9+2Z9NfvI9Iee0x8Ry/UJO2/wMyzLM4GCYwfWE/CQ/JRf0f88bvxCP 7SE5JT0gR5xZ5IB8h6S6b5Kdvutkh5WHR3babpC9DoZZXLfJQfMOcTvvErfr LjkUuEMYL2E4+gYxHdfIet9lskq5SJY5LjAczjCRk4nGxGTYSD9PlrkvkBXW T2SFlEFWOy+SVbaLZIXvJ7Lcd4Eskc6ThYEzxHD/KHBWgu4h4wMnyTfWMRKv HyUjXYfJCJ+bDJMOkWHWQRLnPkBi3fvIAOdegRF7+HYyfrGDdLS2Ec3cStr6 thDi3kxUxxaBLzXnVoEx+fmO/m2knWySdtZWAoHNhOibSZRjI2npYpjV/y9m NdYTxgUJ43ykiZxMbE629a0Tx4wTkgaONSTStYowfkpqu5k4VpJagRVCaroZ RnatFOcjHatIXf8qgZkZLyVV5eWkgjOJ8axFpJi0gDB+T/Kdnin4gV//jtz0 x5MMfQSh0lByXBpMjuixxK0zfmLEEtSHkExtlOAdjMuT59oE8rsymbzwTyTP rPGE8XFyS/+a4byRxNKGkZPKF+SYPoi4jYEMQw4UPOeAMoDsk/qTnUofslXq RdZIXUmS0ZHh2LZkqmIn46Uowbe+tVqQCUYUw7qMZ5kqmau0E5xqhRJDVkld BLfiv3EeNk5vSUbqTcgQpRFhdpMw+0GaKeVJDb9Mqvrz+CKzG6SlUYHh/gqs zkqROv5SpIYli21zrTyxK5VJS60CYXaA8ZgCJJ+Uj+RqH3iOsZ31A8Fxb1sv +H9T2i9oTwT/vWg9FbJOumyfY1iCYzP9sEdr2wSfr6etFvMAeSwg2thmdxon 7WuNS4JHH7Wy7JuMK/al1nn7NMtjH2+dtMcbR+29pVTB83nMhcc+eAyc59Xz 2DwfO+LjYHxc7r//FON5OTwfm48//TfHncdneSyZx+D/W++Tj3nxfBk+1shz U/kYMM9rzFuTrfOp76RW6YyDpTPekc6enc7KmX5f+oOvG5a+UDqb3kRKTt8o 9UhnPlz8pxxfN4rnT/4oDeNrnfE1oE6xdk33SA/Texq1PZelUZ5G2loPe59n o5XpOWzd9XiNR54Txj3Pds3nYTzI00VK8UQYSzweaYhnntHO09Wo6elu1PKM NVp4mO55GI/0OIzdng1GpueGkeNhGB2L+QtgaX8oFjcLIsPg+FgKeBg/8Rja j54e0i5PHWulh3FGTzVruaeBscbDOJ3nW+u4Z5N2xcNsjSeg/c2eWwAr6cWw jlUK6yrhyHQAa5ulsLK/GEYYRZHVp3hPca0glvAXFNc29pfFGLMGxmr1caTZ BJnOYYJmR8Noi4lmByHzlfa4UOqAsyUNF+jt0aV1xs1ST9xv9sd0LQ4vmMPx jjYGGS/H1/4p+N6cju/16fhamYrP/OPxtv9rPKPreMwYhHvNfphi9MYUrTfu sfoi6zfoUYbgFWk0flJmIut3+D9lBkrGLAx1zEXZsRAZb8Zqigtr+VZgTecK VJzLsZJrKZaTl2C4cxGWsBZgIWUufjZnYq7xPf4pTcN32jR8Y01F1v/xtTQV X5qT8aU2GQPaVHynT8N80ixkuogl5IVYQUvCOvIqbGSuxShjI6raFtQcW9Ee 2ITNtfUYaa7CCnoSFtHn4QfpB/GNzDaI5/2pTMMCvtlYypWI1XzLsamejMxO YjfbTuwbSEXGq3GAYy86XLuxs7wDWyubsJ5zNVZUlmJxfQEWkOdgkGxgUGAW FnTPwWKB+VjOvxgV13KMdK5CZjORODeLZ2qurQjyFmxmWy++t6y+GEPcs/Gt mYB3rTGYoY3Ai8pIvG19Lb4tyGZgKT0Rq2jLsI4tr3xN/OvQpq3DhtYarCWv xCr6MizjW4TFXQuwsDQPC0hzML88W5SpmG0BljUWMx1aiS3kDRhtbkOHYzcO cO3FWGMf9g/swV6BXcjsArZxbkKbax3WUlYyfVuKZWyLsbSViOHuRVjeWiLq pp5jNTZ3rUfmH7CrliKeM9R9EJkPwjHmMfwucAInGGk42X8Kp2jpOMk4hRPc afidfBLHasdxuNONzC9hjLYD7b5N2Ni3Fpn9x8rWUizrZu/zJ2IpdyKWsy3B 6rpLfA9vR94OI7XDOMVIx3nO07hc+gnXSJdwtXkRlwcu4ByXheP9J3Go6yB2 VnZgC996rO5yiTIwX4JFjHlY3LEAy0tJyPwTqvoW7ONIxa+Uo5hgenC+/zQm amdxvnQGZwd+xKmSB78NHBfl+sJ2APu4UtGhs/a3tmMng4lrO/YxU3GUfER8 03QNcaJ0StzzdeAojpAPo24ewuG6G4cE2P3uVOykbcdW/g3IfCY2dSZjS30D gj9PL6L1bUK3uHTXdmIPZRfGuHaIskc5N6LNWId1A6uwhrICa0h5fai+vEbo FvPf2M1ibWHuxYHWXuxn7BHv49Lftwf7yntE/XU3dmJXPUVc29dKFe0Wbx7F ibZTOMNBcb58BpeZF3CdfBk32q7gNtmHW9xXcYMjE1c6MjBRP4vMBotyjnYd YfZmH3Z378SOtu3YTjKxnX8rdlC2YUd5u3hHL2sX9rLtFvrWU9sl6o7hDVEe Xgf1zNVY21iJtfwr8uyCi20ttnWvEPpaX1qD9X2rhY4IvZeSsZWyEe3WJvGu Ts7tokx9DNZH9b0Y5ziAQ2wHcZh8CIcoB3Gwc7/Qb4e5G7ubO7GbPwW7WDvE d3D9Y5hI6HBPYxc63LtFffVzsP7gY3Xv2IFt5a2izzTQ1yCz2VjWtVjYqQKB 2cL2fPDPwA/KDxjsNrCoPF/YD4ZfsKpvmSgL768M3zAbvhIVx3IsZzFd9M/H ggazF4oh+mhRZT6WkRdjdbdL6ATX3YHyPhxhufEb/zH81n8cv7KO4BfKAezt 2y36Ka8/8U3+5VhZXoaVpWVYw+fC+rY12Nq/UZSRl/0b6Th+byEucJ5Bl5P1 l8BFXCFn4GLHOZzp9OK38gkcbO7Hdoop9IjbK9lciL9Y45BhLWHrU42+uMvo gwxnIVWG4h1jDL7VE8R3c7vTJLAO2xsm9nTtwr5Knt71dOzCTuZ2JNpm0X7l pCXCL1zVRuNupa/wQaP8TVi7RTIdqY261hh/8IPwJ7e0rzHYMLCCKwkbW2ux rX+LsMO8//Hn9zR3IcOoGGVuFPVbRlqMkmMW3pe+xTTjC1zu74TjzJbYR4tE u78SRhqlsbohY6RWGoleGQfrDYQvtPRh+NmYiYqxHBkWxn7uPfiN71ievXKl 4SjrMPaQd2FD/xos4pqHF/ThONvfltV/NaxkFhM+OMIsyvRewXlaO2Gvy2qL kWFoHGecwGXGBdwhXce97luY4rqOa+RL+L2N4mBjP7aSNmIZa5HwY2c0Hfcb /XGv1g9P6IORYVjM0SdiiGO2sLvVnS7RDxheEG3Odama5BJ1X8m5VPi08nKS 2K9uuLCBtgZbBNZjG2MTEmMzq4NN2ELZIO6v4EgSuvuz9Y2o68lWa+wr1cUO loIMbyHDWbjb3wffagkYqa/CQbb9DDOcxX3KbTwt+THD/RQZTsH9jtvCTvI6 q6wsE35rpqYyO1YVGdfESloxZHxatEO6GSf8czvfVnRqJzHZeZm10328bGWj T/8Vz0qPca9+C+faTuNgx37R17kPu6ePRYbJxXcesPrjT8oI/NOfgLK+ECPd q5A4NmNP9y7s79+DA7S9wpZ3daSgpm8V9oFxFrTbNgt7xK/jdn6ahMLGr3Vf QsazRD8YaRwWOtXIsRZLORPxZ2ksbvR3xzF6c+wh1cbBWgNcoLUXust9CbfV 48wTuM53CY9pPyPjjXjG8ON+921cqJzF/tYerOhPwnQjDr/wN0COCxkW9gzV DnoM40dPjvanp7tZi907CGXnQuzgM/Fb5QQulS/gTv91THPfR9Qf4nHlHu60 rmOSdh4nKqfwS/8hZFxO2C1RRmUzNneuF+1dQ14h/GdJKRGL+uZhiHM25vcZ AnuVkBYKv839Iccw001E07yGGfpT/FX+Ez+6P2GQJNF/3B+RcWWk0iNkfBR7 W7sx3FjE2l3Hr/xNsakWIfoR0SrjFL2N0PcathUYrx3FvcYtfGZ7y9othJaL KEqrxBanVSNL0HKRRWkRI4S+NP9itoM91zwv/D/XyyrmMizinCdsJ+9f3Ga2 ljZhH535ef0wTnKdwh8CVPh67neSnOdFe80PnGb97TQyPoxJjvO4wpaB65TL okypxk3c57+Fe/w30XRdw9XaRTTMH4X95LrR2LYOIxxLsIg2D/P7Wf1oc7Fc YDEyLoAMy+N0HXGPcgvvOV5iUFY+KqcVouXlMFrBFUZLmaG0gC+IPvO9weO2 ezhXOY39lb3IuK/opxyHcvzKMaHm3orfBI7hJvcVvKRl42v5bwxOlWghW35a yAqmwTESfW37G33uX3GPdEtgj9HGEeym7GT9ZiM2VtYh42jCp3J9GqMdwzma hYyf4Q7LhzuVG8Ivc+yzwH0GpztQ6AjX7+FuNw51HMRByn4cIh3EMa5jAt9w fLTMcUH4AP6clXoGLpTPivrhdf1V4Ii4p6+P4Rxtt/CH/eW9OMi3D4fZDuEY J3uO7hH93qX/hGsdl3Bd4BKulzNxvXVZbNealwROWKpcwCXSeVzpzMD1Sibj GVdxm+TDFMd13KXfENttgWu4yXkFk43LuMZ2CVfZLuIa/0WBNXYGruMxF+tb 2mO8Kb/AR45X+DjwGh/6/8Bbrhd4OZCNP1qP8LCchbucN3CbzYe7HDfwkHyX cZkHyDgw3pV+x98D7/Cj/gmDYyUaFCXRT9JnfOvMxWztDV4LPMdT8gNx32r3 RaHzieZZXOw+hyuUDNF2+6Tb6HU9whtaDvodrzHH+Se+0t4z7vCX6Dt3ld8Z b3qCx/SfcYdyHVfrF0Wd/uCjmOD04BRXHi6cpfwo9NWl/YQbzEzcHbiBR/Qs ZhsfIJUfIToe4qnAfUxz3MeTyn1hVw4F7gjfwb8vRb+O210+3Gy7KmwXb8cF jjPCh/8ge3G2bOE84zQu8p3FpYHzuNp1ETf7rghdPuG6h+h6iNT/ENMdD9Dt uou7rRu4QcvEZfoF5tN+xMlKutDXUYHDOEI5LPrL18oxHKedwIm+NOG35kqn cbHrHC71n8dlrguYZJzHBSb7BpdXXBOvH8WhxkHsb9sr+EQ3aSd2d+wU+hTn OiDsxAQ9DWc42bN8Fi60sT7tOo/L5Z9EnXG+8KWP2TgpVWDU9i5T+DDOk5qa yYIrtHeY2N25E4e73EJnuQ6mGNfxqPIzHvczsX4WOsH1Z33gsrD14/QT2NO5 S/Alzgc4ZuD+sUdgp/hmrv9rrIvCZvD6/0l+ihnGU6TWQ0wz7+Ne5y2hv4mu szhV9uAYg9WT/7C4l3F3nO5CXG4x2227gWk6u195ijccOZjl+h2zjN/xsvIM 090PmB+7Lmx8gubBEQG34E295N3Y1ZUi8OYQ3wH8zjqBC31ncKOViQe1O5jm vI8e64EoGz/ebvjEt863TuMEMw2Ha26Mde4TuIjXG6/3Hv6d2MXPcK0zD9cO VPahrh/Cr23HcKqfcScH407+C7hZuSr87nHfzwx33BM2jevxcfkenrTllXur Lc+GJrrP4kyHFxNcHlHm4YYb47QDAltzDtTHmSo4HW/nr6SjOMk8hXN0C5fa LuDGQKawy0fMLDzqz8JDvjsCD611XsJE51nBPXSNtbucKnCdXdoseBFv91by RnHc1pbHNbmv575hoj9N6PxKjfVT/Ypou2OOn9HjeyC+/aDrjrAz/N28r/yg eAUm+1JxC2zN64vzn0HWPhzqzOMLo80j+K3vuMB+U8x0nGZ5GD5ifM52gvm/ I/il5Bb3j3YcwXj3UfxGPo7fSidEO3C7OMOgoj/O1Lw42ZYueBW3p5z3tHea 2NKxQeAWjtUrBpKwmuzChra1SMzNov54uXgf4PcutM7gXPm0eB7Ho5xD8ufw +uD3ye6FwocVCszBMOd8LGsuFjyDuDYL//ll4JDA/uOcJ3Csg/EH21GMMw7k 1bG0HVvbNmED5xqsqa3Aqv48/sBxHH92XYnxe3O9wBgdle0Cx3f0bRMck+Mq 3i613SsxwrlE+O/80myU9Fki1sNxR6g5F8PceVyI4+HS0iIsKs0XMZ3b0him y4OY7enO7Ek7xpvbMN9kZ/69A/MD3QRW/EX6DoMdhog7VLYtw9r6SqynrRa4 t5KxVMRWPvl/EM9K1fviTFNlHKYB48y1GK+rzriMwjBSDexn1mWYqTGOl6KY 79RwmdYJN2k9BL495B+AHn8c8xPDBd7+SRqBp6Q43K47cLbVlvWZ+lhLKYW/ Ge88a7VLHsZzPU21ZA+rJxHDY/zcM9FK8xywbntYH/cUNINZPRZHm1mOYfuK jONXwEZGWYbJirGyF2Bleu3Zq93yMN7siTI2ehhO8/wqTfSw93pOSl94GMfy HJIGei5KIz0FtTkeZqs8rD97mH55plrpIh45SjriYTzX08hY6wnRZnv2Sf09 X0o2j8Oo44k16nvmGJpns9TTc8EY7vmfNMPDMLSniDHP80ZKENcybO+pK4Wz /dvpLaQN6cw+pzNcmn5Fep6uGCU8UyW7h9WpiE920rZ7vraOehhG9hy1sjxX rGeeO8ZvHr/x2nNZesa++b5niXXOw3TSE6bN96yTunnKGkV4PFU8l92X3lgq 5zlnfCninMyGsO/I9dSRSjMf0QgnS20YPuiI30vAMBfBKVobwT1GKE0YV6/D bHU5LGKGYLbxxnNLe+F5ogU8+ZUgDDMKML0IxapKCWxqRAiOx9t/j9QPM41R +FQZj++N6VjQOUfoD+8nnO/wOOYTw4nXra8Ej+DY/Kg0CHdpfRgOisHFRjQu UToyvtYbj1qxmKmPEpwmS/8GHxnj8KnlxPfadMyn5MUbg6xZgs9+1meK4yLu eRiuLcKKviTRtyv7lmJVi3Fyv0vw/qqBZRihL8FSZqLoC5I5S8Qfb+jxzNeM YDjnS4bHR+B1KR6fWeMxyDdLfH8t20ps7duIndzbRf/nGJX71Q7yNhGD432W x/ruKt/gfq0/zlY0HKu1wFizPvbT6gr+MUZrzuyfiiv8nRl2dDCb34/5kgHM HseKuC2P3260uuNCf3scY+ZxnsZWWSygBCNqD5leWaKd61qrPG+NBM9OqY+H 8XcRB482qnkKSMFcT9OHSY3Teaydz1Pic4D53BOec87zjvnahGBtFrl/zMeJ PL5dxg2Re1fRH0Y6StXJVKsNOWYMIvnkWWJcqLt7J/lGOU6YHyHrpMuE+Xkx /rZPvk0YfiRb/VfFmNo6+TJhPpGsdlwkDHuKLc8xYliJMP9GfrT9Qh45X5F8 jz+T4qkFoUpMcaifFQ4toioAcVcG1agixm0bJJeBihHFgPEVyHV9IE+lN+Sm 9IKc9z0mDDsRr/6IXHJkk7u+30TezzP/G/K7/x35059L3un/I5+Nz6SgKxiK JIRAichCUMZfGMpFFYWKUl4uSoRWVPzGc2/yRwTBc/0tYbhPjO/F6vtEDhlr fxJvNiNM98kULV2suchzvHkeKc+t5PmQ/xgf+fwRkqh1EDl4v2mTyB/SFPJA +1aMXw2zGvFxU5FXyv+3paq03BNq5Gf8t5nQkRtmPD71O/GJ7hTx/qv6aGH/ WDvhXf8Y/EX5Dp+bE/C5NkHY4kvmSDwsxeJiM1qMKwyxGuIQf0N0mq1wg95d 6HARxzwRn+T+1NB+xK3yNUxzMSzke4LXrOd4zf8cz5mP2ftvi7gIj7NEu7Zh tcBy0Rd4vzxlfcEw1xDxTR+1H0T8ub1u4kjzsOB8W5VreNhi+N71QOAst3ZX 4LyN8hVcbVwUOJLHhDn/4Jxjh3wdD9ju4NFAFh5zMvzkvoOp7pu4zX8NN7gy xT0rXRmCx5vaNTyo38Gzlh9/Vl4iqz8smBhMZWchWs5WlFZUitEK7jBazl+E llAK0RBXEA24/8bbtt8EtuM8fa3OcLnzAuf6AhuvUS4J7M4xCS8/0xl8ZbzH XMcH/F/gA/7l+x/mOP7EG84cgTvXWZcE7uCxWx4H5DF/biN4TGiB0V74pOq6 jM+kt55l2gVPK2mjJ8XozWz+1XTWxml5/yHWXKzXy7COyH8taxYhXZSaIgf0 kj5S5FHW9bG+pe8k421phPE1wvq4GEtnHAnCEwuLXAOec9NHjwRmO2C2rMGm 2B5wXB4MN4x4yI4fD/84ZsDn+JlQ0D0HisTMA+aToXjCAgibNx+KmPMgNHYu hB6bC2HH5kOZqMVQvZ8LbEnroG3UVnCk7AbdfQjG+0/C7EgLVpz7CTb6M4Fx ONjxwAfbcq/BJscVWJmWAYuyzwLDncB4A4y45Ybet3ZD23dbgPlAqOReCkVm zIO3zgS45fwaLPcwYNgCDsuxcCx2EKA+BC4kDIfLUaPgSmAU/JQxHE7mDIZk dzf4JqM5NHCWAZ4HwMecz0qPeW6157kxQXDBYhEFqapXof1cdWkvuQ5tGVOB Fk8uSI/KPwssauq98Jzx2LPF6OkJNwp70Bji8Rm/enisKsbcgbd9L7BFRnk6 M1Gl3tSh9I01lRaMm0OLxM2j+XMN+lQaT/en9qdjYprTaopMT1n3xTgA9z2N 9LLML93wMDzpWWH95Lkv/eEpr4SJOKOuN2aYsyXDqk2Fn1S0EhxbewLGVA// 3yY+94vnVBeTCpKBVj2yyN+B7PH3JQzbkDOaTlg/J6wNRc5tMWUBaaysIwyz k+W2n8hp6xeRZxGSEARhqQVYmxaAQhnBEND/JowLEYaHSUN5rbBRDFvxXEqR Q87n+vD5jXzuIx/P5XNWeN4/4wdCD/mYMx9v5rn0fO0F5h/SGS4UNmmp0klg yFjHPsGP/rD+wrKOIrRJVjnaMbQ67Z9Rlw7VG9FRkU3pGHdzOs7Rkn6XxSSn JXXGt6LfRbaiTlcrOj4yik5yt6bTnYTOslQ6N0ejC20d6LL4TnStuyvd4upJ U1J701RHX5rq7kt3OfrQrbZeNNnRjbpSO9N5ae3oxEAU/SK0IWX9hTaPL0+r O2Qq64VovuufBffn8QY+JvK9TPEL+YAYG+DjZDxWed8ay/h/b3TqrbC9qWAZ qzDDI8/E+PLP0lgPH6Pm6+bweVt9tFQ7zy/n+d4MkxJWLyLPuZpvOSGOzWSA tpeM0Y+RGSYljFeKPBPGaQh7nshl+ej6RBimFL6lZnxJkTvEc/F6arVhkNwA hsfaID6tGYyLbwmTXK1hWoYdfvADGGZbmOdsB4sCHcAV3xnW2LpCckw3WO9n Eugm+kWy1g1WO7sAwwqwIpdd4+8CW/SecDB2AJzN0OFewlh4nzodwqLnQ9Vz y6BJ1jqIHrkNmN2HcWNPwOycH2F5xE+w/txlYD4AtvfzwZZ+V2FFSAZ8fwvh i4gD0KLSBgjrPh/OJOvwXUZLUBwl4IRxj/RWUkkdeZXIN5mpe8lt5TdSPqco dEqrDhOcUbAiMga2+nrCarMLTNJbQ3RyNSgaUQDWy5mkhH8B+cv6n32ndCOd +6ZmynoR45Dc+WgNn0xbOivQNu5KtJFZVtjzd+7/CW4/x2mJ2DGPEzdyrxVx Bj4WwLmP6tqCUe6NWM9YLfxUJX2pwFt8rKqNuQkHu/eLeIvX8Qh/l//CkLQg GpZQgBYO5Kef9c8ibrXWdQk723bgc30CRmkVOR/y8PW8NmlX7PF6M/KHMoXU t1aTftoeMl5OI4YjL79npHaY2OXNIued5+TXUEoSPl+Cz83kc8D5/+Lxecx8 LW+Gv0TOfjXJRb5TThJP4AH57PxMmK+CmqkloZavpMjpKhAVDDyfOdlxmQzy 7yOhjrkCazA+z9dJbpNkdGS4zvL8ar31MOzGylmS+fRy2NKowPhXOJaXwkRu A8P5yHRO2KKtUi9kZRBjqmDbgqNsR3Cd/xKel5/gO/N/KCcWovXiw2knvTod nmqjhrst3ZjbnR7OGEh/VIbRixkj6GVplJAL8cPpydAv6M6M3nS5vxOdbhD6 VVZTOjC3Hu0h16adQ2vQzpE1aNfEmrRvbiQdFmhEnQmtqBHTlrr0znSD0Z2m JPemu2L60J2+3nSz1YMujepEp8p2OjihAY3SK9IyUhGarb8RmIGPXfIx7R/9 Q3GI1Ijh+CAeV/bUsFweKg0VvIrZNMGPhkgH0z3SkHT+H3R8zQE+p5vPx5qu ofCx0/x28sY/lTQw15DvbCeJ23GXvHXlkghnUWjhKw89U2vDcIeN+bxW8L0M MCdegwV6e1gkR0OiuwMkpubJIl8HWOyMBmYXgPESYPgKtqc54EDUAMC0IXA1 bTQ8MZ3wd+j3UChkLoTHLYJq55ZD4wdrAR5shu7xOyEu5gCMTTwO31ei7Jln YXXKRdgSexVSNl2H1P03YXeDm7CVXIMVL3+Cmfu9MHb/cfjC2g+dJm2HRiPX Qpl3i0ByzoIXEZPA7/4OHjnHwcOIcfBLxHfwMPdbuJIzClJj+sLXkc2hslQc lis/kTTtC8LnUTLb5uF5KMNNG+ZqHxinvZv+vYX2bVYvoZ/MZoo8L2ZT+HwJ O8NgHj7+y+OxnTOq05WpMfSGI54GRRq0VFoireBIouHORTRk7Gx6WxlDVwVi KHs+/dPKFWNP6/xd+b2eetpqz0Brr4fnyvxmTMJ44yj6zddYJb44jYqvSEls ZcrwPS2lh9IH+h8iFsvHTfb5+2E5qwiPs3vKSUU9nL/w/wZpo22yF/WHkEVK NAl2GwTkLWSicoqkum6SO47fyD/uj6RwRIjIny+dEwpltSJQ2hcq8uuD/PmA 5/P/7PudXDCekMO+u2Sz/4rI71sqXyDr/ZdFXmCG8ZT87ntHeG5+2YQiUDVQ HKqGlhA8oXBkCOQ4/xQ5hSMst5ijwmwe+V6ifD2i1s219Z6megRa5jAx7jtM OSRioZbrF/xFfo1v3bn4KfAJJT0flVz5aP6ARAvbQmh4QmFaK7SUqI9YV306 LddOGYah55xf0hfKJFrg3GxaypVIK6UspTUyXbRO2CrK6pbWfbCK1rm1klYL d9EKsUm0ZM1EGho9l36OnUn/sE2hv2SNozfi4+kFYziloUNFPz4aOogeDo2l hyIH0gPyALrX2Y/u9LN+mdODrvLHUKbv9HsfoUyPaH9fXUpSK1PG6ynDEpTH qydpp0Qs6rSiYwOjDI8Befj/Hor/ALECfC472Wv2I3/4J5OSvoWkuuESOYk8 l7GXfxf5IrCfjNNPkIXKWbLPdps89P9BiuaGiDx+7isnpEUJf0czhggd/yD/ AIUDc6FkYCGUsS2GcqFLoFz2YghPWQQlQxOhuHsBFDs3X2DdEs0XQvi8RYwv LoWaCSugYWANtMrdAO1Xm9ArdDcMyzgI462TMD/zNGwYmwlHNmXB5Y/Z8Iy8 BWlkPrVYRgG13I0iapWhxdVqwbKqdC+hRgwuqhZMCVbvuH+DZXgByP7NcDlj JFSVSsBnbSbP+YsaoNdD1tdEvKSileRRjS127kNWahmkaGQBYLoOnW01oHNu dVDdVaBFaAWoE1oaQhPzQ4p+Xcyt4mtKPFTGYcnIUHrCOZjWi11Nx6WeoKb7 Gj2VeZ+eyrhPd768TuckWExH9tEGm9bQoAYGPWn7giak2ml7XaFhMQXoIf8d kcu0y+yDH6yPnrbSVk+0ts1T0iqEjI+K+G7d3NJ0rq0dvWqMpvmUWbTwg7k0 ONmg98yxdG1iV9ouUJVelp+J/Id91i3evvZlZifi0HeTLPfvpGFUWfjW1wJS Y/vC7cgx8N45HYITDMgXNQuep00A1IbAvNR20DW+JjD8Cxe0J2S6G0k3ZafI We0s7xB5sgddd1jZP5OGUlkYHm+D5NRucNU1GvJdnwnhqYuglrUCGmlroWHO Gqi+3wVFkufBDWe8sNXlMorAANdewucFsus8PB9tvnIGGVbGMhmFaU1HSVpL KkUrxRSjjPczfC/R9+5/8IX8Dp8GAvhUeoMvlHf4IfARi8kFaaRemnY3atHv swg9GjGI/mWbTqs+WEajE7fRr8KP0vnkDN0y8io9lHOHngrcp56PD+iJ5Ht0 v+M23ZxxhS5OOUcnk3Q6NOkg7dhgO2WYnJYJXUzz/TyT/mwbSz3yELpH6ke3 Ox10V1ofeix1kPCvz2Mn0KDMWbSYvICWNRbTiJQlNHzkIsq4O30jJ9CzkV/S JHdH2kOpTQvn5KdzDEvEARiO4ji2DeOeJNgwCPPxhOO1V873efEOLUTMP/pD fk8umdkk1XlT2DmOZRYYZ8S8LR5HKRFRCLT4qjBNIuDxxcGHwAyoHLIM7M03 w8DQffBt9nGYkUBFn5nf/IzAklObe2DspuOgJxyC/rl7oFvNndB+vwkMm4E2 divERO+AAf32QnzSUTD2/wibX14BdD6EBzF/wD/4kc9hUiv0DFNrJ5dSbWvL qa3CKqr2B5VUe4PKaqu3FdT6b8PVMlcLqy+y/oTk/ZehbfOtkGGMEPOSmM4S /n+3POZYwQxDhrU8PJe1llKKvLAmkihjI3E4dpPG1lryozSMfJA+iTUIGH8W 62zydYU4RmP99xT3i1esUXjKdx91szH9yzeNRqdtowvmnaGM+9O7/t9o9v43 9Cl5Q+8Yv1Gv+YhubX6NzkildMD+vbSBYw19p02js+S2NH9oEC2nLOH5SDxG bO+tRBLNrEp4Pi7POeW5dy3TKtA9vr70Y+oPDPMspmW7L6ZB/ln0mDaIdvPX pHxcca6lIV83iPEWMtVKJ3wuWVd3TVga0QkynaMgOMmACs4kaDAjz7a1jtoE zZqvhzo1V0HZsYsheJIBDyPHAbMLsEbqCtNTCcSnNoO4hIbQL60u9NPqCj7C MCYYelvYZPYAhvngefwEKOSbAxX6JUHd7FVgc68DW/Q60QdL1FwITzQnrJBi xLyJZcYFEm80Y1ihpOcX/zgRu6kYCKODYxrQRZHR9EBuf8o4Lc3Sv6GPA99R ho3og9RvBYY449bpkeRYujujD90h9aZ7An2ppQ+jv0oTaYmsBdSWsI4OcOyl M6O9NGX/dZqx+il9FvWW/pP2kea/J3kL3AryBo+VvH9n/kMfNw/QC8lP6G75 Jp1f8wwdkeum7fuZtLrbRQs659DHkU5qacOEjzNjetHNvh50l7sPPeqPpecc X7L2HUOf6E76W+ok+ih1HL2V9jWl8lBqOnrRiVJr2k5RaIHcIDrT8IrcnDjj gIfPfd/o7050xyHy0vyLNMkpByNTm8BiLRq2hvaC3aF9gfFY2GT0AFdsZ5id 1RbG6S0hXmsm2mFqThtYltwJDroHwF35GwgiBlT2L4U20ZsgdtI+mHguDZbI 52HzuytwoNIdSI97AGejHsPFStlw5d0zuJr8HK6dY1LzV7ie/SvcwhdwL/kl ZKe9gcDqvyEfyaeGrs6vlkoOVausLq7Wfx6utnRVUNsGqqjRqdXUjk2rq1qn qmrjsHJqeGxh9ZfcV7Ao8yw0OLYGtjh6wn3fS7LYjCb//v9eGv+PnrV6VzJY 209uaS9IsawCUDK3ENz2vSCtpI38d772jRjzi9RK07FGC7rV6kkvxAynzzLG 0+A4g5aMTKS1IlfSNriJ9rDtYnz+AP0y8xDVYw/RuJQDdHD0fhrX7wAdaR6m kxyn6KJbZ+nWyGvUnXKX9Y2f6fY0H50RS2l0yjYa0n224CtBGfkoH6fraFVD NB56qlrFRZx+YGCviG+WyCpI60SWpnWzSlM5oRC9oD/BLrYUkWO2TXJ4vrKO 2HnsbaJ0igTZJOgWVQuS07rBs8B4KJO9CJq9TIZugRQYVHM/DN10ENg3Q5/Y VOjk3A5tum+ChqFroVpzFzCOBeGuRVAqLhFk90KQJy2EEmFMAgugRDg71hZC yfBECDcWQbnIJVAxIwkqZidB2ZTFArf8kzgDrthGw6rILtArqg7k90sw3HSL +Qt8nfVLRrbnnTFN5Cz8Zr7jnI/GpTakrrTO9II2nH6KmkkrRCfRpgnJtJNr Ox2waS/jdG46Eg9TVkb6VSYT5Sgds+kYnaCn0R8+Uros6QLdnuqjacn36bWc 5/Sp7Q19P+8fGkQkb8Hhwd5Cr4K9BWzB3qAikvevW/+jfnxNWZ0y23WTJm46 S7+KOkqZjaf1jq2mpRITKcNB9Emik16PjGe4gfFG2yh6LWs0veYfTTO1UfRM mk4PWwPpaq0L/Ta3BVVjqtDC/vyU55s0ltaJ+HWoNtfD14vRtKpifvhEXxr5 WXpJeIy+S6AGTHK2FjGRk9IXcC2H8a1YJ7yJSoB8L2ZCAXkOhM2YD+HuRQyv L4P6gdXQutIm6BKRAl+82w/j5p2AOU6L2cNLkJp8Ezy3HsCVsOfwOOs1MEwO Qdmsz2zIrzJfqJa7xPDf2uJqnXvMN+0tp9pvVVI7Vqiu9jxSWx2wsp4apzdU 9faNVd3VWI0b3FB1YB0V3lVWq7eXVWlZPvVk1j0YvfoIMJ4ECxLbA8PN0EPe RVj5SJ3ASrLOd4lw7DJUbwRLcqLB5eoMXwWaivm8kj6L8DkPn+TP6LHiaGTi KhpnHqCMq9GF4Wfpwgdn6Aw3pePcJyjjH/SLzP00duQ+Okhi/cfF+lTOIToq 7Aj9Jvw4nYLpdHHSOca9r9OzL/30se81/TvqA5XS8nn/MT/SR2Nf0UPyXcrs DW0UvZZek76ivfy1KcN3Ij+6pbEBGV4XuRFX/M8wV/+AH5RPIn+H54jwvHZZ L4RifUh/MxEfYtiT8HEWPr90bHIL2GHrzer4O5DHLoTGkeugW2YKDMs9KLDD pOhTMLlmOrB2hrF4HEaPPQLD49zAdBdGJx2BbyKPw/jckzBp/ymYEpMOkyPT Rbz5m6jjMDLhMAzK2Qddu6dAVNxGqO5wQXHXAnjnmgaXHCNhna0bDHU3ghoB GfjcsU6O7WSt1pX0knbztdc8rZSKIj+X52rJRiHaP6suZfaa/i5PplUjl9Mu JIVOtNLoWuMSdcffpeczH9Nr8q/0duYLetOfQ6/lPqeXMJtezs6m161f6cNK r+irke+pdDCft+irEG9418LeiuHFvIpZwltDLumtkS17q34u7o0YXdRbfHBB b/AEyftb/DvK6pUeaH6HMg5Kv4s6SfvhHgqRWyjTX1rJuZTKqxfSgpPm0A+5 MyjDNvR26BiKaUPolrSedGpWG9opoTplXJfymFp9ZQ2OsGx4w4j38DWHOijV SJA1iwz07yXMP5K/rX8In3/I575Oleyww3LAlYxR8GfoNCj6cR5USGV+P3Q1 tIzbAB3CtkHv8FTQkw7BhLFpMC/+NKxNvgR7Mm5CesIDuJj1FO4k/QZPcwIQ mPE3fMr8BCHJQWrRMyFqqSmhagUMU2sULylwXJNH5dSW0RXUNscqqdrwqmrH ItXVbo9qqg53HXXA3nrqkDsN1RGfbepX/zRVR6c0VYfIjdSuMTXVBnPKqAVe Ban7+92GdrlbITW+L6D7IWG2nq/vi+V9S3CS+xTuNW/hlcAzfOV6j4WjQmjt +FK0Z0xt1mcIZdhG+Hsev/g6ojklemVaxVWc1W0x2i63KnWZnWnBhDm0j5lK txs++uLcn7QEKeSt8VL2Nixb1tukUYS3iRLhbZRW1lvPDPfWuVDKW+Oq7K18 r5i3ZPNQ74fwT9Tq9wudFHeKVolbRhfr0fSiLVvM8WG861RXI8Xe0dpm5+s9 8hhjF6Um/m5NEvMceJ48z/8NM+bjFrMnFvIH8/xqD1+XMkW7zte5IYuss6Re YjjjiL2BcQLhizZFX4FbSS8g3+nPELa4gFpSClVLhBdSQ8fmVz+EfoIn/QKQ Ef0U9u+/DatCL8L3DxBGZLuZf9sJLSdtgGq+5czWzId38dPgXupYuC7Hw8+h Y+GlMVlgEcZDgGFTKOdfDCUzFzLbOItjbkg0OwDHOjyuO00hHP95KmlLsaAR zPAw0FfxU2iD2DV0qOsgXTbpAj1V8wF9+O4Pmjv2Aw3ZEOQNHZ7fW6hmfm/+ d5L3n3kf6e+V/qKP4l/Rm/ILek35lfmOHMpwDH3x8U/64dxHyjiMt8Sdgt6y cUW8Fd+Feav6inur+Up4q5WVvcroEt5Kk4p5y1Qp4g1LLODNp+bzPv74muKM h3T1pIt0TOox2i7SpBWSkujLhMliTGdyTmvaMaI6rRhZjL623oscPp6D2cRa h39aCbhIisa6VmlcbJzzDJMae/j6onxMgI/p8jVR+lqpBF0PSZncwmI+ucvZ GZi/g8K+uRCprYKOynZgmEbE01cmZ0CqzvxM9gPInPEMHnT/A168/BP+yv4f fDY/Q3CypIasDlILqMFqoSfBaqgzv1qkfYgatr+AKqcWUsvcK6xWvBGmVnfL agNXGbV1hUoq0x11yLmG6gQjSk1M6qBu/qeH6u4zUKVXh6inPw5T00Z+oW4Z 01Od2LK1aq9eWf3TlwsjlMOwU+kDfH0Tzpd4TmT7BIWOS2tJv48EOi3LTp2p rejXOc3o6OSm9Jvc5nRiVGuaEGOnY8zmtFNsdVoqPpTyvLv1tkw84b6HZeQi dHZOWxo2b77AF+fSHtNigQJe24Zy3m5WTe/glAbeL6vYvMOn2Lx6v8beIWca emNT6nv7jIz0dnlbw9umeyVvtVKyN1/xfN6dzW/QDrkmPRo1iHLfslTqhHyN 2RAtiFTXZMLXGuLrBeeTZnn4PIHtpkOMkfNxnf16f2R2DNtrCtZQSuJz463I weFr2sYYNcg8/TTpHRkp7Fuf1amwN+kW/O/WB6ikF1ObjolQ1YQqars7VVVi VlabRkeoNc7JasmPhdSP5ie4mZEDe2NvwezMH2FQ8/2i35QJWwwB51SwHMNg W6AXrHV3hRRHbzjtHwYv/BMh1DVX8LLaMSuhrrUKlGOsn22aD/ecY2F2blsI Ty0MbRyb+JxY/l9vIv7A6/+T7wfa1r+FzsrwUtQf0ncj/8fwcqi35rKS3iZR Ed6olIre1m8repuPLe+tfzXcW/VJcW+ptaHeQo+CvZ8iPtM3Ubn0pfMv+nLS X/Q1+Zv+fesfmu/nzzTEGeQtnJXfW3xKQW94XGFvhdGsD30s7q3xQPbW1Et6 qztkb6WuzI5lFfIGvcrnvW+9pPuibtOEWA9tr5m0qDSfHjQG0J7xtSnPzR1q HsTz/i+R216eE8X5M19Tla95x/+Xka9NxdeT2mBk2guawWSw3oD4zK9IS8cG sl7KJKGp+aGnszazH93hd9tkqOpfBjGuHeCMOQlrci/CyUr34W72b/Cu+/+g YFKwWrJUqMo4pVojQ1YjT5RWGzjKqMwmqw30MmrkltJqjZCSapUpxdUKRpga 4Syqlv9cVMTtamMptfmR8mrMshrql781Vn+4B+qGTd3VkwW/UBk/ULPbj1df 5ExUH3Uap57OHaauXB2j9ltcVy2shqjMB8NqvQtwvlNHWYUMd9J0LY7hpu9p 6LG5tDCZR/NLs+nf1nT6q38CvZc2lma6R1G3MZC1n0o7WAoNSytAee4wz4cI cQTRYVYj+tKcTHtl7KKHsu7QglOCvY3mlPV2T6vl/fJ9Y+/YtS28TqOV1xnb yvttlZbeMUObe7+61dQ7okoTb1xcQ2/3CbW8za5GeOXBhbyXbc/ot81P0GIv 59ORMU3oEuW8yPuvKBVL52O7W4yrdtQe2g9qd+zLpZ/sC60z9iTtvH2ScUqs IcbXhB0mHUrnOWQ8Jt/WX4XnrvL8M3tx9wI+xxmyU8fDoPD98GPmI2A2Q20S KKd2q15L/SKqoTp8gE0ddrWR2q9fXZXhC7Xx27JqxNiiar6QfOrld9nAsC2M dByG5mnroWjofLgd+Bp2R/QFl9YZlmRFC/x+LGYQ3DHHwN8Z06Fgyhwo4pwH BSLmwGtpKngdQ2GaZQclrQTwdY5aWRV47NjTOrCRjwfQlUYMLUTm0i6ZO2hS 3Hl6dd5zWvBYsLdGcEmvvXllb09Hbe+gO/W9cekNvYO3NPD2zY70xgyt4bUH V/Y2GlfWWy1M9pZ1MJ8xoYA3f6Mg7//kj/SPsPc0O/EN4/+v6KMZr/g4FA0k /02DbuTzFjnIsNw4huXqFfNWrVDCW2VxcW+5RkW9RY6EeANj/6anrV/oIuUc 7WHtpMVXL2CcykEbaWXpfN9pXGR1QNZHPPOt0zz+RGRjIWGYgDD/SL61nSBO 46SIgU4w08SaTny9gQOB2yTH+JNUchQT65Ysc3SCO84xUKpfIthDN8Oo3MOw LOECnHDegwfH/gBpbT611KRQtUaOrDa7F6G2s6qq3arUUvtejVQHPqqnxs6p rw5YXU/tszdS7Tm9ttqlXk21U1x1tUNINbXDLUXt/Ki62vtcHfXLzMbqZNJG TUrrqO4I7q2erPmFeiF6uHpp+0j19D/D1N1t+qo/2FQ1el41VRqdTx2XcAKO 5saCw9hNGL9BxlFxSFQjejBhAP0tdhINw/lU6b6cNvuYTKOd26hjxm7a6+Uu SmI300ozltLfMybRLc6edFSgCe0WWYtxl4Z0u8NBi6csoF8GDlEvPqJhMwt4 m2VHeHs3jfSO+qeJd/yDVt6pVhvvtBy7d9pnuzdhpt07ZXEb7wQ9yhuPzbwD G9X3QnAVb0RqUe/Pmb/TKXo6LeVMpGO05pTPOZnqbyPawyMNEfPpQ7X8pKFS VqzXtsfqSz4oP4i1wxq415AKWpJYQy1ar0Z4/+HrJK6zLtn52mvrbJfJwNx6 EOSbBUOTDwImPASOvRoMLqN2Squuxnavrw6TG6tDNzVSB2bXU7vur6m2Dq+k 1rJKqmGpBdTn3d/Coai7MD0FIWbGDhEL+DUwAVLNvjDDCTAytgkMi2wMo7Wm MEVvA7Mi28I8rR3M1FUY42wu1sUp4goBpmPkpDWY8PWm2/mrivz38rYw+oOs 0icuJ62TvVLEWDb7rtD7mS9p0UYFvHXvlfZ2uKN4Y/vU9371pKn3u4hW3vHB Ud5vP7bwjhzbxDvQVt/bJaSmt7VayVv3fWkvs6tehk+8DC/Rm+EvKM18SA9E 3aG7pZvCV5zy3RccJjv6Df1gMcw2PNhbNDPEWzg4xBv0Mp/3me8N9eQ8ENy1 R8ZOWiJjgWhnPvbM5z9ONwgelX5OPyDdsXu1oSJ2y9cmO2r7mTxw/EEkLZ9Y 66RalMwwTIRY9ygupiFMzmgNa2O7gpU6DP6MnAblmi+B1u82wpBKB2Fu5GnY 9/IW3Br5Aj6mfeJroKh1bpRS26yupHY3a6lxMxqqXz9ppo6vEiV0fsrQNurE C1Hq2C0t1NH9mgpeP3RxI3XopEbqqAdN1PFFotS5jdqp60O7q4feD1DPDNfV q/NGq75jX6nnqwxX9xr91FmZqtq5Qg21kJJfXRB7Bv7KmAZ8nISvSc/nI3SI qkYP2QbST/4faIRrCY2MW0WbZK6jLWM20KaOZDF+FzJyNv0xahid7iK0S24N 2iKrPO2cW50udkbTTxk/0G5WCt0WuEY/ZHykDAt5uym1vKMTm3oT0uxe9n3e xE0dvIsKRnsXBtp75/6jeX94C95Jjtbekd4mXuZ3/x9fXx/f0hm+75SiKIJq g6qgKiiCIprnPg6KsCLoCIqgKIp4GWVeDoqgCMqCIl5XhoVh1Zz7LJuOepkF tXXelmGEYdmYdcZ+z/P4fH///F7+yMdbEznnPM9939f9XPd1qR1KYtRa5irq d89+xQVGBfX5W/Cr4BjsKetQsd9VWO+a1VH9hHjGSTa9kF/T/NGTVHTKXB+P adsxjTta2xAav8lAWwK5Kj8yFcq3TX11zUkzp5PpMxJZ6g6aU6thSvEX4Mv9 GSKO0r2xrb7Y71ZzMX13W5HWmWJmWidx/BGDODzUWuyT0Uw0jIkRo3Ori3/p 34DXeJc/Q4vjU2j+1gn/FSyhGH487PUNgvWGPkDrdFibTV+ZKZBj6wHzzMmQ bm8LncsbAOPgzNIVkgJpKGGa0DV84XymJOD5Xelp1eE2c398YZuHCXM3o/Xo Z7jh6HksyXyAYVGCGrevlpo8JFYd3FqvZsztoNqzu6ofPeymzvnGqE5VktQx m9upg64nqMTTmO+j+lWqq5WMYeqT2Fd4LTaIPvPPeMZ6C095fkJv4l0sSX+A Pwaf4qPsP/Gl8A++yXuL5Zn/4m+6v7A05wl+of8J1zqLcZRwjJ/h3s+009rL hFHWajjL/yXnxAfkmV7mNT5d6EIo1uKafxRfkpq6KtCloCHQ2gJWCD1gvzAY UBgDZdZp8Kc1G6o+XA4x5WuhVVQeSJY9MFI5CgudCuyWrsK3/l/gme0vmp8r i7qU2mLSqQZin7xm4rC01iKNAaJ9WFdxoY2Iywslcc3DXmLuot7i+uLe4rpg iri2T4q47n6KuNHfR9zarr+4++RA8cjsNPHLhyPFb87YxIsNM8QL34wXv6w1 StwemyrOLO8iGhc1EkOev3nP5qTTCjb354w/5b1nf6HkZPfAPyKysWFmLiZK W7GTbjt2zHVhC/8mjLCuwLOhUTiwMAGvGYIKXYOcj8rmEtls0fhMAztvwc0H SrDG/XC13/3m6mIfqPs2W9RC1yj1q2dj1LN109XDXdLUvCP91CULRXVKxST1 Q7G12vOkTm3/X7TacHykWumtoN7QP8F883c44Y4HafzHv/Uf4z6zBdNcrbCa JhyXW3xKQJqpZMmnGc+a6W6TJMt2stZTzDWFaIzleo70+5FwOYwwfXPGJ+oq 7DT9IE0l9JmTXREDod3cbZzfETL/zfTsxJTlTcXRUe3ErCWdxVntjOIMdxcx I7ODOPS1XoQ3jcVmJzVi5Vth4nfGR7DZUQIj3UehVekWqKBfCsXyONhfbuE1 Vb5nANDaA/YbB/Pfr/OnwDRDZzAZGsM/hrdkQsBD6L0hjKM0wNeCz0eys9AU c1NcU94Lr7omYQ3DSkw6uh3Huz2YV3gRL+U9xLCrFdTYMzXVrq8bqgMnJag2 e3t1WiStVw90VWe266pONSepNnN7dfCjlmr35CZq2/P11QbtItUqhyqqTzNe 4aWjD/GLUBkeSr/O+82Hy2/gl/rbeFF4iLfyn2HQ/BKfF/+FT169xNuBZ/iN HMA9xu/xo8gi7P1sL9bNcCCWjUZrQRukeFbpEdqjJMuxCq1ji34T/jLRZ0KG 2Y6Q06GfSEWPAJ10DWBCwACbLWaOy14UzAN6XaAzb4Qk13boLx2A8VYP0NwD eQUX4XPtj3C55CE8TnoJFRcKYp0XVUWdXFtsHxcjdi+JEwdOTRBHX28rTqvS Wcw+aRLpehU3ZPQRt2X0F/P3DRDpGhEP5Q4Rjy7/UDx9b4T4TX+beC0hUwwc nSnSGkd8YZ4nPn49W7xZd6p4+v4IceXVHmLfq81EoaiCODPpS/hab4PZciHj yXvZ9W2KMHOs0aB4HcabN3GuR5SyBv80Z2O+ZQAarDE4X+flnOPWcpR3j/C9 sb98wEtziGJxtkSKqThHoP79aiqt+dRVB3qqR8d8qH5dOlY9v3y8+tXrMeqJ p8PVvdcHqU65ryov787j3Njw9uqAVy1UY89GatzIWmqF1hVULLuLCyIVTE7P x0pXZM7fsthbYliEgKzvxuYhaPxn/JzkoPTStN9n4TUU470zTgzFGKYJwoki 1tdisyB0T7DZEu9Qn578ZHhG9voHQYdnn8Dm3BJ4kfIa4k7WEsWTceIwC41D SzqIUz1JIq3dxPEbDGLayVaipDQRWybXE2voKot3y57D3ig/0NwKSXMp1ijJ gTvW6XC2fBQcNAyBHY5U2BTqC6tcPWFByAS0xoN+vuZcQ/Kx8JIssahcn7Ze IIIwv8a38jsv47YvMCjKO/87xWxtjrv0A1FIWYp0D+Oc8LP4RXkZvs57g7G2 mqrpTqz6YXhrdYo+SZ1fkqzSmktdfA/UeXKyOvVMkjqqOFHtG9dc7ZipVRuV 0RgTF6beLX+OZx/exj3ke9z09gJujL+ALutlLHDcQLxzF6/nBvHXcoo9LH/j n1I5PvG9xJtlT/g59JbIizjpwEnskr8DK9ros3AMwZ52Hd4MPOEzZmzeiXmB Lwt0J90M+ZzHVK28EoAmDuYEjPCZ/kN4aJ8FNWJXQlMf3QvKduiTsg+sts9g WukpWmN+BVsSLwKt6+Cs4Q74Ux5DcNFLCKsoiJrUqmKTpNqiwRMj9jylE4dJ rcUpLzqJHz8i4roXKeJ2Xap4yDJEPHF1uHg2Pl38qu5YsXjDOPHyowyxdMYU 8d7cGXwP/Kb5SHxSPEe8+2q6eD5/vLjPbRFnNTOKXXIaio+1L2GU8Rjs1VmA aZ8xDQc2h53tMeG5MhuvZx8E7HjVOgkL5KE4PdgZGYdsneFbugYnsTlQ7wAh wfutMN47WKdX1mm+VWaVdMVmhU50ZVzGKssrqtAxTp0e6Kw6LX3VA/mD1c+a fagW2Ieqe54NVPNm9FPXZqWoy6pI6oKrJtWe3lWd8MygDsnSq92MsWqjHyLV 56G/cFfiVV7HhpUsRVqDIus5M72HCroKyiChZRHT7GL8tFFCWzLL15UkyvUJ 09kOE+Sid8J/XqbVxLirTIOlpm+lwrjpFb7+z3TWd5uw9arP2gKrnN8AXStQ L66a2OF8jNinTzNxSH+9OKx/a3FoUisxNaWFSHG72O5ItNjov0ixSlZFMZD7 O5wo+RGW5/hguOYz6OhxQVTmGniVvQC+sdtgs8cMk8s6cl3QxiU1gXEgPxd+ 5NrCLXVbeJ+mX6A5ofUB9wE5J4wrMko7vR0CMcrzwEfKLEOhUs1XifcE72pm oOHUJ0j3Cl54dh+r/VdJTcytr/ZX4tXxLoM6J2hUFw0EdXGSqC54aFJnRndV x1UxqIMeJajdImLVpokatVqokvrrFYoN/Hdw550ruLL4axbXcHZGIT+3Wi77 cFPJBYoV/OhJ/RELU27zfjLbgwfLrqGz4ALO8xShNfMz7PxwO9YsW4nntONw kqcjVi8IR6Y3w/Ic44Qyfe2PhCJSxxABGfYOcMI/HP4OLoSGGbmQZN0O5sz9 YLV+xvsWjCs9L78IlvpUWE3OwZZXJbD3zvfwRXEZlNgfwC+JIahQvYKo2VBV jJfqiMa5jcQBCQnihIYdxAUJRNz4Qx9xX55FPCXRXLDPJvqzJvP1//zPj0Ra w4sVKiz9P16hU/PF82vHixtO9RFTF7UQaT0iztGehe+FycBwEPNSYborFwwP FKZ30M4cja0C9Thn9oX9tbLDfoVrXvWRmynXhCCb8zNFS9UZt4c9y7P0c5QG xkj81TgbM2wn8KbhKTaJq62mbmuhzrB0UVe8ktT1uj6qc2BfdUNOHzV3Xm81 dwh9qb3V9fF91HX63mpORg/1o0fdVIrxVYiPU6Ozqqs3o57iogzEhLzNnL9i cMTgWqlY8dsmK98Jj7y0DvIyvyg2X8A0+Jnn8wShg5fmV6WqsILPm/9gf6r8 63+rfKd7pJjt+znXjGmlM+4l6sdAtys7Yf2Vb+GHvKdQ7VYlsQmhuflRtGhM bSSaIhuLyQdixc5iQ7FtQrTYbLZGrBeKEMO6COLd0HM4HXULNvrPwzTfKTA7 9kNC/mYIz18GF0MTgF4vWAvbQBtjfX7e/nXgZ37WMtp3jCQ780mjUC55Jywh FwLjuc5gX6E5Yfr1DBfdk2d41wd6c00Hdhb/me5DjMvagNMMp7Eo5w6GhQt8 jZP8xqrlQEt1bN326uQundSph5LUKW87qROuG1TrjjaquWdztcvIhmpTrUat qa2ivoz8B783PMbPyY+4VbiEK4I+XGhReA5eckrFnMyvcQ0pxg3283z9byIl uDFwHh3yOVz8EDGr8DQON3yGonU3Nr2zEd8ULMLjhcMovmiLVbIrMs6g0k2I VZj/5BlpJJ/HY5qkjB90wTABKumXgS5tI3QL7oRBZYd4vc72wqoD38CW4hLY bbsKh4tvwGntLTj3KgDXFwXhgfYPKM/7FyLclcSYh9VF/ex6YnJOrDhwUYI4 /qhBnKcmi2v0KWL+kAHi8WHDxK9qjRX9hZPFX67OFH/XzRffDvs/98TfrT8W b1eZLn4RtIrL/N3Fvr5mYlVtJXFd1LdQXcmBBGtdMLubEzbn9pX/nmJ0NMKJ xo6YZe+MQ4N6ZNzGG7onfD49Uaqv0D3Q7aBw3RTmq0De+6gEvTTGKnPKjRhX sAFX687hb6WvkGIhtUdJE3W4to06MdhBzZrUWZ2xpIs6o2cXdXoy/XVuF9We 05XjwTl3jOqM2V3UCa8M6uBAS9U4tZHaoFak+uLUazyouY6jYo9h3UwH5hX0 wxol4cjmTDvKLi9diya3exDX0GTa9l/5xhDmhUD3ahHTABwbOM41Ld4Z/uMz bEzno4qtIsPlxG97TDbq+0KD0nX8PG/fIj/cjH8Kb0+9gxo/hIt1V0WI9R9W E6OmVhM1M6qK1dqFi2FPK4gh599wJ+85XIh9ACfTymB70hWQ07+CjJwT0Dd8 P+gtW6By+HJQ5TEw09cFdM7acCLwI9cTzXP3I/fkF9w/g/FTmccb8xi7LEzk fhXsfJP5YCwVuhvZHPQTYa7yjSWgjNK0xccls1E07+br87uIRxh+KkyN61lL 7ZimVSVXE7WfPl4d2CdBHdAwQe0XGa/2PKNTk8fEqu2NMWrzpDpq9JHqasS2 SurrA2/wnvsFXvQ/wDMpt/BA5jXcXFiCy20+nJ1XyPkOI3OO4hBrAe+RpBzd i1LqHiQpu9C4aCcmpWzHtsVbeY9Fk78aX/qyOf9ropbmCikcmTbDX8Ib72yp 0ETxJwkTBBgbageeguHw2r0QGrxaBx0LXdAvtB9GRx6Hmc/OAI1rsMF1HnaF X4XPYm+Ct/gOXA4+hDv25/B76WsIixPEyOOVRe2hGmILoa7Y8YhWlIqaiJaF LUWbq704K8EorrgvcRzx2fU08ev/xoply6eJv4fP/7/miP95lW2eJu7LsIjj DxnExqSWeHzRD9Di4SYYLOjhsW82OS3c8s61nFXqlURgn8xmmGZthT1dOmzk i0RFvstnZWiO9zKd0LlSN+KXJpNxvvaE+UWy2eb2ZdH4umAh7xuqi+5h5WYV 1ebfaNQuqQ1VaW0TNSW3qdo7oplqTmuuDkxJUK0j26iTxndU5+Z1U+XU7urK Wj3V5Usk9aOGyerYknYqrVNUeg9Udg6cY/8aW6fmYYFrKFbTheML9zyFaYOm u9uSjnYXWWh771XQRd5BRsqJpJKwrOg73STOzewQjMEJhg6YKXVCo6cRngj9 SPd3Y4X5cVTyCXC04ENoXuqEDOsJ2Oa8BIp0F24Gn8Cvxj8h5PgbXi96A/+E /oU3KW/hn4i38HfgDfxR+jc8svwJpZlPQM27Bwf91zgPbrLmC+hRugdiQmvh B89U+NgAkFBYFw7qrhONfTWb8SLMPzBWruml981L82sR83qi+ZjPjLU1bCND nAWkr2E/qRxaRlg9yOZWmB4byxfnC8ZjhygX0uvFokV38I/4cqy1o4qqS6ut JubUVzsZG6jGI43U5KmxqtHdSO30Wqu2Ca+vNhupUbUz3vNHaM5S/wj+jXcc z/Hiswd4yvkT7j5wFdemFOO8lCKcEHkCB5d+ilL+HuxQ/gnqU7dgi9JN2PLV ZmwTtRUNcz/BTndc/Hu0LsjjPflw5zIskSbgfIMJG8qRyPrJ8XIdhXnXNDds In8YyonV3QZO+IaDkL8U4m2boFepG0ZHHIfZzkJYEfU1bJZLYE/89/R53ITC U7fhvPs+/JDzFB4bX8K/8e+gamIlse6iCLFxqKaoX1hPTLI1EKXcJuLAjAQx fSrF2aEkcZETxI2kr3igaLCoSKPFG7FTxN8SPvr/7osn/80Rz14fJcpp3cWe Tp1YqWOYmKt8CxRHQ3pmW0ix7yXMf5PpUiwIeJV70gslTCfgU+crheZBJdK9 UjkkX/cyb6cpuiTOI/4qMIbNtpvQd9fL5pena7tgjfiVOKrkKO65chVvhp7g u+A7jEyrrNavXl1t3KWW2vJKXbXjAa3ao7iJOiiUoKYPaatODHVQM8fTvP/W oA7Lbq32nKtT9e56ao24yuqtjGe4/eFlHHbgCNYrdqDbOojPNDMtSqaDe1d4 YaqgW8rXUq+Qm7y2LSTME2e7kOotk6ZxPSFaZ2GjQCRW1VXC7f7LyjmfjZ1z nL3nnkF+8f9OMjI7wJWCiRCVtgYgYjeMz/LAilIf7E30w9ngbbia/QhofIXn htfwu/ZveGF+DQ/n/gE/pD+F4kW/gEf6EVy2y7A0/iuYeIfmDN8+aK7bBOXZ H8NerQU+KI8HpgWe5jxMPvcN4xrI/+MrxGbil0sS931hZ0VL3CrX0WZeJhSj kNmSkXm5JGfKnZT1vm+VzuUN+JxZ9bQclDL34Gx7IcfLJYse4G/BV8j6rbWO VFHr/1dN1TpqqNrjNdTojOqqZltVtVqgkip4Kqghz98YSP8d/Y7H6Ev/GY+V 38RPSi7h4leI4xUP9o3aj23Dt2H0orUYbl+GIXk+PsychT8bZ+IvBjs+LpuN z+wf4QvHPHxUOBu/103GgsKhON9oQtDF4V+Bf5QRmqPKOJ1BYf0XxoVZ5EHC 5kGWFIrwU/k0qB+xFpJd+TAq8RjMT/TCxofnYa//ezhe8AOcfXUbvtYG4NKi h1Ca/wTuSyH4I7Icwq5UEKtnh/Mc3jRSI7bLihZNb2PFfmXNReukNuKUMoq5 3xCOExjGOHNopHj5dYYYyJwpvpIX/D/3xsu32eLVlEninuBA3k/p8CxG/CP0 N9D6EuKsG2Cjrw+wGMo8cVrq6hHmB0nzWxHTlKgrObw0znoZH535QbHeDdMz qGlYRe5JM0gzWUMo7j27zpeiHLGUKgMdCXihfDzGpq7HAfGHcL7gRVfhZTyT fwuvzw3is7y/kJ271pUj1KbhGrVdTrTa9c+GavJJGuscjdT2JdFq3MlaaoSn knq7+BnuJN+hNe8zpGsX93ksGO+pQzHeScUsN1faCzFFzGdqjNyO7HCnkrnu btwPivmt9vPt99Lr4hxGuuaU3e6rymZPiQL+XVzThumhML+noYECEmYUYLjQ Bg65h8AfZfOhoTOX8TRgeOAIzNIWwpric7DHdxVOZpaBL/VnuFjyAC7ZH0Jx 3i9QmHEbDh29Dpv8F2DeqSKwSp9BB42Ln2mzM4tshwkSLfXBb3lMxkjHSYRz BT9rZH2aTwL9ufZ5k8AGrjOxVXeJYQxyx/mc/Gj4jRzz3+TzoMXSOJIgbzZt 8ZV4mxg2KhTbMGyLBY6hGPZwKbaW83CwoQDnHjiLW8Mv4RelZXjF8yv+HHqB T+VX+Dz+NT51vcKH9j/wJ80zvOR5iIVZt3H/FT/mpn2LcwKFODzxM0xOycdY 13rO12bzKoXmUbi7YCBuFPriWlcKOqW+uCs0gM+wnHRY8bRhJK+jDpcPxW3O /hSrEKRrB5tqNOxMUIHQLqWrryHTGUp2uHuRBSEvqVceAVOzkzi2q5K+HPT5 WyDl1F7OrZ4ePA0f6xFWh74B54EL4Mq/DHtLaS7JvQlF7jtwMekh3H77DF54 XkPFNEGs+aiyGF1YXYxLrSXGT6ojtjHUF7tIDcVeV3Xi0Dd6zieU+3QX85cP EIuy0sUfX00V/zBm/1/3SPmGj8UfO04TT4RbxdW+nqLV00Zs+ayu+Ej6ExYV IjQqywVHYS94Zf+HNNKsJzTWEua7x3RA3krvTF/oRlCMuJ/7Hv3pKSdVyysC 8xHa7C7h2g7nfAHTFuFiUZLUQKnlWaUssakKrUEUpmWwytITbwanYFTOGpTM ezAr8zS68i5zzi47K6qyqqJar0o1tdHrSLWJr5Yal1lLbfC0hlq7rIpaIbaC Wmp5gltKS3BA4CBWdMhIYyre8jxT3roXszNhL9NsZ556zIORabcP8B30umwf cI3dLww/KWFaARsIkajLrI0NtDSPlFfE24bnXCuE6XExbW9arym0zmF8H9LQ kks+9V8nMboaMEJIBJfzA7jpnwJVbMuhyZUN0Cl2O/RK3Mu58qO1xyFDPgEZ B05Aev4x6G87ALQWh6raFXBWmw42Z3uILKwMq4VzpIY/hwzVtSJM257hC+aZ y87qaQxhvsp83rqSYRlpZ9tG6DWQ8TYPoddH6OfzebJ6IQehGIrNzDDNg6JR urZcU4vmQEWyNcHNmWa8b7djdNZa7HplBw59W4BTHaeQxgd0mi/grqirWJB5 A4+7f8Bj2h+Q1oO41XcRl6SqOEE4gWbrfmzv24bauesw/MAy/M03F69nZ6LP MRYLLaPwtHEkflk+Er1l6XyGutgxDi8GJiCtCfFaRCb/WcaxPm8dT+u1EfiJ 8AHaHV15H7dWQRX83PeD0ing4hpB64XzRS995aY6gdVcUycmVB2G69rAtuz+ cEM3BSIsKyAhezP0IG4YEX4UpgtneM9qQ9p52Gn4DgoKKE433oJi1y/wY9lT eJ70GsIXhYlRudXEhOV1xW5CrJhqbiGOrtVOnJ7YRVy0GcS1Z1JE18gPxAMj B4vHKg4TTyRaxc/fDhMP6oeIn/zZX1w1vqc419NNnGDsIA59qhd7xTUVu95q KLatGy3G76sjNkiKFKsPDBeful/B6aRbkJ3ihSTLdrhfYIc5PiO01URD3cwI iBFqAMXl3OeH9WAmCh0hQ+oAqZ4WQGMH0LqKZLhP8LntakI4835LZpz4im5Z OawpVYizMZ8ZqqbLwS7ZO3C49jOcmnkKafzASa6TaLV/hn31+7Fb+U7ep2wf 9Ql2ce7A7sIe7P1wL6bk7kXTs3xs9XAL1spZhfcKZ+AOKRXpd8Fmbg2yeorN ot/xPFcC9t+59sUb51umF4uVygSs5BewiqsinylkuEpXUBsb+2tizUBlvm9W Sd8oEfYVTKeQaYmxXiqZHjhNKDYkzI+lVUk97lXVzhYNLQ31oLUzCrq4G8IH gXigNQXMcybDKk9PcJr7gtPRF1aGesBsmxFG6dtCb6EZtJOjIUZfAyqVCMD8 UxT3Xb4f82wXuT5DlvM0Ge/xkMm6L0i200uctgukwHKDfBm6RbzCXc7R3xg4 T0Z6jpK6bgdZIouEcZQovj97VLrpZTpUTDOInTMd891UyqTfFMFaAaOzq2M7 VzT2NTbH8Q4DyrbuSPMuHiv5EIsy09HnHos+M90LtlF4WJ+GW4R+uDgEFEck 4UhnIqa6W6DkbIIdXVo+l9kgUANra6pijVA4UkzFeaYN9JFc34Pud2xhqIuN hJpcl7VUfqKs8xfTfLKDayV9LQS8Xwgjiuj+ZnGCvNQtIP10B0i+9B155fmH tA3Uh4zsDuDOHAR3NTMg0rYS9Ae28Lg0ZtFxyE73gjP/AhzKvM7rsctRv8Ld Eord77xm8xpidTutw6pXF5smat6fBRbHiYNeJIhjk9qL9kldxaUvRDF3ZG9x 26H+4p7zA8UDhYPFgqyhYoE0VNyvGSzuLE0VNyb0FZfnSOKcOLpnunQQ03a3 EvuozUTTvVixQ7RWbHmprhi7oaZYp7iqGH4oTHyg+wO8gTu8Zzkl/BQMDnzK +UGpzoNA8zNk5J+ArJzTMM1wmp2hQ6r7IHRMc0G9Ow6KY2fDIfMQyHR0AjZL +8zyF1noVsh/8hLikX9kvrFe5t+geO4yDTGkuBVXGHtgjrUHzrMkI8Xq2MfV DDvrG2L7YDQanDHYLdgIe/l12N8Tz3UeegeboqEghs8b0PqCawCDbjebVeR6 w0yLkGkkMk3qH+SnCquThcwKWEFXAf/RveX6SlzzlentBipitYhwrGKviC8D 5Yoq3+O6iG/ci5Q30ltWb3aj+87EPC0bGzZw7DPEXsB9dGi9wmf1z1vuk9fO N0RjrgpxjlrQzKaBOE8tqFsQARX++I98r3nMfYA+FpCM03nIKM0x7qc4132W 8YrJVv9Fsk2+RNYbzpNlgo9zK+ZZiv63rtnnmh/JN3KAXAs9JtelIPcdOmS/ zvdUN10+eeieRQYICYR5p9IY1Y3pFNURIpTNslmppsnhOqZMd5buUYXF90R7 fUyRmuKHwVY41t8Ox/nb44iIRPzA0AKJpzG2c0RjvFQH46RaGFtYE3X22tiy pC62c0ZjR4sWO+i1fP+118dgJ10DNOkb82eWVtAKM2wdcHaBkc/tLwiYcHpE Fxzhb4MQaIy0ZsC/Q2+UY6GbyjTdaa6/zbw2jshpSkygOs2Rzbxp8mET0yGa bSkkzB/K6GwEE7Udga4RoHkKDjmGAK1x4JzfBjdLpsCvgVnwsiSb94zrHnVA i+AmMN3Jh0G6T3m+X6xVYceiK+CNuAs0JkJ5wb9QTRMu1kusJsYurCnqHLXF 5uUaMWFMXVFfVE9scydKbJNUX2w9JEpsoasr6lbVFhv5I8WYsupivbrVxNqX qogRByqJFRIqiGzO8evgz7At9xJMKfkCyIFdEHV0DfzqnwUe23B+7uuw9II1 Zb24Vg77/p+U9Yc8az+u38Fi66JMoPVmZ+6B1s4SDeFSGBzwXOPaLrulgYTN Bn4l/FzEdFZoDubaYeX2fxX2LKyWNlw/aq9vEH7rG4ePg7Ox8pVlWC9yDeps G7F1Xh52KnZhV/1O7Jq0EztFbcc2r/KwiX8D1nm1GsOIjI/9FFdqJ6MvcyzS Gge/MozFy74MvB3KwpA0H8OPLsO6qQ6My96ArYJbOC8DruzCnkfd2Cd3H/ax 7cOeDjdSPINJMv38iK2oS9uI9QIO3sd5mjkXL7kz8IgnDXPdvTnHf7i+DV8z DV2R+MT/UtkTuMr9M5hXRR2Dg2tkMz8OnWcj92ah2IPr0jJfAjZjwzhi13yP lVvyM+W28FxhMbnY+QvXv2W6zHbbl9zLgXmgML1SprkYZ9/AtSIMnk+4dimb d6H3mMcKpknLtGiZxi3NPUybCTuUxPA56IyCDrjEKVLs+AGetFvxin0iPiqY jYJ9KdYsX4kNytZhvLwJEw9sxY55LqSfjR0dLmwf+Qm20W7FVr4tmFCwGVvE bsZ4xyZsXuLEps82YpxzA80p6/m8ZEN3LjYO34DNCpxIvyO2LduKbUNbsbUz DxMcm7Fp6UaMzVtPc1IuxmjXYVTKGqyVsgorZsv4wG9HtXAM17Caokl6P8+o C0eK8fl1Mh8exqVb4zvHPYmYRg3rGdrkz00ddFpy3jaedNJs5+eS+3XXuM9Z 0PKS1DZU5bo0o3XtYEm2yLE5W797DIPghGCFG5opEHZlKTTWbADTw3wYln0E pmadgnnWIqDxHhYYFJh3tAjmlBfC7AOFMMd4lr9mxn8JE8tOQFrGYeheuhvo vYHqnhw+97OjMBWGG9pAlKUaML9W5lHWSpdHop1ridazjp+Fxbk3kDjPBkKx HPnDN59QDEgmSR2JQYrh/su1bFVIpYBAvL473F86Uq5smiUYvd19cVzPpdjz i0JzMs4s6YL7jYPxu+BEfBKag/8Ki2kuWI7R7rWYuGgrnymdoDmBC3QKOrLP 4QbLeVxrLsYluSrOLD2DY+8cx6FRh3Fg5iEcFDiEQ18VIF2nOPbtcRyf4qEx 9XMcHTqGw3KP4OA7n6Il/VMclnUEJ8SfwHmuIsxVvuW491TuT+iz/YznhF/w q2f38HT4LTxiL+U91K0lF3FDBv1/7cXoKDyHqzXn+FncglgFp0ScwrS8w2gi uzC+YBPWCa7GcGkZvnEtwjfSIhSOLsXKz5Zh1agVWCVrOYaVLsVX7gX4m+Ej fFI2h+9tps1SLTYHaczCOMcGjD+6CRNcdJ1aNmFc6gaMOrAGq+fmYFiEjP8E Psa/9AvxH//H+J95CVYIX4r/RizGV64F+FyYh4/1czCYPYf3sITspRiZvpLP PLV5mIcmwy4c8OognwvNlL5AugZwXkYRLg4grgx9jRtSz6PLdhn3CN+zOVw8 dPQ6Fig38LChFI9IpXjowHXcU3oVN4Uu4Kr0b3C+1otzU87i7KxCXGRDXHel GHf5vsPDkaW0BryJBeYbmO/5jv88e3bLM30ou77C5Wn014yvcJEF+ZzclLdf YPrcYzTvHcTkbFqHB7ZgtH0t1xZ6oJmF5zTj8Eh2Gn5S0h/XCCm4LNAd59mS cXRZW+xg1HIe2Dx7EdcaNukac02+ncJ3Xja7xbTemGcB00BmugRdpIbMJ4Vz 9iLclSheTCKrAz2JS/6AeAPp5LV7IWlmcfLawi19T9663xFjYSOYFewKe/SD +Lnoz7qZ8CBgh58MWZxzd8AxGFYKPSHT2Yn7cw60JEBqYQvo74zn/qnMJzLC VgkoZiEp8l5yWjeSVJQEwjzqRwltk38WZp5tLtRJjpNrcd/6G8IUlmuSPxag iO4vrltM8SrX4l2q607ros6Mk6sQuTHXFnTIvZRnto+438Ue31WlirkiJrti +XkW/V64M0Rr8rIPEbVj8PvgJHxonYUVYpdi7eJVPAe1fbgVu+TuQKNnJ3a+ sx3bJm3D+MxN2Ch+PUZ71vK9yNZQM7eT560Or96fFRjsn6C+cAvPMzGx6zi3 vq7HgQ20uZhwajPPd/1C+3F46REc+4rux3QPnwUcrv8MLRmf4gcRB7F/3gFM zTqIAz2HcLCP7s+59O+jDmKP8j3YMd3F82ct1yoUpKX4VJ6LAWkm3vZn4Y/a aVjqnoJ++2S8GJyAPnksflkyEo+FPuTznYdsQ/CIOQ1PGK2oymPwqnkS3pGn v99zlvn4XDsPHzpm4U3jVCwx0/dbxiKtLbHIno6nPCPwy9BI9LiGI63j+Uwo q6EmWTviqPJEHOVLxInBDpjtNKHT0hcpHsbTZSPQ5xzLZ9tLXVPwJ10W3tZM 59/1bsl0DFrnYIU/lmBk/kqMCV+HsdnrMdZKc4kmF+v5HUhzLf4VWIBljml4 LmjDs8Z0/FI/itcCDEOprjF4Jnsk12ViOogLDAQnuTvi8JLWSGtOTLW04DOu IzSJOCOzCy4zSLjB3gc3lvTBpeUi2qT2mGRtgOGZYci04xdJyPOz7PxK2eS/ oCx3+7hGENPeriVX8db2VeFah0xHks0MM0yVI3/N/Qd90s+cf1xHcJBM9xfk jPsWuWL7leetyaGTRJR3k4H2Q2Sr5hL53feaNC2rDaSwMffgHZKthxGBNkDv 4XtPW31ril3awxK3CMcihsEtdxb8a1gM1UgO0HwD8YWbICltO4g5u6Fnmhuk A3vAeHQnJOZuhcav1kONUA68LMuGH4VpXDf0G4cNvim0AWrGwOe+YbDN2R8W aAiMsbbjXr7tNTF8doDhA+Yp3S47Grr6G3LPZ1oXA8MPB4XrhGIPVsfz61mj Keb6Xuf8tPYXguQH91NyQfeAa7KmOPeSi7oMEm2rTiLkFaY9wqDk996HQ7kn 4Rj5uJdhU6aL5ZT7Km/lxVwrmvklgLCb93eY1wHThme+cvT6lTvSdIXGeT5P 3z60TenpdiuDDQXcn4H5jDF9hNqBVRRHTFdoLOFeSkwzu47Gwf2dsi0Up+t+ UH7SPON1FNO/vat5wWf2aV2hnLffV/zOx5xrc98d4ppHTN+WPkPeT1mm83FP KubnxLxrekpuZbjhM+6jwHTvmUcJ8xZgPl4MOzC+4RPfHK539bkwXLkuZSr0 2rk/1kwDXWOerxTGl2Y6Ycy7hPnjsJ4906+gWIz/PfvsWUIh19Nf5ytWFhtU ZZjnCPfva+XfwjXwWc1I16OSIG3mf/7Af4B7aaD/LsdUt+zPlDP2W8qKkI/7 SDBtSXafJwonlX0evxKy/62wXnRPhw7pOkTG/2ez/kX2OwrTUFroUbg28RZf iTLF/4XS0reZPw+m+/3YN5v7+5VLHyun3COU8bJBae7TKCXSAy/dS961UrE3 3Bam9NI1Vea6uynpcluF8fvCBNm7RehXxLwyfxFCyXsFf3InYXsyXa/JJmFX co7cw8T6k62lKLLZZibf6yZznTRas5M42wbSR97H9h33un1hee9F79XdJXMt ZwnFkyTdfoysMHxNCu23ma4RaVxek3OeO2kbQANDJDxy/8k4AKTQdpt72esd 9WCc3gAbdX2B4hpYXd4TrFIb0NvrQZRcDdqHoiEruzOcdFnhkWs2/KtdDH+a s+G2fjpcsmbAJWcG/KK3QxXncj6n1Fy7CeLMG4CufSjzTIODvsGw3CHB/JJk WCp057qlnweGwRchK+wKDQC7oyv3YK4fqsb9g8PlMIi2VIcOgRjop6fxoUAP fZzNuLax4KhAMeZPfG43W/ZyrSoWa342/E4o9iL/Bt6Sn3W/c+1wtk872lyk irycKPJoxgUidD+T9cJ5E+vLM8/T1UKvZKZLN0j4tIjmUi/dK16mDRyjq6Gw ealxgkGZruvCvQiY1xl7lkPceu7NWewex7Xq2wrb+D5k/hP0O/G6g3mxpEmH OV+tn+6Akm47piwNqIrH/qPyRHil1DJXwSYait119TDBWhd1rtqozayBtP7H msHKqLFWxVhXTZpPYzhH48NAK7Rmt8GBtgSEiDhso6mPTYy1sbG+Frbw18HO gQZ8DntwoCWm2VtxjTIob4x6Tz1kmKmiS8DnutfK88BfCtM4Y2fBSe4GSGsR ZHNH3cvisHsoDntodSi64/hcUZtAFLb2RCHTQmYzAEy/M9kci22CUdjK+P7v +/ro/xlsyfV+2bxW7WAVpM+A86OZtk7zEg0apUZotjRHc2ZzNAViee+uhi+c 94hYr2hioANuLevHOR87S1JRtnTHaYbOOMFvwPHZBqRxGtMcrXBIoR7HZLfD LHNn/MjfDWfbjWhztufztI38kcj8gmi9rlw2/KqEu8MoXovi92RoiR5T7S0w 0VOf95mYR9Zh/w3liv1Xpa4UgV3cDbFroCHWE6rhDX+Q+/V8qrmhnLfcV36Q nnJPmEPO69xzjGk8MZ1U5s0Sb9vE9ffr6CKU19Ib74SAgcc85h3A/N/YeqHx 3fur8GdyC6Eu898tCsl/e28HshStc51yS8riuqWszmOaz05bX5Jn68e0Xwmt IU1MM8UvTzbFS3XIVWkS10msa3Hw842qoeWExgwyxnacLA2p3Jea9WwD8u8U j9WADv4Y6OjWQrNMDff5jrRXhiqeihBuDgOKQYHFhKTCBtwnvWmoNvyq+ZPQ vE/6ePaRFNteMkV3imxzXiLHbT+QXcJVQmt5MlR3mPMeKf4lSc7thMYq0jm0 nTTVOUk1TQ75VTeb0JqLrAukkM5CQ8K8iJlPMdNajfGt5drWZ6RbJjYPxmYr y+WPGVeym0Za7aW1rzJU14rvq81us3JQN0ShtRfXp7/nnsH9Y5lXA+sXME/H waFPuZ/oTP8Z7p/FegTMY4x5UO2z+7lu/IXAfX4O+nvgNeePsnX5MlSuPAm8 VH72veAaNVfdj5RL7of8xZ71U8sr5Z3uP6VyMAyr2Coi43+wnmTI8jfXDKS1 gMK8qKr6K2LViEpcm/M/93/Kv5p3CtOaZn+OkCtxLWFaL2FNYxWM8FTiupjM R43GJuWm7qlyxf2r8q1wX/lK9zPX2mdxgXk+MT8m5mHZTt7G/Wb6CQe4xxHr f7Dv+5PhGfeaWh34hscX5uvCeMy77VeVx4E/lUhHZawXjODnc6XuJ9ybiXk7 sl5KhucE9wPcEirh5w92+5f8/q0LFHMNfOZrxfyJmJcO84phHhXM+5P1a53u C1yv/6RcpnxjCyjXnUHlmi7INLWUE7oyBUN3lUv2h8q10GPuC3jMf5PXA3Hy BmWvbxDHJulSW/5cmR8w899kXpHMu2O0rp1C9yD3WrknveAaDocDQ3mtwXxN mf8fzSFc3zdP7uel9SZfL8yn2SZ/zvxMzj4R5ppc0mWTzl2bLPCZyBl5JLkv 2QnqxhCmzbFc8pkeCLNMN4WppsU+NOlt9WiOSCMUA5IBukPkI00R2WG7QrbZ L5HRuuOc787WdG3Dat5Pvmd7QZob60BfbXNIdbTgNWKNUDg8lV6RHzW/kX/8 /5JOQS0scYhwNjiKa/1+bbTBDikVpmu7wGhjO5jqSYIlLhG2BvvBwZLBcDxz GBSbx8F9lx1e2RfA68yFnIv/1rUYKscv55ohFdNluGedwblr6yJ6wzJ/d95v Xa/vA1tKzLAhuw/XjWDzG5mWTlwvimn3DXHoYZizNYx0JMIYuR2MLW8HI4Jt oK+/GdA4CHU0EcBqg2f2v8hvmr8Irfe4jwDdL+Se5QW5LTwn1z1B4vXf4b73 dueXZIRwlKS495JWhjxSXc4h192Z3H/9tG8Ei1e03p/IdeqPBT6k7+lHFklA 0m1tid5dj9ySn5nypIumRTKa3PL3pjLpN64De0Qq5b7kIXm+aYFATP3leNNy WTJV8smcG7RduGJiWj6f+q5zPfrmPqdpq9Cfvi4lM14NxRtFN4WnRfTPRWze q6pQKZnN1HUQXMkULxu7C3uKugqNvCwOM78eVntFyWu8vXxurpd9QLrmPecL eM8Jv1D8f537AtEa3EtxJff0eSZ/5GW6oUxjmGlLM88ehsFrCCuT6Wcns5jO /H3S5FbKCd9wXhMwnxaKZZgvI/MW5jVFvvydV5KbKF/6RnLNeeaRTK+R+96M lwzcH5zuby+N2coaXQr3367uzuF+OKW2Kdz3ZbEP6J7qzGOkRxrO/XIYP5L5 bDJtPYqr+HU0EWor23WpCtODK3NPU1boeigjdImKxdZSyZV7c1/qMnmawvSt 6D32xsubuId5f1u8clAYwj1Ym7k1ygqfj/sRTRFOFY0SjiXTmtxEP4PQe0l6 2nTEKO00dRV2dpssdCpiustNA7XJL76ZpJFuPYmwryAu9wc0bz0ysfzGYnwX eQd9Bg/OPvG9NFW35JAs+TShuIQYbTvJXd90zqHfoxtEIp0ryXThDPN1IO9C 7witx6GqthLQzyL5tu/YrD3ZafiOXDA8IBULBYhyVwMaCyCsvAI8kv/kZ50u 92VCMQN/0fqd0JxP/tW9I+xnmxo0EO+sA40jakFDTyQkWuvD0IhWsCYiBU7Z R8A5nw1Ol4+A7WUf8NnhxUGAZcHusMVvhmOGYXChfDxQ/M51h78tGwdu2yBY 4ZNgaUCETzQfQFFmOlwrmQzXApPBG0yH3faBsNLYExZZAHJcPWC7MZV/vt89 Ge477EDvGVySMuBTw1D+c1m2znx+fYQhEWzm9pCV2RnmZSfDnJARbJ72YHY0 hy6OhpDsjIWBjgSYrOsEH/sJrAhKsNwmAd13XFeNxQA27xybXRNqa6pCLU8V qK+pDnHOWhBvrsP9B5i/TY1gOOfmXfY9JKfknziuPeksI6r7HrkkPSTXNO/x 7Q+2p+Sq7RFh+lpHLTcJxU/8ddB/jRR4bpDDoRuE8V93Ct/xszMWSxke3uS/ QOi+J+nSMWIy7OIeJo3963nPuIluI2nq20honiD1Q2vYOT5pHnKSds5t/OcY t4HGbXI5kMG4NFx/nPEcmc/CEFsB14tuFdhCIuWV5GJgArHLXYlZak5my0ZC 9zAR3bsJjRsky32apEh7SZRlDfldN5/XKmx2g9VTDe30e/g3MP4UaeZ2kmj7 WlLJL5NH8mxC9z8Jl5fx79bJsJ2kuQ/zdcs+j+n1sc97ELCTt7bFTBOd9Nbs 4682uq2kjbCVWDyfkvWBb8m3gV/IzcAT7mfENHY/1d3gsZWdFx4O3CALmDWr vIdpFHPtY8aDtEmfk4m+E1xDlJ3TM6zzlf8eeRAKkYf2P0iRfIfQeoHfiw+F I2RW4Et+Jqk67xFax5BIS2VorqkDLC/p5Xq89jvjvMXPMk8HfiL1IqpxvsBW XX++9taaU6C/PR74XA3dLwxnMT5vK10UpGW2gjl+Iyx3STBLawSTLxbeGf4j XwTKyFndHcK8kWwF7SEvsx/sKR8IywslGF3eFgaVJIDV2QZmuLrACm0PcBb2 hXzHADhuGwY++1j4Tj+J92g+Ez7k2rXZdhMsKgDYZ7ZAqTwF/tZ+DELaUnhk nQ2nCkfApggzn8vZLQ+EU64RcCVzIjxyzoaKaTLUKM2BiPwV8K9+MdBnDy/9 2RChrICGSi69/i3Q+mgeNDduggb+dVBr7iqolb8KGkdugE6h97z9EZFHYYz9 OAw7dQRSHHuhnWsb0HUJMcG1EJ26lv+qzV/HXzGx60CTvRpoDIegfQ5ct2bC Veuk91rkhsV8hrKOzgF1iAOqZ+bAW+diCJhnwre+cXDSaoUjrjTweIZz/t89 8wz4IyIb3pUvhjfuRfDUOheuaTPhlHME7LCkQq7UG5ZnSzzPLxMkWFEuAcVI XIt5VklXmKjrCOMiDGDLbg82S3v+TK2WNjC4rCXXCmVxYLimDYxxtYOJZR0g S+4Ms/xdYaa/C0zWdOK6CEOseq5tmprdAgYWJgDFuGDNbMP/Ld1JY1HE+97c 0ICeP9M+UjMwlcQCxaeQmFkf2geiudYAMTcGk9AYuuljoVtELEhSE+gXaA4U I8JgX0uuUdzTogOKI4FiBOikf9+XYDOoqZYW9P7TOklOgokRHbkGYYeSGB6r 2xVEc33PKbr3nkZM12GZrztMKe8EA3wtOG+ovqE6aNxVQWurAS3K6kBHs5Z7 IfXWNYMPy1rBxGAH7onE9BDYembvoxgNrI42nP893N8a0ly0dnLq+b/1tOqg s7Yh15w3WGKgp0PH4/I0bWeYVNiR9/JbRUQBxdLQ0l8XkiV6vc4mdD1pIdZc EyIzKeZyVoRa1irQWFcLaH0CnQ3vfcvYjKXZ2RyGR7SBYZmt+f222drDfH8y rPOlgMPcC2ZYu8DwYGuwutpApq0TzHMnwzR9Z+heEgcUX8BrzxtSX6gOH/jj +VnDvkwLP7ueXN4RBhv1MND5/jmOCiVCutyWX9fQoB7GWNrxOU+WJ1i/55Rn BN9bB7VD+D0dWq6H1q4orl3fRFeb+6uNKknkeirzdSaY50rmeznP0Y9r8C8O Ae+jVvNVgr81/5JWZfXAbu8KJwxWKHVPgQuh8bBN6s/vHeslxRbWhLb6aH5+ yfSPb5a93+fPhXmgeEbDKmdPmFBmgDR3K/7dp5UnwYJyE6ySesIGTx9wZX8A h7KHgLckHb4vn8R9LZ7o5nKuecUDMlQ2LIdw9zKocHEJPCmbA1cKJ8JJt5Vr iuVm94YtQj/YpR8IO+RUcLh6wTR/EpgLm0Onci0YnDEAujiwFLbkGgEz5C4w 3dgFJoQMMMSuB2JvDE38tSDcGsZr/+e+vwjFihDjrw4NnZHce+mZ5y/yVege 2R/ykwPua9x/iflOMJ1axq1imjyMq1LdmcM94D7RfUA2CWZyTBhGKN4nP/mm 8XxHsRL3eGnqq01+9D01HZVumk74fjQxrg6tzbhXGK0peS28RihOfi68To6W q3MvJ6aHx+Za/xb+7TZI+LQbxTCF9YQ1Rd2EWC/TyRvrO+49Ipd6n0l/eaOl 6grdzwqtuymeG63QWky5IUxRvtSNUnYFBihbAmYl3zZAOeMeqbDeBettsF5z Jc0ypiOq7NQN4N6F+2SL8kZaxL1SaR3NfXePyje5Dy3TAqB1ufLGtki5ZMtQ /hIWcv9U5jdL6wflWuAx94Zm2oEb/ed5T3h44Igy216oFFhuKA80fyiVS8K4 DzTj3Lk933NP2PFuD/cDYbrNVfWVMN5ah3NkEs31OX9M66mB1R3hGC6FYdVQ RaSxAVsF62FHpxaTLA2wTUkU6p31sEGoBtZ1RWDdwgiktRHSOIYWT0t+lsJ6 b6x/1NOtw+7aJkjrL6T7EjPsHTDL0hmnFibh6FBb3gezutvgeKcBZ2q6Io3Z uFrfCxd6CGZkdkC637GNPwpjpZrYyFgT42y1eH+N8U7TPK1wbLAdjilox9+f ld0ZZ7uNOD+YzL2zmJdZf3M8pkotkMZhZDpaYwrboc3RHsca2/P3sheb42T6 vKxfx85BW/rqYjOnBhPl+tgluyHS2Izgb4zGwkbYyhCFjcojOa+UadBVsVZE TUFV/nf6zHrYxheFWkcNDAtVwOf+vxS6t5UauspYp6wqClIFpLW8wrgMLstl NhfDPe+ZZ/UaTbEyNFSgtPVtVTo6XdwDnXlRz9IUKmZ5v1JDs1K5rZvOzzQq fL2E45wwncx9MJmH2tZAP2WKrxPHJ8xHlPVimb8oO8+IkzYoie6tSlODU2no zFUSnJsVUd6t0PpHGSkdVSz2T5U+zn0KXfPKXNtZ7i38c+AF91MJL6DX6KiI lTUVMdwThjX84Rhtrs7npElmY6QxDLtHNMHE7Pq8Z1pZqMj7O3X8VTEhuy7n uvUVmiPF15juaMv5VLT25rqYM41dOd+H1v94KnMEXirMQH/BZKT5nfPg2Zkh m034rDwNvwyMxGLrOKR7HW9lZuHP/hl4O2I6llqn4HflE/GSM4Nrrfzgnor3 3DPwgX4WPii34z3XDPxJk4U/+qbiD/apeLskCx/ZZuNry0KseFTGGs9ysJ5x DTbMz8UYzXsuSs3ile95Bu7lWO3ZCqwZWIkaeTXSWIAx/rXYoGQd1teuxVr2 VVg5ajl91ku5jkeNYA7WT1qLTYwbMcG+metA6TPe+8gwHkKLV5swIf3979mr ZewWbKXJ45wCg/UT7KTfzjk37bWfYNuIbdi+fBt2vbMDIWI3EnkXJjm2Y6tn W7iOcmzmetRlbaT7cAt2PODCbr6d2NXwnhPVJXUHdk/cw7XzhqUcwbSjh3FA 1CHsme3GzlE7MHHuVmyly+P8XaN7J3Z/tht7Zrmxr38f9ks8gH1y9nGdSkja jd2u7ORn2l1LdmBSwXauCQCa3dincB/3cyDpu7CT34VtI7fRtZ+HLQ1bsFmu E5sW0++2aAu/LqaBnWDejI3frkeKVVB7ah029W/Elnc2cy5R46QNWPvtKqwU tQxfOxfyOdK30mKs8MsS/mL3lq53pDUkNo/YhLG29VgpaRne1E/FIlc6qu4x fF080czFKqnLsf5b+jzNuVjn4XtO2K/CbLwuZWJp9hTOD/vPswQrB5eh4FiK 9ywz8LA2DWkOx7nWbphtMXFvvF2GgVhoHcU55dc0mXjHOR3p3sMrtolI8z5u CZpxlsGIU51J7/lU1g/wYGgw7tEMwtXGXjiurD128mkxwlEJb9meKTd9TxSK CxTmeVBJE4bsrJBxvCiu4X1IpvG/3Onj5yAsvk+STvJYzc5HmMf8EEuBYrbs 5+eXzAucvcdn+VnxWx4rF0MPuNf9ft01Jcf9tWKXvuT8snz7d8qPht+UyoaK WDOiCvdb+Mf3r3LdE+Tf55LtIdOZUW4YnihPDK+USoYwrOWogtHO6lwrq7o9 nPNLGWc7IP2u/OkuVyju5ecTyZmxOCiYgKOCiTg2QGNoKBHTClvxOMpyQIar Ay6Sgc9p7wkOxB2ZqbiuJAUXGAnOcHZBWn/zXMDi9Jygkf9sjqcHrtb1Qoe1 F65y9MQVuh64WCdyP7NZghFnBbqi3dyVx/iPyrvhfK0JF7kAV5l74iZfX9we kYq7ygbgdl0qbjabca0zhetGM27BTs0APBh874e4z23BPGs/XKntiQvNBD+K SMb5gWT8WAsou7rjyrIe6LD3QlpT4jpNb1wRkjhPZooxCSdJHXG6rgsutBJc 6euBuYW9cZPWzGd4clw9cJ4jmectprs4OtAWJ2o6or2wKy4VuuP6QG/c4OqD KwISznV2wwlBAw7V0HumbYnDClvjeJsBaQzHDA99v7ktDtW2wn7aeOxR0gTZ LD7jeTXX1sEWmrr8HIniDrS52mNWZme0S11xckQnnhN7h5qiKRiLzBOF8V97 aZtyrdkxZpon3QYcpG+J7SzRWFugOclWAStmC1jLVoV7vdYvr8Z74bUNVTEi sxJW1VRCpkPN+vUPLX8oPulnzm/cL1xjGitKBX0FrOuM4DUCxRF8VpL5b92X QzzPifbdyme+NIXN59AaUdmi66fUD6zhZ9cLdIqSZjus/OP7WGF6KHS9eymG 99L6x6uRqiof6FrwHjarm0RptzI48Cmb9Vco7uVz5TTeeFfJPb07hQHe+sJa 7vudLh3znpfve89L9701fDlMJ+PsHOFsMpujr+xb5v1FCHlfCv94/5OXePcL g039fM35WfHfwse8b/FCmkfqhFaT7v73PZAN9vOE1orkE98l4rZ8z/2YL/ju E+blwbSWrrh/Jefd93mf4l3gHWG+ZobMGPggFA+Zrk6wxCNCjrsHLHQTjiHH mynmdLUH+oxhnMHAMR6RGkNCQV2g9RQ0tERCC31dPtuWYK4LMdoaQHMv/K75 m/urMW/mI55S/p3ypItkj/8qofeLFHpuEzTcI17NXd6L2hS4QGbbCrmGl9m5 n6TJh7km6tbQRV5nB9y/k1+FPwnzj2Jaa311+wnNc+SmMJUc831I39+X9yIV 22jya2AW7/98H5hEaL1L2snRhGmEfSMHTFekX03vfO9MjLfRwRdDegSa8Bfj L0ZJ1chT+ZWpQL5hypG+NjHNaTZjm2RrQLLdJnLU/SEpktPp9/+QrNP1ZjPQ RCfVZudxpl2+73i9zrz0ZgmFpkz5C9MY6TjXQWZcT+ax2kNwc59oxolkfo6s 30rrac4DqGgTSF05gs/0rhC+Npl8+bTu32Pa7rtsonUYae2OYlpyRJa7cy9J 9lpuk7iHLK0tSbI7lpgCscRoa0QaCJFM08dE6zBTXclhipbW8p58rLsmvcdG slkyE4qRCcWrvHcblF+aWD+N4gDyeWAYP6NkHtV0D7BeKqnoFgjr5Z+Sf+LY hN1DNo9MsSDTHOX/X0eblnyoa00mCB24nzG7v6ekn0x3pOemvr5mBAOjSS3b KtLEt4HU1qwml4WJhOJKclk3kWus9tMcIGPcx8lg36ekjWEr99Vk887RlrWk u24PmaY5TVYK3xC75UvSRdrB5+nf6ZaQWHk995Hba/CTq/ZH5JH9T1JZXxEi XZWB6Uy/NPxDzmruELv7y/dnQP6z5IrnV9JAGwndNLHQRl8faJ0IXwsBst9w jXwWKiXXnUEiFFbgPuREbszx+8RQBxhlbAu9/DpopY/iPAZaR/O+K+sti1Ic x9SZ1k78/IdpR9MYzr1QWR+Heb4OCLXgvRrWz9hU1hfOuEbCxbIJ8G3JOFDc o4HiMvhOMwle6hZATf0qznNKUDZDK20e0BoYmgQ3QMydtVDX44Do/LXQVOuk uH0nDCWHYdrbUzBf74U55CyMP+WBgZ5DIOXugeSCfBBTdkOPK3s4l4p5u7YM bAbtgXVQM3EVVMlYDrRegUoB+iqW4b/CJfDSuACeZs/lsyS/amfDY+0ceByY DbQ25T3vbyw2rt1M6xDYrxsMbscgyHcNgHznAK4/SfcjFJpHAfpHw+mIkbA3 OIifZ42XDNBDq4M2EfWhsb4W91pnM3/MF4XNp3+puc3nkbJsp3lPtYd/D0n2 5HP9EXr9vH9L4yY/r2N+soyDHCWv4f3d6rYc8q+wmFB8wfiV/GyQzaCzPXtC Z+Vx4WudjVDsQWgMJmxPu+TLpivyRBPzAWOeYF8II7gfGNO9csp9TRQHMJ/k ZHbmVFEWvDlyD281IYdpZnjpPvYG5TletzzI+79YuhLwKKqlS7OH1WERArI0 yKogw6bJ9L2hUTYRYUTEgKiNIgQBHQU0CkKzGvZhD7I1CBIWYVjUZPpeaAE1 KuqgqFFRB0VFwWfALa5/nfJ/38eH+pTMdN9bdarq1DmYPVFuonhekdTGF0mq y8HfTNIZT9LnTZYYZ5O9jeY+eNCz3Byf4qqPGv0T4xL///AuhUc1PTu/i7vW X2K85n8TXPbp+ahMrw7vwdB99qcYL/tjgwM+xXMfejbwd6U6RVU1K6uovYvn Xp3c1T40NVFTDfba8RwJe86EedQNdhMF77+GdgZ7xj5mZqld5p2KnpUi3EJ1 2r9+bXe+/5Qh/GHBC34Lt56abPdWU81shblWDbuKKrY/8wmvQYvUd9xu/j/G v8mDRlnyR+M38Np96E4dMO4uoe8IzT9rd/ABx0LoKVAOjBS4t3B8bGBmiPuc G5iDOzvI4bgx0ruOdQB0cK9oEV0m7kjtYt+z/JjPvMLM+BIBDc296RHineAh 0Si0SAwMtotp8RKxyDgpppeXiEHe84I+G8+E1weDRbFzj6icmi2uT63h/vmT YV+sDr0pdqZPi93GGUGfXRyPpXkeWtk0ZBOvtuxY0VDekNuEZ6joqaPv196g XxUNJNWIskdeJt/lR8M3yRXlA3hfHH3ePXkj5FZjmNycNVQm8u/mXVj4tDY6 VSBbtlsuWyWWy8ylSySdXVlj01xZvXSOrJdB99xcLq+/sIY91q4btEa2GLRM 1knPZ/+9ixnT5bexx+WF+FR5MZgmv6t4XH6eniLfKhonE8V3c6+cnhn37oa7 neTowi7yYacX60Wjz/hwtJccXtiJe7CNzFry19QfhB++E6+FvhJvRc+j5yQ+ C/0oznjfixPhc4Lqe94h3BJ/V7ixY2Kcc1CEE+vF1eZixhtU14rp6WzRxbua 3sUPlmVstsBlo7Mcgb893ZVITWNeEt4zlPP9RkEGz/2h1dnDzVT0PFUX52pl 263V3enr1GPBTYowr6I4yb8wF53mZivKP2qo10ENcdtD20VB44liqqI7rd4I HlBf2TF1xc1XfzvP0Lmcy5zJdomVqmd4A7xiVT93m6KzofqXb+M65Lb0Dt5h ppysxscOqUnpI2qy9xL70N4f7Fd01phDCU4GeDs1nLnMxfzHmKXqpRYoM7qC +xx9jK2KchX/jA7RVYpwmDrk5KrNwe3sg1rfXqgGprerWPwVNc0rUXeldnMf AzzCI/YoRXFI/c95grmT8Kkf7hWpkd4e9qS/KbRRUe5TFO/UcKdIPe0qtd58 Wy13Xlf3OfsV5TpF55o9sjBPfs4dQnd/juof2q6e9pRannhdzUocVX3DnrqY nqboHquxQTf+uejTuNFjqij+AWsi3hBbpxZ7/VStdFX2y6AYpjabQ1W5/aTK SMxTv6afYi8a7Hvnu5ZP3zPygBtm3TPER/w1xT7CAY8Qnllg3WrssF4NvrSw B/eeMUG0NlYIqtVZgxJ6Etd5a8SNsefELSlPjI7tY57tk4Yvnk0dFy9E3xfv xy6IqkZl2Ti/lmySqM3+jpgJ1zNqSPhSNiivKRulM2SLonqyRyJTDh7UTt5V 0Zn7tcip96S7sF/sMmOA3GkMlyUZY+RpI09+Xz5V/h6aIX8rflpeGjRdfuE9 Is/nPyb/TMxkX67rjqyROYktcljqBdZLHDltj4zu2yVv67JTDl6zQ95xZpe8 //x++YjzsnzqpC9nXFByWn6JnJBxWNL3kPT+eD9zRGI3z5ZG5+2Td3XZI4ed eUEOLN8u+1zYIul7yy6D1so2Z1bIpqWLZb26dP/duTzz+jnIl1+Xxnif5/Wi B6SKUc4sGyX3Je6S2/OjkmIYc0Iw96U4KakeldOi2az/jtlxn8zW7Ev8R+hv cLHEQu84zxT7RbeJcHy9aGvH+e5Wibo8O50eZDNee8JNWovdfvAfibxi3JOE D/Re48Mkvbfkk4aV/MCYmFxvvJ2Elia9Tx/emuA42PZWv16wgHNEV2Ndso/R OkL1ljXO7W7R3ba+NB6NQK/pGSPHb2Ys9XsaG3y6Ez7FfX+DcSpZyaiEX6/Q PSqmPJEkHJmEf9BJd6wPjes3jXH+PUZXH/m2vbEqCU0l8Du+M37Gz/IpFviE 5306P5xnBhrPR+gzwiOJfUfGu4cYixOes/a7H1nYZ8Q5bWAURD4zpiSbu3X9 MW5Xv6VRH/kyOczomE21VvZPxpNJ/NnggUDbGXwPeo5+f2O7H7E3sW/uZPsl f5Vd6hMmp++vfOjyUO707zau5z9zk3u7XyuYxzXhOvst/4Pggk/fVf0a/OFD 3xPapI/YL/sPBgl/qfsa13bYVYG3+TNpqR4ye7B3+2h3n9/NaOrT9y2hexnB Tim9ixLwX+BbQPWDj92RTLeOBX/57XaKMXmZe9E6an9hUX1l/eL+YV3nNBab 7NvFp+5k5jm1T61k76KZcS12h86Id1LfiNPmBZ5b73HPcF7cGJziv8+IV5Xh wqZyWEZHOc7pLicX9ZaTjN6Mb+8rvkHeEeokB7nX8gyFYoGcU95Heolhsti+ R56Mj5VvXHhAvp0aJwmPyQu5U2VFbIassXQu+781Cy2VrRuvkK0vLZetzy9n f/SO5askxT15ywVPDh9RJKkWkBOyDjOuJewuZ5QruaLLG3LPiDPyRHlafnzq B/nVkXL57b4rlB+vSKphMKuR/3N+k5dP/i7L836XF7v8Ks+PuyzLxl2Ub404 L/XZz+XBvz+WReM+kDvGnZY7Yqflzsz35QtH3pfPNz4tN7Z7Ry4zX5czZ2qZ t++wvPvsHvaVu3mpJ3Pytkgrc7O88chzMjxkvWw3eaXMzF0ia8+fLyudmyUv hqbLL8sekR9nTJLvZU2Qr+c+IEuMMXJH3h3y2eBm+WBGd64RUDP/mv5DHDO/ FHH3DfFAPCFEdDO0j1jn4HA6V0wKerH+Dt7nOPcg1VnzsENnUQ0bmWgciWw0 bo/QPc0ivJikmElnqT9j0XrGQr+aO4fv0BTjRvr9fPIWo01yq/FeNnjodL8j dC8i8CB71jiR/Z7xXcmdxu4k1ZuMQeke4G5m0e8R8FKR07GbNMroYp11p7DO 30h3j7UkOGm9FHxi0fm16pjV+bMSnhUDvLa8B32n0Vk84IXF045gDHbAvFuc 9MZy/HnLHifecseJD8yJ4pP0JNYO+jj9sDhlP8QaiMBrCe9uscUdKuhzcE15 fdBYEM60XPcY+9oQPrZm2trKsbdYhKctigPZbYyQD/7RaHufv8x43ae770N3 4Yz9vU/nwqfnxHuYQ+0O6lnzFt5ZoM+jTqQdRfWKWmEOVFT3MncL/Z1W3nLe IxD2ZmVHtyq6/4riuaJ4owZEt3P+x26sld6kKKcRVnlB3Rfbrx53ipm3CT2u 1eE3eb9gtLePdz0wc6N3pxbaN6t1zmDuFa01BrPOB/o/0PEe4XZmHtxVZk3R 2KklCPvD99N6wX3fSrpnuU/QM8gUFDO4jjnijWKNMnD1WsWWi+zURnG/eUCs Li8Vb4e+EUa0EvOBWoeukm0q6FdmSHaKNpJWuoW8K3SdfDKIyHV5g+WBspHy WPl98mTBWHk835E68z7pV4yRr4Yc+WHmw7KiYAb7mnYYskr2Tm1gf+f+J7fJ 28I75d1198qH7SNybn4gN5e9I1/u96l885evZdmYi/950Rb8Lv9J/SOrt6uS U39yjZwmR2vntLzy3+53qzH1c5oer51T78/qOdW8yjn/rvlXVkz7S/6a8ae8 4lTIH8t/ld/Gr8jPQ/+Tp0MX5PH5aXkov0x689+TKxq/IWdXOyYfO/mKHDf5 oMz19hIu3yntTVtlz6wNsuOZVbK5t1TWz13IOnXfGVPlO+Z4+XLeaJ6jr0wN lAsq+spnOuVQTs+WhJWk7bSGT4gEv+buYI/4xXlK3GN2Fa+7X1l0Ry2KeRbu 38fGpORotwv7jL0dnPfRK8QO1WkzT1Edqii3qF+8p9RXXkx95D2s3vfyFN0h 5utVDc/h+Rh+/RXMVCedsWqmK3kGRnnNhzb6TuP95FSjJIlct9e4y6cc4Oe6 e306T/5Tgc85xLRX+I+7WeglJt8wHoz0NJph18GieAAcZoGPjt/Bu8TdITwl cu3rub+DXYlX0/eLE+ZYaBJyPfWN8Th2mQQ0/tBzuS+6XzwWLhbPmEfF03HF vZc7QkWio7FafJ+eKgirC8L24q/gb4tiiwXdzJttz/rZeIqxALQbCL9xTYqa FTv0j7g3qq3poeql9CjeXyoxx6i3zYfUH8ZMRbW2op+rxpoJ9bSt6J6egP4N dqfV3FjA+HW5/braF/9QfZa6pNC7xZ4Bes2D89rpkfnX8Wz03lRXPSavqx5d 0IV9qMfEuuoHcsM6b1BP/Yh3I/fvY/Gb9MTynvre8A2acpwWxS319WWNNXSV 62RW1xRv1Ln0T6o0/rU6FCtTG1OnlGsfU2O8F9WNiedUY3uRumzk82w86Y5R FLcZZ1PMV7vNETxnx45mm+AqVdupht06RfgVcwwf/o/I3/RcrGvMemJqOos1 jXam7xDPp6MicO4XVH+I/qltYlWsVHzllYuG0QzZaVAj5i9kedfI7LJrpGW2 lBTfJWEYeW+6q3zUvEnO9Wy53B0gV8UGyfUZt8kdRXewN86PFdNlaMizsnOn NbLv+a2S4riclDoiqV6QKzNL5XYvJQ+nyuTJaefkh9V+kOfnX5aXz/4u/3b/ kVV2GDk1jao5dadVzwltqZnTeFCtnCYDauc02V+btVHos+XUy6qRA12Hak7l nH/q/iuvFFbIbxNXZNmIi/L45LQscj+Qi2eelLG8V9hPNKtgo6SaStaeNl+W R5+U76QekrtDI1iTAfyfO0s7yQFuW9k/qy3r4USjHeXtpe2lcFqybvkF+2do 1YhrzZW8wwvtrUrGbIswXuQWY1uS8KiPHdrZxjGfYqmaYUi+e31SW9TCxHHs bymjoJJuWlpbdw030XZ+a021BJ8TzGxmlAu9wLxZL88fwHpRVFfwrCWvuCfP OK41GujfvD95Fv5w7AjngmtCy1g/EvtCuOOGN1v9aj7NOyDYj4PfNOqxHKeV 6mo0YU3isNeU6+Ms9xpFeE1VTRtqd/CBn+NuoTw2wMfOEuHfLMLaEcKs1kEj l+71KmiIWbW9aoKwJ+/g/2HO5P4YfJMGOc+Lwc4OYXtbBWHU//iQwROCzif3 jO8IOgpw6D82LlqEVa2HjB5WJfof5Vx/v/2RP8Bpq444o1T9+EIlnM0qL35Y rXJL6a6eVefdy/An1S3L6zG/YmDmtXqU2UVPTPXUU8uy9NOFgueL4EUsSPfV Sy7002vybtVe8TCdSNzNO93Yvf3WfVz/XJGv/yl7RlfJc9nbtnbufF0/f6Fu uKmAtbmau0t1q3HLdZuyFfrasri+Nh3nGXLz4qX66mCRrle+QNfIm6srZc7W P3d6Sn876HH9kfMw+7nvi9+lV3YapKcbEda7kBda6vYXGugGoQxdZZCh6fwo aNcciX6iNpe/oxY7J9Ws2FH1uFusHogm1FDnBdU7/JxqEl/MPq3YaXjY7sV6 g93NTIpV9RnXD7Z3+AONa8HHjqw0BlnXBEux02Nh/4ywvBjstRM77DsE/Jx7 JTYIJ3aAzy34sgvSr4qpZomYErwkCIOJky7hbreqpJpA9km14r24aGFHOdrr IieZveWz6ZvlvkF3ybKiSbLa5DmyjRmXYvJmOTxRJMc7h2T+fF8uXfqa3NYi xdrcb5z9SlK8kV82/kle6PezvGj+Kn/M+k3+WPc3+b3xizy/5rL8/NKP8iP1 g3zn0jfyeHFavjz/U7kncUZuPfmuXDWzlLVcY8WvyDHRF2X/YJvsmlorGxYW yEtF0+X+6Eg5qbQX88jOxy+LhbHjwjI3i4zoPN4bQK8IsxI6s2KHewdrssEr CnODu4w98F+26PwmqfbyD7llfge7ocqze6pDdq6iepXuxnruzzwfOq2gp4V9 nNbmVbzLNTjeTt9vdtNPZlh8Pw+m7tanyyboH80ndNVyV9fpskBflfmsrj9k oa5ZMVf/Xva0JmyuD5fl8kwTGuFDvQ76pk7XsE9w0/LaumZmVfZxKE18rTz3 PZVv+2pYaJfq5K1mHS/s3R40c9Wi9C28K9jTbMYemEX2B9wvrW7M5R4uxX6f amqO8/fZ+33oLMO7/WX7Uz/X3ou9UPCzitETLTHOwrONZzLwXoCmBuYeVEMT dpvNPiq/B08LwvfitJHHd5jiiBiYbisq7L+sQfbz0Bu2so1NyRvt53w6P4py nDrjTaTcs4J7Wzu806o8/rtqnXGVHmRfqx/Jv1HHYwP1i+ZIvo/gGkBvhupv /XXWY6x7Cv/rn0NPsad8jSNzdYNT//FJmlUs0S1Ty7Q5c4Vut2al7nxmtabY pLtfWq975W9gnW3CzNrut1Xf0mKb7t9rux6QT79yt+v+v2zT/aLb9M0JT/ft 5Wl76VadU7xFi5mb9U3tNurunQqZX9K62grdqLxAVy+bo/+X+wS/1yPRUbow 7zb21pwQ6qmH53XSfSpa6W6lTXSrRH0ditbUVQoM/a19Rb0W/or3nKAj+2R5 krkJo4K97GGO3pyIbVY9g0Lu9XUPF6oeiUJ1fbBGNUoV8G4fYh/4cMvMAYpy i9psDFX5jqVamvWxu406K/mB8X1knTvYgp4Efof3aQt3GWGv1yy8F+zz2W5r gV0KxGhoaz/tCkF5QNQLFoi7gt3MpYdGZJN4bdktsyn70qBfuyZxq3w97wH5 Z8FM9rPrsaNQDrF3ygfDB2V+kS+X1H1Nbv7lHfli+Ydc0741+bz8oO738uPw Rdbqfe/st/KkfU6+0uUzuTc4IzeH35Urq5XKhUeOy2eyjspp40pkXhHVtxV7 ZJ8uWyXVJrKy6cpkdIycdKGXpJpPHnLKeA8w4dwtWtj1WAfpE2My7+1sM6K8 Z/WPMcu64uZb643brHZuA7rLeyNUZ0UOGB+XjDL2JYe7nbgmpXrG72uY6rjj cM8U+l7QiMXe9r/Rf7ETxnP8a7Ma6Ei8hc5NXK+fCefoXaXD9QedJupKr86i uF1A73m5bp+5SndYukrTZ2btH3gP/xmbqcvcSayTsDZrMO+MDs3vwLy7WqVV NTgn67y31ATzsKLzp65z16jM6BJVJ5jPGP3j4GH1gjtcYbezu5GpjgVf+I8Z xf4qdxBmMUm6pyWYx180piebGXX9RkGB/6jxCveBngm038Ao8CnW+9iTIRzP M2Dsycwz+/K97eCsEneWF4knU0mxNv2mwLNNxs/yngD498+nU2JeKmC83Tv0 HO/VUH0q6PPwTHht8CY/a/SwkGuoDvSfNC1F9a6aGDqiXk98xXu42ZktNJ0z PbfI1lvDw/RLnUbrN4IHNMVi/XnWI/o7c6q+nJmvK+IzdKUus3WVyS5r1GTk zdN1WizQhA/11aHFrFFBNYDu0m+t7lW4ge/nzUc8PdB8Xg+O7dBDcnfqIfGd mmotPXTcC5pqAn1XejfhgH36vkH7tbPjgB5bdkDfX7qf8Pc+Pdwt0oOKn9ey dDPHiTYVK3RDt0BXUS7jgJOxscydWxC+WY93ejCWD+c1Ze1x+FVciv7KO4cl obNqV/p9tbb8TewtKao3OFffndrDXIvbwy/w/j94ifek96kJqUOsifBs+IQq 9N5W28wUc0oL428zf5Fyr8qN7uU9SOycAh8i98y0pRptd1F3pjupB4Oweipt qWeMHDXO7g7ddgVt/ZbBMn+/O9I/5T7k07n34ftDOJX3yHOd6xVmd+jjbTNS 6HFGgPXRm2vnNOC9lc/MKSIrtpF3nbCrC40MeLWBR/137jOycWyR7JRYLWXF ZnnXqd3y0S6vyGWXXpNFsQ/k0SNfyHeLvpVleRflp4WX2Cs5NfM7+Ub6K3nU +UJSnpEHLnwk9+w7I3emT0sv/p7ceP6UXF/xllxknpQzC7TMKzgsKR7KHtMK eYfh87IprC81Ir+zvLqslnwp9Ym4O7yXvSnedcaL1cEgMSHdg31QofUMD43X 7a8swoWEHw/xzh7iAnDq88bpJOUln+pPjqVUp/L8YlW8VL3sfqreM79T34Su qD+9vxV4u82L6+qeWc30CK+znhmTeteF4fr9gjz9R9kMzuPQTYE/R5sucd3m 1ArdQi3TTXIX67ojFuh/i2fpL+KP6GT+GL3GuVU/ErtRU52g6R7rFrn1dL1U dV05bOifw3+or83L6kzse/VqOK32ps+o5fHXWX8CehyU2xR01Ol7qpHOdQqe yIZXif1rEvbHPrSFoIlZ7H7GXJ0j7ic+1YPc46b86081siOoez8xLln3mjdw P6tZaokYWL6dfX3XRd8SB1IfiaPuFzxnC+wv2duUzqOYVx4IOsfiZsfjuYkR my1eDe4Xs7wc0SfdSsBTjWoAq7FbCx7oScodPvSU3/XGs4fUAvO4gs9J/dwa XMsQRtWO043xOOvBEN7ZaNyuiwbdyVrNJz3C4MFE/U35Y7oib4au3mKuvur8 Qt08f6lu32mV7p5ZqOXZzXpgi+d1NG+Xzu23V9/baz97Ik4oPaSp3tFTyl/S VMvpqX8X6ydGJPVTXZSeGdf6mXKtZ87X+ul+Sk8rLNFTGr+sx0UP6lx3r76t 7k6dM2QL6we1yYzrhvMLdNWMOYw1UoUT9Cup0Xpjxu3aze+jH0p114OL2ume RjNNWFvXTlTTvyT+UGXuRd6n3hM7wzres1NHOZ/cG9rPfbbhdpGKxnepW8M7 1N3mXtYbmR5Kss5NgXdCzUkfU1NDJWqicYTP5LDwLkXYift9NeJz4bOp3jTH qQ/SeTxDqxafo+h+qAblzzKHuVpsDvd3gBO+MR5nbjPdVdUtvF7BPwS71gXR E4ruNXMlt4VSPG+bGBzmn1MjMVcdNkepcV531dippVz3mH+/0Q17qhH0VD17 mOhTvoXn0nUyq8vs1DXy/sxukvKufKF4uDwTnygrd3Jl8x1LZY9xhexndO/Z F+Vj51+RC/OPy+fsU3Jv6ENJOUKeaHdOvl78lTyZe07qXz6Xh0OfyD0FZ+T2 4hTrmG/p967cmvWe3F6Uks+L03Jb2XtyQ+nbclHWSfnEzKS8b/J+2U9t49l0 4zWL5D+Zs+SZwolyd9md8smQJe3c1pLei0w6Z3nHE7tyNyae470+1OX1owu5 tzvTkQJ60e2DlfCHySac5Df36qqV6YG8J94iukzJYLO6x3hRzShXaqPxjno1 /aX6NnpFVc2szHy91uGrdLeMpvqWUBs9JtqVOfOrEoP0/ryR+rXMB/QnGZP1 hRjlt4on9ZWCfMLxT+ivMx7Tp4MJrKX0fBDVi+1+empWNnPpgQ9srzXz5Vlv s7CBziyuozPiVdnjHjo5wM3gl9v2VlUvvYD7VfSuVA2viiI8xHp+0PLuY7TO 6mysidQ0qlpPGhZzSq4KFjI2h1f0FbvCssyWYkV6gDjvPiZah1aI29M7mYuE eQtiAvgH9HPFP6F/xb/2v+L38F/ikvOrOGv/yPN6zGpOBGnxivkZz0uXmK+J qalicU/4Rd7X7p5aLyh3i7T3KNWXfUWzdB3RJ9hi4XNhFve+fcGfYUqq3eeq W8ufZ40LqvPgE8Y8X3ibtvDq6XC0qR6YQfEj2k3nF1t6ZdYgvTtrBNcJZ/On 6N/sp3XNM3N1owrCY2OW6w7Fq+j5rdO9M57TkSObdB9BuP+8p/tnbac/h/DC IMIL+3bqYV126eGxIorxu/XIfXv03Sf36LvCe/Qdf+9ir56+f29lT8Prpq1h 7fl6XRbqf+Oz9LngUX3CHMu6IcvdAXpaUba+x+zKXjbXRRuzngc0GRAXoFuw OHFSPZQ+yLP8NqkVqmra5f5LSXAP72xj7wDaExuC/3D9fm+ket15QNFzU//a s1St8HzVOLFINQ0tUVcHixSdYY4Lhj2buQZ/ujO5ZwuPSJzdc+lHWYMNfZ/u wXrWa6D3oqieVwvCx9XTMcX9E2hogjv6YCqh5juvqiLnA/WqmWbdkSD2pToQ /ljBm3xl+g3WQMJ/A02HGxLrVIY9T+23R1Lt0pbwSRn3hzsaqyNTg2JrtNdF EIYVfcJbxTOho2K/+5H4wv6fqB6uIlvl15dWZkveOVtYcLPcExsh3wkekj+V PyFrtpsnmwaLZbv8lbLHvkJ58zhP3nmmSI4rPiifbOzLRZ1Oyo2/nJJ71pyR r4Q/k8cL0vLtCqozsr6Xn1X7UabX/CS/7nRZnncuy6/PlMsvwz/JT/MuyQ/E 9/JU7jfyRKdzMjnirHwx/aF8bv4pOe9kIB8UB2Wfsi2ySdFinpVtuHCbpBpe 9nAzZaPyDHkh9rN4I/WVWJ54XUw3kyIa3cWeCG8YD/LMAx5TPxlPYi6V/Mh9 mGfS4GOhzwe9COzfXxPU5Tkq8Dz8IC+b+apOej7VbsuZAzHA3q4oh6odsdOs f9UiVk/fWnatnn4hWz/nDtFUt+s3yh7QpxIPsQ7riYyxujhxjz7YKVfvKRih i3Lv1IRzWCf82fAt+vF4lr4743odcVvo5kV19e/GX+ql8KfMZ7edreqq8oVK p+9lTPFq8CVrFEArDHiwulmFMdUu407xWjCWPYNeNRyxz75LrHFvFQu9m7lf h118cNnAbaOzINolVrJ+y4NBQsyMavZv2+Od4ThCcUt8F/pZVOpUSdarqC5b OPVYZ7yHkyl7X/hPC6ZnqJnsWna1vLYsJKEnX6esmvw39q/40fxNfBZcElRP 8I73TFsjhogfnGmiv9FWhO31FnQ4oCeAXv52L6oynHkq4m2CH7KiOk99ZZcr 1OLdjKb69nAH7gtC62e1eat+vtMd+mA4Vx9L3affKxuvP+/0iP7foCdYHw89 GoqZuvHSReyLjh5fi+JlHGNaly7XhCF1235xfW2nlRxzOmeu0ZSXdJfctfr6 Xmt1p/zVrFPYvHCpblD6rK5ZOldXODP0N50e1+8X5vHP3BuM0KvDt+qnTKFH F3bRVmkL3tOi7873cF38Lc7T0D1rG4urWsE8lXYeVUfcUWpZ0F/Bm2aA11Z1 M5uq9kEDrgWk0Uo9FHRXcXsgc3O+9R5XlYPZfOYa2gXqanMx+zygzvyf/QRr NeDXBWeq+teleJOep0LxZ/nfwcyI8qV6wRuu5nt9WQtimTFAvWyP5s8B7NA2 GmcvA/CXlruvc28Mu3XQxIEP4ajyvapffJui98ZzSmASxCRozFyXWMO62uvs wcxtPxf8xHUsahnKkT5hZu5tUG0fKXUfZK4v9P/orwU9D0F4SiyOnRRHEp+I z0P/E1UzKstMr47sVtpEDoi2laMqruc9TjfeRxY6t8nDGaPk6QsT5KX86dLY N1vWLpovG7VbJFtmLJede62RN5kbZf9ftsnh/YrkmOIX5fjYIRmb/4qcNe2o XD7zdbk1/a48ID6WRwu/kKcKvpGfXbokL5b/Iv8q/VtWG1w5p9bJqjl1TlbL qVWtWk71xlVyjIJKOb+N+VP+ePZX+a1zRZ4TFJdK/yc/O3WJPQqP56bZD2Hh vuPS6XdA9v57g6yVMV8eH+TIZyqkHBJrL3t5zWS3oInsmdFMZiXorpRlMlf1 d/MvsTP0vqBaU1BuEN8ZU8Un5mTuzTUNLxG93A2iv7ld9A22ihaJZTxf6+A0 FOBxP2YUM/cEPYK+huljboiZfdhd70MPB7kJGow7w++ryqlKvM+Xk2jFvXVo d/UOmulrzQa6iVNbA+PXjlbTGcVVWTsdmkPQLDphnuN6Zpi5i/PF416Wei04 579ojGR9/C+Nn7JnGDoy0r2Oe9TAmvS+xXJ7gLji5Yv2oVWs34i4QjiV+bbg af/rzRKfG4+ID9MTeeZHeU50C9aJu8v3iCfiSfY12eGeFnuiZ8T++EfiWPoL 8Wbqa3gZis9TP4py53dRKUSxKF1dtiyrJzs5jSTlbfZRo3gp67s1ZBXPkJfi vzIXkXKiSDgfi/Xht8UTXlIM8XaKTHsJ95F/s/+0rnMbW4TD4CnKuxm4a8iR o519aq4d8C5qWewia6HimfUPt2XtsWc65XCfeIs9lLHgrtCdmvKhPpiRq/2M eznmv5s/Xn+UeFh/EXtEf10e01/lxfTnFVP0xxUP6/dS4/Wpoof0O+Hx+v1E nv484xH9Y9YTPL8gjKGrijnaWDNb/xJ/Sn81KMZeHy8nRutt5cP0ivIBek5Z H94JGmuE9W2h9rpXUTPdtFMd/bPxhypOfMZ1CbiAXeJr2Q/4p+AJRTmOtbEo Z6vPgslcl9C75FiEXhWdDd6fhLYydLXynJ7qaU+w3lKhfZtaaw6musdWw9Id WHdpnfsWc5ieNU5Ao8X/yfjdvxz87h930+hTcD8L+kvgPBHO8We6kjm+37qP Mx+qhluFY1/LoJ4qdN9mnslnxo/wX0+C00zf2a8auH4Td7GPXvQ496Bf4J7w lwQnWSsRfCo6mz7FoiS9P2uYsct6J/jGqmRWEn+7/1h1nerCMlqKTc7tzOke kdgtqJYSe4Mz4s3weXHOLBc/m3+IanmVZaigprwmVVeaiaskvWfZtiDEOhg4 W1aqhRyT6MoaEkHifvld1lT5Z3Sm/DvvGflXxUzm61Q35/I8tGW15TKcv14S VpdOwQE5tXGJnJGpmev36N8vy0nnj0iKkTJf+XLB36/KlZfekIX73pbPFZ2S 6+u+LVdnvinX5b7F/kQHgo+kb3wu6S7KN85/JUvtr+UbFV/JN7p8LU/N/EbS uZTf9/ovflW9YOTUmFslh+5wTo1V9Muhv75UJaeWWS2nXkaNnAa9MnIar6uV 03hErZyratfMqVm/ag78Cs+lfpKUq+SBMx/JdXlvyWeMo3LciIPy1owd8obY Okk1tbzi5jMHa3Pp7ZLeIe/gg3uEXYXf3D+Z9wydJ8Qteodivt1X3JvuKm4z 24vbgnbcryYMxX2qp9KWmGpkiylBb/412unCPYm2dkjAlwazrvfdPOsaY1lk gXE8Cf4R+Od17erqjnRHtdq4VX1gTmScQJhH9U1vZR4u1U+sOTYvHaiV5W+w Ltpm8121znmLtcrmhAPu3Y9zCMvHPeb3Yrbez2lDf+abzLmHnmZ1Yy7vyMDv q6vZhOcid5vXM7d8rBlmHhJ2WYCT6fOIPmZrAc1N8Jbgi4w53djggEW4EHwF i869RfjaArdugnE4Ap3mY8b9xdBtR61Hd4C5g4Tzkr2N55K7jA9KwCFcYbyR DX/Z1sZVmA0kFxg3+9cba32Ks377dAPuIWLfvrG3iPsA9PzVE3aSddqS0bPq R+M3hR1G+G3QO+A9OeyXEwbQS7L6641lQ/T+6Eh9PO7wbjC0vqEnTueaNcGv DMrX36em6i/LH+EZ6Lt543Vp3oMc116rGMv12/E8h7Xqj0bvY1+ioOh+/vOO pe/TqvBeXWKO0S9dGMWa0ejHes4wvc2M6h1Fd+i96RE64dytX3ZG65e90fpQ Xq7e7kT1SnOQdt0+enJhbz3G6apvz+qg+6Zbc3zreKGhbhauy7v53xk/qwPp j9Rs45i6L7qf90LvNfermXGtVqdKeb+csAX36CmHqu5moerhFKoBznY1xn5R PRp6RT1mFivCvKx33Si8SH0Q5Kmd6TtUwr2be/hp+1H1uv0AY6fOZmMVd9/w fzSe8O9zb+B5HGZv2F8oCT7zqVbDOyxpbi+1sN+EswMeSw13rkXYNRu+S+Co Eh5nvXDCTIL+LPGL/RTFoxGiY7oh+7n3cptZ4NZhZw+aZdAzo5raauLVFj3T mUK4LUV2+hr+NcRpT3ighehpNhOj7S48y8P+yh1mkaA4KY46X4hfy/8QTYpr sxZJpLCFvMFrIpu7dWWVqCHLohfF2+nz2FET9YtrSLP4KtmxvKHs4DVkHUho 1o290I05mk5xNzks3FHmeK3kTeXNpXWhhRw6qIN8tOxG1u952R0t3y/Kk2e9 KZLur6QcKDclbpd0TqWT2411fWLuTXJZeX/mZRB+lnSm5JmiifKdCw/JQ8W5 krC0nJWXI/OLLTnHtOWy8AC5pXCofKl0lHy3aLyk/CkvZk6X35dOlV9mPCpP l09gjvNJbyxrAp13H5OVusxmDbw6F+bLjPnzZBXblb8lnpaX3OnyfPQxec6I se7H5ax8+WvpU7KiaIY0ium/OTWPe+StM1bIzhdWy+4V62Wv+AbmfV1/aY00 j6yQTesukY2PLJKN/i6QjRrT75cKZGjas7LWL/Pk3/nPSMJk7O07L2XL3Pzr Ze+yZrJ5fl1JsUFmJKrK2oOqET6sJqsUGDzfPmx8QvHQF/2DbaJN+QrWwc70 lrBG56jQPkE5kjWjodUJTzLhbGadqxbeMtav6hv2BOFz1nmCbi28/mR6s2gW Wiou2dMF1azspdDObQBNLmu4XWTtd0cSBt8Zgabae8Z3ya5GE/CCmSMN//Gx RsKn80DnuamKuh3VYLudMr2rsPfK3DSqS5lH/bPxFLid/lvuOB+9eeTze4wX OV9TLYc/M3mNUS8yxXg5ApxIsSxCcZD3lhq6Bf70oMQ/bqfp3zcU+DTAE9W8 ysxXAbepa3A16+FRTOC9CfqZ6hZzmxqUeF7dFN6oMhNL1I/p6Spw7ud+S9Vy lz0ZJ5UfUc/FT6njibRKuz+p3xJ/qirx//cF6vSfH1Tt3Gq6Rl4VXTlkaPgI 1SyrohsPqqXbZIT09cbVOlzYVN+Q30R3ym3EPX9oXdRKV9UNMjJ056CRHjTo Wj2hogdrN2BXfkZI6nHx7nrghbbsxQP9kFBxTd00q47umGqos+LX6IHmtXpI or3un9lW985srtvmhTR0ZGt49DmCSqyXAX0JzKfgE1YlYbAnWLVc+mvH0JXC lfRf5X+rv+1/VLXCyozZa9hVuD+Anhv2MIBXgVv7JbZxjzGS2KTal69Udcrn c88KWivjnR6qjRFSVHf7Y9wXeUd4uTvAv984AK5+NnRg0GvEbilmzxF7k0U5 mDk94O5S/LGoruSdVuyI7gqGU5ybKZokFgszsYJ7tNjBRG6nnwMvP96NQ84H 36BuYoGol1ogir17mHPawMgQ0Hb9xf7DauHUE1SbiDlBH5EZXSJWhktFtaLK El7yzUJ1JXqXuBPwSKIYKUZEd4vZqaNibfgtQRhB5Ds++y1AE42woHgm0GKT 947Y4ZwWdN54boqex2/u0yI3sZd1rgk7s5fmU5mC952uTtWSL9jv874weqrz zFd5B7RdrIG0ylrIm4LmrFsFbanumZmyc7ixrJpVWUKzZ3LsJTE3GohXy78U obya8tZwO/lo6Y1yWmG2HBftzhpW0DGqnq4s6T3LRlm1ZDuvwX+1YdE1rAEF nzroFv7m/Slq5FaR7UsbSLu4tYwO6iiH53XimX5OQSvWFOoWbiqb2LUlejPQ D8LnhB4ntEVLwmdZw3Bi+WFB91NYqU3iPne/SMQ+FnTuJZ13SWdMQu97Yuqw EPHNQsQ2i1tTzwuKE+K+2H7WBn82dIL939bE3mQvq5meZn3EAucEezrheYdj 60WL+DLRxV0rnMQB8UL8ffFR7AfxZvpr8Uj8ZfG5+Yig+yeeCnyLcJzYnb5T mN4KQbWlyI3vFQO87eKG6Dr2wK5hzxUdEqvELaFtvKcJ78ZDdi7vJfdz24iF zs2iwpnBO7vwZ3zCSYox0RdFu+hK7oVTzmT9I+i5Ul0mzqUfFQ0TBaJDdBXv r0DDL8OtKih+RToba/yDRplf7j7pg3MBD48a0bmssUS1DvtvYf9wVLCXtT3h sxP2mooLzlT+XNjdhjcN8nVLY7l/1P3Cn+Ue5R4++EjAwdgrxp9Z4NxCnydl VTeqwA8v+yHjUKSFvcwCFwJYADuKz6SlAAcevDzCf9Am9Qcaz5c0thdZ/dNt xHHHEaeDCWK22Yf5iZgPYkeOMNBNXxqPZhMusXYGp61bAlNscYayvip0Vhek +wr4XN4f7LcGuG3BEYrQZ+dZQnOnLmOJRkGGQP8X9TDlpSR4Rkn7LMWG13k3 E7wF7OZAMwq8f/rr7PZGQ5/wjn9HsMunPMv7OOD8YweH7jpzJdFfBvcQdd1L xqc803zaFeB7JLH/c9mo8Jul6yjge4pzvHv6rv0ta001DRb78AqmM8E/A1xC 8KMoTqhmQR1F+cunfO53NwqT1xoNuDak2py19eEbUO48qSaavah2fZv7I+hJ UW3pY+evdWo5exHi3/s8PUXN9KS6Pt1YNTJqcXwcZF/L86QT5lj+BU7ubmME 61bRM1XvOuPVm8GDPHvb5N7OtfEm73a13riNeyXCbqnA46bv62MXd6sx7L/z 4eRwz4zqUc5Z8AQY7XZRVOf584y+PnYroM0FvVhoObQxQ6qT00hRvGVeCPaf 9thn/NeMr/zbjRd4rwn9tauDRRa9K4veFTyWiwvsEz70k9En/tq4jL+m/+YB C1hxvtNX3Og0R/yL4JlnePNUlrNR0d1QC93j2JuyhrodeHeW6jvrjDvRusp4 NkI/y6oZVBH/BM8IygvMBcW+7QpjoIUdZmjjwuuxf9BGDExt5/13qr9EWzfO 9RE9g+SC4FX/aVv5dGey70/fwDEJeqHF0c9E6/Ll4iZjo0V4yIcuLWoi1IQX vKnoe4mos0t0Ta8V35lTxYNmd4GdpAbpmiLpjBE3xzzoNQvXOcY7CxuC/3Rk l9uvW4RZue800t0jJoVfElRn4f4LyodiUXCL8M17WTNgfPQQfcb3ON7dlt4h KGeylgN9b9ZKQHyaEwrE/sRH4ilDCTqfhMvCAh4n0IXArBJ7rir2uZgQPizo vQrsmRHeprNzxkde7ZPeImp71eRN5jWydqyaxB4jeE7YnUYfF30Q1MOvBJ8K aCEOyGsrL4cqROXy2aKvYVr0z/3e6WbqOfsU9sSS0GSgGpH3Wh72enH8+8Gb xrqiiKlNyxez9jtyHnIfdik/Nibxr8ohV3SKrv5vH57iI7An9Exzvb3slTAj pPk7lQT3EPZsKfqbbdnbqKW5nLnAXby1guogUTldCbHY+tS+xDGPal7xV3qm eN17QJwIHN4VhP47YRPWFBkafUHUdRaIVe4gkWO3ElTPCuyWXW9eLUbYnXmP oGe6UDwYOijapFcI9BUROyj28C4hdvFappextmyraH0JbyXkA8TJF9z3cd8U 6mXoRTSPLxVb7HdZNwTnA++6smFYbYy43yZYAZ5tCXYXpdFKzDCl8NxhrKEH LerH0jcJxPvNxrvoR7AWNTQt7g8fEK+G0pzn4G0z0eiF3SV/vNtDvRd861Os tZ437/jvOcZfFdem4gIc64HGtexzAq0x7MY2NZYk8b3/dp8RNY153KvaZdyZ pOfMvf0PjYc51u1w7/C/NH4qxt4edKuRa3a4p316J4rwPM8OwTWEP9U76Ye4 l7fYPenvMj5IUn4ogaYA5RKeK9IdU3QmeNdAG/epE8ZY1o2uG12gGgUFPDcA 17xSaLaqnJ7NWtGUv9U3wWP8z64KP6s6xVfzDjI4DdhBuMm4Jok9rtnBUWus EbaaGnUQx3jff7jdST3uZjHHlXISzyIwI4VHZL5tqV5eM465EaeFovpJ3RN6 US0z/9PyM2KzVW23mkKNQdiT+VF4v82MuorqYe4b9jFbq0327eypAm4FYj6d DTXE3cna9eBk3Og9p2qVz+Pd5m6pdczDha/NseAL1tMHvxO69P+k/2Gdfvxz +A0q+17m1x+3He6nFyROsG/ttvL31N3BHu4XoFcKbhfFR6pVUgr9CVneUt/o NtctBtXTv3h/qL3lZ3h+uzh6Uh0OytRXsXJFcVVBa3+n+b4inK1Wp0uVcj5X P3i/KNQl73sX1MrgDdY/hD74Y0aWWur155kxdtDnlB/jOQ3mNVRDqhxvC8+S J7u9+Xn2DDIVxUUl3M307E+oJeZr3A9uHluq6Kwp+L1jTxz9keucNQq+3cg1 hB1YwxG7Mw+mE+yhMz/6Ks+asW90jVlPoa+7LXjPp7Pof+pe4t/hSUH3l+tF zIPQb8bPwFmB1vhOY7gPLfAMu6qgu2Y1MmsxxwW8AYozPFPCnBwa5Bfsn+G7 lsSeYC2jGrzQ/e/Sj6t9zoeqVllVXSmzksaufXuzIWpUi2pF0cquL6AZ/l56 vEo7P6lItIXumtlELwu9rr61r6BHbNX1qouWwTILvZoKb4ai86qOxD9hrcgR 3m5VYN/C3hvgn7ayl1vYl6XYrghvqo6pVYpwIp877EIC6zxoHPSxowVtQcc5 oEal9jKuWBD0VbcY24B/siinJ7Psa1jD7KfUb6p2fjV9OnRBDY8XMVYw7Nk+ uFiTjP/6oZjjUpzxKT4qJ3ZA5bp7mTMw2usCPUR/iNue9T6wkwhNA8xmMJeD PhTy+LPBzQr3A/mf7o5Pz4R9zvcGZ6zNxlAL823Enkh0kxoS28m1NfYZKb4l CXMStrsLvacknW8fu0bwm6K4zrjjDqOTDw4u5Wju9cMHHZwlcFkotzNv/Vfj T/QFSoA3sM9Qkr5HdTPX8/wT80fKuX6ZO8mifGiNMvYRDrwcAS/2pnRz5jz0 NT3V1o6rOYatUJfeaey2Im4LQdgMONvC9wcvEucY/TvsWDQLLeX8Cu2AzmZj YbiVBLT865k1VHNnKfOzphtJ1kio61ZXwK3XG2uT8NXF7gx27AhHqnmBjTvH e9zAsODshaLPKlm+mfka4Gm+aIxkbSPCgYJiF+elL4P/+e/a4xXhA54frTQG 8eepZMx+hX6G1dxdyhoHqBPwz+hXsorrsh4LdFQQ47Ab/617xTpjT+R9VuRS 4Nqtwbvw0MWflXWP8aKFmnqkex2fd2A+4ET4EMIr7BajjfWwfcSiu2kttk+y XybqdnpfJTizrxoO74FPMA6XEB6PFLv3WAvt4xZ2+N5381gLhXInvMmS0IE5 7jmK6k3o8WGX3wIGkmYrYB/wB7PxuaC5ccp5iLD4BM47lHN5RgheM+UWH8+h g9OQsfUfxt/Mczxlf+MDY0NzAt4FwLXQcoEeFD0T6A3gPkAHxsdOBLxyMNtk 34DgkHWj3VzQuxWUu7On2dnM2U0kPlYPmYc4BuEOIYcj1/9o/IY9ruJ29kq/ g73Kx/4g/h7+Ol+5MQuYCloBue716jtjqrrgTlUz0oLPMs4B9g9bpuuJCvcv nknQs/HzXUtRnaRQT1CuY+8Iuje8L4G7C+4uappebjPV0WjEfu3gmNwUPIc9 Rt5t7hasg46WX+zcw3F5RqBU+/RK9a/7L7QNrOFeJ3Fv0BW4AO/U/zqIMc9K eJs5f1Js9LG7DMzUOVgNLr1v2lexHwRyPp1jy3SvEtDQwGcEPw7xFTOQBcZx RfhQAUvCH4Nighjs7WBuHd1vi2oD1S62kp9rNLFLVTfmqmZmXQWfsTFuV94P vifoAn2NyASjJ2vcYQ6D54K6rnW6vqA7Lp5zhwAXW9d5jVWv6AbmsIBHNSfd B3WXf8z4MruZsRQ6LyWoG+izRxq7izgu0GeiuF89gj2YJ9yIStkTFNXohFm+ wPsrAX8dvXT4nyHOPW4X+62c+oo+P+sKo+77JLjI3i9090ro3LOWA3pR+52R jH+B2e8J9mHfxX/b+MbvbDRW9YLq8HrzMXPBTvtq41aLsBbX1BR34BmAu+W/ Y46nvPK4ovpDDTM6RijHIKehR2FhHrrQvZmfB2aU0GQDpqfPxTUBNNAwJ6Lz Ym0whrBmBv03JW8bD0Ww/wFe4yKjHzw9fWjcPBrcyPxAigfWxvQQ3mfHztMB 4+MIYSyfcnWS4lkEvmTvGN8mCYv4dJYp//QhzFgHGiuEm30ffh/gm9S1F8BX w3rJGM394l72BgHvYOwCQxP3fOyyejN0nmN7f2O7Bbz7cfgi+8dRDgAfDP1C 9Un5RZWO/sR4lu52Enu+9DvrHmE3DTupTRKL1YvpD3nfFR6DdGctzAjBeZjs 9YbHRuQj9wf/oJGr6Dko9ITRY6DvwXpz2FmcEQjVwVmlbk/tZL++t4NximpX 1JAleH+E4bDLAHztQ8OKnoWaFHqJuQvArC3sepSf3kueMM6xtjU0qe5zbmCt nU+dyaqtE8IefhLvCTM65HXU+Og5Y2+sa/pqyg/lSXp++BmRH4Nf/avLFymq NZmb28xcymcN/ZfO6UYCuxqu24fPCXg54MzgHiE3oK99h1HEmieo49Hjfs4Z whrawK6fupMVfGHonWD/KwIdEnj94Z3BpxXzd3puqp/dRlGeU5iPYp/ztJHH PlmI+/h78BlqROeqe439zP1D/oWGV313Ic6cyHcs7oH968xSV9wK6Chp+EQB q9OztTBfAA8QfaIhXnv+DqvNN9XTjmIeEt1dv9C9jWJiPUH5Dz2H5CE3V42J vch6SFSr8D3EfBWaBOCtdUms5d+xrw2uE3x0kIPBC6B/h70P8a7Bj8a/2yxY omqm5jJfsmGsgHkZeI4jo3tUi9gyxt0Z7jyfMKKPXh7Fet90rlLYN4UGGXYt 4SWVEZ+nzgWPql3BcHVX0Jk9b9DfQg8cWg2Od0AdDJWpQ16ZGhc7yHqd6Kv4 xucWNAvvNW6wbk1fyxxveMVhvow/E/NAumeIlwKcA9zh5c4A3v08Z5YrygXq BWe4wpkjLClGpa8XlPet7W7KBy8U2kr0brmugH9XQ6cAtR779aBPD2+d5nZd 5mgecUfxPa9qzPERczHPfCxcrER8s+qfbqOgmUb3Pps+o59yJ/CuKfBg76CZ wg4hdqjQf6HawO9ir/U7mo3Us+mbuQYscyYp5NGeQaFPsQJxuITwkg99ibHh hJrlHFVZ8Y2qk9dIIZ5QncD+TBSfgC39rcFQ3sPCHBXaVveb3bCjQbX1iuLH jOIk+jlX7AquByN2C9XCq4czxz2eGk4VhX4GvuvXQTliMOYRFmoFwg+428nA /dKH1xHVUOinJaEjssIYWEKYxy/wblFfp2NqQroHaiQfc/bLRgV6lNAb8pGD s7xrFP5dzNWhWznQvFbQ9xXQjCN8GcEO/a70cJ77ov6h/AidHb+tG0If1sIM o75bAzwmC3MzOv+snXCza1L+vJH1caDJSc+iBO8WOj0UR7IR36iuFnl2T0Fx HDv6qo65QJW6XwNPW3cZ14lu6SZinH3QIgxn5bitLDpPSejAVk9Xxr6hj14s MDk4MX8Ff/P9uMqoiXgbQR8d2glUhwvsCwKrQ2vLiM9WQ50O8HX2oQU6Iegh nraFuOT+inyZbB3UV+Oc7goeVphJo1dNNbFFGAiaFNBB8sGpnxMc4zoD+Jyw TmSS8VIE+L+d2wBniuqRGxV0BUfae/zAvZ/1heDBRdjJQk+FPbkII0hjSxL+ AaiDEG/hSwWeIN4VZkwP2AnwQCMUl3ivtb5TA3rLPjzu0aeheJy8zl1jPZmO CDrT3P+n2GGh/5tpL2GdNvRDgcd7pzdwv+sdYzy48+rO0G41PFGkTnkPMXaA ny50Fan2isBn8LHgFd4ZxmeCb9yqaKlqFV0OP1js4Fp0D8V0M8I8kEy7DtWu Wyz0jcD/LUp8oJz4AXBVocUoKCYIemfW9HQ21dNvs448egQUGyP03sRG43ax xn3TovvpUx7nPAXN+T6hrdxLoXMA7rE13ushlgT9BLhMdBeTwJqIy+BYtvLq 804z+kOIQdgNoxyd/M19Gjg/gpoL/Y/R7j6OtdWNKgq9I9QtqInwLuld+xuD Uz52RcDjR3zHPYKG42vGA+i1YBaCWYWP3jO4EL/YT6l8z1Jn7R95R7HEOOtn OFXBz2VcjT4n5h7Qq6IzzRxE9B9w11ErHzZGWciP6OGgBw5OGv0syvkfoE+V TTgZcwn0e3367pybsSednd6oWodWKOAD8M1+Nv6IoI7HWUbNesmdzl6958p/ Ym0dcLeBieF7i54nesBz7cCH7+bC2HF1c8JjTE5xMALeImJNX8NL4s7jGTQN FrO2ziEvV2EeXhJ8Zj1hR1jbF71C7GxA7wH6z/hsyIM/uNMIS31qwdsMWi4D g+3wfFP1vYVqSvhlNTt8jPd9ZtlH0XO0ss0WvL+CuXiO3Ur1Tm3gz4W5xAB7 u49/TveN78SvxtPg5zPXCT06PO87gl3WeecxUduez55qE41ePvDR96FfWF/9 mZRWV5u11X77Iwu6lzLYLCale6GP6h9L30e1yRKem+N9Q7+zvl2D8sQGaKFZ Mmgp9rgjxD3pLoTlZmIHz0fdi7403i3lfL+Duwq6nJw/ofdEcdaC/i/V1YKe RzHmH5hvrA8GK7qDiA30XN6JYJ4B3UW654pyoaJaTEGDlLB+EjGAnj/36eFj Av4MdOBQY8JrBHMh4CXERIpprGuKGH+b0d6iWCmAaXC/qI6wsMtAdbFPeMun /Ia5HbQjk5gBoT6Czz30SbFXj5niw7Ejgt4zzyKB8wlXJukdKXrv6m/3H7+t HfepjmYuM2ZX5+3LVt+gNcdu1NtUo2XjuRwz7kdNU9I1WGtRThPDnU7w5MKc zp/v9OVdf3xu8OBWp0rZxwsc2d+DP5FXktDlhm4HeJHowdxsm2K8d4h9v8Cj nRK8ZKGuecBNqEnmS/wOgfWgSXtv8CI0+NgL7CbjGoEdY2B96EzAk49ipTW2 /ADPZbELEXFaoNfkH3XvY28Vim3gkyUbehkCPnvDwrtYV7FxfBFz3MAZaehm 8J4aeKRl9kV4IlrQiVoYPy5mlCuBOc0Wd6gFTihy6lOGStL3sqBBA50u1+kj UvZ3FuGqyBwjSIITBW0/fFaqlayqgcFebOj3U96wKG759N+xRyL0aLcG71rQ fIYnHGbULZxl7HUNbW34MSO2Y2aK3Atdpd5Gc8brVPsl4WUDPQ3MOTGLnWT2 Fp8HP1rt3JWsAdbSqC++Ni6zLhr0A2sGc31gX3Cyp6ReErOiR0VDt0BQrLJw 3wa77RT9f9w3BacFM5JT0W9EE7e2PF3+He9bAyPAa4RqLK4FMed51x3PcybC FbxfQziXzltT/Hd+3BvIMXup3V9hPxx61tfF1jCfGhibMFw2+IKEY9i7FJrZ mB9jHoI9FniIQ1sX/VPc3cbeIlEU/UAo53Nxg7cOWtmY/3Lvz3a3MjYlDIJ+ miDcC31tMc47KDoGDQXFUu7vvet+66NHBwzxuvMAz+DvNDpDQw6zaeCkYuT7 p0whqL4TUbsjziJyagTa9BSj0QNKIgbgbCEOoV9Lz8Yi/GT9686ygCUxr0Pc AY4mDBrBz4cGIvoTddLzRX7CF0PdF0QHu6HAnhz2/8+7l6ElmU342IJeOHTi oInwofmwqBqaw5rkiKFXB4vwzPj8fBk8wt6A3xu/WJhbIB9hng1+5xU3X0zz shFHrMqGgRlGMXBfq8RycW/6RVGvfAE0oS3Ui+ftx1SufT1mE1aX+FqxP/qR 8Nz3mLcCnXZgJ+j0Qw8ZuRZ97JZBPdagw2zoojFd/OnNFOu8waKZWVfcFuyw 0JPDPiN9VuClVwgLU6183notPVbI0BbmrIDfh9qYakQfuQB6MdiRhoYetN6p DmDuKXDNELs93bcJ4mfzKfGb9zTPtrAjRDgc+pbsGUDxxoKGZ/PEUkHvlH2k CVtnI94BzwX2lxb4Dlb5JtEvtk1Uc+YIPEfgQmB97IUA79/gNRG1nWqyIH6L nH4hW+6zPxTgDGDnMbOojobfEvSroVHTIz9Tdg41lpti7wiq9y3M2Z9MJRXV 8gq9MzyfdOInAa4MfVcRc24S8FnFLAp9FXDLwMPtGKwS94b3i0ecl8Wk4Iho b65iTj9mDZhlgLtAdYj1Y3o697foOQnCrNDztjBbBq8AOb2KbQh63mKM96JY kj7Je+rQWgBvs65TXV1wf0YvxaofWyi2xN7lXPFgeUJMdntjdpv9aPCyTzEf uTBS06zKc03EugfssOgcNGJtY+xlveyNFi87o8XNnimQm6G5hL4itPihwxdx N1lUt1rC3WxhP+3DYKKobszl84oZ97Kgv6BnLap5lQX6UuhR0zlOTnNLLPCv MLeeYwa896XcezkmAveBlwz+KDT8gYsR83DH4W8AvT/sCE8xbxSZTh34c+PZ ZOPOUozCbpYFraEX3Pcxyxbb4yn+LMBMyI/YgQSff5abI9bZb/HO6cHUx3ze 6hjVLcwQ4MVNcQb6Ctae+BnRP7OtvL1TB/lx+Q9isN0Os26/Xnih6hherQhr AxNGwt56USurGnPyt8dSooedCX1oH3rCmF/QWUK/UwyNvyDeLP9anPTOiQ7e KjHFuNGiZ8+YapsZRa/Cgj5pr0QzeVdpZ94vhi4dtFbR37mtfIdCbsa+NHyJ 4fc5IL6dYwE4uZSfWY/lnFEewTzqcvC7BZ1J8KVuTT8vCCOKMe6LVoZbFfUd +hARcHIx88afgX499uxRPyXsj61q0TmCamrRI1EoEA+eNW5BbFCU91Afi/bp leKu0B7RzlvJc3DH7cY9edQV6PE8a5yIYI4ALgYwIrQdUcvCgxR8reFukRjv 9hDw38VOGfiUiJHwTIBfquMdELcY2wTlGoE512ZjKGtOYI6Bvg/hC+a4I0/C L4IwGuX4ahQjSizCTaJ7+XpB9ZQw3NmiTjDfAlcH2jZt7ZACp6nUflDMco+K kvRn4mHvCPP9MYd+yxunuoXW8wwTuqOIqdjreSf0LT9v+DUfCD4Cn1Q95w3B brQPLsGe2BlRuaySBI9vXmCDx+SjDwFNM4oDFrhT8JRHHxM+wJhpgKPdN9gK T+YI/C1uM3fyXvPu4E7KLa+UUI5i7bTG9iK/aVBb0BkQB8Nl7PeblzjMsx3k anwnzL0xB+7lbvDrBdXp2R4SF9O/iNL41wLxgPJuNnAYzhLlHvQZs79wHmE/ YcJUsl6qurwttBO4uAS62phNPhQc5H7NTaGN4lfzT/ZdRWztmr5aQEMZfyYw Jd4xNIiBD6DhdKe5G3mC8xrlcT9m36RGetcpyntJyvuiV2wDa7VhnxM7VuBS uPYxaBdH0H/IsbcwRsVZrxNUY68T8Ct6h5/jX3WMBYyLCEdBc8aH9zPFIsyM 2P+VsLDYWX4az1hcY9RDH9enXIFecDbyIvDb2vSt4rz3mKhmz2GduMbOInHF yedzgPiG+SowBbTh6N5bZnQFxw2cGT8YAw3vCHooqAtQ0/5gTxO3l+8UTc0l HJ8oZ0XQi6WfWYI6Ffx6cN7wua+LrxHrEm+J51Mp0TW1VsDbvYW9jGeL0OGB 5gbiFuJhyH6WvSHAPVocPynK7EnweIDHuA8/a+gp7HPvgqeOtTa4lXeHwMmB JvbtwU6BXj96035wFrsAyTvTnZgvCj8A8LOPBV9g1sPfEzUftLjgK/Ko+Qrm NTzrxX2GriA0P+iORqDtBJ4M1ULCSm8SR+37BGob9ICRsynOWuAQYsaJnAgv evBPcqJbWIcZvaAt9lD2fcTMsZe9AfNVi+Ile9aDo/lG+gH2dDlsfGItCF61 wMmscGegRolg3kK4y6JzJUKJZ8WA6HZxb2i/GJ84JG41drCeJ2FM4PJizBmA 0Uvdr61BzrW8mwBsjNkgcg3hKgH8aSRms44vYiRmiJST+LP868wS0K750Pgh QrVwJDvYaAm7Jec8xEDcZ7xD1A3wrsRMEucGmBq99eeNO5gP390sFJPt3tjn w2yYf/ZZbwrvVuAZXQx+Yd7OB8EF9pfB36NefTBI8Henn2/dYrZhXSrEa3CU qWbAXjS+Zwl6DEfcUdYYuytr4iLHUNxgDRs8V3BM8f/hZ6BexawJOnTY1QRu BbcVsXlKureAVw80kvH8qJa0bjc7cG6vE14gaobmcd6e5mTzrLF6MMfCThv6 i8B7FDf5jGJ2Aqzd0M4Q24yUtcA4Trl8FZ4r474u7tVih3MHe4MC690V7Gbd 8qF2B9YKy7ct9umhHG+ddM+BT2atCF6n2H6CNXfoHVuY+Qxw2jIPFr7UHexV hOX6w4cUvSvocmVTPZhEjALOXOUNEk1Ti0VHc7UocybROWyEXEN1cVXg2WLC weyVhBp0UXDCojvE/ELgzcHRHYR/l3LNh10B3Fdo940y9vmEkSPw8GjuLeU7 Bc2g+vZCaNImMSNCDMN3xbu7Nh0S2J0JuTX9nkYzaFDDR4J9WqAX8oX7P3rX D8M3CTtemFWA84t4GMGcFDnkbfMbYcQryX2xD8VnxhRw1iPwkIS3wbXpOPMq uthrrdqx+WJicFgMSjzPHGDMB8HDhafBw+4R9LnEAuNmAawA/WvwUqfZJfA2 iTznDGHONLjZcxOB6BBbJa5K10BM9dGDv8foqjArbuc1YAwBvA89UrwT9O7B vaGfAb36yNQgS/RLbGPf+76mJ75yY+Kn4DfsnZXgZ2KfAj1F3GvoKuEZj7Sv I/w+lHV5M50l4rNgsrjBaQLfI9ZbgsYI/FTgU/Oi8RF6v4rqd4UZdH2vhpgS ell86l4Sm0Pvij3eCPSxStB3pjiGXgT2o6y5ni2uCZayRzowb3O7Ls4j8hjv l2CPDf6y6JlDrxb9ui32u6wH96k7Gf1VK9NdYqEfRXkVc03WPJmRFjx/RG8S fWH6M8CrLRnt7uPzleVuRF2EeTfPkNG7xw5eV6MJ+CYRyrkR/DU01U66Yy3w BTEzc+xuzElHTwcax3RO/Bfc4eyPNsLpzHPsK26FRd81G71b+h4l1ezK4kfz CVE5mC3GGmGueSmugItdgroVWBX1IfjNk4zeEdQKOYkt3GvqESvkOwwtZXBm MbMc7/VQeDb4zC3Ll4mFznE676WcK3hvPtjhUw5RTdzFrB0IbI68BD5lofs2 4zL08BsYGaqaN4d7r9AWBIbDWfzKi4kv048A87HPCuIaZnBUl7MfD/T1Hgtu Yt7uqNRezuHIfeC2YM/wWHCfovzCGBXc2O3RlBibOsD1PrgIi4JbFNXdCr1f 1HmoEeFxhp7JBOMw9zzgoYO98SVmf9Z46JXYwLvF7E2XniPOO5dF04ra8pT9 Dcc5zFfATRwR3837eeAx471h/o0dEMRWzCjR18A8KxLbxLy9Dl5DNSq4XhCe hM+YAMags1lCeVRRjFLo/4EzQ/fV2mOfYY2twW479iub5eSgboVOAfNIf3H/ 8OkeJAnvMgbGzADa9fBRhk8C8CNqKWB59KUfd4stzKa+Ma74qGUIo6iVRmkS HA3EWsRZxEbCWnzfUGOC3wi8Ci8JxHGc5Uy3DveF6K5Z84y+0DlKgvuJ/VHk rmFBB/ZWQ14ARmwWLPEfdnrx7BD8Njon1iEvV3Q114naifms/Q9ew7ZgGDhu 6CH+H3t/4h1F8b0B4zR7WB32sA97WB32kOk7NBghbDIsQmRzWMTI5ogoERGb RQiLMCxKBIRRAkRkGZQlZOqOo4IGRBkUMSLiqKgRUUfFj1HRt56L+f5+/8J7 zptz+vSku7q6urq66lbd5z5PGGtk2h5267mCYMReMM6J1gWef3D0ZaxlC9+P Hs/w3hH7pccIh+j1YB0G62Owp7BWCWzMK8ZYwc3p+bC7uq+S4CvgZ25jbHRD EwY8V1etecATCXYFsRgua6vp8e2U7wi8b8CKQBsRPDfAxWNdDt/Bd67fED9i Aj+j++ow1m/1t6nAyw+dD/i14FtFDAVwCA57lanHH/hrCrsbuYJHAk8KMAnw GWO+jvg09E1YK8I6GzhlYStjvWam9Rrwc+5Jwa5ilwKDBvzLFftH4PT/82Fm a1tsi7k1ftYcldhn6vHaxHoXMPXwR2MdEutb8FXhfcLmw5oA2gDGBcStA3+E eGPU+b3G/jTYgsPtPfDLgevc/C2abfYI5opOGcbMPcaHaeiLezubqEq+8sAS AKvmRj+OdE57g/CoL42+gfE27bY2SstU4MdgswFL+Y49Laz7bPeYaIrM0/H8 WAsA7gptERyFb0bvF65C4O1aRmsLB9cY1ytip2B8h30ETg9gF+dZx0XfMNN6 FXMvwbRAIxDa4wX2Z7qPs9AXn8RcUs9DRG8tJbRZ5hq6PwIGWrSc4ONG+4H9 BT0/YMT1PN6sGltmor3o7zTcMr5eOX0boLsURuzBc7Ezoj01JpZvVglWALcD 9DCVfl7RHwcWBvgQ2KLgzKwYszHPcfewkoVPG5pmeI9t/RvNrYmzEu+FOARg 3WFPIFYBvDTgZgIfArA0KjjZzA98hPgD8yVnTHiJ9fdTuN4eJHgT+MssX0v0 l4WIHxgdzDfZcdWMhK4Kv86N4GPmDnuEG1gj6EUAAwjONj3miN8b6weO4Cqx D8BVgPUAxKAD+442r+f9gi/EWFHNucL0+HfCVyMYyR3W+9pG+w7zGPQJgq/s Yee6YQtjTnYpOEvsFcT7YU7oNpq7we2FMS4SnCJYf9jomCPAzs62wzIPRDzO Det391j/K8I1eNj1icSfIh4E/k/dH4rGlJ4LKdij0PpCzCs4OKCrifYG2wW+ DeBYXzQ+KNQ2aBreN/rFOtGqZoNoNfPT6A8Se4g1Zqwh63Km3rKfcvePthCd e8RyYW5yKDjO1N+JG9g6PcarjonNqoeVGz7ne8A8Hrpslvh+M3clPhAdP223 u7WNI9gRYH7hT7CsXW7MOcFZ1DW1oawzQiME/eJdiaDKC10QjQ7gdM4FHzCL Az+YHZPrU0NvdcIY3tV43n3YOV4t8UbUHN8xdcqaqtBPQgsh3/+RmZxdg5qE apIeO0zYg2eiX4fBPfBD4qYKBs/DNwe/ktkqcQcNS25H1TMrUR1HDtarT+o5 ndoTvyDYa+Af9VzUPBj72KyRWpk+T/wo69HaDoIWg/o1mK20fQFeyULohuYH x5jl40+jHzJruVaa6+y7zXT7JTf89jHruzD82njvsIOBDy2LXdG2l/DyAOuI uehk41B4a/QsuEhPYlzDmldF51Iz6BtpwmbStlChnnOKnQ5/CbQOdf27U4NN JbYGMcyIZ06zmmFtFRz6YT13FZ0nzHvRh0CjD7YvOBKwPgbfLtaBtlnDJS4e OL1dxnl3ut0Ktqd+b58ILzo4bCO+KaJBhPnlPF8f80vD78Y4gPgi+AWBAUU8 KXRPgEXYb491b7GHuBGfD54QPLsutxu4Tei8AK8CnCz6QOiNAq+HvgzHwd8K jAz8pZjbgVM7J/C2+YLznKnPw7Zww98KjBXaGPqnO6MNwfHq3hcfbTaOrxU7 Hng7tG9gHYFTre1fKT5u4OX1HBx+VTfW3sDT3Sq2wcR6JNYzgdf4O75YnY5O FQ5RaDbp+kzTdp1bp5E1Y8xLMIdubQd0/Z0TLCLianW7SIPOIvQlgNHR/YCs n6PvBWc0+jysoWMOrW3tsLYX1NrYKYkj1t+DYKW/jP7sNgJPm5P8B018/4gx gm9Ezz8Es3Q6PlXwuXpsciOWBT6tt4I+WWMAZhfrOZt8GcJZBW07YMmxPoL1 hBqOZyTuEWt5ut8I63kV4tmE0wialmirwBZCkwS+JvTJs6NH3QnrD/eHdol7 kP2yW78XN/zO4Jnx231VnjUKOCXweBaiL8L8Gfa7ngcJHkDPmdPA2fBoPFXp fk7puYq29S+kYf1Cv0cT67TAFsP+e9PwCYdv/WA16GrBl5UGWw79NNoHMFXo /4LWedhTYbxz2InAhcH/CfsRmpnQJDSsckqPPWmYU8Ang+8E6+7QY+pjbwtj zNXvRPRKKieWArsXBlerI7BK7Dj00dD4haYX8G3fGwsEQ6H7F1XeaShdL7pd tAIWIy1gvyt+cdiS1a0VWC8p/DP6dxiY1RHGXolf+dDKUu8a01HnbsyzF0bT ZG0A866L9vfh7o5cdTT0qXo9UazSfDtUA6O6bnsb0oAvx9oC5vPQyNDPVKi/ sbAe62StFFqH5R226JYgPghxnNBCA88J5kf6XRd8bswLz473As5RYn0QiwCM H+ZB8KVjrRA4WcQJABer2zXsMeFo0u9U6bERuDjBdPzsXKj0OBLubWwT7ntd ByZ8khgvYQusMt5W5x3fCa8tNBUxlmH80f3cSawxwE+M2Fb9/ei5dS/R29Zj ruAmoccEzAc0SrHuDswjMB59o9vCx+3LYcSWaNtONLl1PSvdHwlHDXCd0IbC eiJ03BAToe27wqv2T2HgABp616i7XC+pMcYrwhd9PbhAOeyq4H8TrD++L/iV gY3Vfa5qHQqoyYmDapJ9UDULPSs8JRPjXYSnaYGvn8SqQl8RMap5vlHCM494 nY6OLeLvre5fofC9AietbdxCYKCgGafnPMJZD769R6MFgq3UtrBw1KHs8I+C G/Ev+5asBThDG9R8f4Ha7nhfvRB/T3h3MPbrcUbKom1U/X03VgMtp9ofHKta BNarSd6D8o6hc4kYDMSoweYBNjEcnyQccy/E3sP8V7SyoDOJOF5gR8FJhbnn 46FCVaO4Ejt9d/DHse8l3uUt26f6WE0UfChYe0HMH+wPYG503ywcMLsc59VG Z5Hy2vuEGw/4/kq+paqqa7nYf20SAXW/47DyB0+oQaGXgY0WHVBtZwi///rg O2qjo0i4wcfZ+9Wo6D7l9e+TPeYpswJHlde7T9okuCHBlwUsox7DJEZlrvM4 YjUFVwYf6PJEVGWGXhUM7cuWVz1q9FOIAQB3H+LzgCtHDN5oO19ixrQNo97y xzH3VeCdX2CfVL9a2RIPhv4LcyR8/+/FZwgODroEeB6U6fFgoToUuqSC3vOi L4Y2ilgKtGVlT0acU7hWvLIChg7fUdj1udzjc8dPiGMUPnP0MfiGM+zdYfhL gEMG1xew3ENDeerZ2GnhJX0kekItdUaxTqSq2MskBg0x88D56zllGD5UPGv3 xFa1znda7Qi9rx50vS7tCTFbTeM1FbCfGIOBKzjumyDPstL7ltRzcnCt6KqN DqaoNkYdia0YFe0geOqPjO8x9ohWBfoU4KmfjnvEXge/bo14JfjABCeMWBPE oABrA14TaKbhXQNv1svXGHpqsjYF3CKwsIhN0PPSws+Mubr9F4WhvYSxG761 Gs7KEpcN7MYku6uso4LHHNqJiBN4z/imsE3cIdoPj/vSBD8L3Bx8Kvj+4AfD +hTW3MBFivkT4k30XFZ0Ue81OoneVlVjeRpwGhjfJkcPSty3Hgsk9qReNMd9 Ovql+P43WUUyNkIfGfkgzgo8Qlh/amSsTdPzcHD36rHggjvJV1Hb5ZVN+Gyu 2b/I9bo/c+u2IfxVe60P5RiwCeDqBC4Ctsy7zunm5eAcGb+qOpcLn0fdYI7Z KL5G4n6DwZEm1v/WBweJn0j4DB1rRVfZDr5hbo+dE24/zJ/AyZcbek+0lnU/ IlyIE0IHZG0VmjbgDH3LFxct1yL/1+JTAyfglsAZ82HXCXN8fL853XXEXBl6 S2LN3018Zf7P/5fp8FalOsVVqWLMoBLvb6Zu0+IfZtdVsyj0tS7nLbOZtxb1 jjemVKsp6bk0dS9qRL1yGlOvgsaUFmgmum0DilqS6W1O3ZOSqW1GHUrOqEF6 niJ6bk2yaop93yhaXbhmHYGqpG1p0nYqNfHXpDuTGoldP7X0Tsr2uWll1kBa mT2QFgT60URXVxpqtaX+JS2ET6RPsInw6g4obknDc9vR+NTONN3Rneb7UunJ qElLi/rTyoyBtCE6iHK9w2hX9B7akzSaXk25l/K9Y2hHzgh6tvRuWlLgocft NHo0qR895kqjp43+tDb5btqYnEHPxYfQ5kQGrbcG0crgQFqcRTQ3pQ/d77qT xmV1onu87WlEaTvheBqVnEL3lnSkiSVdhP/pwWgPmhXsRVmBnjQjpztNyexG EzK60JiUjjQ8ox3p/k50PceUpNAEqwtNLO5CU7K60ZSMbjQpv6vo3XtDHWiw sw2l5TQT3hRXdiPq7WpClt2SRha1J/390AOuHpRl6XtkdqfJsa40Oj+FBhe1 Jj2HoC7BBvIOWkXvEM6ULr4GlJrRlAb5W5O2LWh6cneaFehFc2O9aXasF03L dtHYYEfSbVfea7vkutTMX4sal9agZhm1hNuvW0ZD4a/V8wsakdqe7k3qRPfF O9P4kk6k+xnKyGxDnuwW1CuzMXVNakidsutT52h96pbVUDhvUS5KbUF3OVvR XUmthL88zW5GPV06faIBdSyuR+2tutTW0uUuuYOcuXcQ5nttkuuI/neH5HrU MUXnaTSgTvn1RfcIv+X/QH3S/QV1iNYVDphWqQ7h52qRU5uaOmtJW6zvrUb1 HHqLJlHtzCrU0F+dmuTUpJbx2tTadlDbnDrynK2zHaLX2CxLX5dbQ66pk6Sv 8VYRrt5qiYqk+wOqUlCBkjIrUvXcStKW62dVo+SCGtQ4qu9VUI3AaQP95BrR SlS9oBLpfpVqWpXFx13bd7vty5ZThWoVV6bq+Tqdrbeg3qzb1+BeVYIVqGJK eSqfbBC4PP92/aPne3+aN6zfzW+Dv5pf+RLCY3Pdf9Ms9f+NdTXC3NeRUZUc wapUO6sKVSupSEaoHP0S/8P82vWLCS6zS9Z186L1vfmp84YZ9/1sloR+M3+O /8/803lLz0HLEbQrsd0K/QPMpfmLq9S87rtpXvP/gnVp0S1HnNPHruvmh74S 88NQiewver83P45+b34Sv475m3AaX7ZuCL/oRd/35gVHieAYzjivmbovFm4A Pb+R/enEl+YZxzXznO8b4Vwv8n5tvumKmyccn5kHXZdM3RcLR9E2+5z0jS8m 3hcNB3CyA/twOHHJPOIsNo8kPjEPOi4JLzPObQudMwP+d80VoTfNJ1zK1PaJ 6Q+cEJ6jZf6ocCe96PzABHbmJVcM60LmBue7wiX2cPy4OSN0xLw/dsicEjxk To+FzCz/6+bcxDHzkfgJ0Zd4xFlgzgsdN7V9Y2Z5Xxd8oB4XBCMFHg1t/wiP wxBXnpkR2C0+8Xt8e81RRr6ss43z6748cACcM6bPPiy+Ap/vMOLtzHHB/aL7 ODy0R7iJ7ooHRccb22DHbvEvDHPtEc055K3tZFPbZuYg62VzcPxls69ru9nJ t8VsHF0rnJPABkAbo0F0tVnPsdps6Fsj56Bf1zm+xdT2r2gfAmOhbXzhxXAG Nph6TBT+2b+Np8wvnA+Lrxn6lVhL/cn3uGgm1nHmIGZc+IXauTYJbzF8W3Wi q4TXB3pa4O4Fx1FxcLb4r68G52E9wvwjvug2Tia2QrAitZwrTfg5sLYBvZai 4HTztHOa6NgC83wh/qCp52TC8aPtQDkPnlxgFm/Yj5kJ30LR3SuxHjXj1sOC 38B61ylrqvBwhKzxsmbwejRT8KcRe4rkgXUzbWOZwJ5CR+QdaxqwDsIRtNIa aC6w+4mvfJavl+wxH98a13P8+D3CTfhqfKxwpbzk9Iovco2Vbmo710RsBGKC BxhOE757baub9wTbm9ArAZcSfNnwNz8eTDOz7J5yHBhN4AXAt6HHXRM4aWDY we+ENPDxQYcWmmR6HmAiLj7T7gxfkHC2w+8AvhDEceKeWKu5z9lFeO7AV6PH P9lD83iSr6vwjwI7Bv9MFauC6N9CTwvzV2A7gSEDjtsMNjdHOVNMxF5k227z 6ajHfCpKUjfg/RwebGcCtw8sX/tgXbOJXdPUNq7oKWGvbTFTj02C98J6OfwW wFJCsw86qVjnwjoauB/hJwCvzXXrpmjcw78Hfxnm0yeMz9zAJQPHDhxAecOA foMbXJLfRH8RTW6sZ2NeDJ/uOuu0G75T8C+/bXzpBs8f9H1hgwIXrKzPJX/4 IJAeNuJGo0h8DsCOAYd4OHpJcKNYv9luvO/eHC1yL7Oj7rnGcTdwG+Oj+93T jSPAtLqhHQXcAdYAEMMKXw/iNDsbz7mBB0NMNfiD4IuBDxdrgkOtPNGdzrJe d2OtAXYu1njht2pvbZI1uTuMVRLDCbwefFfQxtXzEtFAQwx9regz7kbRNW7w N8BvizgZYCiAB0CsMHhbq1jL3PBLVI0uk3UJ8AGA7xD+Y+DLgd1HbDUw6sCL ACMJXDL8WMeMCRKvBD4JxKgithY2M3zn8PtiXRZ+TXC2YA8cB7C6h43xaUOM vDTEaALXrudsiHcSvkNgzoExhpYe8F7QWYcfCmtquu2FEV+DTd9D1kb+02uW eEjMz+CHhg63tuPDeq4rnKP77bFhxGfBT4P4FGgdIkZEzxFkbobYPviKsY6m 37PoViO2Wbcp4XXEesIp60vhkd0TvSDrVuDyAJ/Mq8bHsqaBGCzMqRCPl7D/ EM4t+Cqw7tTUqCValdgQawkODm0TqW52Q4W4ccRNULy5GuB0Kk+whRrmbCcc AiOc7RX4KsY7Oyvw5OjvWWKXoFUNHBtiRpY7B6gV1gCJzYB+8TKfpTYYt9c1 wLG11TlMeKixlgieEKxdgE8G6wyHfOPUAd+9EieENR6spYGzC2s3hdYkVRic pE7ZUyXWAXNlaCRjg/8bPAfwcV/yzZL4W91ulJ6DCUc2OGB1f6sQZ/Sj83H1 vXOBxEBc8z2iwEnyg/Mx9T9rkSrnelpihSs7lon/vXJsqcTN43+shyXZy5Vu p0rPl4QrRrdpiXPFGjA2YKnviK5UelxR9X2rVRN7nWruWq9axTeoVokNwomB vR63lNPeIPw7mO+3tzcJx6P+jlQ7xybEl6jOiS2iRYh42TuNrcK/ob9D1SOY Cxyj6JD38W4TjGxvxzbVN6a3xDbVL7ZdpQa3q36J7cr0vii6hv2NXaJHflc0 qPT4KVwj4JfE77sceosHRQPv7rg+F3xZDYntVkO9eUrPZ0UzCfuh/rzbx315 So/tamjw/7cfGtC/jT1Kj/eSTrdd0RZA2uG+Peoeey98nMKXMiaqt1i+GpXY J74mbUPIGo3Xt082bY/odnZbs21kbK/8PzywR7iAoLuJ63A91nHuTbwinDNj 7dvxgaNi++Re94T2SqzzKKdO59sva1MTrANqovOgus95QLbM4KtyDteNC+1X MwJHJH53XOD2MTnu3S/XQUMKGs/Qa8F9kQb6croPVPe5DvxfntCXA0cMeGSw DoY14Pvjh0SHalLg4O3NOij8SJPjB4XXyBfSaaN6ix1W2sZS9ycOSR7Ia2JC 39uv7+07CA4CNc0XUtP8IYkdQt64BrG92GO9CPeaFDoo8eKSv/+QQow/7oE9 7jM5dlDywxok6mNi7IBg9lF+PW+/fX30dvlQzvscBxDzosZZ+9WYuK4Xv968 +aKpJXWhj4O3WtuKamzoFXnH2LB2Je/Pd/tdjIzulWN4N2XveIRDb9E9t9NZ e4UbYIjzdtvJCO7W/c4ewYLcE9wr98N7R97Q9UMeaJsZvt1yjbTXwO32ONy6 fZ3cw9irhsX0cStP1i7Bv4H/gRlHex3m2CPtVdqt8d/9dTvH/bXdKnniusHO 3WqQffu7GRx7Wc7hOmn3uC6+W9LgGwI/xkB/UFmhXcKrge8PsTqWf5dwbGAd D5rmHu9OiXdMs3fIGjW4XsEDjg3fMzTFe0f19514Af4W0SfFej40hVyBrYLF BhdW1/hzomODDf2GtpdVx+hmleLdrNq4NgrvAvoc9EVYy4UGkvQn/lx1Z/x5 lWJtlj4K/Ejof9DvSL9ibBO93fbBTaKFhnhZPXYLP1KbqO7LHAH4ElQz61nV JLBONY2vU3rMV3UcOaKdV8uh+0Xff/1iYqX0mdCPBhdSndjtPhJrgri+obVG 1YmvUtoeUDUcz0gapNf2tmhyYj2ygs+WDXpr6JPxu2LUFo6zisZSVcHSv522 +O+hx/R7/AmVCC4UjuEfjcfVz/HHJeb2urUA8Q7qqm+e0uOycLRpm1/0cWXM MOYqbdurK9Zc+R+x+OCrgJ/m3fg0BRw8jkHnHTiBT5yzJUZY2/zCcQKuMYxV x4MTxJdSEJwo3BCI0w9HJ0lcLdbmsT6KsQ3HcB6aLtByQNyqtmXUifgEdSx+ n3BVwt8ADi5wxSHGFGPlq857JQ5b20HqQPBeddB5+zjShYLjlZ5DCEcb0ux2 jlIvGV5Zrw7aI1XQ0ltwpAKWCGMzxmL4PKBvi9i1NcF0BTwYcFbg1AJ/uh3s L/xK0LHHGK/ta8EqQVsJ2MHpRnfBXM+N91aPRPsiHkI9HO8jaeDffijaU/iF wNMz2pciG/Q0EVeCbZwlOHjhfxkZbS82h8duocCRp20w/V00k//dzuYqLdhM AQ8A/wOOg3sOHCHwtadY9ZS28UVHHdxEPePJClzYwCW1cdbR421dOSe8AlZT BRxJil1PgXsHeYBnR2ykaC3BCGHfwqqt2lp1xFaCLxfpENPqsKoqPSeQOFhw YAO7V9e6vTWKVlfgSKvrS5L43KrxCuL71fOXMDiCEA+LuJFqzkoKa9LQkEMa PV8QXpDyUZ3WvhWG//Gm9afocoBzAT5A8DAhThx8GV/ZifBn0RuCDYA2JWxF 8BNgw/+n7C/D4P5GnDP0pqBVCT4GxNJD1xYa1AejH4cRj7HbuCB74EZfjxbL OXA4wbYE9uMF45ysoWN73jobBteWnm8gNje8zT4nutawR/UcI4x47KejEeEV R3wVcCjQxwR+ATwh2FYbp8LgrAGXAOxd8PFjm2aFwo9ET0h8OzhoEf/9pMHC OY50wA5BYxW8BeA502MmsFphcGdgD84e5AOeFuDy0qwdEjvhju4IIy4Rv3Wf LHv8j9gQYMx62LnCkwZfOPhbdD8ahm8ZmC5omCAOEXy50PsFLgnYEnCh4xjw e+BCgQ3/j7FE+HTB9QF+bsSigrNGz3XCwG/9z14k/D6w/bVdKvzF4JH723hK NpyHvwLHtT0b1vN+4WUHJy9ilDC/eNW4F3yw8JuFgT3APZFujZ2u69wMw5em 7ecweKXg/9P2scSOgIsS14JTRNvaYcRIACsL/paQPR5xDGHdtyGGQnjFEdek 7X39rtLD4KEExgvpy87p+bWkBS8cYiWQj55XgVdDzs+3U+E/DyOeG7+BY5lq uML32O3BVQJuKIlJB88TtGUQFwM/UrJdAxxjYcRg9DQai74HfOO4Hr6UEUZ7 OY65WEWjvHDNgvMJfhk99y782/hH5mvwGSEvxJCDxxdxXkjztfFLITiF9Hcg cczw9ejvTuZ1SK/7gDD+x3H4msGhBo42cFmAKwexkauMtwvB76HnluAmKkSM Oo7ptirpgV8ArgxYLfCo4H9woOK+4EUBzgVxeseMy3It9FKAxQQmELjMkca+ Qm1LSvlQTmCEgC2HhjDKAH804veRP/JGWnA4IH/MV1Em7IFfRRq38WJhR2NL IfgmdDsvRAzAXcZLsgd+eK5xHLh7Kf9E4yA4qXRdLhStAN3OZNPtrxDaJ4iZ wW9g8cE5Aq413Xb0c/eEbkAhdE8wdwbuFXh/7B81+oETG+9H+MJwvbYVCoFR 0t8T5uMnMefuYGxGjMVJ6HHAf1dO/4EjG7gDcIdh7o7rEQum5/PIR/+/UPbA 7iK+GnvotABXgv+BqYdvEnljw/3A9wI8A3iogEO/ne6O//uNdMAYACOP9ODd QxwY9igzMMm3y/Og3A98OTo/4DULgDHHcT2vl3Li3viN2BGk+e+ZUrEhVhj3 QFnB/fzfc/YFdg55Iq2+LvU2DrTcCTzXf9cXAGcg/xtPyzFw5IBHCHzi+rhs qNPbeZZLxVoI4j6w9qGfsx9wqp8YP/RDTIjOox9iDcFJcLsezhfgndx+rv4F t8vb/79yPN0Xz3ibD7EcOBElb7wn/I97Au+D9Pp64CFSkS/4anAOcTaoM8Qo A1uB58d9/ruuL+oIdYV3iveBPdIgbgzvGu8G1/33bnHNCZQR9YByIy3KftgY L9dgwztEmf8rRyrqqywd8sI9Ud7/nqcvMESIjcMaEratxnv9ENuHerhd5+X0 /otU4IThy0XcLbjhBxu7++E46hLvAngT1DW4DDoY9fDtyrVuo3ma/o6g4Z6m +7Y0vDs8M+oA71t/P2lYn9JlTsM98A7xvKhX3ab0+yqXpvvANP099MP/eI/I F/fFu0T8zlrjbskbPuR3ja/leVA2PDPa53/tAu+sH/zm3xm/STn1d5yG+Bms g+lvFnzxafCp4364D8qOZwVnK3gAUUZsSI/nBecRcD/gxtPvOQ18PeC3A85Q j0XyXOA8QNyaHgvTqhkr0nRfAJyh7LF2B9yhHg/T9LxAYmaBr9Z1K79xvpUR SANvnp4zyf10n5lWx8iR9Txo7On+WrRLdL+ItTw5jvxxPbSicB/scUz36+C0 kPU/XIMNXHKIC0J6XIsN/njwAel+9v/WDLW9lIb1RhzHhvvp9yFlQDxkWb7g Z8U12MARjxgo7JEXcGngt0Mcrx5T0nSfL+nAu6LtLvkfG/LH/RDPDGwweKQQ lwQsLnBjwCTgN7gIwJEJfj6kR+wM8sU9cI0e59zAQjrsqhKnBuzm98bNND0u pem2JxuuRwzrbQ7fypJej8du8BrgHojzRt7gy4bWsW4bck5/UxJzjOv0eOvW 7ccNnDJwWg3t6pIWW1u7juglgZdP2/ES5wOccXcjGfEc4PSW8/gfmgpIj3sA a4hz2ANfAc5GpIc2AvICLwXuB24E/AbHDGK/9RxF+K0RfwS8B3jhcLzsN/Aa +B8cmjg2we4inEe4B/4Hv5b+LiRGCccQf6G/FUmDtNNsl1t/M+7HjDTBf4BX HPdEvtj0tyt75AFeV5xDWsQzYQ+OWeSJrewZ8VwoD/LX37CUHRwnuM8cu7eU F3g/5I21b5QLe21fSXlQbuSL30iHc4hZwB5lR8wljmvbyw2sKuoHvHDAb+Pe qD9oxuDd9bCT5V2gbsvqGxuwzKhjlAF5jTc6y31RNhzDPXAvlA3X4dlxDzwX 0qBe8VvPI6VuUF7ETWr7UcqNeip7R7gP6gblR50AA4z6L8sDeeNaHEMalA/H UUakR/tAHoiFQZnwP9oPylZW36gf/IaWRhO7prRnxCqj/qGVELAHS95I28Co 7tZ2pmBYUVbESuC9gwsOsWguu5HbsltK2VE27HE/1CXaO8qBZwa/qbZ3ZUN9 oQ2graA+8bxIi7KgXMhjpT1QrsN7xrX4NnGvbnZD9xCjrXxH+O4Qd4w9+Llw LZ4Z77Ps28K1SIvy493iW8Y1iPUAvxueHd+0077D3dioKfWA9LgP8sT/+NbR n6D/gSaFtpsllhbXIz+kQxmgv4LvXo81/3cN+hP0X/i+8XzYUG+oe8Soo29C P4I6xvWob3BiI0YQe6RBGdHPIE+UG3HNuA/So9y4P7gAcQ36MdwX51A+7Mv6 qnpGNeljkC/Kgb4RWgPo68r6TBzDM6McZXmCHwL3w3Og30UfjPzwTvA+sUcZ 0ceiD0Y65ItyQk8G14LzEH2unsNIv45yltUX0uKdoHzIB3UCXDj6avDjXDBK 5BrUO8qIOsEeeSBfPT7LfdFXI6YI/TrGUlyH58D7hc8MzwwOX6RFvujfkW9Z OcHxDO0Z5Id0Pxr/k3EIfI64RtsXcg7HysYQ1AfqDs+AuvuPF0ryRXspG2fw 3IjdQvlQfxh38LxoRziPfPDMZXliXEPsOcZLPUeT458bP8m+7P4oK85jHEW5 kB5pcQx1gbGwrO7OGNckXdlxHMP9cF1ZPZeNzRircQznUF4cx/iP+FFcjzQY b5EG+eI87qPt0jTg1GGXYCyHTYDxXM8l0/QcU+wD/I/jsBlgg2BfZk8gZvgx ozBNz+ckD+DgYV/AjsBxcIsgL2DMJb74P1vltn7b4TTw28BGAo8g4gL1PFPs KbQFPf9L0/NCsYcQs4s0sKsQMzfC2JsGTjbYXLDVEF8C3DV0a5AP+LNhh4HH CP8jH/CNgc8QNpaeGyJuLw04SNh5+B+/gaWHLg1wjfgfG2w92H2wuRCTiDxQ ZsSWg9MDZUGZYJehfLDdcAx5wFZ825gqNjXKAD4TtAmUC3nouur3mTFXyob3 hfYG2wv1BTsVdjI22KeoV9Qdnhs2JfKErYo6wD1RbygfbFyUG79Rdjw/8i97 Xyjbf3GBkg526pMGSVknG4fSHjKOSntCefGeYdPiXeB94r0iD+RV9sx63iK2 6v//cbxb2KqwExFfiD3sRpxHPqi3Mt0ntDPcD3ZnWXtEXaDNln0XuBbnkBbn cB2+cdQlvnu0abR95IN88Rz4H3WJbwbfX9m3iO8UNjK+RXwTSIMyoq3jXsgD G75NfGPoQ5BH2bsps6tRFnyfKEvZ94ayoE/FfXANvm2cR7+F8uM58C2jvOhf cL6sbNjwTLgfvlN8xziPY/hW0QfhN8qFPgvjD8a/svEEYwb6Jox3GM/QF5aN NxgTMEZgfECfh//RJ5cdxzH05xhvYffCToU9gLEQ/THGDIxBGIuQHmM/0mG8 h22CsRr9MWwW2GKwm2C3wb6BfYwxHeMu8tVzSLHhMN4jT5QP98J1OAdbATYE bBLYKcgfOgSwkWA7ldluyANlKNvjOhyHXQVbDjYJ7g97DvYxroN9hD3sL9hw sMtm2j3ENoYdW2Ynws5BGtiKuAb/I088L/LFHrYp7CrYYHhW2Fr4H3YzMNHA hjxup7mfMEzJH+lhi+E47GWkg82MNDiGsuA6/S26ESe5wh4ge8RkAWOCPTjD kN8S2yPncPxZY5BwjmKDLQg7DLgTnEdeyB9YFeQH3eB19t3CBY/fSI/rcd+F hlvsfqTF/ziPPJBX2RwCzwAbv6z8yBu/YRfj2v/iyqWsuAfuBU6ooD1StEK2 2cP/r7yI6cU5xNAhdhWx6+B0QDwMzuEYeIOgWYvf4MxCLDvwNziO2HDE4IHn GPnjPDjMsEceSKv7SNnA4YS04MIHVgf8IYiNzbNHybW4x2t2ppxHfthQHuB5 kBfyRX6w7cHhgLaCGCvwtIJfAnHteD7UCWxx8MGV2I+6r9rzRFMA7wvvBffE vYFnggYauE/AswyeeDwPeGHAKYJ6RH64N2KiwVutxwnh50I6lAVlf8O4X/jX wM0IHgNcj/Kh/hDDh2vB9QPcErTawJmL5wU2CWlxPfbYwOuGukI9AOeP8p2z H5Br8I7wrlCHKAueD2nxLMA94VqUDbgn4J8QQ4hzyPeIkSl1gLzKnvmwMV7S 4T4oG45DoxsxbqgPPd5JPaBugf9CfCeO4XmQ1wf2TMSVC7+HHsclD3AooL6x R744V3Ycv1HnqAu8M9TXDfsxeUfgvQQPEs4hLfJDOXAcfBVlaRP2Qjf4dpAW 7wJp8Bs8VUiDvG7aT7gR+43jiOXDdT8bC+U37osNeoX4H/GleGZch3zBB4G4 ZHBI4Hrw5qD8vxuLZEMa7HGtYT0tMXjAplWylsr/ZfmizCgDeAKAW0Ma6MRB cxV4Nuh/gOOqfPRpSaNtJvnm8T/yRLxnN+t58KFIOjwfnrXsnsDNJdnL3eDl xoa4FGDmHNYqidHHb5wHdg+/gcErw9YBV4fYaeQBrRnEmgCrB3we0gGzB2ye pNdpyvIGN4bkFV0lvxHjgjhvYPmA38MG7mXg+5AneGTxG/kif/ATQhsTz9Ta CkhabDiHDfwZwAeW5QeOR3DGIH62rbUR3DWSBvdE/CfqCHlq28qdYm2W3+AM AfYQuEXEc4KjonN0CzR6JB+kLTuHPKDfhj2uxznJL3r7N67FPVA2lAllR7mR Bnvkh/MoF/7Hc5Wdk7yjG/W4ukHqCeXChvsghhn3QDmRVp5Z5w1uL2AgEd9f dh3eD94h2mRZu4ROLza0JeAjy94Xrsc1KLe2T4X3CWUryxs4S9S3lEdvOId6 LkuP8pfVL/Yov3BK6nNl9Yt6Af8YNG9c1lY9539OzmMDlzvKjT2Ogy8ZdY10 yCvdeknbBrvdE6wDiIuV+sN3h+8C7wGx+8CUjonmSzrEfaKewHOAeOAR0T0S TwU+7m7281J/0NtBeXAMPP6oT7RhPCe+JfQf+K7gf4AOAmI6obFRNVoB+BL4 Gvv1sl9w1/ZVMecF+whH4A5rhAlOeuinIlZqin1I+iPYRrD/YeuDRwm2Muwh 9JEow1j7FTc4OxEnDO4McBWBpwf1jj7jXWO69PnoO9FH4R2gzOOs/aIzoO11 0YWHXjz4Ot3RHVLnaAP45tGfXLJnSf+u51qy4fnQJ6HfgXYO8LHYKhpL5flx Dc6j3SANfpf19ej7MQbAHthkZ4i9gGeDrxfYgsnObqLxAT0JcEWA6wWasXqs C3vtfWHDV04tjKaJTiFwhsDCAY/V1fG80s8reBBoYYHXCj5l4GGhFws8LHzU 4LBqF6+jvo8/quZ5j6vrvpuqbUEd7lvchLtkNeBqqZX4tVCxSve9JBgb4DGA aQVPODQOoN8S8A0WnUPgIScEDqjHXIVqWSCqbPsNNT9QoCY7D6nBjt2Ch4Se G3BR0BkHBgxc2wH/uyrk/USdta6pz+M/qu+dN9UN7+/qeuCm6OV86/9V/eT7 nyr35r+qVrwytzTu4DtLG7IZas53u1rzYFcbHpHankemduDRwRQentmOR+em 8GhfCo/L7MT3O+7k2am9OTvbzatKBvJzsSH8suXlQ/5xXFgwid8u8vHZ7Bl8 PjaTLwYf4s/jc/n7kke5tOBJrnpqGTe4tprbOTZx35rbeWhGHk8sOcBZua+z P+8EP5p8kh9pVsBzbxzjrPzXeUbBEZ62LsTTVIgfqPkaz44e5UdSC/gJU/Gy YJTXFJziTWOLeOuts/xCl3P8Quo53lp6ljennOHA2Hd5XfZpXhM8xWuTTvOG i+/wlhlnWM+VeHdxjF8tuciv7SjmgqOfMfe6ylH7C456v5DfhelX+Lh1mV87 WsyhwCd8OHaJD23RW+4lDg3/hF9LL+ajBZ/yibafcfjiFY7kXuU3a8b5VPqX fLrkSz6l9BbQ26Qv+U1XnKMLvuA3K8Xl3Hs1v+EPV5Twp0U/8FXfTxxf9zPH F//Mn6f+xJcn3eBL9nX+0FfCHwS/5ffafsNnel3jd7t8zaeLdV6lX7DK/JyP 51/mUN4nvN+6yC+HYrw9do43VzrDa1NP8zPxN3nJgQhnjw2z/8AJzvK9zlN2 HGLdjvnuxEvcu/QFbpO8ke9IXcV/FC/iczkP8MsBL2ubm4fntxO999+ipcIr kul9VeKMoYP1jv2VYAZgBycHawh3IWJoEB9Uy1mFKNacZif1pi25Q0jlTqav An6qELSpXiKH2lTaSD0dL9BdN4M0OpRPev5P/jknaEl+hJ6Nn6ZtgXOUv/gj Op53md5Z/BVdOnCdSrJ/o7+Ct6A/7nHMqOppMqWmp21WHU+34Q09fUuaePp3 aukZ3LqNZ+Sv7T3j45089ye6eR78t4fHv6Cv54nLbs+yvZZnXeHdnuc3DfUE d4z07F8w1nN02n2eiD3FUzRuuueji1meq755npK9j3p+//cJT7lyT/9/2/8L t3+KnvL8El/o0Xat5/K4OZ7z12Z6Ti2Y6jlZaZLn0Ppxnt3XvJ6tXw31rHkt 3fNUC4/H/3hfz7SXXZ6x+zt6Bl9r7enXpZmna7OGntY+h6eRs4anllnFU2lg ec/NSX/SF21/prOBa3R0zqf0Yux9eib6Js2Zc4zGxPMpLWMHtbqygZICy+nr mJ+OldxHq6IDaWKiC7nyG1ElX3nSfYc5MrZXYp8S9h/CUQadCGgoN02sU4tC Sn3suq4aOWrwwJCT53h783OlQzhcOom/cDzM/ziXcA3XM9xwyxpueXM9t7u4 kVN2bOZO6Vu4Y7MtrG0y1vYaN8t8lut7V3ONGyu4wjqbb/qf4O+i8/m9pAf4 hGMiv5zl5XXW3fxYchpPjHfhNKsZN0iuLjpa0AVzO19UP0QXqGlBl2jPZNqd ocOUlm2H3VawpfmW5TNbhwLmA47XzHzfRxLv2CBRjfp4m1Cm1ZmeNIh2xe+h t0t8dM16hMq1fZpqlK6gem1XU/KKtaTtTWqcso6SA2upUaW11DB9DelxgLQd QA1u6s3U/8dXU71YDtXespKq5C0jPV7Q58VziY0p9ELxMJqfk0rD/e2oQ7wu lY+Vo6P+T4XjuKF/jfCNI9YIa1zQ76Foc9HZBS/GJf915cy5g+9N6sSrXenM RZM5YS1kx4FVnJKzmT1Hd/Lo/Hx+oOQIP9askFcMf5MDO97l7UXnOG/LBT7o usTH0y+z2vE5v218yWdiX/P50m/5ku86X53xE3+77ldOHP2Db4X+4crvlI/U 3Fk50uBKtUjz5NqRdj3qRnR/FdH1FCFPi8jdXVpHRjRrH7n3asfIpGVdIzPS u0dm1+0dWTC6X+SpGxRZVeWuyObLGZFdzUZGDrx8b+RklUmR0zemRs43fDDy yeVZkSvD50auzpoXuTpvXuTKzrmRyyvnRIp9syOX8mdFPm6vtyazIpdyZkU+ uT4rUpw1O1L8/OzIJ1/Nilzc9JDkUbRseuSNxJTI0RX3RfKXjIlsTxkR2ZA0 OLJix4DIk0kUWTChX2TeoT6R2d/2ijz0Vc/Ig617Rmau7BF54HL3yLSjrsj9 be+MTDS7RsY37BwZcyslMrJth8iIaLvIsJ/aRoYebxsZPrRd5J6X20dGh1Ii 42t3jkzK6xqZmuSKzJzSIzJrWq/I3IZ9In5/38j8GamRR2+lRhbs7Rd5rE9a ZOH1tMgT77gji5QZWawosmSx7qZn9o8sbWhFlh2wItruiqx4bUDkmdoDI890 GxhZmaW3Kfr3zQGRVTH9O29gZLWRHsnx3xVZ9dfAyAo1ILJshxWxQ/0jS4Ke yFMNPZHF0yiyKGhGnjjnjiz8Ky2ixzvZHuuRFlmQ3S8yPz01Mje5TyRrTs/I 1C6uyMRbXSL31u8UGdmkQ2TIv20id5e2igy41DJCZotImmoWST3eNNL3ZpNI 7+pNIr2sxpHuiUaRbisaRjq9XD/SvrBupFULR6R5w9qRxr1qRvT3HWm4rXqk 4bLqkUbF1SPJU2pEGteuGWmyt2ak2ehakWY7a0Wa1q4VaTKuppyvZ1aLOHKq Rmq+VjlS7WbFSJVFFSIV3zEi5ZqVi/wZ/5t/u1jKN7b8zt9m/8pf9PqZi/N/ 4A9zSvi9c9f4LTvOBQWf8eEblzgv/wJvP3eON60r4rWnTvEz195kO+MNXpzD nB0K82NGIc/PKOB59nGedfQoPxh9jaflhHhy/CCPv7KfvXP28ZCUPLa8uzh1 8XbuHt3Knawt3KbXRm6xYj0ne9eyY8cqrlqyjP+yF/O1jEf4/eIH+KRzEu+L juatzmGcE7qLF2WaPCezN09O6sYjktqzGWzOXTIbcNOimlzdV4l/j/2pLga+ V68FitV67zsqy35dDXAEob2pvvXNF+w2OP6gLwUtCfCy6ftJHNpnxlxoUPQD BgVrr5hbBKx33TWclc1MX2fhkP0m/oh5h3OV8D0Ndu6WOOKl8TfMnaEPhO/u qv8n89/Av2adkqoSw97HbkIZ/jaU6e1MWb6e9Fi8H2kbiNZ5b3MUbDaG0Jbs IbTVGEY7skbQ7iIv7bfH0uHU8aTnQ1SQP5EKQ5PoZOlEOlE0gY7m3kdHnJl0 ODaODmWNoyPJmXQscR+FkybTWwU+Opf5AF30PkRXM+bRl0UPU7zgYbqapX8X P0yfFs+mT4zZpL9x+jQxm+I5D9MPJQvoj+giMvKe1uPMUqp8binp/o7+KFlE +lnpA3um5I9+c7FF5Mu8k7RdTz2NxtTWX4caOKtTxaTyBL6KJcGIqec70KWH JqRwsEwtupN/DWZzWvoOnus6zuvz3+Ht5vv8fOgsL49HeebY13hw6cvcJf05 blx/HdfNy+HkgrWccnQzk6n7U38+39/2MN9/6xCPuLiHOzg2czz0MN8b78jg X0F8IGKHL4duiMbCkylEG6ODhRviCcMkX8GdNKKkHQ0qaE33+NvTA44etLJg IO3PGktns2bQ5855dDV7Hp1JTKed9j2kxy1q5qtF4NYAV7DH10K4yOsZ1QrB VwyeSvDYAYc+PtpJnYlPV52jW4Rj78NQiapdUIU7ptQXLfSezsbsDNzBlazy fNrxFfSpRV8WcUOLfaxO2V+qhtnVeXxRJ84tGMbFwdlc2bGMk9VabmNs5PZb NnG74o3cqmgDt/Cu55auDTJmp1k7eMzFfJ4/o4A3J4r4qPUpv9/lW/7i3E98 bccv/LnzJ34vcY1D/k94Q9E7PCfnGA89kMedzee4bmYO/x1bzMUZs/lk6iTe YY/gxX7icf5OnBKox5hnPmEoVdm5TGIBwGcDrTKslWPNDGuU8NkAIwgefODY yWghMRfQnZzjP6bwrI2MGjzam8J67syXcmdx7ayV7Fq3lb05+3hO+jFetiPK m0uLeFel87zP/IgPnvuYjziL+fiWy8yuq1yU/jV/fON7/mpGgn9M+R//z/6L /0z8zb+bf/H1BTe5eMUP/NakOO9L/oifrfQOPz6jkH3Zh3lU8T5OX/ASDyjd xQMPBHnQgpd5aE4eD3Pt4cHmbqZeO9llb+WW59Zzzaxn+GdjIb+TO43zskbx 6qR0XpRh8mMl/XSf5ualRf15VelAXhNI52dcA/mpFA8/HO/D9xV3Zk9mC24b qqOfq4pos0NP9HfnX+AkY0dWVYad0CunMY8obsdZdk+2s/rz8/lDeb9/LCvf ZI7lPsjfpMznf1xLuHpgBTcqWsOt1wW4a+w57l1pG7u7vMj9U/UzjA3ygJJd 3N+xiyn2Iqdl7+A+Odu4Z9ILfGeS7kOHb+HWmQFuaK+RvvN7xwJ+s+h+3uId wg8k9+BUX1M9P6vKV70/qVedH6vVrlNqQfCkeij+usTHIa4NfFzgf9T3hlaq xOhAlwk6C+CKQ1+JWFasWSDmB/FH0Bhc7Tiljgcvq8vBG+rHxO8q4f9DfRP/ RZ2Pf6t021O671TzAscl3hB9cB//NomhAh8S4jQ7+bZIjBT0G3W7UuD8mma7 hBcJcRG6LOGuRkNwmxYCcwsfMTAv8PnAL4A1c6zxYN0dPgGs08C/BR8d/Ibw P8J/B98V1pWx7gS9cWhpI96d45NN6Ly0MgKmLp85JXTIfDoeAc+fedr1FXS0 zVollamdoy71d7SkzGBnmm+n0pqsdNpljKTXvJkUCU2h045pdDp1Gr1l+2S+ ejxzAh00xtHe/NH0UqqXgvkjKRgaSS+leEnbz7Q7eRQFs0fS8zlDablzgHDN DIi1FI4S8GTo9yEcCeAyBKYCuH9oLszz9RG9dWhZgxdsWq6Li4LTufGVtTyi ZA8vmqR4+5Vz/OrNi7yv/ke8KbeIH44d54F2kOsHV/Ol0Cx+LmUoz4335qlO F882evOykMXbS4bzXu9oft43lGdkdudaicrcKbRFQWdd+DqdDnrRdQ/9GX2S Ghasoeau9VR/x2oqf+5pulDyIOk5Py3zWfS4N43szP70YukIOuWdSj/GH9Nz 7mVU27eSqq9bQb87FtGbJffTkoCH+uQ3oR8SN83l0ag5ILbL7GRvEU3mUa58 U7dPc6X1lvlkXJnDfXuEO6JxtIYJn/kM+4joB7/tnCrtFFo8ltVSrbFPSWwE MPrQj7zX2B9+wmlKfO43jl8Re82rnen8huN+vpo7j7/Nmq9tndmssieLbbHA 7scTS7rwPQXt2Zvdgaf4uvEjib68LNfitcX6+08ZyLNLerGZ31zbJ7ckvnVq 9E5oKJ8ET3LHxGZzu+t9U9sfJrhqwK800tGBZtm9aG00nQ67xpOuf/onaQnd 4VpFTXs9S63qB6ilYwM1iK2mSnOW0ufJ84Tf6MlUohGO9pSSUY+SvBWpOPSD mee/IJwkaKvrrUGicYCYFej4IBb1hv276pPRhGd5e/Ha0nR+MTqCdxXdw1v8 Q3hFYAA/WprKWdk9+cHknqznjLwqMZB3O0bxW34f6/GPf83J5r+sxfyb8QRr u4BPF03lvJxRrPPnLH9PHpPUkTO8bfhuozVn5Lbhe7Lb8+hACnszO/CgUGvu 7kjmugVJ/Eniulrij4ieKOLZD9gfi64scAJ3R19y635c+OVPxieKVsqo2D5z m/ec+X78G7Niannh1mmaVIualtSk+tnVCDo4p2NfgtvZ7OHNFZ0zaArrdyy8 5FhnRnwKuP+hPwnd5Aedr6uY/Z1qlluLvbkdWLc33pU6kl9Pvo8jmVNk3DuU OY63O0aITflEsZvn5PfmmYEerMd/vt95J0+OdeXRBSlshVpySkE9ruqqyGeM a2p+sEA18z4r3JaIL/vXXoJ4q8LbWPtV/YCrh7YfMOuIt0AsAbAp8L3DfwEu CPBQ5NrQjzwq69/w6QMbBJ7lf4x/C5cbAyT2CHYp4p2g+wSdP8QGgR/ebTSH Hm3Yad8hcTyIWYFOI/DywH/ANw7/BrjxoYMBbgxwj4IzDVwYTxkR4fLU35j7 YPRjdyVfeeEzWWZZ5rvGdPOf6FPmHYmVpm6XwgXzd3yx+U5wmnBsg1ukgVEd vEXuc/Y3buiugIMafCParhbuXeiU7LVGm885hwq3CvgpwRkCf8FJ4wr0k9y1 rSrmSKODuSc+yqxg2WYf7zZzRuCIuTL4FrTWhPPspOOKcAl9FC8xv3H9albw G6TnP9QjkEyjijvQAl8/6UNhI+u5q9ixSd7lVH/damppbiBtQ5Jrxlbd12wj d2wHeXw7qX+zXdQ/ZRfRlRcpdex2cuVspZSxm6lllw3U+NRaalBzDdVfvJoa FK+m5DlrqVnBs+RUG6jNzQC1Sg1Q06J10p/9UbqIzkSn06aMDBqX2YmSAzUo HLsiOhdYz9RjJrRY4acBh334lv0UNL5U/1gLDscmsXPSBp6eCPGLSR/wmZKv Oa5+5q9TftF2wXe8377Ij6cXsrvXi6z7BT7kG8dzk/rw0Py2bGW2lG9wRGk7 HhJvw13yGzDW5uuHVoPrsFDbjWaPnGR6N2U6taoUoHsW7KWZK16j2SVH6f7U wzSkeDd1dT1PDc6tpoqpS+mvjMVU7s0lVM1YQY1uraE2iQB1LNlMbbM36u9v Nf0WzaaDiXtpWoGLmhfVIv3OzWdjp80nnWxuCZ3R7eVr08gpR1jDaRyvQZVd FeiY87KZFtxhjg12NIEn2mC8G14YT1MXjCzhPdS2pMSUgs97gX1S4jR1fyUc A1VyKohP4KLvIW5UaS27b+0Qmy4z41Ue1SyfrRW7uOPFzewoWMW/Jy/ij4qz WI+5fChnHOfljuKtrmFs+/vzBF8Xbu1z8MHYx0p/Wwr6FNDA1naPWTO3Mo0L daKNzgzilCl01Z5HfyQ/SVUWLCOHWkXNxj5LHW5sou4lW0nPVSlt8Q7qk7GN tL1CDSetkfUkZU8m3b+RtgNJ9w1UEPoMfOjmEGee2cV6Tr4bcCRtjA826/uq 4bsCBicM3W9o2j7uK4TOpErKqsgtcmpzx9T63LWogbb/GnC33IbcO9GY705p zVMKuvHSRH/OD4zhj2JZ/HfKU6zHD26h1nOnxVu4x7pc7mtu57QDO9jMfpHN sdpGDOzgvoaeY9/cyh1SN3OTnHVcrWi52Juh3PH8WFKa+JF0/6QeiZ9QN31P KIevKvg2C+GTHmK0Nf9xLsF4a550XTHBY9Y72pgyczsLl9+K3AG0qmigjFP3 x7uRu6SZ8J1x4nNzaCBP1vjAxw7MGfqthPVHGPrN4BnRbU897i3U4/eXKqmg ojwz+ui5xb1Z25e8KTuDc3OG8dbSobw+dxBre4LnlvZmn/9OGXMGBpycajXl XrmNuWdKY+4da6yf9fb/roJGnBKsx63id3CytwbXc1Zjh78q10qtwtoW5Jo5 lbl6ZiWunluJq2RUYMMuxzeCv6uzoWtqZ/ADlRV6XXgEKgRtiQNHTDV0DdBG 9bxZNDEQD6RtQPFJ6jmgqZ9fNNbiwYdNPX4K/5W2S6Tv0/00NAQlLgBjBPQV 2hl11aZghvohvkA1dq1Tqd7tKtP3qnrMWai2+M6o14LFwkP6bfBX9Y/rX+gd cLVERa6UW57/Nv5Rce/PKmx8rvMoUtONI8rl3yra54hVBwcrNOehOQxdcW2b FCLGCThD4MSAdQI2B7gc4Lww7gB7Bow9cE2ipx3dJnpF0PuFRtDQYFvRvoAu K7ROwdcFbclKwaVmA+cas3Nsi/CXzQseN/OCF8wS+zcTfHtWsCXNzOlBq6N3 0b6UMRTNv58+KsmiL11++jHpcfoz/iRVylxKtWLP6D59LbW1NlLP4lwaGAzS mOJ8mnrqMM3KPUoPp5ygh+ufoFkLjpJv0mEadWof9b+2kzrXfI4aXVwjeXxb MJ/eT5pJKjCZjsXuo6PWfVSYMUnsct2PkB6b6ZuSR2Q95IOCmfRqYiw9npMm fJWHnZ+Iljy42M9ZD6hfvaUKc71ayStZ26K8udkZWaM1MspF6pytGkneWyPS IK16pNpbFSPf1fyNQ5M+4QWBk+xOepGrh1aID2x7fDg/ndKf9fgk/fak7K7c IyOZL0S/0+91vgIO8NF4gTkz1IMqx5fSsOI8eiolQttWnNPzgvOkx2h6NFpA QxfkUcuL6+kXVzadLJ5IufnDaENiEG3LH05HouOpKDSdPi2ZTXq8oQuuLCrM nETbi4bTIr8pXJS6/QrP5IRQF5pb1JueShCt8A+gxV4iX86dhHEC/IN6Hiia Tq9GL4qONHRPoBMKTRXopoPXVs+V1EOx11UDR3Ve7x/E1fNWSL+88dq74ov8 rvhXvrn4T/7x3O/8YV6J+BPhW80Yvpsb31jLX5f6Wc97eH5+Kg9LbscdYnWl PW+MvauSgssVYuWhjwsdCrQhb0EHeik+kr7K9VO1a8v12LKWWnUJUNtJG6lN zY3Usv4GarJgHdVVOVTtynL6u3gxXcmYSwX2RKmjGf7ulJbbTMal32Kl5ofB EtG6+iL2k1m+pBw18dak7inJdFdqKxqa0VbmXx2L6lEF26B9jo9M0/uiaCNA Tw+xfEnW8jB4B8Brjv4BXDlHrU9VckYNnma5+JhrAmvbg3ufeoHvP3WIl3d5 k4NzzvPrjk9ZHf2cVcbn/NqBYn55eIzXtj3Nj9w4wWMzXuFeoRe4vm81f+Oa z8HckZyZ2ZnvSKrK67ynxXcPPgJouECn8h17mmgWPulg8/VYsflVKAGtPLGJ wK2p2xil5jQVjtBu+Q2pcUpN+itwy3w1flHskl+c2cITDswGYmSAJcecGlhh YCMxl37UOOkutK8Iz/x66x3BVkEvDLrh0CIYHG+tdP8hvM/6Xan04EtqZuA1 4Tc+4ixWcetnVTOjsvTFep7G2k7mYykT+Ivkh7lc6tNcfewKrnXlGa4+fAVX yLL5p+Dj/GEoi/U3y5v8GfxwUR8elmjLrZId0jdvjhWpnrFcBX1CcHhB2wY2 sx7bRTsZOj89XS+Y3sA+837HYXOG74g5KXTQHB7YY97p2CqaIuAThB4UtBEm Rg+ILjs0NbfYZ8L94y1UfnCM+sdYopIDa1Vrb0A4rOHzAScJ/Fil9t/hVHt7 GDprsPOBH0d8BeJKEFcBHD/GhVXG2ycRJw4dZfi9wC0A3R5ofDaIVhM+j6h1 v/BhWd5d6hFXgQr6zqtToS/VFetH9YXzZ/Vp9Aed5gu11XhPTY+HhF8G10B/ GdwJiC/V/bu7r7Op+bYxVfR/dTrzef9Z6IlC88j8wfW7+Yfrb/Nf+1+z3Jv/ mrcC/5h/Om6Zf3lvaVv+FvSmqXyKQRWLDaqUXZ4qGxWoalEFmWtCf7ZGSSWq mVWZ6hhJ1DJWm3o6G9M9We3pkaRU2lEwgt5PnSn+eOfiDWTueJHGrdhPc5sd p6U33qBNviLpw169cZGO7viUCtddITauEiddpXDRFXo95VPa5/yInveepSUr IuRTh8nK2UXOdRuowjqbzpfMpH1FoykQHEzrswbR9tQR9Fowk953zqSvMv30 bWg+XQw8RK8Uj6GpqS7SdU3gYUZMhB5TdN1W5ue9Q7nazeXsydzJc43jvLnX GT5cfImjWV+wtjv4hOMz3jnnA37iXJiHFeVxkznruDhrNq/IH8ADUp1crziJ fzT+py4Fr8talrZrhPNb23XQhlDACqX6t5ttC+rQIWscNTDWUEb2bpoVOEqL MhUtdITpgcQRyvDvphRrMyXZy+mL1IfpzVQfhUsm0dn8GaRtUqq+YAW1qhkg /U3TIOtl8tr7aPzF/TQh4wBN2HKAJsb0fvEBuq/+Abq3/n4acXEPkWsntbux kSrfWEq6z6apLhdV8Vcg8JoG7MGi3avH9cL21qYwtOTBCQNuOG0PqmPRT1Wn nPq8Ludu/r30Ce4WfJ4nRw/y0vgb/Pyks/xCs3Pi25lbdIwHhoJcx5HDXDyZ J6Z0ZT3H4+XON+Ub2RIcIjx4S+yIcFacMD7rJ9g8Z02zIDjRdIW2ms+43hId srr+JFnrwdpZdq6btkaH0uuu++iDwEwZk/8seZIq3rSpanyZ9ONJmcvl2Sr4 bSqX8jSVM5+mitdsqn50BTXosobapm+kHnm5ZKldNNTKoxHOvTQksZvcpTuo jbmRKp6y6URsAk1O6kblvvxXeFZbxmub4GrwBjuojvHNarvzfXDFcPfkZNbz ct5YMpijgfv5p9DjXHPLM+xM38Dd8p7n1AXbWbdvdjd7kXumvsAdbm7ihnPW cPlUm4u9szk/ewwvLEnjQdmtuaG3OseC36lsfxgaSMLDh3Xx141PoXEiHCPg 0gBnBfgb9FzwpJ4npwGbDt5JcG2ifx4bfMU85rosNneP/GQam9uRZqf0picS brKD/WlJhocWZZv0WEoazQn1Jl3/2k7qRY8V96NHon1J29E0JacbDXO2E/7m 6v5KsqYIvZNPnLPNiHUVuMjCSnZ5pW0j4ep6wTgndmVNf2Vum1WHeyY3Zko0 Z8vbkj3ZLdhT0IJ7JzfhrvEG3CK/NtdJTWLdb/BN75/qK19CdCYi/qtqr+9D tTZ+Sj2cOC5ccT0dLwgflR4/1ORoVwVtRm3XhGvazwg3CjhJoOsCnhHoJetv uBDx/IjTAKYVeieLgyTrEXdFg9D6M/dFPxTO88veG8JfDD3tt+NxM9/7kbkq +pb5QPyIpG3j2GhWjS4TTWBoNkKDXo9Hort40/7TvTwaFb1RxPyBn0DbyIXQ BYG+Yp51IQwtO+g26TYtuiq1nFVkHNBtXbh0gA2AVsV0o3sh4rMQbwqcO/g/ gU/U37Jwfs42jrkXRgtFlxGaT+A01deZOdZdZsJaKFpws3xHTT3/MC8kvjON 7HJUP6catQ/Wpe6xRqTnNvqbbyGc32P9HemhpF60vMSily0vvR3zUUnWo1S1 y3JqnniWelkv0GBzN92XcoAevPIa6bGc7KNv0PqCd+jFm+/Tq80+psI5V+hM 0jX6NPkGfR/9jUp9f1P5r8p5Kg0q76noKO/R9/fczPuTrq34hS50KSFue5Ve Sb5IL5x6j7RNQsvNN2lp2yg9U/wmrcs5TZtvFdHWlPf0d32Wnr11mvQcmMbO eYVaBwLij2weq0XpVitoNaotmUM4I383Rw5c5bqTkiL9bjaNjEztEBmT3DGS 7msVab3DITb1U2aEay9eyZMd3XiTXSR8XNClwff0XXS++C/0u1Ad4nX5zkRD vqOoCq8PvaOgsYi4UdH+030PRZvT/IJU4ZDfnDyE1pam09MJj6xTl3HFP5+p +6OU++hi6CH6o2gR1Zz0DDV3rqfuybk07FQezck5Rrnp79H7Rd9QxZ8MjzN0 h8edaOYZWb+DZ8LOLp4Jvi6e4TPbebqXNPLU+LCS5+TNz2hs3it0LfiIcLBD 6xW6ZG2MjYXQ8QVXFNZEoQ+EdSGP1UJdtuaID+Zdx9dK91U8Lr8TLy+1eG/W aA4nTea3S32yARP5qnEv53qH8dJki2d6e/Dg5Dbc3l+X9TfD5wLfqK2u92SN cob3iMyz97k+Ur/FS1W7pLo8OjuFFzrcvDaezitzB/KM7O7s9N/BiyylMEeH Nu/HzusmuPcrrVtKHrWT5sw4RuuGn6adMz6gPecu0O6LMdq27hxtSH5XzyXe pEUBRY86TtLDt47TnNxjNCt0lB4sfo2mRg/T+Pqv0hBXHvXtsp1aJQUoybec 9LNS0DuS9JyTumQ0oO8cv5lLfBGzSWiducTymK9ZxRKnBe3jPtY24eCqEa2k WgcdorEyyGqtsuyeao9ztKoWWy46K+/Frul+vR4v8Pfjt2wfV/Ev4w7XNrHl 38UjK+3jsd5X+J70vezx7+QO8U2CbSoOzeZtOcPZZ90p/tpf/aWinwLeTD32 iEYJ9JJOGleACXAPDDpNPScy58aOmVgDw7iWajcV3vw5Bbp/dpr0lOt23zy3 tLfMudL9rahTqD7VcSaRnpeL9js0IILWeejRmScSl7Vt+r35P/svExoLHZPq a1uoJQ2Lt6XBsdbUO9GY6hUl0Zno16JDdd54EHrciKUrxJpZgTVRtLTAn2n7 31B63qhecJxTLxkxdTD+sYoErqoLrhL1T/QfVTc3iTuW1mN3UTMeXNpa/JJD Ym3k/9Y5Dsxv+ZB1SfgpgTl2x5uJluowo10h4rmA267gM8zu0UYmtKOhV9jL bmzqvlu0P6YaIYkJwfeH2FHMGRAnCYznA9Ejboevqvm0s7/5h/GkcJnPjR4z t8bOmsC1cexz0Rg/EPrYfN531nwiHjbvcxwwUwPbodErGmxfx/3mWXuGecTI NNfbg7TN6xJNRqxpQwMMcfn6nql6L/xji20WzRNwrkHHBdxdWB9FXPqQ6G43 uKmhlfw/a5HZxX5OdDiAX9Dfi3k++i0wdmZSTkVqEKsm+gPtM+pSl4IGpMdB MvObU3qgFY0q6kBTU1yCOdiZeQ+9WzyNfnM+od93DnWObqF070s0MfkgzfcW 0DM33qTnSs/QS21jdLDSJSpQn9HbxXE6l/MNXcq8Tl/c/Im+j/1Gv84ppT9T b9E/Rf+QttXp12ApfZ30C52/8S0VrrhCeXkXaEPqu2T73qDsgjA95YjQ2l6n Keg/TyfafkZnc69RbMt3VJT7NYWGf0LLL0bJM2en4OmOBy6L1l//RAtuv2AT B0PnucIWI9I+u24kdUfTSJ8lTSItf60d+Un9j1cefYsbrlvD412dGRyc0MSs Ea9kro2mQ7fMBHcANCynR0PqjpSqPCGjCwcyB/OBgnv5aO59vDPnHl7uGsCj Sjtww1B1BgYY+F+8D8S8fBefb77o+sBsllOLJju7kbbBKGxMpiv5c+nP5MVU 3btCsH53xp6nYeYe8q84QTu2vE/vn/qG/jn3D9VfUM3TvrCup2dqY0+/lGae PsEmno5d6nvq/Zrk+b7+TQra58mbvo/+KX1KdDGOej8VXWbEnmgbQ2J3L9nX 3RUCtmjm9vAn0zOOgVTkn06J4EJZn7rqn0cve700xNGWjgcvS/vVc+QwfNjV HJV4dnJvVlmT+a/cxVx/x2pum7GRu2Q/x91WPM+dcrewtu25QWI1Vwkt45+d C/nD7CzBUO5yjuRnUwfxkgIPz8vsw5m+zpya35STMivyFv8ZddN6AprH0Otx 3x1/ySwfL0djrY60JWMIceoU+iA0k97JnEb7jDH0eDCNzJzmhDX455xnzXTf S2bT2DqzhbXeHB3IN4/FPjXRfh+J9aWzwRlUN5Cj079IvsBhWjyHaf2kd+i5 1LO00VVEy1ZEKcv/OqVnvESNr6ylj2MP0aPO/4en74CSovi+pskZhrwkaYKy 5JG47FRBEwUkDFEwtgiySHDEhJEmukgaBAlKaIKAojjkZfu1NKKIARkUdTE2 CIqCOvpTxMT37uPPxzlzZneZ6VBd9eqF++7tqmv2K6+R7z8Wjhc9dKzr00am 8C3nbqlPYUzgD4EDcJFxxAO3I7R//jAfF+7W+cFh+tD+jkofLe436FfZZ5so +3abTC2/ablqfq2j5f2S5Yr7Z+O/0gf2OXonOEOfJn+kK+4VanS+it8/q5n/ WLbytx8d4X+67T7/cuoJn/cnn319/6ejD0sN99FozG8yPeLPiR8iaBCDj4l9 YzXI2KLYDqqSWcU12yYNnZy/E/+KTsWTKV/lOmtEbxbc++zfqr+Mf2NfOj9J nRI6uTeFTUS3GvXK79xpolvfILlIXRdfrDg2V/XDhapuZKFoHpx0JirelxQ0 oAeF10tNDP4mchW8Byje11AviT3ukPTOoWee/X/xNddYg4RXFnb8ffMclVhl +LWMCv51iSp+bbuCXyJu+B+kztEc6xDdmF5J28MR9Ifxt9QDUVtFDxBsIY4P PUfgIMBDhzp4d7OR6I81zzxH/Ds9mCkQjM+UcC8NyrwkHNunjQRB8zHLrUiL rSMexyjCP8jXAC3ZQuingdcPz53PUTjR2FNY0pgpvFz3G12k7xs9pOjXu9FY BV1fqTGCPx8YurXGh7FXnJOit4T9ophRTEHvHdrA0FooFpmhOpir1SNWoTqc CVXZ7JJSc5hQ1F4/f76/9qJsG6ZP0X+aT+gyI2aJn1Ylf56uMn2erlQwV5f/ l+PGyCyJJUtGZ+qykdny95oF87W5fIlup1bqnv1cPSr+ip7Ueq+eNTDQK+a8 p7dmPtJ7Hjqlyf1KH6z0jeb4SPM16m15H+vnM+/qmf8e1JNf3Ssx+IARm7U1 Yr3WkXXaGrde39R6k/Qg2HNe15PMvTqxbT/HZHv1HZnXdI/f1+usVxfod6L3 6AF5zfTjNin0J5mJJcT+vP9tJuHnLlzjP9rM8zd9mfb5GvyXP/jYd+igbyXX +3yvsjag7YY6Lq8jRamv1LvGWTUxskcNDZsDI+EtCY7QXeXa+T/lPOJ3nLxa MJdO74M+7wn+vIFv+lPz9/l9cjb6lRvM85db/f2/gn9opmHRa8ansUfcQpWd X0M/ksjVL0WH6T3JMfqV0SP0CwUD9Yzs7npipoO+PdlGjwla6XvMG0VraXP+ UM1+iL7ksq+cmKuzFi7QjTou0Y2NpG4YLBLcdanUTP3j6If00fg9+mVjhE4W 3KRnbbP0rLilF+T0EUzMm6Nt/UPOQ2Lnr0suluejBq7VPUq5utucdbq9tUrX /3eh/n3bY5rtpe5yuZ5GbbieW0kBf4d+khrlyvP9RgXTsj0y0t8UHerPDLv7 A+LNpF7yWOCJHuAF4w+vs1MPmrldoaXKNqyQ5yRqJBR3t9LpzC8UK2rgz3It n6/Lv1TwuM9zy6+Ts8Cv8/uzfuXMXP+Po4/5byZtf57T0+8TNvZLBoa/MPk2 4XkmrZuoZGgQcoTQUAfXIzBz4BtBPzp6DKExDq3f25020keHOgr0xFBnu2g/ LDq07CtJPamFWVNVcEqJtjM0PKA3stGOq1L2TGU565WTPKgOmaEqFi2m61+u pG80s7S1qpHu6zTRPbeZoudVP6uyhg7Qssi7UqOBLUR/K9sF8IPSCTNP9IOH R1+me+1dNN7cRaPcV0RjEHzVxU4/LVoBK42bhcd4ZtCdVgYDhHv5svMENXOW 0ujEdko679Cx6HdUJlnCv2F0db9XtLHP+7n/UH5Xf67R018S9vWf29ZPfANg LZ7u182/P9LFt/Pb+fF+zX32Jfy2/Wr7DRKV/YqR0v4l+2/6OH2edhpFkgOd ZQXEvqdo7T0a8YhjfGDDRLcPPQd/ZP6i0ueL+xWjpf1Ko0v75aaX9P+2/6XP IhcItV+2tdQjvZ5KRmYS+y6iGQpc2f3GfnB45oKXCeOCeB06H4uCt2PKWQv9 zRi464CrWGb0F45brDfocdcIylE7sw4hd9zFrE/om4Qm5rLgqPDh7nJGe4hf wKkI3hdwD4G3ApwU4B0BPyfsPuqKLa2aotkNnYRcdw2NS+ykZ8I3BTu7yymi N+yvyQ+/ov3RL+h14zPanj5Jm90TtDGVpnX2hxKzIDc5M3OQ7jf3C/c+++1S W0QfBvQj+jlNRYc13zrssW8uXLTQl71gPCyYkas8guWl731MsD32qfUjOC3U 1mCY6E6zLVcvhScUPxvVbHo1PSS7uWC4gFX6OGei4MIqt56nG15cpFtay3Wn 31frbg+t0+x360Hltuhhk7fpkedf1qM3b9d3FL2mx1opPb71Lp336m496fc9 evKevXrq7ft0YuB+PS2vQD80/QDbpEKOqYjt0EH9TM5hveziUe1uPg5tab1v 4Od6X+pz9MToDR8c189cfFP6wKIFK3Vm26N6+raYLnne0PUjixS4M6C1gdxl 7fwK/phyrf38gl7++vOD/RX5A/yJkY5+g2Rlf6q1jxqaVaAZETMSM9SkYI96 KuMrfp6il4Nnj37I+9OdpY/m1umv+mvPHvOPR773M5P/9P+LXvH/pn/984n/ +W+/ddp/bs5Rf9jybX6FvDn+zPPd/fPu/+gb834CX+9dwY4YfI36YSWFvRJ8 u4PtG3guvUiHMt9gPvlqVUO/f7SZ9PIgti1+tJjP8RJVM/IJ/NbgUXkg7KL6 Rzar99yzqn5RJT0g1UxPd2L65XC4fifnHn2x4GFdYpWjKxHvg3nzdR1jga6V 9axgHMpmz9Z/lHtcf9rvPsErrs5im2+yzb/cQY9ItdA946b0HjWNVtMNnMq6 wfTK+ga7uu4Sqa+HBs01j6leYt6kX4uO0m+5d2ueO/oDe7xmP0kvd/tr226n G2ZX0a57XF20HlbID0MLG7qpOxKfgjPcjyea+w9Hc/35QS/pKXL6dRcMVs88 06+dV8FH7DojfIN0uJZqRZ6lSu5camEsp4nRPYKdQA0xMb2L75t3+qXyZvo3 rHnO71Vzgz969HZ/XL+d/viau/w75+zwB6/a4nc11viNLi72S0x3/Hcj4/wl xk3+mEhrv0VWTd/YVsx/K35a8qCzw4Dt3UFanDxC7K/QR9Z5KhYp5tcqV8Fv fr6636Eoy+88up7frqi2bzpV/XLJkv5HyfOU7x4W/YEj7ljJGUK/BpxH0JXk OEk9Y/ZSH5sTVbn4bNHSahRZIhrZHBtIXnZpcJPq7TaGBlwM2trgiJlt9MgF BzD4kn8yLhUiFwHOYPDHQpMYfHLomUb/OrB1NwebY+jXBocDuHLA7crzQWLg HkEj0YBBHo7jXGIfjMoHJf0W52v4vfMb+2OyW/sToh38RLyL4B4n53Xy7y5q 5w/PbiH4vtz8Bn776Vl+23htv22ytt8+meXHwgZ+/8tNfd7T/GnTcwQn7eYP 8fckxvhvlxvrn4jk+Z9bk/3PU5P9T4KJ/jvnx/q7i0b77Ov6MyOWPyGngz8o c73fMa+u3zBaxS9/vqSPfuKP7PN0MP017U4X0Sv2SVqX/JA4tpHc8iw3IOzr k929osUxJLqV+N6pm7tOtBw47qHymdn0kZsnvPxsx4jjJ4JtBv84OKpRp4Nt B5YYfR7wlWGfwXsErlX2bw8gJw3cHfs1Yvt7Wxu8pkFSbDvHFIXgYupjbIw1 NaupV92RgoXoFdmgxjk7OV4gNcsORJPu4Wgh9KtVp3C1ijjPiH7ZsqCfmmbn KF5DapV7s2iocZwoum+zI4cE8wb7ZdpVdefp9ST+HHm5hbatdnqC2UEn8rro x7cpPc/uqRdF+urnVvWTPOZqc6Be5w6W/BrwyS9mD9JriwYJ1nh7zkjtH71D f2Lepzku0CWzZ2re23Ttbc9KvrOpsVQ3G71UN5mT1PVLLRJMKsfr2nhyhv72 ckK/mW/rDcEQ/VhU6WHxbN0uqK05LtHl0yV1iQJDF8sqpv+I/K2+MX9R+9Of q8cynmoRXS7aqLxnCmdjL6OxcGiDoxc9IsglQcMNeTW+FpV2J0hMAI42cPRn 2Quo0PmSWkRr+lPOd/I3hEP8Q+fv8o+H9/rvB+P8fXm3+kuj/QS3C7zPi8Yx yQnydSF/h5gU/MsHvnOmeZbbSPSKMa/ahbX9Rwpy/dfL3eJ/lr7P/zbnAf+U OdlnO+g/ndfN73q+vuDleyc30PjgRoLuLPiUoBsG/VjoqG03PhGOCHBpgaca GldHnLFelrXAg243eO8D5y6p+YCbGLxPTwV+LMeqL1gL1CcmpnerTZm0OhF8 r74Pf1N/Zf5RHCNzHFNClyoozrbb0NBt/c29rH5OXlI/pP+nvsr8pN7PnFV7 7FPA1qmZ0UBNMHdL/VvZa1WbzPPqhtRzqml0qZwjO7lMdNTbGStVm+gKdX24 VOYqcO/AaT1kdVU8XoInBg5AOQ29Nc4x5IKJ7TrxHipYB752Whv9kHZmPiM/ 8rXoM7/phBS439DhIKQjyTN00vlB+gCQx7huVRU/127gj+7Xyn9kdK6/3Onv v2qP9P2sO/13su+RftKjiXv8IHGXvzsyxt9cMNRfkRjgPzu9tz/jaDf/ETfX fyCa4ycctkdFXcSffDTI9R/PV/4TEe0/YWqf56L/UL+u/pQM26rsqD8yu6Vg k7tmNfBbRWr59c9X8ivkl/J5XrI9vkAU/4rWR4+LLzAhslv0cqARVddcyP67 Q2fchGiWQOd5hzWK/a/RosMN/SxonnwTTKXP7cl0xB5LW43hxPaZRlutROPi F+NP7wXrA9FWQO0V2uzQTnjcIu8D55xXx6xIHBvQ03Y32h6MoFPGZPrbepJt 8GzRYq4TPkt1zAWEOV83vYDqpRZKP03TdFJ4GdA7gR4N6ANBYwna4hxfSz4A Wt1r7GO0xf2IwAkBn5HPSZ87F4n9EelLwR5XpqCE4OAidlk/sqqsX9Uo61ea zj6zXdIvmTb8vxP/0s/WJdHdPpW5ILrY72a+pXejZ+m95FlKJ76nTzI/UFHy An0W/Egn7R/oePR72UvetEPaF/9cNK7ZhlFeYrfoF6HuDN2bkmmHTloTRbP9 frOLaKfVDSoSNDBaGc+LnjT4tcE1Bw4lYLuhv/dy8HGM1wD42dTtVhs1O7TU y+YIxbZZ/RM8qeqbixSPi5ps71WLU0cU79nqvfhZdcbNKGieQjO15qry+jqr ivT7th+dpXXWdbrftqZ6pNFS33M+qhOrumjH6a4XGH0Ec7CwoI9+dltvne/0 0nPye0i/HuLh2ZctwfKvLHez3txvqN7n3Co+z/fmg7pYzRm6YoT9rG3z9XXu YsGPtt22Qnd0V+supV7UXdIv6I75q3U0sVK3yFquzeQSXX1bvmZfU59MTBSs 0+R4J52baqAj+WX16UgGfciir3o5/o9qsiqiR0Za6kXn++jD0bv1xcTDutip pwWf+158nOZ1I5q9G4LjaoXLcaTR7sA8tyeNcF+WXsjPjAtU6H5JU4x9wkny TfAz4uFc7F9/hU+obsl1iuMS0Q59yRimwK8EjZFq0Xw6FA0Jez76RZZG+vnr iwb7Sfsmn/ci4fv4wvxJMIzvWeMoy6oIDXOZ/5j7wPnuD24ltkvE+6LY83PB r/Rn5m/62blE70fP0YvpD+ieyE5qZT5PfxlPik7PQ05XGmm2JI61Oa6uL/oz OBbPX9gZ0S056UyEbS0EZg34RWB7kP/i+Eyhxspxj7rFaCU4c2hdNrEiqqJR GriYWNmwhGpmVZNeAtcZInWJ1snnBQu3wnlPcoaoMX/t/iyauKjVLE4cES1Y npuC89zjjlE8xmqq1Vndb3RRLwYD1QfOeFU6mKmynWXAYoh2a193o+K4WrGt UQ0zi1Tx9Az1WjhSDQ+y1VWc5RJoYILzEv6d4JKAO43adWhQcL1o/YxwWyCn Kdo9Ha2rOvDAoh0ybKlXNXGTpIO1kt9DzxV6hNZYx6gg8QV96vxIlxJ/i78H vxo8Lc2zawjO+MZ0Hb9tfm3/+rCaz+vRr1RQ2i+eY/i/RP4k7IGw6SfS39Pn CbYlHMP8G/+P0AtRxS3j8zj71c6X9SvES/n/Ra7QaTNDb8ZDeinyEfpx6IH0 fror+rpo1g1IbaY+5kbR8+L4mrpEXqT29lU9rVbR5+mG5HN0XWIxRdxn6Ir7 NB0z7sW+S+PDG6mzW4+qBWXpvPU/9Dp4+4PPRZ/n4+C896/1nwfsMnzuWmYF KmeVJLYhnuscF91401oiWpLQcEENCP2i0I9pHCwRW70kOOL5wVfe6eAXj+el 97X1s/d+cNZD7W+L85G3ynnfYxsrOEjM52eCN0Xz56j1rVfMLCZaR93s64Av R78UrXJuFh2p95xx9Lk7mUL7fvrSnkLHzHvpgHm71C3hl6K+CP2nW53W8mL/ gh63FS0L+9Er1gjRvjoWjKciexJ9Ek6UPYjtjeRjppideSybUP2gEkGvMum8 4/GYigYNNF+gdfKoEStEjya0DeAHrTTeR78m/lb4vfG/A9AsAJ8nOI847olF rTqCH7oQPKQ4nlDtE6tU3/hG0bDvE+X5a69TUWel+BfZ8WUqll6jLHe9Yt+A bc3r4oe8FJxQx9PfqSv2FVXDLM/+ZDUdXVVHd81poHuuMvVNQRPds8AUG8fn 0xxP6aZBRPPc020TtaWOAU3yMTmt9aSsTvqxHKXz+/XSC8w+Oj+vl+Z9X3hh 7rrcVvO61qPyW+pbE61FN35KVmf9ZErrpUdv0psTQ/Xecrfqg+Zd0pd3OLD1 wfBOvT96m2ZfQ6esW/Tr5i3SRw2sMOpORxJjJRY+d/QB/WvwqL5kPa7/zHlC /9Zvuj5X9ID+yMqT2BZ1PuBw7s1rr+NOc90rq7G2pjfSN2WaSC14SrnOmmM9 6fdDz/bRgntkj2A/QnzxyfmdZA/KWH9Kr0vLxHLFz00tM/qLjvEV62mljXUS B6Sd71VFs7Rufrm6YKhQD+Z4TXquLyX/VrvNU+ruaEr646C9CyzRKKelx7Gx d6vdWjDh25zhohkGHajPjEm5wGhVDeepBcFbwMGohjlVdPa2Grp2QQUNfe8x 0VfVfW5H1Jq7Qqu0t7OBdiQ/Jd6PeB7+QGwDiWMV4BWh1Rr7IpysFkTeFkxt 80x1ydlD153XoV5vHldVnHlqd1AUg+bRnW5bqpqeR1ZyPfUI1otmHfCk0Pep ZJVWTZJJ2b/LRkrqZquqifZ8Vn5F/X36N+n/qmTPVTlufQWeQ/j13Y1GkteF Rgk4AqFDfDy4V2o6T6V9tT19UrFfKj0qGKtk/B1lu68Di6JKBo7iWE89GORI HXuwfYP0L2ENsE1VGfdRVcWep8zEEpWdWqZapJcpttOqcmauYIp4nSr250Tr GLWiX43L6DdV7Z0sxetaLXT7qNfDUYr3PrXGHaR4fUsuF9rFbzh3Qp8XXNOF wIWBU+xFY5D0ya03jh9Avxh6uFAnvcPYEXvaekMwROBDAzcouF+Ag8X3Es5+ DzwGyEG2MGtSw7AyXbL+9tg39F4zRgGvdADcucAlcdwc22p8HNvsnBDfCryP 4P6Fti+0r1Dvh24YYmXogUEfC7kH4WEOZsUOGt8gh6mm2p3VWnMwj+kY6QnY ZA5VHIvy2LZTbKsVxzyKryGG+uo7wRnRbkYMWMYpwf5FTTXKbSn1Nuyf0CAv 4TjSb1Yn/ayqm1mgakTnC64XtfkvrSmK16/U/beaw9Vma6haawxWq4ObFdtC eV6PWLlqjNFasb+ghlnZ8lxiQQPVJayn0MsyJeykVlgDJO5ie6p+MR9VxSOO 5F6KRWeo74Np6i37bsU+mORpOM5QE4MOivce4b2bG/RQL1gD1Q57lGK7LDiE 983xojP+pmOrN11b9MgPh7b61L1Psf2QmLa6nS/3Uy+xUH6GJjowaaXNWeyH zFW1Is+qxukl4nd0Sq9W2lynejqu4rhTdc+sA4+CisZXqnbBCumN7eauU32M jaIhPzq+XfqV70vtUU86vloSeYf9to/UnuQpdcQ6I3h33r9VkXtB8f6tCpwv 1OrwfcV2QI2yXlH94pvU8MjL0mvLsYM6HD0tXDwlthm6fKSULp9VShfPFNPf 2b8p3tPVi+Yx9UiiUI1NpdTo1HZ1q/2q4KzvNlMqL7lbJRL71aOZQrUw8bZa ab6vUG8HJ8SvwZ+qpFFc8gRlc0pqI1lMA5/8bvitejlyUvp8ea5KTWtSZK96 wCxQT0XeUM+m3lJr08fYJn6m3kyFimMN8cXOGb+pC+Hv6pfMJTk23n+M/66+ i/8muQfgaT6wz/HzPA2so/LDr1SQ+Ea9lzir2IdRP6X/UMA+V9pWWtfKriBc D42KqugGicq6TqaCZr9Gl9pWXP9l/Ksuxv9QPzq/q58Tl8RW/hf+p0pe5vEJ Smr0kFXLlNXsT0kNxrSqarOgqm6WX003S1bTTZIR3ehyFV03WklXT5XTlbPK aPaTNOKRCqtK6crlymiOwaS2XiNdTo5VOcKfSZbSZfJL6JKR4tKLgPfSOSU0 x2jyXfZbdal+xfWVxBV12f6Hbf9f6mf3krqY+kNddP9QP0Uvyetc+ld59m/F T6sdiU8FV/N0/A11X3KPuiWyXQ1MvKT6BBtUP3uTiltb1V3BDjXV2aeeir6h 5mcOq8XxI4p9OPV4ktRYK6V6plzBFGDtbLGHidZ9N/c6qVVBF57jK/YP6qgh wQ2iYb8zuIWf1TRVzpqtqgXPCGdK6XCm+iqYol5wB0quE3WGDsGqq/35TgnR LgCnMzgyofXO/o3Uw9bZg9U74ViFvearcIpiX0jtDG8RzftOYV0FTCX8aOBo 2UfjY7wdY7slWEvYG8SN6Etl30f66jl+VweM2yXOYV9M+Cxtp53ECX3dJqqv 3USx361udVtzXNlJ+mJh77eGwwTfnLYmqK+dqeAFUWecBN/Hfert4G613Rip lpr9FN+PmhC053XWUsXt5jy+zSXOwL1MMTorx+6u5ge95LPL3f5qiXmT4EGB G7gjbCP9stlODVXdKqdKWcXVf8aV2P+Cy7G/gn+kbl7WKKnAyZllV1SI39h/ UqZdVdWzK6kKdinM2RhwGuj15f0hNs7aGZvmFAgGFX0dPMfFPt5htlVPhEot MvrK/c0Muss45NoNFM83YG0FwwqeUvDEQvN+bnAolra+j7E/rjguU7eFrRXv VWqZ2V/6ZTaYcbUyGMDruqe6P+ysbglaAoepGjiV5T5Q+2c/Mbbcehd9GDH2 o2NlzZKqg1lXnhPGer05ROy9F9yu2FdTSfcmNc66UbW3s4A7ErwZfFbsiRyj xvKdwzG2bzHgetGb3M6sw3O7sRpgN5PnCd4x7PEYJ+zXlY0yqrxZSpUMDVXc NNQF44/YseBc7FXrkxj6fTj+k3rtpiAdAx7xqPNtjGOPWNmghKpvVBacSHez kWIfXPUKTJVrNVCtgpryPCJWWQWsG86DXCb7Q6q305jtdhPVI2gkcWm2XUOe H+Y/+sCxL483dsUeCPbHVljvCY4DtV+cC2M8wGnG+4IpcwnYK8wljg3hG6q9 wanYLcZ24X4G5zd0gIC5A6eqstbGZgRvxNCrfYNdXXq373TacgzbRsXMhrw2 SyrcJ/hpwe8C/QDo0aHHBXpptxltpM8Ffh74WznmirFfL9cw1o1K3Ht30E6e C+Ymx5zCiwzOdnD3I4+L2iL6l8AJC30A8LSDVxp1L7Y3sS3WR7FTwYXYeed/ sW+Cn2OHgzC2zvowlrD2x7oH66R2Dp5l8DwDrw2OZ/QkgSMW3NvwpcDNCi0j aAdAFwH6EbWMZ3ORZ4bOGtsV0caAngp47nnvjU0wdiPmlueKsS5jlVAc/8XI +Ursx2Bri/DyghsWPOHXOPHBnQ7uEXBadwpWC74b2JbjwXexy9Y/sQpWKVU1 KKPKuSXVZeefGHre3w2+jaEPdKHzduzBoCCGmtDtzmuxIcZWed3qvCr9pHjd E6RibG9jk4I9sYnGnlieszs22dkr7+AOwHfxLMD1Cw5gjDf6NsGFAg55cJ6D dxzXDb4e8FPjM+D9BQ8y+LCBUwePPJ4FNAzwrICLhNYE9E+gfQI9DOgzoGYN jQLwy7PvI8cFxzVe4FfGudiXFV0FaDEgH35N9weaB6i/glMe/jm4msHnDF5o cE6DvxfxZ661RuYq+I1Rw0JtAPzY4GxBrw0wRdc4fPH88QLHNuYt5kg3a12s g7H6Kt90sChW3cqPXXaeEK4i5BLBD49xwTwGTzvqY5g/GDdwLOMe0BcLjgbo KEHXAnoxeF3TxoAWB7Q38I6/gyMMeiaYZ9BHQS8HdAOh4wfdE8w9YE0QZ7Pd 7Qq9QWgdvm581hWaiP+HRekKjmVoWIJHhP2kQvZpRSP0mn4ox+6FPN8LwYGD vh5gB4ArgF7iVR3DCaIpg3ecH/Md9cHPjAvQcRTtUuiqdjfWF/K8L2T7UBgz GhZCKxSfwfGuaTjimNA/ZBsAPIDoH0KjsYvxYtf/05uU64HWKTBhfE+iw/qY QaK7it438B1AMxWxDTRUocHKYwDcbSFqIeDzYXsmGrbQr+Vr9N41xsmL17Jw IbN/73HsKrq5HItJ/gZ6vZWNeZJXhO4wx6XyGhS85PFa9XgNebw2RDf5Scv3 5jlvitYy3p8IyOP9zwN3DHKTg50tfA2bvYHWS6KDzGtOXvg+fh9hvewNs7YJ jzN6PdCzAn4Z8BUgtgbWA33WyDOxDffYRxWdZ+gyg395srXXu9vgYxo75bpw HPwNeaST1g/e187P3ifBDx7v0YJRZrvrsf0QrWq2Q8S2Q7SsEdedCL73Pncu el86P3nI9bCfI7mqtPO9x7GVx/u5x76BVzIwpFed9x3RzwaOr05YgdgnINOp So3DqtQiqEHsD0leEdxeN5pZlO3WEGx93bCiaG/zvkQV3FKE6yhtlhC9bbZn gnGBFji+C2w46qqI3dFfhhxlP7cp9Q+byvvNYTPqbzajm4Im8kKPQyezHoHP GpzX17S78YLu93V2FQJfNfJoOB50zcHxw/scDTWzifct6mmZ1NVsgNqdXDO0 xTneJ/bfpT8H2I26RiVqYkWouVlDNMzZxwHvD6H2bdmNJI+I7zcNInId6CuA fjiuh2NkiZ2bGtVE+xyfhW56D9Mk3u/kGDpsKPlXaKZDLx356OvcKpKHQ30H vFU3uNXlHLlOA2LbSjeb18v48JyXMenpmqSshtTRrivHgaY6zsN+BA20r6eh YXMaGbSgUU5L4vV+9RW0pDFBK0L+BHrxvM8Tx9p0m9lG6k/I7+B7w9xs4ezC +I12WxFyQPgc+A7xvTvttnIs0Yznz44MWxDHzcQ2QfKP97kdaVLYkSZbVzXq 8Xmcl2NqqV0h54g6qjavk/vCNd5ptaXedmM5Bq4V13iPeaN8H7lb9nnlPPg+ eJrQw8P2R8Y3atWRZ4U52cqsdVVf3q4v44ExxxhyjCE/Yw6BixX/Dw16zEGM GY47wm4h93q73Ubebwlb0jA7W8ad/S7qHlxHymko52VfTa6B4w8aYDUj9AQO N1sQ+7HA5hDvV5SwuxC4tiYFHYn9JRljcLyzLynzKNe9el24bzxX5Mkwxuzb 06NGjDj+oScCRY+FMXrI7Ur32R3pbjNKt5itaIjZXL6Ha2HfkDhmkvlyY1iH Orp15Z57mVfnjVxbkE0clxDwQVgbWHO9QlM+g3vAesMaQY0A9w8OJIz9vVZ7 AufGPWGU7nXby/Mfa0clT41evLuCtvJ59rnpLrOdPGs8S3Ba4flNMDvQJLOT zDXU6x4OutJDVlcCjwvuj2MY4fKeG/ageU5P4viFnrV60/ywF80wuwsGe6rb mcbZNxK48tnnvDqneQwwXpgT+Bnr/P/Pa4vnnt2JgNea5uQQ+1tyvofDrjTN 5d/DLsR7ktwX6vK4V3zXttsJb9x4o72M9YTw6jvm8wNBF3owzJF8+7X36VaM nrS18PPzPkSPuFffkb+fEXYj3guJfUpiv0buT3j++WfUe3FsXNtTZjdaFPSh VfbNtCEcQhvdOAHDzfs0vRQOpZ3maDoQ3Ebse9AOdxRttOMEvCn+f5V7M61x +LPhQDn2kqAvsc9OrjWEOMakzfZQ6XlDHez1cBQdCG8j3hsl/w/cN+oicm1m T+IYUo6BugD6che6fYj9b+EYwe+rzYFyLlzbCzafL+wv7/gdf+e99up1BQNp ZThAfsb1cSxH7NPQy8FwqVe/Zo4ijsXk/LhG/N8q62Y5Hmq6uJ7Fdl9abPUl 9pHlfnBNL5pXx2RTGKct1jBiP+v/19b32bcS7/fEfqvgSvdZt9IOexS9ao8k 9hmJY0la4w6SY6yzB8t14x3Hw1jhmFuDYTJWL4fDr16je4scA9eKY78WjKRX XL5mc7iM6/pwsDwzjNvS4CYZK1wz7uE5u5/c0wsWn8caLDwHuE98d5s9XK5/ iz1Mav+o0eCccm6+J/DF4HOo7+A7OAawl8vt/rTc6i/PY4U9QI6L+8DY4PcV 1gB6zuknn9/oxOW+cSwcFy+MU4F9G/nBHeSbd9LB8E55D5y7ZMzAu4n7fNXh MXOHyTXgHtcHV8cJ58IcwO/gV3TdIXJ9wDi8H4yjneEt9Fo4kjZaccGhgh8X n8UcWx3cTIvMvrIGsNax5rHO5we9hMPpWbc3LXb7EscGMm/WhoPo+aC/1LDm m71lDc1yLLEHsBmPWLn0kN1VbAO4+bC2sQZR93rC1IJLxxqDHWFfVo4BnrVF YR/BWONasOau/f9ip6+ML86/zOwv62BZ0E9+x9/xbPFdHPdJV9N0JybnZ5/7 /++hY62o2CjYD9ho2EDYSNjAKUEnmup0Fhsi9oftEWwT9ocpYSeaaHQUu2Vb V+3nHWEbGmO2phFOC9mTZR/nvVjs3rU9nI8P24vz4nzXbBd4Ju4O29FEs6Mc F7YX55/sdKL7g850f9hZ7PA0O0fsmFyL20VsIu4F+za+MzHsIHv5vXZ7OSbu DefkWJ5utVqLX4DrwZ4HHyDuNKe41ZwGuM1ooHW98Hxir8H/YV/F/jPMyZZ6 8///PO+Fg8LrZf9EPyZ8M+zP2Be7BPWovZUlL/iX7O/LO/Z6YJ3hQzYPq1Nb tza1d7Iox60vezJ6VLCnYk+Hz9XXbiIv+EvAWeMzOCZq38ACtDFrU1u7NjU3 aog/2CqoKefBZ7qEV/08+Lv1zcryd+BNsN9hv8a54HM0MquK/wbfEfsw/MXO dj05bgPnql/Z2IxQEydC2VYNORd8znpuJarulhP/ulFQRXzO2m4FamBVFn8W fmVpowT9alz28EKc8KP1u/zMsbGHGnUJxyCOqeQzGedPqWOXsoqL340++X+C fz3gfDmelv8rYRl0xbni4XXe+Z93IfjdC61fvJ+CPzzUxdG/i+Nc+5njLe+S 87ecDz8jRsD/oxcC3we+7ovgosQhH1jn5PWmFXpvB6e9QudL+flQ8I33nnNW 6uz4LL6D4+O6EKug/+gH43f5+S3ntNTkOVaW+tFi54g30wjkhbr5o4bnPRX4 HjDo4AxG/zP6oPcGp7x91udSb8d5wXO6z/nc2+UUybHAC8RxpDfXeFN6OjnW lBgL8dwDwX6JzfAz/o5zgZMCMR/4IIHZxvnmB4c9xzroPRZ43jSrwJsQ7JJ4 D/3YiPMGWJs9y1nvcfzq9TBcz7LWy++IL7tZ66QuBvzntb9nW8u81tbzgqVv 6Sz3WjvPexz3ejpYK5xJ6IMDpqlr8KLX0VrttTNWyndMZ4lXz1no1bMWeg2D RYJBwHsTK+nVNxbJ/1V38r2qwTyvkjXXK2/M4Tkx0ysdzJT+OvBBnnESXklj plfTmu9VseZ5oXM/j/90qf1/bzwon/vHeMorHszwfnYeEQwrMKu813vbnOHC I/mU0c1jf53vrzG4m70cp77HPqb8jf1djllbc6x8I49lNw91Qd6rvIVOH4nL eV/3eH8XfjG2v8JJyfZO6rDA1lZ3ynm/GH9Knxj45D42fig8Z/xWyPO8kOc8 uKQEEwm8F3rLGhpVvBZGTY/jLvkZ7zgGeDDRQ/GS8VHhSuP9wknG3sKhxrZC cJrx2Bby2EtO4zbjtUJwe/D8KOTnX8hxeOEm40ThU8YbheONXfJZ9KkdNyYU ov/3sHG38G+gfnqHsaPwReOY5ChwndBfwnWi1w3nxfGAyelvbC7sZWyQHAe+ M9x4uRAYYJ4rchzkWHBM8GogT8M+KjCuhXwvheANB9cHj00h8K83GU0L0VON XMrrxmcHruZaZxTwHJG8EPqG2C5APzWXvyPauuhlRL0YGrio4YO3CTVZ8BAh r8nXINq24DWCdix4j6GBCv1w5ODAgYzaCvS1obsKDVjkYqHhek0LGnqvwD9D Exa9seCMA7cqcM7Qq4WmMrSSkfcCxyhyhXhBlxb6yfgcr0HRV8a1QAsMmrvX vgOtXegSQ6cY/YLQ9OV5JVrG0FjG93B+aM5CHxY5RFzXNV1t6MdCwxU5Xlwz jgs9LvCmYhzwOeiYg/cZmtzQHoMGJziteG2Jfhtw8tAWRJ86dB+h2Ym8JrD2 yB+DCw+5ZOR6r2mKog6Pz0jO15kp2m19rY2iXQZtOOjLQdMRmpXQtEQeHfqr 4AMBvhzXDK496E3ivNB9RB4SvTZ4h94Y+AWQk0a+Frlu5O6hUQZNQ2hSQvsT uWfkrtFjCU0yHA8aZ3z/ovMJXUPoxOEF7CT4X1FbA2YAeWLk21FXu6YtCJ5H 9EJLTjZYIL9D1w6acdCUQz4VNR/o1GHscHzkbjGG0MCDPh0/z1ivwBVNNujS DXReivUI1sv5cR4cD2OPF/K5eMeYQY8OenfQrIOWHXK/bDdlbHFeHKOn48Z4 XsTQKzPZ2iscAuAYGOW8EhsSbImxbY4NtK5q3rFdkLw4zzNo0EkdEDWhOc4h qXvh/6A3h3P1szbJd9HvxWtYaifIpwNnca+zK/ZEQDHeM4QDkeeYHMNxDsag XwNuNBwPPOLIyaO/FTUMXJvk763XY2OdlPyO/8fn7nP2CM8v8vw5zouic4jn Cswfrh01E9QqUVMDVuIt63QscL6RWhRqI6iRPRO8Kdd2R/CajAmulfcw6bFF zhzjjv+bZQVS0/gluBSrapZVqJ9eZ1dRqPehzrEhOC71hVxnjYw3+txQa8A5 gNHgvTxWMrhaE2OfAxryPD9/5jl7IcY+gNTBUA8DfzA4F1BHgI3BeoReDvLn yMGjFsf+lmJ7pTgeU0etexTHL4p9eKmtoi7ysFEofXeoVQFbD45MaPVCqxX5 ecw9tidyzkp2aXVjWEcNMm4QPCf7oYr9TqnDoW5D1lcx9g1ig50tosWIdQS9 U9QJMHcxzuA6xviiJoy6Kvt8qnFYVTUNI1fHyCoj9wyuFrahsY1WWnqX8cyf MHzhwgN2RsYpuFoLRE83aonFDUOBV559phjqcezLxL60foqVDourukYlOQfv cYr9StXaqqXYl1S1zAqqeFBMao/sy8XYh4r9EfwldWzUwHA+YHTwrNl3ieEe ca8djKt10ictrRaEvdVkt5Nif1jhGGyjZZ1D2xBjCP0S6EliTpRwDXCMqIhb VmrEpZziCngc9DMAL9s4qKraBbWlnt7Wqi11ZWCyLjp/xN5wvo6tDz6U2iTW 1QzjoKwJ9uFiJ50fYuybSq0SddAh4Q1qvNlejbWjiuMbqeuCR5Rte6zQ+jKW dN6RfnCsqwXBWzFwTqJW/Z31G/YoxfuV4jhF5VkdpP4+0L5eaqbAGFyxrsQ+ ss7zHPlErgc1NawbPA/2uRX73wrzjm2ufIdjDMX7hVwbMElYE6hro4aMe//d +kvqc8AMp6zP5HjoT8ff0KuPmvX1RnWptbZ2rz439B9Xt8upSm5pVT4sqYAj xvqqaZWX84NjEHxjqMejb5BjHpmneEbgAahtVZDvgWcAzxzji59xTODDWro1 VUe7rsxv1HuH2dnCwWrZjaRmDz4B9GsAF8A+lsxHrM33rLPgIoSmOu8ff8dw nxgzzJfedmPFe5xiP01x7KfAvw4uZIwVxhzjgGO8H5yVtQ6uycpmGbkfWSM8 F4DvQD1b+F9CU8Xd5oK3wnFRYwf2g/deZTjF1PfBb7FvjF+EQwH32sioKvMe mqGoZQN3AE5Z4AaeCJTgOICXGBm2kHsElhGYf44/YputE7H1xvHYNuvjGPQQ wDeDWjjHvmqx3Vf4lZ92uym2PWJbugb15Z5xLnBdDnSuVzeHzRT6brBeUauF 7jRqcvAv+foRX8CHy8UeBtwH8JTAbk+I7lbT3AJwpiidXqvKuLMEp1HSBF+6 K3YL/kcjY0kOeBD4Orui/om9G3MdGARgQnh/Vw0Si1QzZ6lqGFks+PB3zHuA 15T5gnWFWibWLPv4sjfAvqNuzPGp8Gg/binBiKKfCviZOW4PlWd3UIOdG2Td ob4Pu4ZaNmrPHI/KnMUY3BK2RB+setjIVY+FMcG3Addyp91WMCp4se+vOD6W 9cYxvNgE2F5gLFALh/YqrhO2m+Nx9UzQU4GP9H/hdFUuOVtVSsxVZSOzhUvj uDlBejRmht3FDmD+9nWayLMHBkG4g9y60hcGfwu82KgzIc8HjSZwfM00LWjq ePBlce0qsVa9mvhEeHlKZgydcf8Unjw7/rq64jwtzxt+EHqxwOMWt7Z6vO8K b+djhoIGXVeMMdYieu2vD5YK/m1iZre6J7pT8HbgGZoRdJO9Ej4YeD3ZxwRu +gB8TWAN4BcAA4HxYr9MFbq3q7eNsWp3MFq04/BMwI/UMKwsOn3YC2CrwLcA jADWBGwPbDDsBp4Z8DwcM8meAXzO19bPYlOhedHaqaW6WdcJrgpYm9vMNqqf 1VTmM2wL7BP2FdgH9jsV76FXuZHMGgqawezvonfU2xAMoYvOw/SGdSfxXkSo 3Z4OfolVcucq9t/V6fQv6nf7LwUMcDL5jvSJPev2VvCB4Eujb2+O00Pqr4h5 wUXKezHwqgXgw8aegD36OaefytiP8vx7Vl2XWiwaAufMacLtVTooruCTQqOe 90U8d9FkR+/qK9bJGHjSsXa7B9fJO8ctYiuB9QFWFXwK7FcfYJ9W6tDtjDrS 94HvYu1vc4erM25C/ew+ok6YeWplOECNdltJvx7wHtAGBs4MMRJiBPjU2Cs5 fpJ5DnwL5jeuo5FZVewj5hX0PTBfYc8Nq5iCj4b9GdgqrNNp1lVsFewV8Fk1 3fJiy4EHgu5BllVR7GfzsLqsUzz3r52fYxxTxoAfYB/DQ57fstfTzGhAq8P3 6anQJ/bhJU+GeO9JW6shmS1qn/25+tm5pP6M/KM+Nn9Qc9OHVPVUvuxziANR c0Z9h9cmnbEStNscI3W7UdYriPG7wpe+1W6tzroPqCbxpHBxRZMrea4tUB+5 ecJbA78LWit4vuizAd8Gcing+QEfQjOnmvAkYEwct7tggTleEruMfQTcjeC4 Bo4E1wRuGGBIzjgJwYxc0+1GLMTXKXrLwC9Bjxn2D3rwwJdUcebJ34A5gfY8 8CDQG4fvirGDbwO/Hrg04JuBjQb/GMaU5z0wFge6G+uFnwZxL3jPob2+xzoV qxNWUD0tUw2wmsnzxZrE3oDzjDd2Ib4ufMUZITke8Ifx36WvAjE21hX2WOCg JpmdpPdnsHuDYL6w1oENwucQ2yNHAfwF2yTkLoAByQXeBHEA+kdxf/OcnhJ7 Ima0nXYyHvDpMa/BgVnBLSVzqo5ZUYG3DL4S9kXEJMAfYS8C/gexJuLo4oYj 2A3EyF8YUzhW/EzWxx57DPt7c1W3+DrFcYCamtqnRiReVjXM+epeuz2wmsBW edPdmPBH3Bx5SfjwGgdLpEbAcQkw6l2Ai0Pf6NfuVME5X7IfV7vs0eK3waZ8 6UxBvNyV92Svf7DJ2xp85PGYe4875EFXnO2dB1wJsJ6IW4B3+y/4T3qyMK6I U8ChudjpC5wfnl1XjpkKOVYr/MyYVFiM/yEfAsxLDWN+7iLjSC77H+wnDIm9 a4yTeBzYHuDE8Dt0odB/y+eNIb+BXAbmJMYLsT9iD4x/jlM/BmzPVdzYXQc+ NiYWcswquSP2YZCryW1sRARzBs3xEpYTgzYcYn7kLZC7YTtwADmf+439B9g+ HUAfBfA0jxoxeS7Ie/D5cmG78DPPU8Fc8fE5Dm3Btug6wVAhx9LH2Ii8SVfw /YEHALYWuSHcO3oEgM2CrgRifXDaAUfV2no+9qsxXe4F63278QlyUh72RPQn oycZnL3IW/F4doUdRpwk8Tb7P4jxwSsA7gDYe3A2IIeO/Ddy0cDaWE4j9Grm /Gdcge+Ti3wZ+qEwR3Lja2hmeJDWpT6kZPwdGmJupffN8QQObOR7jjhnYuB8 wt5yv9kFfUIKWDjgrPhYhZOdTh7OixwkP6tC3gfQy5QLXB/yQ3hhDfHfORbp JXEe8gWIkRD3I6bF88bzQi8d+8Qe21zpG4QNBO5paLBV/DzwwSE2vc/qqBA7 o+8feBv0zNTI5FPT6FIqEXekhoWeM+CxkNtAXI19fnZgSQ9/a7uWAi4WY8lr Djy2Hq9NsZnAJ/EeJX0d0FkAlxMwqqOdVhK/oa/AcboL5vdv61/ZR/A8E04X 6Qn8n/EYMJOSM+M1kAvtPcw9fA5cEYh9EEfBjsBf2W2MKURuFbYbvdz8zCQn yuMHHRrBZl3j2EUeB7hX2MFnwp5yLeh3QGzDYwCcpod6fr/4JtqS/IiKEhfo m8gvxHsQsc8knGHgp8f8Rg4BvRYP2V2ljwb+xz7rc8EdIo+IdYRcNPYT1BWA n0KNhGMNyf8j7w6dM8w79lljLYJlvP6PSHyDPhLw9cK/w94Nvmn2izzfuFN0 CqDNgd/BxYucI3i24LcghkAchH0d+SrkITnexhh4BdYX3ptOKFoZ6JkDZ2VH a3UM+zJiOWA4oTF1p7UjttYYHKtolM5Fvho5edQC0OONOcrrV3qWDxi3y9oD fw5yYsA7Yj6wTRcOIV5Tok/G8a0H/Bz6czsZL+RyXCo6dRgjxA/gjkI+GppW 4Kni4xTC54EGAWwdOEXYrmGtdOW/ST8f2wP4QoXwU9kPQyzSFflk2CDwzvI4 e7zHiVYU1hh/tivWFPucXYEpZN/Bg7blMeNej9cO6lXsXxXbj30e+Ujss8i7 wX9iXzCXfU4ZB46ZPLY1sOUe/GTeH6VvCdhS4D7BdXTQ+OYA22Y5NvqVehgm xkF6ioAT5nGX/Qv4XowDesD7GE2k1lE2mOXxvXnIuWP8gU/GeA0xtrIfuB54 ScERYlzxXHEN4DDA2gH+E7hX+BjIbWMcUUt5xTnpgQPqinVF6k+wEVuN4YXg gUJOi+1ubFlwVGKeTcZQ5BZhqw+gdgBbxHtA1xuNVbm8T0lOuoRjxLAvYH0/ aniF4MlEfYScO3h+2R77xtAAQJ0iF5hV5HHgEyKWLnboivieyLVXNsp4POd5 /I9KHQw8nby3gF+xK9vb2E3BRlkDS4Ij4hsgd4w9Cz2cyK0Dlwp73MmoJ9fE PjI0X7piz2RfFzXAQr7uQmA54ZvBp0KcilgYawZ1EvYhvL7ORo/tqYw/OC1w X8ivc1wvNQRoeSMWwj3Dv0OeHL4Y4hvk14BvRv6cxxEcKR7qttPtmGhHAltU 1SxLPBYe7DzqQ1jziNUqB6WlVs6xvOALgM+ZanWWHlngr1A/Rx08ad9Er7oj aY81RrAdwFFwXEtsT4ltqGDDgE0E3gjfBwYI3wUWbJxzo+BHLlmPU+NwCcUi a4n3Pcp11lAzdymVis8kcOoCI4B6N7BrbLvpC3OKcDSgT7m9u0r2hZLRmbQ/ vFXwQMBsoY6Na8C1B+5ddNF+mOfY0/RVMEWwFPwMBZ/J9+wB94i6MWrJZc2S tNFKe22dFbIGUVdjX9ibFOyR/mLU5peEfQVDhH3pqUBLjZ2crzyOYT3ocmC9 IMZlW8t75yGpGQOLiHo0asTAoPL8l1of9gH2jwvZvxHbAj8XPjI4yuAbI+fp Wsel92G2cUjw1agzoJ6Eug5qPaiL3BK8IvEq8m7Xm9VVP7epxJ38rBTyA7lu A8kxIfeE3A/yEXw/qlZYXn3uXJS+Dcw/xIBsV2O854uN5vkVM92q6kGzq8TV v7uPqSv209I3tDYcpG4z2kjOBD0NeLFvIjky9NB84I5Xf4SPKV77or31lns3 x44D1b1uewX+ZstqJL0Ps80eanV4s/AkzLIt6ctBTwby3yuN92OPWIXS//FT 8Ecs260h/Yro6UQ+DjH5C9YHEsOwHxXr6zSJLXf6i/1CbIU+HeRjEK+hn5Cf meI5K+ODfDrqK8DbA/s92+iBsc9BHgm5HsTubE8VxzKiH/a1NVU469GPgLWH PQPfQZ2Q57jkesFDgzzgLqdI6i7Ar8NmwR6gHwB5ccQMGCNo8SHnxP6nAhfh OufDGPjOEIth7FFredLyJZZHXQD2CnYcdh2+KJ497Av8a/DFwG+HL4T8EnwZ xNtPhVp6fq4Pqin4esi98/4s2lOI1dneSm8DenWU3VDiJzyDmYYl/STgIEd+ ExqJwOhjb4U2E/xk+N7w6ZE/Rn4KeRb0aPKYKI7t1EdWnroQPqTO2g+oneZo 4RZFfhjnhV/Oewhw2dj/c+Fzoj/oR+sh1SmzWg3PbFMxcy34fYUnYpiTjefk sU/sgaOEx0l8ZsRujc2I2h2OVhUSc1S95ELpXQ2d+9VGNy55OuS4MO+v9Ttx fCJ9Ptucj2Psd0j+B/03C+0+6rz9oOQFh0S2CnfUqOQrql10pQI/Mq6f/SuJ e7HfoPaLPBb8PMTNrnMctUb1RTBZQfevZ9JVN0U3yffRU4veNvQlIy6Cb8D7 mGDqBxk3eNjTeI+SnjLH6q6+Nx9UVZLzVMXMHPGJkV+Czg56BBD38/P2elqu 2CjU29HXg2tAvx1y2Ogrx7oFRzQ0JRG7w99C/zDHvYIRAX4GPcrApHCMza/2 wCvsb+9kSfyK3pQdzqhYS6cmanOI+w6Acxb7aJ9gg+D62SbJK9tZxrZshPgG iKX4PqHpg1wxauLwfwrZP/IOG3d7bYLnBY/CvjI0fATnDhw/eJrQa4E4kI8X A4cueozQ98J7Z+E6Z7DHsYKHfQzYfeA04CtB5xM1dOz/7IOIXcQ1IOaNGQ0l PuHxkfod23k1wmoh9gNrsEZYTqFOiXoz1jH7GIW8/hFfCgcjemxQn0W+9Vnr Lalv3GBVVw8EXdQh01aGO0N6Kcubc2TOoe8O/W6oF4L7zbSWSO3xms7qanOg 4nhV+pt3uaPFhqIXEmsVPYvgvzbdJaqz+4LkQMG53jx4TlVJzFO/hI/w/LtX bQriwvvN8ZZ6zRwlPAUfB3kyd8FXgHmTZS2Q40AHt116heqYWq06p14Qzgjw UKEH9DtnmthE5Jmv1ULY95ac66f2fapmcr7qaK9WA62XhLe5W2rd1WtJzZO8 8nvWOLU9GCF93yvsAcKdhvsDnxr+ts0art4Px6kL5sPqivu0Yh9GtJ/Qnw5O A9QuULfjPVjyq8ibomed92f1oX2vuuQ+rkqkHMV2R/ra0dtW3S2noJ3Kfhnb +XelVoVaWym3uNTH2G9RWW5F1SHIkvUKbvqUfYs8K15r6lm7t/C3QisQNS/U +mFb0B+F+Yq4AbVo5HQ4XlPQO3nFGqEOmLerHdYotdzuLzEZ+gxRx0KPHPoF Udd8y7lber4uOg9LLR1ar4ghYRtR+0G+CPU99CMi34W5iDpULGygoB+Fuhzq Pagzor9qpNEyBl53XB/854ecAxIPoZ6AehD4yFHzgy+KdQLN7VXOzRJ7ovb9 a/BnDD2O13rmsc/adjs5D+Yn+s+gzY19ZIqxLxd+LdYd6gCodz0f9lcn7Yls N59W7F+xvzBDnTInSz8o6laoVSEnhn0WOVdoyaKuhxoP6hroY10fDpY5Cr7u Q8Fd0qeftieoU8Ek9aUzRbEvJzzd6NUH/wO0G8ENgGtFTYltkvTv4jifW5Pl WrDeGkWXKI7LRY+gijtP/es8pT507hWdW/TyohaAtVIxMld1jK+WvBrqRnbi dXVzerNqbT+vytizhHMNfOLQ+0HOEDkE+CmoLUEDGz3ZtwWvqvsSe9Q0u0BN tfepOxM7hJ8JXFe8/6m3w7uFDxg1IOiYT7dicv4PrPGqpj1f8Z4r3KVu8rja FKbVYveIGuum+NmvVH+7T8r8Qt0NeUv4JqjX1E49K1xFD6T3q5npg6Lvit5+ cJHUcxfKeTFuvBerd4N7FM85tmX5ol8zILUZmnLCwXV/Zp/UU3APQ4ItqkfU VR0iqyXXDBuBMUC9BusZeUPoSEr+2kqq7MQyqTtcn14qvAfQ8QHPADRb703t UsPNl9WN0VWqnDtbfEPUGrB3wS6BQxz7PvZi9tNVz7irBmVeUkMzW9VgZwtq IapdZgWvIX5+8XnC/wD+5TNWQp0w8mQMvranqnPhA+ID/GA+JDny02ZC9HyL rEnCRfGdNY3XwWPqj+Ax2TPRC44+Zez96FN+3FbSG499Gf3kwCwMtK4XHwl1 z/HBjWqce6PU42CTMOemmJ2ltoPaO+oHyOdgD4BtQA70kGHHGgdLYrxmpD+V 9xdeS2XF/oBnA7gD+IjAsSCe5vhMcujof0Q8/n+5NcFJIWaDjwh/G3kyxMqI Gzl2QD8j9jXUz8ALjPzgAeQa2S/O5RhL8iDIo/Keyr8XSrzIdtrjnz2OQTnW W+N97kzGPu+hfxG5HMSvqI/iWPuN2wSvBx5TYPyAHUSMf58DLq8fRF8ROj/A qgLr+ZUxVTRXeV8t4Bid/b+k5EyRg0YMA/wiYmTEQexXe82spdIjWMJyhLsE xwYe8pwxTfifkINpbixDPqUA+We8kOdAbI9YlJ+Z5OqQU0COA/i/BUYfuQ/k nDnuKUSege2Gx/6Wx7Gj4D4LndtFAxz9mPBlAucusYnIPdzutJG6Ffo80ceJ XBzwkRxPe+CvQS4W/JLI0SJfDhwiX3MO7CTwSailo5aI1xkrIzla5E2Qw+br klwy8seIIdA3C6wG/H30owOvANuNuHye86b0EwNLhDo64jHUFMFF8KozUvbN 0+H9wtWLfRrrAdyc69zBisdEbA3HnhLXgKcAdfcC+zZ12X5CsR+lBie2KPbP 1GbrhCL3KxUkv+H975Riv1c4UNmfUbmJNeIP5Lgvsi+0jW2Xp14yP1IfZ86r f+3/VKXppXVtp4Kun1NZNODr5FQU/ZsqdhldPlNStKWvpK6gVqp+iP4unByl ksU134tuZdbSffOb6BH5LfT4cu2FK/WuTFs9PJ2t+0Sb6M6j6+nsZA3dzKmm b0hWF03D/ummeuyqqH4sHdPz3J56fqaXcKo+neimHw676gmX22uOZ3XfVU10 p3L19PVHq+ksq6KumlNWg6Oo3PSSopHI8YDudLmu5nhC33G0jZ6U6agfyMrR k/M66TGZVrpbv+t0w6Cy/s2+LDxEM8ODwts0ynlFOFSmRPexD/SGWmC+zf7C W2pO4pB6NOqpRGq/us/ao8aldooW8+DUFhWLrlWNzaQqlZopWu3YP1Afxr4P biHkwhFXA/uInmzkkFHPAOctcoHo1QV2Fn3G6P09aHyTc5fxes7/9QEXYi6O trZ7Pzq/e+CbQ9/Kp+59VCYxi+rZC6l5ZBk1Tz8nXLuNo0nhZS6VnEk/BA8S +5PSG4QcDfqQ0FuEPpXL1hNUP72QrNR6Gh/ZRXPTh2iNe4xejpykVxInybWO 06LIEeF3vzv9utScupvrpZbAc0V+7p/eROyLg1uQ7krvoHvMnTQxsofYD6DH okTzkm8Sx4W0yn2f1obHhIeS5x5BFwyaII+GhcIbfUfwGsVTW2mAtVn4NHmf oJ6uS33CDdQ/w+cIt9LtidfoXneX6GNMTe0Tnc5pTgHdH91Pk8y9xHEa3W69 RsMS26hfahNpcx21T60SLSZw59fJPEvVIvlUxZpHldNzif0Hqm09S+xDUOvU 85STelF0UfqkNwjHrI6sI7YjxL6QaI9yvEfsW9Pb5ljaG46R/iJw76P3ZpZr Sc8M8mQYY/Rs4f/RS1Vo3S59PWzPpPcIvW7o10SenWMRr6+10SvnzAZvl5d2 JghGHPx4wLTzmEveL8tZIJhx5FSRt0XOu5JTWvKr7Cei5/sAetyRD4Kda2Es F4wj/OOdRpHkN2FvOG6LfWL8GEOuB3n0E8Z5wbXBl2YbF0MdHbkV+MzQ5/vX eko1c5eq/uEmdW9il5qe8tSMzBvKSRxkf4wU7zHqIfuAaACyH62ez7yrtiU+ Vgej36hT4QX1W+KyKhkYGjakVlF5beZX1a1TtXRusoHuHzTVo1a11GMTUT0l 3Uk/UpArfJ/P5vXWy7L767WZQXqLO0zvjIzWftEd+p3MWOEzLxo9SX8RmaLZ b9Sfr5qsi1ZN0kXxSfpkwUR9IjtPHzs/XvMaFJ079jX1W/3u1u/Z4/RHqTz9 Zd4U/W06oc+Vm6bPbEto9h10evoE4VFOJW/RL8QHara9wj/aO9VYZxfU0JGC ssI79EXkJ/VO9FtoW6mP7PPsZ/yP475iumJQSlfOlNZli0pAK0rtDotUwt6v mmeeE/4p8MyARwP4U2CVsf7Bc409DrVM7HHsm3js73iljVmikwW+YswD7Nv8 GdkvUR/ZEBz30EOOXklw3tZzFlJfeyNNzOymZ9JvQq+ZNqXTtMY5RhynEvt+ dHOwmbLjy4jjQfozeJzYHyP2l+ii+zCVsmZSdTufeK+gDplV1DPhivYG+4lk u6/ThPQu4hiC7jB3UJ/IRoqZa4Wvmf1S+sV8VOb145airkF94Xh8x/hW8uQ8 r7xPnR+lDwZ5VfSyo0eWfQvp6YNuMHjwoP2A3l700oKvFz0y6BPBvAevN8YB eYLhxsveI1ahxzZJevVLh8WpvZ0lfcWzbEv6Icm+g9gXlnH5PpxGvwSP0K/h o8Ln+4fxOHEcSezbEo8llXFmiQYm+8rUMLqYWkWeF52HwdYWsp3XRYtndvQQ PZc8KpoPryY/od2RU7TX+Bzaoaib0svpj2lTJk0bomla53xIbuK4aLyhJrc9 c5J2WUXC7Xo4E9KxzDk66f5Ap8yL9HXyZzqd/oW+NX8FTyTxnknfRn6l0+Ev op0BPXKeZ8R7tXAjHwi/oILkF1SY+FI0b8GJ/17irPD8fhn/CbyadDb5K51J ZOTYRe4F4jGiY5Hv6J3wDB02T9PB8KpeBTiicYxD4Tf0dvQMveeeFS3dT6I/ 0qn0BfrS/om+tn8WvWjoHn9l8vFSF4T7/V3zLL1lnyY/+Ir2m1/QzkgRvWye FK3kFfZ7tNg+QvNSb5KTPEhPRd+gx12iR+xCsc959m7i/YxGRl6ReZTjvEjN o8uEs9BwZkguf795m/Soov+utVOLn9u/0o80zNkmPTWuM0Rq3OCtAO6JfcYD 7FfmDnCaCWYDOFHkCJGTAf9bBWeO+DVDzK2yXzvOQbXSeF/xNavXIp+qY8E5 xc9AgSO9alEZfV2iim5TVEt3NxvpEU4LPblfJz33cg/hltzjjtHvZu7R3xyd qn93HtO8bnSFgXN0FZqnOU7SNUfP19UT+bpy0VzNMbj+K/2E/i5vmv4onqcP Xr5T70qM1q8dHSk8lxwjaY5vRBO3Zmq+bpqzVLfe/Lxuc/l59oOW6qrRZ/Tp zP36uW39dPesRvp0NKN4X1VVg3mSb0dux0quVzzfVJnpJUSLFHybeaM76LvK tdM9wka6Wk45/Xr0M4nxnra7QSsEGKgu5YPZ3hvW1x74J8AXAK4C9HY/aHaV /sY+QWMCbyv2JXDs5zkdpO8HPvpfxpPC8zrZ7USVw7nE8R/50a+peKaYX/do RZ/Xr/DXNsyu4ldIlfIxJ9kW0jPmYRqf3kmDIltE8wX7aq/IBsGx3BK8Qnby dfEZHk4fEIzCQudtsWOvxE+Sb35NJzLf0zfhz3Q+/j/62vmZ3o6cofXmcbov vke0n8HZDU6DCk4paEN4a6xjwheLfkT0pF4wHyaOXWlQ+BLlWbvpIecA9G5p XHInDU5uobbJFVTJmStc4ujNRk8mbBHykuh1Q16TfTCP4zWv2KErHngL0GN7 xklQA3eR6ByMs3aKxjB0MR63iSZF9hLHBNQl/QLVSy4kw7o6x+E7HLXvEc0R 9gfJTC2hXuYGynN306LwbdoR/1S01qD7+7N7iX5N/0k/RS7RGTdDn9o/0nvW WeEOBqf488G7NDsTsN9RKLoL8I3gx0119tGD0QPCp740eEf0dt5yTgtX6Hep 3+hc5lc6Fbko2m8ct8o518U/FL0aaDhgXDimFw0y7AVjMtvlb4n4fuGKzrcO 03Pxo7QpcoL2JE9RkPqGToTfi93Bc/o8dVG0go7a34qt2RktIh5HsY/QeHbd 4/RS5gSlkp/R4TAUDmOOGahMfgm/ekE5v360st8kGfFvcKv7LcrV9Fv2q+m3 KKrhN82p5kOHNWt6Rb9mvLxfNausXzlaxq+UV9qHtn2V/DKigVwrp4Jf3+Bj WBG/uVnDb1VUU/QxWq+qJboaTTMRv16ykl/VLOuXGG34F1N/0MeRH4iSX4ku K/Q6ndRB0Uu246+LP9k7vkH8Q/jXDeKLhB8e+x98a/Rlg8OhpVsTdtfj/Vbi RvSdAQuFviPgJpCjQ54ZOD/2DSV3A6061BjA57c5cUK9Z59VF+0/FLgEEc80 6FdZNy+qrjsm6+o+RhM9Jru1npbI0Yvtvnr75RH6/azx+qfzD+uyHWfrrDUL dPPsZbrT2dXaemi9vinYqG8KN+oe59frTh1f0DdMf07X7D1fF4vO0F+cn6yp 4A69I2+UcO3CB7qy7WndIH+Rzp2zRg9v8LK+W6X0WCelh3bcJjpgxS/P0GuP DtJdM/X1kdQZNSh4SVV381XjYInow/2X/k+Bb3deqqd+zRyl2Z7rTTlD9bRU jm5bUFu/lTit2sZXSA4GvS6oVQC7A1wF8DDwZfGOuik4hxoZS6RPE/gA06kK fZCu4LJCPxfy9Kil/2Q84nUN61MVd55o9AEHE8kv6zcKqvgNrMp+2UwJ//3g LD1tv0FtzBV0KpwkvBjozwbPAPRIagT5Umu+PfkaTYtf1eDDC/pWmAP3uXuI fV9ZowlrPz0R8UULalHwNs1yApoY7CZlr6WywSzhRbjRyCJwVYPfCL2v3we/ eejjBo9CrWC+aHs/lDogWjbLXV7DxiFiH17mF3y0T4KJtCmI8zl6Sj8+9P+k /97uzbaxj/BSoK8ePAw4JvuIUvduFFkiXONYr1MT++hJx7+6njkuAsd3o3Ax XXIeF54C8BqAUyFl30KfhfdRKfuqLcq11tDA1FW7PNrZToOdLRKHdbZeoDaR FRIndQhXyXl4btHNxkvUL7FJuMMRg1Y05tLX1lThZUBvP3AC6HUHTwn4DoA5 K+E6VD+6iNqmVkh81T65iq7PLCVoEP1jPkVpd4JgCMBhAK4W9NADL4A9CnwH 4BIQroRgDL1rjKMzdoKKHXpavg8tRVwL7Pod4Wu8LlOyv4x2t8vfeqZcyrFe pA7pVaKD3i25joZkttCk6F4e37doe/QTOmp9K/7Pr8Zl+jf5HxkFxfySoeGX ShT32e/0y4Yl/PLlSvmVVpX2I4myfs3R5f06kYp+3aKKfr3Rlfx6iUqyH2Yl +JXPf1tVyW+YVUV0MKFV1OpyTb/VebZr22r6N6yq7pupqn7ddEXRyy6XX9L/ 1/2PfrR/lz0Acxf73dbMR7QpeoKWO+9SfuIwJZL76dbUq9Q9XEfX2Yt5D54h 2nHgmphn96Rb3dbSiw+NnReNY7xnrfP2Obd6HAtKnRr4SmBc3jXOxlD7B0/v GmuQ1F0bpBap3s4GxfNach87058p9gFV8SxD14pU0Ddsq67bp7J0j6JGOj66 ubZT7fTD5XL1gnRvvTk+VL8x/U7Nfor+t99TutKaubp+zUW6xe/LdBf1ou4b 36iHn92m7+y3Q4/NS+k7n9yhh/6+Veucdbr578/pyPRn9OX4E/pkcqI+VHSX fqPgTl20bZIu4TjaHLFEq+Vr9dCzW0Uv8uaizTqaXKkrqrn6cPbdmmML3SKr pr7s/AO8qyoVL65b27X0rU5r7SS6S0y5KKevnmJ21h2Muvqr9E9SA0BNCXyk VzGPbYRHuoW5XLF/ovpZmxTv8VdjYec/aOUAFwRMk/SgI2ZDX3FPx5Q+QtRg MLaocWbZFemrcAp1c9bR5ORe0cqDLlL1ZL7kb4B34rno7XBGAcMoPfGwHcgt QGsE/tFEYw9NtvbS6OR26hx/gSLWM/SFMUW4WIBfgb1JObfQuwH7FOFU8XV+ th+hc+EDlLYmCCYH3DnA2oDfClxd4FsAPue89aBomfQwXbF99yZ3iWb1wPhL FI2vlFwJ9rijzj1iZ8i5g750p1D56BxqEVlOvd0NNMzaJj4CcjZYx82spaIX 0DC9iLJTy6hL+ILYu5HRVySGvDO+Q7TBbzRXUU1rvlwnMDTPmwNohTuAdtmj JcdSI51Pbe0VxPP2ai4muo5aRJeL1tipYJLksMDhJNwZTivh2ACWaZM5VHJb H9r3iuYXsDngMwE3E7jU/nb+Fd8QmgLgcgOGtrNTT3idwL+FOBScGaiJww9G TRzaguCT+875zatolKbrjerCIQYeNOCZwB+C7wvOya4vXFQD3euFNwk2DL0d GMfKwVwZF97z6YbUc9TUWEp1gwXEfj1VcOdQ5cxcee4c70pMf1dmBz1qeqKv BQ2lTWFa/BO8oOWw2TlBL4cfX9X+YT/5WPocfRX8JFo/f2X+oSv2FXBT0F/h P8AI0y9R9iXDP8S2/Oj+Tr+Elwi6jsXMYn6pvOI+x+l+6WgJv3i24V+K/03n 0r+yTTkvPv6r7ieiM7Qk8g7NzRySvWVaooDus/fQ/+PpuuOjqLo2E2oowoKU oIAjRQMirICQZO+BARFD0xUBI6AsPSDiCghBKQMECH3poQ/V0JeiJNkbHBQx KOoqqKioo6KCoq6KgvU7z8nr98f+oiHJzs7ce+4pTxliH5BcMd3dqG+PL9fJ kblyzqImxxkAzBb026CNAa0JcFQa2TcJNvF947uMt+3Rgs0EHgN8OfRMwYe8 060jerGTjHTBscMbCX5dE5yXxK+dY7Ro0jdMrUEcR+meyw0oI78RdQ/dTg/m 30Fc24iu/5yIRVt9D5EbHkpfZoXJyJtFtc7Op8aXltJdjdZQeo1N1GPJdnq4 bgENjO7l2m8P9UzeSWm5G6npkghVW51L316eSG7+UMm5kNu8mTqKyqlZZOYv l/zqMbWfRvwdpceS95OVs5VuCS+h95PHSU+rsXcTwTNgr3Ne4ugteTXowfAd NN0m4rOMVngPyM9lWs2oZmFlgj5+T3Onqm8vUr7IAtXJt1F6zvCmh1c4/KU4 /qmrzrMyTwB/AphC4OG5Ls4Ajxsex7xnheP2i5UjesLQ8Gxnp8Q4Juqz9ihd yTdHJ0JTeX1111jjqPPaGg2EZ851s+gT8PehJRkDxu9z42ntCy4QDDbOG3BY gB282aiqoXuIWgm4Y9RITayaojHT0bqF13M93TxUW36upl1Z9lUj5ybB5nEu KHvkVS+k/zFmap+9QJvB5dLDbphYLLHmR2eK+HSgfwofD2gzYV+j/13esuX8 Q18KNctwJypxDGdjD2u71HYNjSVS3+HzJkfnitcB+r7wdOJ7LDHlD+950V3a 5T4s+SF0x6a5AelHQOfpe+NZXS2Sq+tHFmmu2XWSYXOeMELbVhfRDIRXNLRN 4F0y3IqKLiXuaW0zWbRr+hp3iP4dtHlaW/VEY/E140vktDGuHQWPzmeHaJpw rhW7w14pWiKYkeHcBvZ+gNEq9qyREeP9EmtjrY3Z9suiWQl/FTxT1LvQX6xp VYavlnioACcD7ZOO9obYU+6L8IyOcQ0lunTQYYp5Q8QP5QfvWf2LkyNctK+8 sPijfOWG9Y/WFP23PUNXis+WXo3EL3eFrmcs0k2jEX2buZxj5SrdIbhecqtH ffv0k/FjembwhOTHmxNv6d3h96T+2+p7R68wS3Vu6KTOsWOSa4ed43pKtFjP Ml/W851XdCT0ul4bfkNvdM/qDdGzeq1d1leaZ76in/e01LXIx7kukZnDQ3HO 6UKO7hBZL37ZeJaXnUnSS0K+DC061OvQEoLXKvCZiEHopQJHj74GsNrAXQM3 BI4MdCSACXnDvgTMruLviw8FMCB8VsHnQjX2lor2+mj7iFqQeEUVWOfUqcgX 6qLzA2a/0peBfjzndnRPvAF1TTGpf6gljcvrQPNKu5JT8BAVFwyhc8ljxTOq gmdT7Rp5ZOrl1Na3jsjcQr0yd9IjqXsoK7hP6rEeWdupXf988QGsdGk2fX3j GXozbRSdCg2j83lj6d8g12+rl1LnkVvosQ77KbvgKHHdQo94BdT+fD5Vv5gr PXGuKai7dTtx7KB7UlLo4eRUmpHamXaH+1FJ6hNU4nuCdhY8TFP9Aepyo4n0 t980vxYPkGLrovo+fk3Vz6pGfrvMQ6aVXVc88aBlD497cMTBX1honArALxmY JswiJ9qFEsN2xOPiK4AZpeSfxiLo1sagvch1u+b4K/gz4B6hs821g9TM4FWg 14f6EN5t0KFCbfCgfYf+x/0nxnmWcCvA6wK2Hvo7wJK3seqLNhj6xNDDRPx5 0njx/zHsjY1lUnui1/yh+10M+/S8M1ZX98+Tmdot1hJdJ5wn/ePXveGSe0CL EFpfqEkwA3rVGKavhaaJT1ID/2Jeb8t0o/BSnRLm891YoJOdueJ1bIRn6X/M mbp8yBY/TK6fJR+s4pvL5/JkXegMFl03YK4RH1u4tUXHCv1QzIygnwhNN2jM IYafCD0hum7IXYCfO+peEK3dh4wXYg8bBbHx9ovCFUIsgu5URTtJQ3cKfQrx xTP2xbj+lb0APSJg+jCHMqxZsepurmgc4XvQH/LZVYQjAT1haO7A+xRzC+Su wP0hjoFHgj49+I7AJsJ3uZG1VOb/uL+oQ4ChPm58EsMza+BWE50w5E3I0aBp hvwUMwHMyeZ6lmgCYl6Az4wa5zN7gr7iTdJXrWf1Dybnuu4z+rPQBIlZV4zJ +u/QDF0tnCt9mrv9a6XG6xvfJZ7ayKMf9e+TrwPie3Qw9IL8G8dfyWUf8+2X WedI5zDXrYf1iHhUP+4/qB/z79cD7b16gLdHD4zslRc8vdDPho8Wn9eCW4cP 7s3GQv2XMUNznJY6GL1CaMJBhw65EHRGwR+ta1XlXPb7GHimmPuA7wIdaGAp wCcC1wdaHN0sRzRLoL/OOY/4lQPHCk1+NzRUZs7wluwe2qaGxg/yWa8Vx1Dx HIGH5Y/R3xW8K29OqSr+F4G0xtTXdwcNd/w0xcmghRfuo01ZfelIZhaV5o+g S5nPiL9ozYL51Gg6125nV9G9vg1kZW7l3Gobdb26lTru3EB31l1FDRotpuTM ufR75nPE5wZdLHyKvk2bREmtbaqvF1GbJWupW4HD+dhuerBgN3Ub6dBd3mqq OX6+zN8O3BhAc/Itmek/7m9Do/ztZO7POQFt9PelDdE+tDjRncKFnahfZiql u7eK71LTAh+1vHGz+C/1sJoS59vULWpSi3htSoSuK85RxRdjndlbONjAmAMP Bq92zOuXBF9TXOur7dG4ClvHxfMFMR5cWHAzsAfg0wMMCvh8wHdwHiQaF8iN 5honM1Ls6qJVhrMWs4rD7ofCwcY+AXYf/Cvgdnjtxt4xvo1BI/BTc4LkIEnu LDmjOOfTB9z3RS+Ma1I546FhhtoE8QVcrluCS8QPk3Nf6WPXCM/TX7hPi47p YfdR6YH86UwXHECH0Ho5DzHHRs+mmReRORdm/YgvP5s5unJojswN2zhrpff8 YHi31HCWvVX+PvrSr7oh0Q6F3iK0i8e47aSvgFrtPTtb8oU/3Oe5rpimL9nP 6LPWKNH3RH8KGowDQ610D7up1ESop8Cz6BYyRR/4vzwFtRf2APJC06qlm4Z8 kjNCcxqahKifjVA5eBOKnxLHaeFLcuwV3TPOR0XDDdyKj62rMZ9VRZtOLckt uXaQeAgdY3AMEftwxhwwPoi9aXwtPTn4xUNTsLPdRPR6od2L/Qm94PlWN8kx 4Sl6wXlS5qW4f4g5iD3wjkNdfDY0SrxJkTu+Y46RWJTkt3XdyEKdGlkl/X/g Kx4wdwgm4f7ENn2ff5vumtgq+SniRl9zt+Y1qXt7OyUOoUeA+IKYE4oekjks +oOjo0f0uOgxyX84horX6FDfIf1ofK/uE94ldXyH8HrN+4vvw3KpLbl+0FWM ueIt+Z0zWTzrwKVBLw6amdDPhm7iJftn0eID7mCxcX+Mz2Xxoec1XAQ+Gvht nxs/ZYDbxJ9XOAjg5r9tfROA9gpwoMAeAetf0ZotmOMMZ5N4GnGdqJb6Tqvd 0ffUyfjn6hPjB/Wn8ze8NsjMqUXt0xpSZl4zeiKvDeVkBWhVSk+Z+WPW/72f c6NSm/hcpSbZy6hlo9XU5thaah1eI7VZvUaLqErzuXT98nP0uf9pqcteTRkm 3m5XSicR1w9kblpOnB9SV28r3X9xG3GeQG0vrKWU/ovpH99MeqNwJG1LCVJu fleadCONJuR1pEkp6ZITwVt0tmHR1EQGjSltRwMLWxHnG/Rg5A4a4LWkEf57 aGJhGnFuSM+nEY3xtafO0SbiFRxxXpf7sMMLqoe9O8FdEE4+17/iE7XKLeV8 8gO1K/6uynFi4gN8yB0oWjjwSoBXOLC4wPyC9wY8MLS6gPWDRgq8wLDWoXEK 3VLOwzCbEZzfGKN9RnWjkuD1exu7ijmXikEfFHPxlolVOiO6SXQMPnHHywwQ uHto74NDCU4wtL45L9Y3+eZLrwYaCAF3E9dxK3SyPVdmX+jTor9VLZrLe3qd HmTvl745ZsCYgQ2K7BcvSfQ9sPYQsyraswU/EAy/INgf9MAxS5rrunqYGdWd /BulzjrjjRDdEXgyOvZD+k1jlP7LnS69evSsUHek2ItlDoPYhp7XD+6zss6x 3mt586XOA2YH+xYejwvM+6RfhB4YNO+51pV6DBq40AxGv+yS84z+wntaYio0 gTETRV7KZ67+2b0usf6ccUV6QeBOVDCSBPcA/hziDZ4H/jY006Fxjv4Q9HUR O9G3h14uakbkrZIL2LdLfMQ+hJcocB3obcNnE7kNcsbqiVxdIzRPVw7O0eV8 swS3gR47+v6YI6Ln92douuC9cD9qRudLDlLfWSTzScSCVs5qqZEQi4AH6ecU 6EGh/fLMULP19XMdZTk63duo25vr9b3uet0lvkXi0WDjAF/vMT0lWKyfN0v0 LN/LenqwhPOzIp0dPKoHe/ulDnvAt0Pmup2DW3QgsUn6660ja3TTcESnRMtq eeBP4Ndc6ozQLxqDRLsZM1dofEMDF5iOKkYFDZ1R1MDwosBMaLPxtnhvAPc5 1DhUBL4N9AnhHTPZThe/Ej6LRSeJ94HgxcGPAL68ijlX6g8+k9XQxEHB+a3z vamOhC6Ah6R+8/+pgN+5/UItahdJofuSb6dHS1vRhMyOtCizOxXkPEKn8ocR 329KZE2l8oW2eLRjdl8/uIhqX1pAVc/OJSMyi34J5tCXwbD0r9+OjKbzOWPp 69SJVK7iLKqxcx7Vz11Et55fQg0bLaE6hXlUpXQOXYtMo4+j4+k1d5jgA1CH bfY/SOsTvWldam9a4c+keYmu9IzbibLsu+i+yybde7kh3eM2EBwVYmdW9C4a 5d1D4yP30gjXT70vNKemjo++TfyiltmnpZ8Ez8QG7iLBewPH3dO3Uw32HVB8 35SKbBaOEXCl4ICApw1tQehugM8GnCo01ODBBO8a+KfwPovVdCpLngIsDzSm oR1fyU3SwB1fs6dJLQEcG2oOaPej53yHs1JycmAIsUbPGWNFtx0ax9Bohn46 etzoNfQ0dupR/iOa6xjB5Tzg3yFzKKzrJtFlur1/veTlc0Ku4AVOWV+Ixzbm zsBAIcYE7RdkvpduluF7uD7SK0Olgs95Ne7pE9Zn0ludZbwsMyM+63SH6HrB DpKxRX6f63z9jK9QMApjzWNy5sIvs21ircTTNmGuM6wt+hHfHtSWemq8WE8J F+sx/jK/bcz2mjjLdPmIrW84zwseoHZ8gfwuelf3+7frzMgOmefg/MZ9qRyZ I/M69J6+MsswWz8ZUyUHQc6FGAktcvTPEFNy7a5Sm540QxLzqsbnind5k8gy zbmwxE7EQ2CiLtpP6Xfc0eL9jZiHuVv1eK7m9aFvSywTb/CmkYj4nN8RXCnX hBwUnwPXiH4/9roV3qozwpsk7+AzmfOtVfoOa6X06rH/EVMEH5rYJ7nKcCsq uQxmkqitQuFD+gnnoMzp4P3+tHlcT4wWcswsll7P5HCRftYsllnsFKdYsKiY v86MntBzLFfPibgyq8f3JoYK5W8Mju/XQesFjr/b5fnB65zrUN3GXiv1mWkv l/wM9+eaM00wY/AGRmxG7ge/D8zy4bkCbWV4FqOu5XNLNA16Gy1iiEfgh3Ux bkuD/gM0UTmGyZ7haxVcZRO7pmixcQxT73ijVaX4bNXMv0J19TmKa0yJQ9uD cfVa/AsF70X4CDYqvIn8OQ2Ia2F61HcXPZXWkXIjXWnzjb501P8YvREeKbjH K77J9HNqDv16IYd+sXKkh/RN1kTi+oI+yBpH57xs+jA+jrh+IM7V6Xry81Tu ykziuoOM3Fn0V/IM+il5Kn2RGqb3U8bRG/kjxY83dmEIHbGyaHd+P6m9lvse IDu/Cz19oSMNvtGa+ibfQfdfuJ26F9wuMeYRN1UwCSGnLQ312lBW9l1EyU3I zKpFP/h+V8XORRWxXhdM+Sj3sOoXLBDuCXBZwA3At5XzacW1jGgncr4j2ozQ gwRv6Ufrd9Hdgj4hNF04J4EPGjjqsYe8O8TXAnr9XAuL5wT6CPDEQZ8ZPehM u5no3UOn/zt7sswmaobm69pGnvRf0BOu6MzWdYJ5ms8bfV/ckbkL8EHPGyX/ j09Gv6BXeKfMwjlP0o8nDugpkWK9IvG63m+9L9i605Ev9StRj+uyT/Q+77ze Gn9b50fe5Fz7rN7mvqMLouf0QfsDHQ19KLi5TcG39GLzNc25nx4ffFFnR48K 3uB5fwnXXq/q5cbreoWvVC9yTmk7+LLELeyXrHDZXB79jMGJ/bLmJztFHENP yL7AzAh/T/B23h79YGi3xL0B7h49KLxf4ij2HHrkfZxdWlmbdVvfOpndNfaW SpzCjOpuY63EV9SR/tA63cIsw33K3MCaqrlmlfwPMf0Pc7qu4p8rs6y6oYXS H0Zvq6Y9X3qyqEExn0cvHnElNcwx01ormIy7jDXik36rt0TyFjybev5Fms8r ifUdIxvK6iV7u9RRPZzt4lOcnuB9Hc6Xa2sXzJfcBXNC1LTdw9sEZ9gjvF3y EmDIe8d3Sm31aGIv58wHBdM0zi6bryK/GZU4LL7omIVmhfbJ/QUufYx5VGIL cIw50ZieYnM88nN88golLsFPHZj0Me4ROT94jUutZ1lb9b3x9To1tErfEl2i fdEFulJitvSnrnvPSez53p2sL9hPin8EPCbQ+4N3ATyX6tjJGnNHzBIwV2hu r4h9Zk+IcQ4g2ojQFuGcJp3rdfEDRPyBxirqBPAhwYGEZtvzJgnnroJnC4er u7NNjbQOq1znpCoInRMc5M+J6yo5vwJhNnX3jXrU1W/SwGArGhftQDM8okj2 AzLbL4wMprdKR9Fn0QkSc67lTaM/s6fTv6GZ0jMyds6icu/OpL+zZ9Cf4en0 l38GlfuC/y1/FiUl2zJ7+ztrBv2e/Rz9VDqFeO3QpYJn6KuUZ4hrCvKiT9Mn 5lN0PjSW3giOpJIbj9PBvIHEtQDlRe+jnMIAPe12pHGFHWh81r30dEoneibe icLBTjQ2tYN4kD8YvYPSCm8lzmM4T6tMfyX+Vl/5f4YGGjRn1B7jvFrqvSa+ qpxfqGZeRJUP2eptZ7TgsqDnCH4ouIvAwZPXWPg60GAA7x764dBwz7felD4N +g7AHqIHhDkQzgz4BOD5ofeMGgM+RLPczjK7glfLSW+o/iA0Tn/vTZZ+TCNr qaxlrFnkM4P9B/Rj3j79kPGCYLI7hngP2uvkHAv4N0u9j/2N+clM+wS8usUD fHX4jF4TP6M3xjnmmHFdEDynD3jv633m+3qX965wLxYFTwkuiHM0iQMDo3v1 Y/F9EueAjQS+Dzl+XvRVPdt0BVcFPPT46IuaY7h+PH5A+qTAxgETNTlYpCf5 ivTT8Zdk9jMyfFgwN9hLcq7HjwiOARjPsfGjfMa+pIeah4TvoYKbBWsA3A5m 4sBhYz93cNbL3sG+Bk7Ib63TbeMcK8yyHAOcjZTgYsEQYF/V8i3Qtc08maFj lp4cmquTw3MFjyQ1Y3iZ1J2t7bK/39ZYp/2RdRLjWsZXcc22QmIQ9EYwz4Km CHrHqH3x3vI73lr5vXvi63R7Y73g5VEndbDXy/PpGN4gX+/x5wtOqlVwtcS2 tu5afW9iPdeRm4Uv09tf1mvuFyrQD8dfkNiMuAauy32uI7EO/Tu8cB4hj0HM e8DYwedZWfz7L/eixGbB0yL2ofeH922WiOgGxmLNNYroZGGuh1j9jjFG4gz6 dPCbgWcL8FXwZ0LOg5oV3hnQpSywz8XGukcFgw99ss52E3g9iD8h9O/BV8S8 DDxI8JyhR85xUbQ0wW+GB+tzjhK/WHA2UyKLFcdmiTvzQ6+oXf73VGn4K5UI X1c3xSvRbYma5A83oC5pt9HDZiqNjN5DOXaAFt/oTpuTH6So8yi9lhgmXI/L 0Un0q28a/XNhBiWl2lTp6myq4ptLydPnUpVkfnlzqEpr/lp3LlVSc6hcKsee a7PoX3sm/ZMykzjXpRuZz9NviWn0W+pzxLGY/vBPpz/zptO18DT62j9RcqjX UocT16i06/LDtDrakxZevo9yw11pblpXmhfvSrmZXWlWWhfKiQQoHOpEI+17 aIDRiu4rNYljM3H+R75gFSqfZdDl8K/qNeNLtS3+jnre1eoxY79KdzeqxsYy 8R/nOl/woPAoB6f1uDdIuH3o80OvNOBugs41dCSLofuQbR+V2RY8TP4x/gUX SDd0q0sfFblrmn2r+LXAhw3+MNCexKwKXkrgSQB3U9XIlR4Q1g5ymv6hPbp/ mPMFZ7fEIaytjg6v50TZXgFWD/k8ejePGwdlT0+KF+oZ8RKdF3lVrzLOCL9r p/Ou4JN32+9p/rx6jf8N4Xohr0f+3z+6R2oivDCDQX8BddLECOdcrhYMOOLO bMMt6zUAx+jTZWcu1wTPmIUSQxBLhgejekjogMyC+Z4K/wvfQ1ya4LykJ1tF UouhbvsvfqEWQX0A/TRgt4HtRU8WtSW+lxnaIb1Z7EXUOunGJunjov8OjBNy ItwTxKNW0dXCY0CdBPwksAtNg1wzhcpiDebiyEmwt3s5O4XfhjoP74scBrkX alPEjXt9ZS9gpoClARYT8RH7u4tvq/TgcBZ09baKPtJ//DhgpFR4s+6U2CCc N/R4gLlCHoSYg36OXC/HLtS0GaFNmrzNWkX/93wRz1yu7UIbpXeD98DfQD2L s6aTu0H4Gqij2prrJFdETYj8DPpLyPv4/JeZALRNUVtifoqZAPriwGnCiw1+ WsBVQO8J/S6s1T/cv2Jch8c4dkjvsb69iNf1AOHgQreLv4q2F3yKoRMJ3jT6 oZz3BFa4rwfgDQzNeHC5p9ukDngD1FfGM+om33yVGlwltRbnvIqfv1odPKOO uhfU+77v1PX4n6paYUVqnFyT7vGl0AM3mgpH9GmjE82OdyHOAYR7FjMfp3fN bOIama6Fpgnmp1LKHKrWP5c416U6I/PoZnMh3Xw2j7iep1rNF1DNnPny4pyX qjefR9Wycil5P8en3LJX1WtzBVNUI2se3fT3PKoZnE81Vs+jKmqu5FA/+abS J6Xj6XR0uPSDtl1+iFZdzqRFke40P6cb5eZx7LE4DiUsudYZF4imWBn05OUO 9LjZhnrfaE7pF26lO/03U/28alQpuTx59k/qmPWRyrVOKq5lRM+jcXypqp1Y INx86IpU98+T3v3V0LPix55v91aPma1FD41zdczFMv6bkwPrgtllNauizG3g IwofSfGJMsrmPPCRAgYVPk943vAbhA7XMecx/bU5UVd3cwUvht4Bei7YHz39 O+XM6+TbKOc/zk7so0bRpYIvRr/EH10n67JHdLt+OPGCHhI9oMdZnLuEiqBN LbVTXuhVbTsvC+YSOXlfY7fsoXvNslrmHl9+Wc3g3yR8z37RAj3UPSg5vOQp nAuNCx8TbDfiDPo/I9xoWU7GNQTw1Jj3IhZgX6GWwXXh76PngPgBviw4L70T OyWucN0r2GTsU+QM+Pm2/nXyGf/7inoHvRZwTpETtfCv1M0jnJuEIoLvxn3g s1RqKfS3a0TmyTmPr8iD6gcXad4runl0hfQ62gTXSv6El9RanF8hZrX0Vkl+ 0iqyWu4p6jHkX+jdyIv/G3VLq9Bq+Z3WoTXCtcHvIN5h/0vM4xjQKLRUajfk sMjLgGuUHhDewy7LgfB38D53hFfKDAE9mEb2UuEpg3+I/A283Gp2rtTlqNPR n8FXzBvwtWJ0ti4ftfUfxnTpb2F28bo7XPCvm92+Os++T7iI8F2Dtxr8bjNC jYTLU9+qppMMQ3P+IvMNznPFFwp5PHQF4GsEPUh4Ps81uopvBnia8KhGTwc+ IfAEgQcFcMBNHZ/ox6BG4LpNnTPHinZFY/8ylR7fqAaG9qpw5LhaFD2ldhjv Kh39VF0Ify/c+CpeeWrgq05NM33kL+Scx3cb9Qm2oFCkLYWzO9Eipzut83rR C4l+dDT1MTqdN5w+NJ6k741npbZCjnNTc4490/OofmQR3ZpYQk2Cy6hJIb+6 L6NbCpZQg5TFwvXwFSygm0o5BkU5Bk2eSxVzZlOFCzZVSJtNlYNzqKo3l6qf z6XqqfOoeo15VLVGLlVqPUfqtGvBaeSFn6bX48PpsD+LthQ+SJHoA8T3meZk WTS9gGjqhQyamJlG43PupWy7vfD20aMGvrGL/zZq76YQ10tU16lKSRfK0fvx K9LzAj+WzyfRbqluzhPdFn4WohEEbQ8+P9TL5lCJQcATNbdqK/h8QFcXWk7Q 4YRH1zLrdOw3948YZi7AAWGmiX4PeKXgZaMvCuwFcDPo7U1y0wTfB5wwZkqY mwPXhnwfZ30fa5fk5MjPMZdFHd89xGessZVj2iadFtwoszOKbxZcN85YnLXB yAuSxyAOPesViU44uGAzrRMyN0GPAbXQwOBeiQuS7/u3S08CvwuMidRf6OMY J4RXAswb58p6QeIVwfznRk4KtxL9B/DdkedwTJYYIzkFxzH8TfDcgIWUnivH NHDT0CNCrwN9Dlzj6NARuZ4nwgflZxBD0eNC76K3uUv+HvIi5HvCxed8A59V eirR/73ssjpEchH+OdwjzKAR5/BzfSK7JDdDfQPuBa4TWBt8XmBnHjX3CS8D fal+kQLB0eD9kZsBg473ACYBuQq4uYibwMBD6xH8DcRPxHD0pdFrxjmCXhXm CsibrGBZHYU6CbMsnBmBOOda0bKcFhh2YBjBRQFmq158oeC8pIbkOAScBtcS wuupELe1EZ0lczZwiNFDB9YIXOO3vFHatYaK9iV0FuB3ybm7+NECfwivRuU0 FiwX+gTwKQf+abF7SjQ2G7qLY1xnxO4zbo9BnxN6JtCRhY899Kf/01OGvjo0 +jZZb4n+GDw9/vN3gf7iNDeg1tq9RPfmKzesKttzRFeHP6vi84h/5oB6xjuu +GxUm+y3hNcBTtb75nfqivergoZHtWhFqp9TjW7z1RIuBdeEZIU4PkVa0GMp rWl0XjuamJdGvK9oWaSHcGMPXRhIJ6JP0FuJUfSJN1649VedZ4nrTvrt8jS6 Xso1lo/rLf9z9HNKDl2NPCt46i8Lw/RZ4QT6uGA8vV86lt5JHSM9n9cvDKfT 2cOpNDJC5vln80YJz+113wg6mRaiImMI7fMPoE3hvrQo2p045tN4+14aluan QaHW1D+/peC/M0PN6L6ESZ3DTSjdu5XaOSnUyqpLt5m1qG5BVUp2KtAf3l/q s9CP6lXXE12m6U6JGmTtFy0U8GCSQ3PV36EZgvnkPFS0PfgZK44xwmODHwJ8 a+A5xecAdMQKoRkLrRuuH2Jr3DPi8Qj+O7yVn7OVzIHznPtEf3WilSY+q/ge 8CannGEy0y3nnyU4a5yVqM9Q9/eK7pT9Di7FQGuv7BX0dpFfgIf1sFGgs6x9 kqdMCL0keNm5vpM64rxepusRPycc9uLoRf1y/DN9IvKZ1lYZvxw80JOGJ9wn cM/fCF3SbwQv6bfMb4T7/UHwO/1e9LJ+139Z+Knglr9tfaPjkW/hWSH89lL7 K/2q7wveC5/rosQn+qj5kY46H+pj4Y90ofOJcBRe9n0uM7pXQp5cA67lRfNj fcj7QLgM4JSib77Zxy/3Lb05/pbeEnpbePZb3beFgwBMMbRE5Kvxtsz51vvP Cm4YeAL0t3Ltk3pO1BUeOj9TPT1cIvcDnPTnwvyytc6JxGRGh/4tcDXAjoPL gP4b9EbQYwPHDbVh5/CWsl6LW/bqHNpS1p9JOJIL4oxA7JPaiWMW6jHUjegJ oWeHGCU9JN//ek//+2/kVIhD6E0Bv4z+O3Kp+uH/9c+d+dLDqmLOFc0C4MbQ axestvWsvmxPktkgcGWouVBvAdMN32HwaTAXgVctvL3hBwt/1XpGNeHBQKMh an8YW2K9FptgvSR+m/ARgW4S8OYD7VaxmnblGDBstYwF0IkSz0HowsKjg/8/ UMOaJ/510B2F5xp0jMDDh8YotA7hCwS/EPhN9TZaKI6H0o+GNuB+a4B61Rim PnDGqd/M50S3s2F8sbrDWam4TlVdE1tVMPyCaLUBozczfEItd09D51XtMt5T XDdyjvC5Omt/rT6OXlVXzGvquvmXKh81qFp+RaoTTKZbgjVkDt4qvy75nQaU Fr2Vuiab1Du5BQ3MaiX94tHRdjTB7khTghmC+Zkf7kZLnPul570iOZNW3cik 1ZGexHGd1iT3otWZPSkSfoCWhO6nBV43qcPQB3ouT9HkUDpNCHek7Lz2oiEy LNlPQ9PKZmPQPXoi1IaG5N8t8/pHzJbU90YL4fV2LmhCnUpvoTZ59YnzVWpi 1eTcrhr5wlU4R6tA/0b+VV97P6uzwa+h3y5YqnzrTbUw/qpghzgfUCH7kBrg 7VHdw9tUG3ut8tkL1GVnkpwH0KMM251Et5bMJqq5XVtBIxh4CeiagfOxx+gP XfcM6A4B5wuuAXIs+EOAM2XatXS/UKrkVPC2vmA9qfm56SrxOYJPAe4E8x7B n3j/m/WEI1LLyCzJWC/aQegrYO9gz6AXOii4X3RKkPeAH7ApVMYZiFof6iL/ Re2GOWY4X+jS8Ff6Hd+3+iPve/1N5Bf9S/SG/ivxt05KMUrKFxglFTOTSipm JZVUSOaXL6mkfMgoqeAa8v8Vg/yy+fspSSVGtFyJ4ZQrAT/qn8Q/+r//T/L4 a2a5kgoJoyQ5XKGE15DwyqunViqpdCGp5B/fv/rnxHV9NfQb77tf9be+X/Wn xo/6Xd9l/Zr7hWhi7I++r3fF3xUdkC3ht+WzrPedFe4DOO87g/xv3jsS0/LD b+pV5hm9Iv66Xux7TV7ovYMfMStxQs9OvKzn+V4R/QTkgpjtIV5B+wg1KjQ1 MMNCHoe4j7PgPs/RXH9IrdfMXCHaA8hrwHep55V9xYwfmFLMpG5xlkgfHWcN ch/poycWyAwOM1HUmJjdJVtzhQNiRGaJTvcPxhThhwCLDT4e1z86bo/Rb9gj BX8Av3fk2MBcwecbdRn6j/C/Bt4Ms9sH3KbSo4Q2OLBYzZ3agrOq4VTS6Cvw +ayrexWFJ3nV/g2YROieS6zKsDcJZhret5l2M2A6i6GjBW194BVbGCtFaxme HbWMKuK7AT8R6LFBMw/66PC4gh4XdJDhzQFPBOi0Qq+1p7EzMNo6It59K63S ANdwgn8BX+EX60YAXkHwX+tsN1EDjFbqSbeDaCWvDGWqnaGH1THnMdGUhKcV 9FFLnRGK749oGSKXSDJt0UuE/io8mcCb4DxU8bNQtf158v260YWqib1Mcb2u OO8Vry3wcvlcUo/F94mO5VOJF9WzvmI13S5RcxOu4liuVnmlivMOtc0XVy/Z H6vXzC/VeeuK+tz7ERwKdTn6q2DC+d6oP+J/wfNOvv4d/keVz+bYGeTYGUmm W1Nuoqb5PtFAuttXn/yZDait2UA03VLzb6bm0dqCw8br9jT+muejZqX838k+ apJXk26xa1BKsLrUftBju8lfmaqWVqDK2eUFH1m5sDxh5lg5vzwlJcrRde9P eOioj9zvFecTyg19ro5ELqjtTlytMd5QS8KvqbnGSTXDPKEm+YvUmMQRNcje r7i+kD4fxxeVaq1StyWWCZ67WiRXPONO2cNUfqi36J+iTwhN8SpmBdFwhv4z xzfR1QYfGv5G8PmZblPgHiMFHqAZnPPBR6AQOMp+dqp4PcNDeq7rxqB3BC4X vEyA6wfGH1wT2+4i5y/4t+CMYK8gp0Ntcau7RPAx4KGjvuzv7NHDEoeEs/98 XOtF9im9OnJGYge0MraH4xJTCqxzusA5J9iBvc55fcD8QB82L4ge0Uvhj3Vx 6KLkcyf9nj7juyT6HtD2QQ6HHC3ufKvPGVf0+eAV0ec4G/5av+77SjBQrv25 1tFPBbtwLPSRPuT7UB9IvC98+L2h87ogfE6/EH9P74y8C118vcV6W683zurV wTPCCV0UPaUX+F4VDTnojuA12+fqmZETohkSjh6XXhp4W9AVQI2NfjtqRvTV wfVFz4jPG9FIQA8I9wvYxk+NCfpdd4xwnE84T/BnztJbjYcE9yT5s6NEwwY8 RuAqB5itRIMBnC/0fTgfF194xBV4u8NbHTpa4N4h90GODp0hzi/FAx2e6I8Z +wW3Bn1xjpfipwEfb3C1nzdI+tPwxIYOG/wY+DyNgVsJ/4RtRhCcMq7lesYW Gt1jQftO8fLms1V0/vj7xRWMJMzSCqHB+T/d6nRgduFb+JXxjPgvf2I8JWsP /Sh4TL9pjBKfEfg7Z9iNAvB3g4Y68jBohr9nZwfgscJ1SuAfY2agkbVUvIDh EQI/pyHWAfHYRS8X2vL4Gfi3wf8Y2Bp4owDvBw1jePnCS/QF970A/GL4nonf yyfuVeHoIhbCixX7B5r80BGG7u/LxueBuP1t4KL9Q8AIlRNtYPgQ3GXUUy28 2uL3CS9baJN/6v4gL/hcwmsPGv74WWjUw0sAXnz4N+joYwYGDXP8DXgYQCOe 8yfpT2c77cXfBvF3vtVNNIPB1XvKvVf8MKHfCk1raNvhffGC3jT8L1E7Q+8X tRz0r/GC7wD8bJEr8X4W3VhwkOHPONlOVxOdNPn/KU6GaAbPNi3x0N1uB9Vh 91HxkPw4NF76WZjpGdYsVT5oi6Y3dHWruHPgiaiqObmK17ngMqAfXsG1BYcA zT3ELehegyP3Z2i6zAerJPj3vLmiA+WzFqjavjzRB8bZ0SS8TGaJ0L1v4C1S dUJ5MgNBP/9aaJr0A3BN6FNCl/5zb4LohENTG3rO0NeGNjf6b++7Y5W2Hld7 vEfURrOv5I7Q0IWXAHQtp3oZopcLT1l4BUDPFDrzyPWrG5XEAxX3Gvgt+I1C X3C1dUZ8oeEdAAzFt8avGfBzO2eMFU915JzwiIQWK7RlA0bjGHgzqKPBX+U1 LHxX1CvIBcB5BY/kIfNOqW/A/QdeHHyYV81hkpMAE465VOXoHNF7xKwK+Q5m /JhjAWuOHh54q8AIYe6J2AT8ArA+qBHnBF3R1cN8c3H8lF5mn9arQ2ekPkU8 PBj+QOLvi76P9TGH46b5od4bPS+aceCuLjdfl9+HfyBmEzOdEzLXRC8vN3pS Zp3oEf6nOTPDLdFz467oZi4KnxL9pjW+N0SHDjEWWA/MP4FBBT8NOMph7iHB PAJnibkiak7gt4S3aOXJnKWyM0eXD9v6X3um4Ek55xEdGGhUrnd7SyxdZHfX /Jz1LrOf5pgiGG3gQ6GvhZ9/2xktfS7w+iX2Omm6p9dMJ9sVMI+NrbV7xfgZ FkNPGM/wjDFSuIicGwv/iT+LaFlCzxAaw7xfhNMDrDD68eD4cA0T4xpcdH+4 foidNEIx+OTAmwj+AcA7wXcNfkkNjMXQ50fOlw4vDGj6wjt+ltFFdDpixqcZ dxqroPmf8aB9h3BWxJvPPSZegPBBwrUihvPvxjrYDWNPGi+KrxNiLrynrhvP Q8+3EPrIPeymEt/hP4GaGP05aDshh4T3HPBX8DOE7w/8juAzBU8WaBVx/pgB zDQ06/j3RbuO89J0+DZh/YPvCn86YEqhzYzf/974LQPebJzLFvN7QCNZ8l74 I+De4SzBdSJPgeYI5yfQHC6GVii8u+Br09i9CRqDoqf4s3GjGH4d0JFHPgwc B7w3fjOeEx8oaEdDu5i/im/CC8a54mp2bgw+OOA41A1V5dz/zxivQd6Dzwp3 +m6jvvg9oE6E7xQ0+qBpCa8T5Nv83AKcI8NXXHwY4DdW3jZExxm4/rHGsWJ4 s4GzAg8MznfByeXnfTzW2oY/RA/RrAEXCZ8N+qfQXuF7Ip554KFiVgNvS/Aj D7kfBDq5G8QrAmvxGSNN9JvBHYB3H/xgwEuG/ys8s/H/+D76G1x/FsPbbqPR V+4Trj3FWix88KZWRPxRhxpt8UxkVnTd+CsdOt34d8wmeI3LOdjIXhqApgU8 L+Hfw7mAcBPgA41zDf6w8B6HjzN8VOHljmsCrxDeWPBYh989PLXhRY3zFBrC /Jllbf/nIQX/Ufgpwqsc2uXQ4+d6SM4neIWftr6U94V/BnxB4fNzj5kifszd Qqboawhex10Ez3rOLW6HB10xNMcRp+GLAk1z8Tjn+8T3GjmK5EC89qGVLZ8d 3tzw3gF3EnkLvIta2XVln0DjA5xtPBP0rZFLwGcD+QavX3imSZ+Bcx3xWOJa RPzC4PsMPwJ4ogFvDbzLDfsv4Qw/YR+EFm4xrgmccJw5yEXuN5oGsMY5R4r1 swpig427oWGYAUwkPJTgj7Xb7sfr7KNYRSdJfDPRe+fPCx+zwNfGRJn3wTeE 64xinD3QcpjqFosPHvpiSYZdDO4ncq4W7gqpGeCdi/fg+ImevHhjwg8NPmXw b+C9itwog9dBET9nrK1ieE5Cixz3GPgF+Cx0t2+XPGWn/a70+1F7cLwTP054 KIL3azm3Sf8G2HJ4ZeB8hTcx/I3gfwNvJ86BhYu3xu0pWpjwKj7sfhjgGCbr CL4T8FJAPfqzN1U8PrBmvrF/EX4Z8kHOiQPwiE5YU2Wm2TCxWP1s5ii+FvFI gC/iMquH9Jegew1dt9bOGlXXWSj6+/zZxUsSPga7nbL5KHIg5CaNzWUqyZvF zywonFt4i8Oj6gW3n+KcX6Xaq1Rfb5fiM05xTSR+JSdCT4jXKvwVa4QqqSJj iNR78GF4LqjV8HBUZUQ2qUq+Ocp1hirewyrmDVE17fnCix7jO6oeNw8qPldE E+W0NVywad84E9VN5nx1p3+V+A3hZ/tEd6khzgHF60B0+aYmitWT8WMqFD2k RgYPi566Y78jWurx0Lfqg8h36q3418K3nm26KjO8Q3ENIzkVPCruNTaoob5D 4t+ww/+uOmNeUt/6flU/uL8JP/tg5AO13ntTOdY76lXzCwX9qhr5lciXU4Wg ncz1GudgZ9RT8RcFs7rY95o6GP1AxYPfSj0Pjs8niavyuwfi7wvGDH9rQ+Ss 4txDNMsnB4tEe6F8mA8pszGNSm0neugPp6ZSq2BdSg5XoOuJP5URKUd8f6mB WZ1MpxY1S65NTSI16abkyvRj6HfBsHF9qF6xPPVb4g/VMF5d+gJp+WXzlWYp taneZa73zWRqkVKHMu1mNDErjVZn96Rt/iCt8fWSec1j3l1EvibUKlqXOPZT ++SGlJnfjB5PbUNjUzpQONJJZuHZofaiLwYscp+CFtTfaSnfezYtg2YkiGZf 7kK50a609Mb90qddlN+dnrnRiQaXtpZeK69z0f55KWuQ6BEeMAbSHl9/OhgZ KNi+ozeyaM+FR4j3KG11H6Rd7sO0L2UAxZIfpzcvjKQPE+Poo5Tx9F5eNp2O DJdZ+DvJY+iDzHGiJ33WGUXx0Bj6OmWizNVrefOpZu58Kj/Spq8SYXrFDsl7 vmQPok/8T1Gl+Gxq2GGJ6Lw20csEJ/RjcArFbgyhTdG+5FgPUWneCCq/xCZz 5HLq0Gc9dWq9Ufiut2QtoeQhc2WOhvka1wfE651q/72AGrZeIrP/W1svpXpn F1KNyfOogjlb8AIV82aT79gCMguXU9uK66hj7ga6x8in5nkrqG6fhZR0YZZg KqGN9IN/ClXUsynFWUx3GWuoY2gD3Vu6XvTb6uYvpD/t6fTh5XGihfuhO47+ jcykW6JLRF+kc8EWSr+2kVqeWkUN6i6m6mnzqHLBHKo8cg5VLZ1LN1/Io9sv Lid/n3XEuTe1G5JPZvflgtuEhuUXN56mn9KmUo3sedQibaXoUHY/to06R7ZQ 6qZVVP1qLn1jTaTzzlj6PvlZ0ZZrcWoF3XuD79HFDdR6yRpqVLiUeM9ThWs2 XTefp2vONCrXehZVbzSPbilcQqm5q6jd5Hxqn7ae2qaso9S8VXSbbzk16LCY 6gzJI1/eAqqdkif3sGFzvqd9llHj0qWU0mcx1UsspAali+j2S3wfzXV0r9pA bcavlX+vkVum+wseYN39C+VztrJW092pa6lt2jreI+uorX8dtRufTx1Grqf2 FddTm51rqZlvBfn2L6B/wzPpx4Ipgk/lHIBaW2soPW0TdWq+ke5KW0Nm1nKq 13oRVfdy6a+UGfRN4UThRlfLzaU7L62k9IqbiGMb8XlGv8Zz6J3Lo+ljZ7xw FRvEF5E5ebmsH9+QBVTlxhz6x5tBv0RyKBGdSkl1baq4ZDZxvKIr7iR5ttgj mHcsNx+gtU4v2uPvT2/5RtOPmVPob3uG8I/c0FDinIPW5veiLc6DtCe5Px3w BtBBZyAdKcyiwpzBtD9vAK03+9CCRDdakHwfrTAyad3lXrQo1J0mBtNkVts5 v2w+m242ooyCRsJv5DqcpucTLb/Qg5Ym7qfJOen0hNWGBlxoKTzxYal+GhRt TVyDCt7t4Rt3EtfrNCR6N/UJtaAOeQ2J829K8ht0Kfqz8kI/qS8SP6lE5Lqq mJUkejVfm7+oIv9Ftc17R3H9pn6P/Klu9/moo30Ltcmpz8+hquDmdvneU0vN 04prWLUncU4Vhy6qd8xv0ZtQdfOrCs7udr9PNOLnuSeF4wWfJPjzgP++KHhK bfPHBX/3bvxbxfmauub8oT73/SSaOvDzaZFYIR7g0FPF7Pk5R6sS/2fqJ/d3 hc9gZJejD6LfqbXOG3xm7paecVVfrrrLXKNGGIcV5xVqo+8t8RVa450RXx70 BVC3twrVlT5JA/9itcN8F/xyqpdcjb4yflaDvf3qdGi4eN+sdnqqSv45gsuZ 5BWqDc5ZVWxfVK9EPbUp+JbiGkJdtieJX05rp54KWW3VEStLegzQKMN7TkoU quHBqHwGX3gB5yi29GFTwovF/6ePs0tNsYvFf2SheUrOys/Np0WfA/0e/G1c Q7ZzVHFtrY5FP1IzIyfU3eZaObNneZ0V/Bh3Og9Lb+Qed52c1WP9x9RD3m7x a1pg3qeg2wS/u6pmRTXb66KqRXMFk7XQe1VxLa3GBY8JNgIeKvAI81sN1Ciz ndrs9lUfWOPEL6pGZJ7kLeh1IF/HzAxaIg8YzeRaRxlHAqg7uG4NQDvyWTND HXcHKa6R1UQrDb13zBTg/wpf4fRN9lsBaHcvcV5TXLMorjsUx07V0rtZTTUC yE/TkT9jtor+HDTxOM+WWqKesQje45hxCPccOH1oy8IPfZF9Ch5hapDdWlUy yit4vcKLFl9nWidkjjHDLZF5bGaomfRtMJ/l3DHtlPVFjL+nb/aSwYOEH3GA nzl8LUVviXMk+MZynV5T5jfgtwOD/p19DT5n4nUHf4NXjWHwLBJPxtX2mRg8 +uCPjTx2l/uu6ESAFwntAtRkmCdWtsuD0wKvngzUTshr4T85zu4A707RToPO ErRu4XkCn3DcI3gS4n5tNN4q5ro/Vtkqr+EZwHVUMTx9oFuH+wgsBtf+0JaC joV47UK7k2sy8VOGVzS0vd+wLgl+HthVvN8OL6j32v3LesyhHqIbBe+CQvuT 2HSbYv/zey/kOCHeh9Bbu82oJZpuL7ufCe4D/sJ4Xn8Z/xRDV6GbbYruBjQG 4H9wu1sLGufSZ0bvA37b0IsErw4Y8J7uDtG1g05vRSsJuHjx5wbW9jGjtea8 WRtOOfSMxJ8YHk/QPsfPAn8LbWPogf7sThUPGM5DhH8ETRZo0XFdrSt5s4Un Bx4OsOvgg4BXCY0UaILMMruIXgwwnsCvPuV/STwlwHuELhY429BDQH8AGgbg EzfwLRauC/Aooi/AL9GGNDbp5uEVwsXBrLihuUTwvcCdPZk4ph8z94vOJ64H OJbB5gHBinFOr3lfCxdJhz7VbvBz0ekFjh1apMA/AFsKP3tgyoCphzZEBc8W fQT0uvC+XHPCm0Jfif8qWBRwAJNMW/MaFu0/aBqD0yDcbTOmNybO6pcTn+lX wh4/r9cFH19oD5a+15dOWLRzgFsDfyo7fFS441xbie4dMMngEmGWgdkGOJa4 x8DUPewvEJ7mYeOCfjv8jXg5AMeCXuMY74ge6OzVDwZ3C/4N92GE77D0A1c6 pcIFBYYF9wq4O9wXvB/HGf1Z9Ed92fpVv2FfEj1pcJDAg8IMGJjCzxM/6lrJ VUpqZlcu+Sn+uz4SvVDGA0vEhMMBvusM3wnxcnjTu6SvmNf094lr+qzztY5E XhcsDHx0gF3B73wZSeiGKTVKWtyoXVKjoFLJ6fCX+pnEcd3R3qDviKwUzCAw kJjZV7lRXjTXWxp1S+pHqpW8H7+iB/sOiF7aSSMkPUqusaAhqf+K/y0eGeCt DTOiorcOLB5m1NDEORb8SCdnVihJyaxeUjlSvuR09EudF3xV9JvhBwQMAXDf cxxXL/dO653Wu8K7hd8QuJy4L9ClBZZnZPSw8FKAscyxYoKNxPeAn5I5VbQM awVd/WXB0/q48Yngm8Dfte2XZY+2NFfLfu0f2SPY8UHOfuFOAO8DrAP4GeCg gvcB7i3WIfh0mNnXMxdJrxU6hdDzAHdjmy+uvzV/1VeDv+lXIp5gmDDTB8fi pDtUYuFW70HRAAEXBTPDVb4zenswrtfF3xD+HTSfoOuNOVg3x9Qhp63wfriu l3WOOdys+AnROAPeaHeon85xAoIdgo7L+PCLekLkJdl7v7o5oikAXio0UqDT Ca9uYG1TrOq6l91c9FKA58DzAkYTei3oP0I/DhwyaIBCrxhYSWhHQYsFGMlJ XprEdWjswnuc83bR8AN3EvhJaB+U+2Km6LCg3w8PdN6v0rP5zroWm2F0lp+p G14o9wPXUtdeCK+GtDIv+tuKoaHJeaD4LgFbx3mD7mO1wJ6J4Weh8bXO6A0N 51h/u6X0m7X1aQwxFh5OwLpAu/ag9UFso3s2Bg3bql4FzWeaaD+j14VZHs4U w54lepucA8a4ro/1sJqKHjd0uoB/AF8C2lX4HfSdgV3AXAN6hOBO4Ofhg8sx VmaHU41Y0QjjHngLF/F5J/fyPfuyaB/uMN6VXjA0wzoZt4qHEPrn0M8aarbV 5DaGVrj436HXC1/5+XY3nPmF0NOHLw90j81QLQ2dUPR/4fUB37wt1tvSb4OG NXCo6HdC3w9zVPgEn7K/iCFXWGDcBz2WjLeMbzJeND7OQC8WnLS5riXzl/3W AF3fAZ9wCvQcC9Eb4xwlgH4tZqA/GVPRwxatQMzU0Yu+Ylwrhjcw5rDAy4I7 e5tZC7FZtBrhmwT8GfAd8AwsMZ6IIS8YZx0T7hC81Pl8Lub7w9d8szzXeUY3 8S7hM0m8ZODNAH22T4wfxHsR/V78DNZKB3t9jPe19Pugb/Kb8WcxZgDQvgoY jYvRn+bfi71ie7EiYwh/rnLoz2cA84n7iNkUPJT57xejXwy/p1FGO9z3Io5z si6AcUH/keNRbKhxCD3XQBNrWWCt3SsAfRvowCbs67G49a08l0PGoxmYXXC+ EuAcFP3fYpz38EDq4jXRGU4j0bSEX2OSYcQwQwZXcLBxN/y5i4EthpYO/BSg rQmdXmjOQWfudiMCLUeZL6O37lqfx2q5lcEThvadzHPwWTbZfYV/nmZvFO3Z RvZS8aQK2W1j8Eq+07gZOJsi3s+x943vYj3N5qJJ28faJTkqr6XAq8YXuJ4i 9HOxh4HjwftwXRV70N4t+xC6Y+gbJ1tzY3ut87GbvEoannfQeQMmDV6O4GgU 2I/Iv9d1qorWG7TkuFaSOPKU0RHrvhMZWzKgiYznDm4rch5oZQILCZ0hcJOQ 9w1298eQS8I/E7ldBdfGzEl4BMdCj+kNTh/R+MbexAzyK+OZ2GzDivEeljWH +448GjMSrovkeUDjFz5d190/Y/DSwXUhTwOfFp8b+ka4T19aiRh0aTHLhNYU 55fC1wTvf7TdDjEgnZ8LZjai2/yvM1M4PeD3QieqtpEMDacYOKFY18AoPOTu jn1sXxUNL2Ct0o1GwOrGoDXf39ojmj3Yo9DEAGfmU/cHxALcsyI+n4o5jseQ 6wNDBv4lvAagO4PYBn1p+HBcsL6Hjrd+wjooeoPQdOI6QHCleC/Eusv2rzFo rve3WurZbhfRqt8U6quhA4TvL3VfiyGmQ7sPOI4P7HEybwQ2uleouZxbyM+A mYHmIXz0oPmK9cDnOu+/izF46EG/D/rUC9xummsw4TGDF4s8Fvpc8I6AXh90 m/F3NoT6aOxh1ACY+aA+w3MBXgR6quB/A9cLjBywPJ3cDTHUD3/a02XujLMM 2tPQjLnHa6DhiYR1fNH6QWoaaI88YDYT/A+un/e1XA/maZgdcM4PP9JYBc+Q /AccTGhOgDu20soEFxc62sV8tsVi7sUYYi7OUOijQo9xqNtGMC2p1qoY12kx 2+4iM1Zom3E9LrxLcHyH23592vpSYjXiGDwk8bnHW/dqrs+EFwONFMR78Pmw f6C5iBnfEvs1zELlGfL6E+0hcMnhXQS8OnQV91vv8/svFDwMNGTB5wRWB1w4 6AdtcR7U0APPtHZIzQr/SeB68MI6wLXxGR7jdS+z4eGOXzDNwCHiPIfOLfYS 9hbiP/YZn4WCpUedttN+WGb/9UPVpG65za2ps532wjGEhgbX6BpnMdediNMa +ndzza4y44ZXI/CH4Cje4zbQTW2frElovU0Pkd7n9pd9D01IrttjPmuBxD5o ky01uHYy5wh3pEZwnviRnLW+lvnx/3w7i/e452LIq+CrBw2Bf7wZopNV1a2A /As6EcWYi3IclPnjWuuNWMXwbNFtQQ0CzCVi24fG98WoZfkZFAGLBL04eO4B 8w3dInjE+Jwq0EEQviy4I/BH+9ueIXEGzxa5mGf/JGtX2Y31w96dEgOhP4c8 ATqYmJmhXj9qfCTYHviTYt4GHQVweaD5DXwAnwfYdxnQAytxPxWfYtSw0KsD pwY4Uuh4gZ9V2Zoj/QdgjDiP4VzhtRgw6CGrrWiil1pfiZ4nx9w0zOt7Gs3B MS3C/H+o10b8JoAjRR6L9c1/L8bnKGbARXwdGZhZIu+Bnif4XchR7/TqaMQ4 zCmRA8Az+T+PY/QkkFshv8SeHW0dkXwNNTzyKeg8YSaI+IL79YCxQ+b88IYH PhT5SW+3uWjfXzEnyz7n9VDMcUG4H3zuF2NNY20h3pS3bYlp0G+GxjivRcFH Qd8X58+tvqXajCzXG90+8PKK3WPkI5cM8H4R/NQy+zT4JMXwr0BNDQ4I5yK6 ilsedUQxn0EB6ESiR9PWaFC03jgbQzxHrAZmA/GC/y2WYwcCK4zSwHj7RX4W 1zOgnXrV+k3iBfY29Ot5zcY4DynC/BOf9yPjasZy4/VirCFoCazxeorWGLSx +b2RG6Vb9laZt3PuBe+GDGAMcHYhZoKTx+dbMa4NvgOn7eHApaXz/RAtOOB2 oI0CX78+dgvxJV1nvAkP5fRfrBsxxAdwxjmf09gbyLU4hyhGLwwzac4JFebk yC3ht5rkzRIdVvjagbcAnyjeV4G2ZgN1l1lP3WWsCdxiL4GWhXBXwZfIsWPI /wMc2xV6Y/BR4LMPeygGH2ho7AAbgdwCeHfwK4B5gV4zzkr4dPN5K5gPaMLg 9xAHcS+xpp6zdGyaG4sVWOckjsNDDv0jPiPkWWAeC/+LN+yRMWhSvmQPEq+B MV474DVF4xZ4g2p2xQCfuRljjKOCn4BuOfQ827r1NV+/+JzgHAKGCrNf9H3h uY6ZNHR0wesHtxA9nr+tf8B5DXANqSpH56j1Zh/MUgM4t2u7C0QbG5xm6BLz mZUBvNc1Z5pg6YDbgg7aYK+1aPwiR+X8A3VAgOtnaCILP5/jVTE8TMHphxca zp1HjbuKEVMGGK0CT9htAhwfsM464X6stEvFVwWa5Mjd+PkF9trnA1W88gre tc2MFYgfAa7n0uGTe4tVQ9btvV5DxNQY8Ifgi8JvNcmdpY67H2MtxcA3Bm6L 8yHJrzh+BtAzR788PbFR9fSaKeAFsGegeQxPHL525LfAiQs35YT1hOJzSR20 PwhwnZoBXEPQfkF6bTgXphmKc+s6gQ/d76DVKnw8rqEQP9Oho4s6Arkr8miu +wLKaqw2e31lNo++L54R4tlco6tgTfH5oC3HeU0AnwPYw7VWLwUdfM7XpWfb 2KgZa2BUh15+Me4lMAD4me+9yTJrBz8Z18S1TTHqKWAlgOuBbu8s90SAczPB lXxpJwJzLFewUPCe5zw/Dfl50L5T/uYst7PiPELxM1W8ZqXfzXVEoJIxJ5Bp Nwvwek4HlolfAX6fwDy3q1ru9lC8H1R9u1qAP3sxdGrx/ohP+Jy4L2eMkYE7 nDriaU6JzapzaIv6yByvJttFAeT9yPvQqwQGiM+WQCV3thoXOaZG+Y+o30PP KWC1UcfgbAAXHLkW76WMM94IFXaOi95cWnSjqmMnY23H0NeELjPyUGjXg7sN rUvor1RKzFbwv+L1UhS2jguGCbgu6KxzviAYUVwvapMfrd+lJuOcp5jrLMHy 898VbhO0KaChj7oV8aG2kRdDzs61TxqfxQFgNR5371ZDrLvVefuK8KcwE9hq PFS8xzhffLvhi+GM5D0fSDINxTFAdfJuUcD0AnuMvvu9xi3wnwNvK6OX01zm E62Da9Rxc7CaaXcOICf8zZsmPWToUgFfgjnGKt8Z0V/mGlthD6H/DC3ZbKs9 fAO43myqapt5Mq/C7AReVp8aP8ZQv8+xLc1nAvrjqkZ0nsyQerrNVMx4HHg4 yYHhS8DPqZjrRtGuAWbkES9VAZMGz2r4lldx5/CZO6wY18nPNVDLrKL484vv GOdK2K9F6MmAFwJt/ObWCvRtAm1C9dXX3jOCl8Xn5FoOuOYYfBfrOgt1gfMI dI9jI1y/ygrvU1PdYvWh8SQ0QFD/isYavP7gN4Q5BDiyo512arz1YgDnBOJI DWueaAiDawJs3PxQN+WFnlYDrVaKc5MM1PTIe4GdRI8eaxoYmm9CEyU2Ar+y yuiZwe8h3iPQnYJHKvYon+cyQ/rSCQsmi+NcRlWjoswCtPO41JTQbxvmtlVY 5yfsJ9T97rYAzg143gDDWWwPAa8K52bADC5X/SIF6mtjosKshuOU6G+CB42+ Ftc8GXNCljwr8E94vcte4VhUli8a92nOLWKc50HjXvwE8CzA2wPmcK/dP4Zz ER4OqNM5/8lYZp0O3GRWVpzjBjiuw9MD7ys5KecassehW4++DV+75FjT7ZIY 54vweQpwnhcA7izdvVVxboq9BO/x4mzraAy9JJyVvM7Qn0HfIgCvou2hoPrW /SUAPCHqGeTRyEEQU/hsVy97T6io9ahoMOxzzyN2ZaAPBM+ea/Y0fT40Vtfy KsOzKIPrIDkbyN2sTpohBc4i5kV4BpgBLDV76BVGZqySm6TqRPJUurFJ8V7G jDKAnBNehNA2hUYY/j4wp5gJmvZyxXm3zAPhQ4x6CH6HuE7wLqFJkGTY0IvO AM6ro3OLetS8S7V0b1bQc8LZg7UwwyXRh/vc/ZHrnDbwgAtcsn4OAMOOs4L3 vkL8Rg0Fn3loGKBPg/kScHKYnyEfw3nAtVgxnzXpwD9+Zk8IdHW3IqaCxyR4 SOTLU40AcLMZ/8v3pE6Gdh20w+821hYDZwgPrm+sX4QPBWwqsHD4uUpmeV3X ripnNXpq6H+BZwCe1G3uMsGs8boR/DbXDDJbQ3yY4HSU8xq9FZwfnK+rF73H lM+qouDtCS8E6EJhngJtD/RLOLfj3LG54OoneWmq0P4k0N5oWNzeTREtaejl 1fbnyTMBJhD9SK5zM76zJwsml+9ZUcKeKvEYNRfvs9g7xhjBliKHwHUhh4I3 SkV7Nnp2aZhXQucPftJPGS8V87PSv1g5ouUPLV3sI8vaKnNS5OjgL6AfCZ+V 1aGeomWCOghamfDWgu4Weqq8V0TDCD0d6HOdMUfqT92n9Eyrs25o1tAlxmcx rB/4hr7qetLbQg74X/8Emsio/bF34THxoLU7hv77S6FBol0ATeUkn62HeW2R +wM7H9hivx34y5gRwGeGBhO4zcsTp2XOBXw36iHOGQOcE8r9Gm5HYx+640QL DPMJ6F1g5oB+0Gq7Z8B0agl/g2vwjOZ2bdGdgk8TdL3AAxxpH+YcfU0G9FKU vRl7HDVaDPMB6G+t8JeK7g3qUF53xU8a9waQJ6A/2N7Nj6EuhB8XuNfgBYFv ONUMSN8fOGtwNsDdwFkBTiF0guCfgPkdOIRcbwFLLrUhahfg0jEbQA8Luofw HkS/paqRi9lE4HX3ywCfYwHMrHH/TttforYq+SRxVbS/uAbQyNWxFyo75eVc xHoGPxtair+af+hfwjeE6wkdQuT7iI8dnIaqop2kONcpOudl63OJy/x5bit5 qPSOkspZ5Us4zsPzIoPzaDXM9CvcJ8x0wOeql1ytpE4ouQS+sNCwSbVXBb4M hQU7CS1c9BKHOAd0Umm5kjr5ySXg6qdYi1Gfx4CxxXn5q/EHcuUi1JWY83EN UNIuP6XEi/ykv7MmQx+/GLnlUfcC1kcGvNvgAYuZKuZjmJlybor+ETDjGZyj gEeUgVoIvCrMNDBb5RpDvxfKFp2VD+zvYvysi3GGAOMKjzHwSDG/hJYqfMRe dD/CHssADgJ6vrwvM7Dm8CyhBwU/udu9Whp6g8C9I2bhbEefG1wF9DxvNhdK nYRYibkH6tWI/UAA/S3kDdCixc/AmwD6nHxmy3kCLfjV9pkAegPQX30kXqC7 +LeKhjbnAuBsCb4WmGz+nMDzSg8UfnfQOcF6hP5HqnUzdBSLONdSq7xMhfoS /jDoPUGXBNwO+Bi84YyEN4rUEg28apLjYM2D71rNyhWvFugWj3Cj6IFk8PdE x573l2hqofeEHh7mbJijYf1z/RGoa1VV4GoDy4A+GGpyeHlcs/8An60IOhTA UDxsFMj7feH+FAuF2oo+F2Yb4PADUwJvLWhWQ/8IdTjwDp5Vpue7yeorniyo xTYab2Ugj+Nzvgg9OK4rxGtqspUuOAbkXwuN7qI9CG951A/QCABeH8/oG2ei zD7hYQKdu8+cCdKXAHcyxw6g5yReVNAzgOY3eIbwMwffGP3rObYb62Y7opXS zPWJZwDm/cMjUT3aOqJ7ejtECwu9X/gxoMeEc/+6+bzMzCvdSCqp4ySX8Hkq OAPoHsIHFb4y6EFBPwozWuhO4Gf+8P0tHpoveO+JJuHd8TU6OThXnj18JcCd rhtcKH1K9IExV0V+Bg0uzPjnh18RrjY0wuB5QWYT0YVF/g7vYmghQ18auhUx /6f6Bfc9PTp4RNdKzJdnjZkK6mfMYpAbgsMkmqLeOtHwbGBWh4dZDH0S9Bkx h4QPLDTbO5kbhS+JPBr8KuB4uLYWDBJ6bf9aM/UI/2HRQcTP4zzBrIrXrPSd sAZx3vPZDWx+MfJG9HHAy8YMtUaokuazEWcZckPkDxngW4Oz8rLxeXobu75w JNA3QK8CcQAzPj6HpF4uw88boukNDDm4EBxH0HeJYQ6JXjT62cBZtfevV/nh N4X7O9g8oLjOUJh/4bq6Gib2fgaw6qi777DqKD4j1Xqjj+KzQGoiePPxPlH/ uDOU7XQRDd9Mp5naZwwQzNWg0H71XFirp83jiuKbhVtnhGehT6T4HEOsUMeC Hyn43l12flUVc5Ko9uUqVC9elXx5VahidhJ96STU3tB5NSVcrPieyrVWuGAQ x1rqY7egR1JaUu/S5sTvTX6rATXPqU1muBa1TK0r3g2t8+oRXzu19eqL38TS 1B70UvYg4jqdXgmHqCDrEZqaHKCuPpNuya9B9bOrid/e2LQOxOtOMJavpQ2n eOEY+iTlKbqY/RTFw2Po+OVBtDGlL9mZXYjzVHrQuUN8moG3hIbzuUQ2las7 i2qXLqCG8cVUt/9CKt/fFs/mV0Ih4nyXOP5SbmFXsvO60NqcXvR6YjiVn26L P2H6xY30wNXt1D28TXDBf6ROp11p/USHeUTcL/qo7/jHUENzCfV0d1Ao7xAN mXyAMsM76O4Oa6luAb/fEJt+jE6hK/7J9M+NGVQjc554YrRovZLu8q2hNrlr qX3qeup0Y4P4RrfT+dS8cAWl5CymOtl5VMfJo0aZS6lN5lrqnreNHk3spaEX D9Lg5AP0kPkCdUneSq1Xr6EmucuoUXQptfRWEV3bLB5kWTv30aP+ffTQxd3U LcxJ9qbNlJ6yibokttD9FbdTpt5BPf/mV8pOeT1Qup26TXbIWr2V7r+6jTj3 okH999OoGkdofM6L9MyN4zTpfCGFux+nUc2PEJ8x1D2yjejvzaTyNlPnwi3U LcuhXqt30qAh/Hu+IzQ2cZTGXjxK2UOO0ujxR2io/xA9Gt9Lj1wsoEfVPgrp QzQmfoRGDzlCw1pHiXMXGuodpFF/H6YJOS/Rc0FNuZGTND/vFXq+YgmNqXGU HrlRQD26b6euF7dSV79D91/aRr2v7aQBqXtp5OTDNHF/IU3fVEJzMl2afeFl ysmL0ZgbR4jrSeq22qHAxU0USNlMVtZW6t18l9zPiU4hze7g0qKRp2jR9FO0 4NorNOvvExTOPy7/3lftpi6Xt1Dapo1yH/vW2E1jLh0hO/gyrUgrpfXem7Qy r5Ts8S/T6OlHqFfeTrqndB3dVnE5NTy7mG67tEz+v2fFneKf+7ynaVnBaVpf 8SxtcM7SivOv06yLJ2js5aM04Oweuj/O97XGFupyYwv16LOdHqm7h0YWHqbJ 3YtoxsUSmtHhBOWMj9HTKceJzxzqW7qLVO5mWT/AXmcUbJJ1mJW1j8Z6R2li biFNzioijmM0KnGYBgX3U9/mu+k+tY261NhKlLxF1lJm3g56JG0PDa3Iz8U9 Qk+mvkhPdzhOE/RLlL3/KA31HaL+q/dQ74s7qVu+Q+lqE7Xrnk93N18rePeO hRuoy9ktlDl+B/UrLKDB1/bTE5MP0iB7P/XLLpD7fb+fn527lbrU3UrWEl5r Hq+1HF6vI/fRiItRGqeP0YSdL9FT3otyjwdf3U998ndR4NImaulfTQ2vLqbq vnlUoeJs+secSUneLKraKFd0AIGTb38jn7oXbqNe0Z3Up3AX9di5nToP2cLx Kp/uvLySmkxeRg1OLSJf4QK66cI8qn4tl26qMZ9uPp9HXGPQrVeXUOOzS6nR /qVUv/siqjFkHpVrPosuZ04SvwnEjpO+EJ3NHEWfpzxNv6ZOowqnbKqqcqmm nk+1aiyg6nXnUaWzs+n36HOiLfja5WG0P3sAbSztQ8uiPWhJ5v0UyX+ANmT2 oV3+fnQgbSAdSn2UDnuP0gHfQNqb2Z+25wdp44U+wilZWZBJKyOZwv+Y53UV zeinkjsSn200KK819S9sSQ/7UimYeSf1c1J5399FXJPR8IhfYhUw5Y/4W9ID 8aaUlnUrtQrVpSb5NalOTjJVy6lIldwk4rORoBULLdXbSzl+e2V6GHel1RO/ QcTmGk4lMpxy9L13TZ2PXFGngl+o44mP1WHzgmhYgBtUlPhElZifqRPOZ6rI vKgO+y+IjtE6803RtpgTdtW0RJmWD9fB6hG3QPUK7hRtC7wse6vi3E31sXap vv7dKhh5QfGz5Lrk/5i68vgmqq7NUAqUPUCBUrawFygQkaWQe8KwVxaJgFoF IQpiBcSoqAURRihQ9shaNg0IWBYxomBp54SAIBVBI4JWRY2KWhU18qJWRL/7 nL59f98f9zfJzN1m5s6955x7zvMEVd/AVtUttkHp9Vs1DayAjUNizRFnBWzF cvMZ9bPzKaV1MbFHnY7cr4p8k9Qh312iX290jlSw3z4Z66+mm73UvWa6Gh5s p1SwlV5HU8TGCayzXr4KX+nevuZK684Kthgtl6mmwdoKdiT4WycEDYV4NK3L ul803ode6e5ibJDYby27u7W86LasgW7YArHngr0zxMhpmUb8g+Frg7i9M8Y3 /bU8BBtpf/A9Yc3HHiV8VXAee2O6/mOfGY8UwW4B/xDIxcBagN8P9k90G7Ln ousuhq/Qj9YcyFfFLnMzdBGJE4TuDnsX/Knhk4D9COxHb7LOCt4MdC7sC0LH KTP/I7YS+HroexX/kUZmkuyhQh9HvC3kJfAK9nO2ENxb+MJgvwvpdrOT7Q12 tif4uohvBvapsYcNjjBwpWtZReRp+JmuN24T/1/sgyGBA3WXzyv+fztiYwTD HXzVrzjvst+M3WufNH2y93/JOUP417EHCO5CcKaCpxA4JOAsxH7R+ciDNnRT yPvwZwWnIWRH8NQDx1nrBSLjXvU9Kf9/M3LErgZ/O9hKwRf0d2y+4AGBgzvR fE7wEoFD28C5TDhvwQUC/jjwwyH+HHss1ZzP2Ym+igRsxdq+XInNB+834vMF q8i/Qvw9U/2rhKeyVXy1rce1YAUDc1bwZX3r4P9QgQns3CB4KvBPBWZt59g6 sb8gBr5j/Hk5B5w14EUKZr+zAqsfvpDA3QVmvpYZ7fTgRuFxAi4bdGHgnQPv E36ZA50vCt+TYHCbFXiX+A8/V5zTskMFRpyjIlViTwoPCfD7vbsEmxP8j4Oi L0oeYFqCUw/2W+DFoT7kBQ8k/JnhAwwfU+g4wM8E1yzwNO+O7ResAtQ53LfL HhHVZRx7xO8YfC/goAK2OvCgtCxi3+XbL3wN4ONDWdSDBA4r2BImByq4YMDJ AAxT+F5LPud+e5y/oKJe137B6gRODTCngD8Anlzgh+IasOOBOQpcwizvAeGo EZ5dXQaYyeg37E5SxntI+Fcm+V+RI84DvwD9HB8v+B/+KnxqwU13r3lQ+oVy 8OGdGDkoOA1opxIPEW2BwwIYpvCPlj4EKhJ8cid5X/kfz9SD0deg9wgWPPQh +PqCz0fq0vcMH2zgyU8OHRK8evgEAxNCjoGKNNX53zoch0V/k2QdFkyubOt1 W8t3Fb4cziMVHDOBI/Yj8SPir+s337QfjR21H3EcFV9buQ6fW+uo+DCDV0Z8 ssF/FTgm9jX4ZwMfH1wb8FUGDx/4icAVNC9gC24QMPJzfMXCWQQMWuBhg88D v3O8ukzcFt6+udFi8bcGLi3w8cFrBh4Rv+9NOYLr5kmjSPLND7D4VM8zbalD +G50H1EG/XvKVyTn55ss2BXAt8AR/UKa67KlHrSFOh83C8V/HD7w8KHGveGI vJXYGIL976rgHUFd4IpHHfBPBy4aMHDBhwTeL8HY9VfU9VxUn/MdFy75Z+Ms PvmWeRw6a0W98Qq/8FzzhOBrAK8I+jp8wNHWAl8FXi8wNqSM7gOuAYMNOr2k 6Anht1zqPSkYk7n+ExU8ZDoBa1PyIg+uB08IlttSS59z6fZiJ8VXHXvSwHQD ri/O4Trywm8fuL9Sj7Oif4i3WO16W3At1/jeFo6XVYHTEgOx3FGBubQ8olPs LXuV77S9OnpaMEqQ1kYq8qOc1OGt+B/wnan4b1bUtdqouBawztjrQiX2xvg7 9ibvWfikiA0l4K3Ap1serWhnZfyUlAv4zwj/lV4v7fXxEnuDWcE9s96lU6TE XmeWiM0XXHuB0Bk7YJ6p6H/otJRfFdRtOyruDTEWKIM6cQ9oZ6l5Ev5b8o7w rBCvoOUk+A3K/Ukd1ml7pVGRf1nkZAVeXqTimeLZ4TkBOxnPKi9Y0XfEkiDJ e/RVvK8lsRMV71ofl8R1MireMa6jvGDK492hjoh+9s5Tcg7vD/nhpw8OQsHs 0+8O9aOvwICRd+E8I+NL+OqCx+XeUH5lrKI/Ul4ntLnSdVqeOeJJ0B7iPwQP MFqBBwhcGLwzvEPcD/KvjlUkuQ89JmUM6WdX2Q/kXxE4Jbhc8q3pcb44HhG8 QbmfWMXzwBjEmMU3guci4zNQMdYxhtG+/A9W/Me4X+g6LgnfpMRT+CvGe+V4 xv0C+wYxB8JR5g3L94nvDPcF+zzyAKcVcxqwWueFbOnnfJ9OoYo5CPMXeP4w f+T4i2Vug60QcwPmCCSZ+5wV/FxzQsdkfgM30eNWxbyK+QdcRlqvlXOIWYF/ 62zzqD3be1RsY8BXBA+bJGcFtxfm6hmBN4RXBDxhwNR+0HlYuCmBxTjToedx 73+xtUMVawGwebDewB7s81XwOGONBYebHPW5KdFDwqMELifheg5UrKnYq8Ga h/gpYDsiXgk4mVjPsMZi/cZ+2fjYf9fJSMUaKFjawNC2XhZO73FWBUawxBQF KnjuwfeNc6NDFf+Fl8TaLf5lmcGXBAsJ2NvAvh0Rr5AxIJcMNXfagwMVWEnA rQOvicgxge3CVyI8JeAi8e6wPcEXRK5BAk8bsLeBmauCO4STRPhOtHwFnk3w neAImQzn+ri2ii0TfCPggQDWN7gbIaMhHghyWlf/BuG0hVwHXibErUB2w3lg 6ULug58XEuRBYJCC46BSVgS3AvjuwFfQJrrGbu1dI/wKkDPBl9vGqEjgGhZM XmCEO1cK/11T3wrBqANHHXgksceUbC23GzuWi20Y9mhHcJnd0JFnN3AtE1/O +oGl4ntcx7VE8HzB0wu7clJwsdi6IQsLv4GWpeFnawQXCo844tiA+QssPHAb 37DmC/6mpOA8kcfBqVvu0zK58axd5cQC+4Y5XzhGr1k5Ev+HfUjglceDT8v/ XyNPCX4nfBgRE/RNzG/Hgo9ir1w4muFbir0dcIyC5xnHyvS1zy9xhZ+as4S3 Dj5xH0aybewbfhqcJX7g8K3D/hD0C8T7YC8G/tL4Dx+EC2a2cFHBvwHY6e/5 pstvxB/Bz+KUeb993JgivtiR4BT7pM8nmKL4D58J2NsLgxOFVwb7xvBBCZl3 Czc9uK0OmXfZr8XutrFvvz84wd5t3mEHzbESl4SYznxrlPg/Y3/sRedY8VOG nrU5MlLikuCDDR57xDeCExTxn8C8An/N2thw2bPF/seTkYqEWCXoa887M/Uc PEzP8x45P9ep7DnB/lo2Ion/Accx9jPn+PprGStDuJ4Rd/VIpI+ey/rb8Mue bfYVnRBcltj/u9eXruXddNj8tbx6i+yjI8+Dzl42/KUnWz30/OKSmJ97Yt3s O5xpwvkE3kvwT8MnBPsK0Dehd8L3F3FSI4MdxG8K8TXDnO30t91WOAdNXxvs Vervt+I3Ygegx2rd33ZZzQSnFb6G0G+7GU3ED7yrL9nuFGwkR/g8YG8YPq+I cUVcbItIXRv77YgphS8l9jAQv4x9YPjcgz8P/NnwAUS8R71IdfHdAF4jdGzE WyHGF/G18D9I9FWV2NcqzipyTDAN2c/Bf/gsA28dPqTgMUOc06/GnxUp8kcx OLy/j1wrxj464g7ej3xXjFgLYEKC1xu/L1o/yH9wouO6+ClHvhYfe/hdIMb3 WOSz4iLzsvhWv2F+Iv+BKxQyPy4+ELko/sTwvcbex3bzPHwUi7UcINiS8I3R Mrwc9booe1taHhB/Ub1eCWaa1gWKtcwvscHYn9TrVjEw1vAbsU7YN4QPKGJX EEM2PlIgscT4X3kOftTwiUE8E3wQEQOEeGutu4pfotNaKzFA8KfqZmws1nNs Mfbh+5pbBX+tq7mhGFhiwNuCz0G3yAaJX0HMC/zN6xlLJUYKqbaZKwkxcNhT 1HOP4Ir9ay2Q9KfxTDF8MXAN8TOISYDvt23dJ3E08FMGV/Q560HhuMR1+MXq eaAY+0OIB0d8C2I2gAkGrCgcEZcE3DmcX20MFy4X7CsCp2221Vc/v/7FiJ0D xhRishHLjn1N/L/fcBXDb0l/H8X6mxC8c/wfb3QRzM67jW7F+hsS7js97v+H d4bfiI3DEXEciMED/id8zFKsOoiTE9x0+MbiP+KZ4LMJnFDs7+I8Yk7g/4N0 wogBC7ToE+OqxIvjGvzn9ZgtQgK2MWLawL8HrDQt78p/+DjgeMC4JD6EqAf/ 8Rt7b1rmAzZeEXDdcHzIeF3w1oDdhZguxOuNMfYWwXcP/xFXhpg6vT4VwbYG zLRqxnPg3yr63nhCMNgQnwYfI+CEwc9notFdMPjARYrzM40+2JMXv3vEhY0w 2sM/tAh+8noMAjPvGPw38B++h/DZwf4h6kKMHGIe4cMBDDD4l+n5+hhiFoHP VoFB/9kxYOfBZwT78LimZSeJx0f8Gc7B13StMQIxZ4idOKavZcCPutKeiP8o B7xJ+DZhrxLYfMDD09f6Ix4B+YArCIw32B7fN77vD99bYPbhqNtEPQOA2wpM wpeND+HvOwDxmvqegEEwQN9nf+zTwu8d+XAddk1gyyFeDv6zaE8/C8F4BT4Z YvcQt4d2gQuo70EwMuEPoe8ZGG1iA0VMIHANkeB7iL6jTfjl6fGOuDe5hjrB T40j8Azhg6TvTbBkEe+GutEm8MgaG8sFdxaYiVr2kdTeeF7+oyx8e4DrBwxa +AXcYuQPgM8e8uE84u3uMw6J34aeq4QjEnEB+p1in3gA8N70+MPesPyGnwD8 K9n4YgB85BBHCv+xHcZ7A/QYHvC8UTJAj+0BwFMD5i38ZBCXAN82YCPi/3Hj S7kG/Ef4JSE2BXnAh6u/pQHwo4ZvLmJPEfsA2/I3xm9y/Nz4RfL9YFwXH3vs TSPVMhKlTIJlCE4p8iKeEr5luAZcv1Srrhv8l/r7Fl/2ulZ1N/bQGxu14Icr +IMoi2vNjDruLkayG/vj8BVxWg2AvSh+Y7im5wopD18j9Le1Vd+t5wupH2UQ O2labdyIacDz0mNDeGH6GKmCeYf4CdSP6/Ad1OPfPdRq61ZWK/gByX4+rqFd 1KfnK+kHrsOPe5DhlPzwb0J+xOL0tprLdZQFDxbwMydYXSR+V3+rbjJayzXE 7MBmD79ZPV+6gcFZESfQ263nV7cey1IGfYRfObAwUR4+Jbh2j5Euvv0oA7xF /Ea87AOWS+pA7IqexwW3Xc/bch3lkPAbZYC7Cew9YCHDFwi/wUuKWIS5hgJ+ iWC+4wg8TmAoIhZarxfurdZoN+I44JOq5UO3XlekHuxRIK4BMbnYlwAGH64h L456LRKsUbQDLHnUiz6ir+gz2gVvD+pEHWgP8TroK/LBTwL5sA+CtvQ3LHVq uVTqR8K96PXsf89lmnWLHIH7jPvBfaAdYJXjWeMZ4z3hd+WzwnP1WT3liPJ4 R3oulBgMnMNvvDOUQZ/QFu4BeZEH7ww4nnhPOIfreDeoH+8H/cN94P7xTvB+ K8ckxgTqRTn0Ec8R+z24Nzx39B/PDu8FzwV143nABz5iTXHrNVyeL75TjDPc h54D3XrOcmsdwI24FTwHjCWMR/QRflyI6cGzx/sFTgza0fOr4P3jPaItxJig /yiPcYLr6BvilFA3YiUQu4T64PuIvSrcN+4DYwXvE31D3+G3hTp3GLe7EStw 3pguGNw4oj74Vh62smSfC3UftO5EDJi8c/hpFljj5b5OGD5pF1iy2CfDuUJr ovzGPeOZlFhTpS7gTx4x7pW8Uesht5aVBH8TXAbAsYTv72XrEfdnxiPSD8RN oW7kxW9cw3nsyYG/V68B0mdg68AnB88Q7YFvDWUQh4DznxuzBbsTcU/wz0X+ D4xs+Pm7gQGEe0Bf0C7q+8GYI/WXWU+44W+OtnEPqBf58BvPCPcH3H3Uh/oR owTsTBzRFrDJ0b5e1yQvfiOhXtwD+gIsVHCDah1asM3hx4dYNlxPsCzEJel5 dom7tpUreKZar5Z88JHV65+et5e6HdYyd4PIUkn1zYqk11Epo3V2wfmEjzDK wo8Z14DZmmqtcmu5WLgCHeYy8aWqF1kidcJvqYmxQv7jnrR85UYsUGtrjVyD jyfi++tbFW2hDNrVsrecQ3wOEuqEzxPKAI+2bWQtMKMEoxZlkMBfgPtEPehH k8hy6RPqQh/RLnxU8Rvtw98L9eA3YlFxDf7ciCvEs0BZLetLeeDaol3wkGmZ QGKBEJuFOv+Lr1rRnn4OwJRFnUgoo3UNwTiQPvy3HeRBWZRLtpbLvQF7Hglt oU3cW6vIaimDVHkeZXGv8OUHbwfuGc8Hv9FfPE8klEdb6Bd8fpGAyYDxgHda M7JI3gt+493iOWM8VI49vGscEUuDsYRYHvxGPCh+Y7whvhXfXuUYBgY/vkGM fa3zuOGPjvGJenAOZTGegbOK8xjfSPhOcA0+qxiz6INhLpT/aAN1Ig/aRznU jd8Yw8hTLWJpGeQ5KYvvGdeRH3lxX7gXXENd6EfMelT6jetoC/eN9lEnvnN8 v0ioB33F3IbvFt85vnnUAVwRxPkiP75vnMe6CL9q7OmnmqvkeWNM4HtFHsyD mPfwneMZon78PmTdJfNO5XyD7xkJfUI5tA+eA9SNeSDfGiXz6UnLJ88G94Ij 5q3KNpAwh6I82sCcg35hTsY8zsZkqQ9thqy7ZW7GvI61GHIE1hjMz6gTawE4 kvZbE2QNQ97KNRtrPGQDzOlYS7CGYc3A2o71B2sR/iMPzlXKGVjvsP5gXcEa giPWRJzPtQZJXViz0Cf8Rx0bjZGyriIv1mGcw3WsSViLcQ4JMWbAUsMRvvZY XyF7IGYbaz3OYd1Ge2gbayHqhEyBNRtyBvyOIQNARoA8AJkCvyGjIQ/WaORH HZXtQsbA+gp5Eus28J9xDuWxhiMP2kYdkBcgV0IOhbxQKWdCRoRcCbkUMi1k 3X5GCzlCXsV6jxgM/IasARkFbaAexNVDPobcDFm3r5UqMjFkWiTIuP2NlnId /3FEHsQiQCaHbI94yHaWQ8rhOuT4QUZQOKiRB32BnOyymkl+nIdugDpwLt1q IrqB1uVFT4HuAb0Asj6wofEbMj/K4Bx0ByTI/9AdIOPD9x4JZZGgq+A/8qE/ 0Gmgm6B+XEMsMXQO4KycMGIDwOUFXQh6C/LALxfXgNUDvQnXgYGDcu8YV4DB NwCxhcgL7HzoU9DDoI8Bvx7loKtB19K67QDE80Jng86F39DDkB86G8rgP9rA NdSLa8iLGDWc22NckHZQZ6UeiLoR64wj8kHvQl1IOAf9EPUgATfhMaNwAHip xxh7BQ8A+id0TWB44wjdE7oo4kOBu4FYKeiy0GGBow48ofHGPtFjUccwYxf8 40W3RUwXfKehEyNOAkfo78D7AW4Q9F4tA4h+Db0f/tDQz6GDg6NWj3E56vE2 4L/xcqLHv2iM1c/zDuAOid6PfNDp/3+Cr5Me/1IfbBOwBcAmAFvFWuNM/0r/ a+j6aFuPf2kL59CGlrWlHdSjdUy5hvqA6492cR1tIz/Oow0tOwrnDO5ff0vA 88FYK4KNApxawKBEvBnsAIivhE1EP/v+wIhCXtgUYEtAn2GLQD9hI0HbiF/T 86z0B3YP/Ndjtz/i0NAn9AU2CDxzHGGbwL3h2aFu3af+sN/gWaEO2FLwDOEL 9rpxj9hGcMR9IaH+ynvGc8c5PefLe0C5ymeHZ4T4S7xHvGPkgf0G9aEOtI+8 KAObCmwnsIdg7GAsYAwgfgM2GOA6VD5DYEZhXOA/cPph84EtBfYX3COeH+wt iE+sfK44j74g4Xel/QVlkPBs0Udc0+u12HRgv0FCfXpdl/pg90F9GMMYq2gb +ZEP19Ev3C/6iHO4J4xt1FfZLsrgPPKgLNrG/eM5oA84j/ekZTbpP8qhj+g7 7gv3jDZwDd8KvsGpxmti+wHeFLg38Awxp+K7xX98i5X9rrQ14dr9Ruh/3y++ dZxHHbiGehFHhLphW8J3j/y4ju8a8xzaxDn0FXMg2sK8hYR5BNfQNr5/lNfj VuYdzC3IW1kv7FGwZ2EOxdyF+Qg2LORHPcAehe2r0u5VabvCvIl5C3Ms5kSU xXwHHDT8xzXkwZyIetBHzMmYMzF/Y47EfaBd5ME1zM3oI+rC3FxpI8M12NIw r2NNQDnMuagf8zp0acyzWB+QD78rbWFYc2ALw39cQ34c0Q/UjfaxRqDfWGeQ cB1H2NRwDUf0AXlxv5X9wTXEG6FO1Ic1CWsa1rNKOxvOIT/qx33jHPqF/uCZ oG9YT7FeYr3FefQfzwzPCP9RN9qrtO2B/w/14t5QB347rJpSHva2StsgzmNd Rf3A88AR18EdCFtcW8MhCbY52NHAF9HQSBJZANcrcNlaiqzS1UoWexxwaBH/ DDkAdkHkwznIFpApIENA7oBtD2VRDjY/2OqQB3XgiHYhM+A/fkOmgVyCfsAG B3skYuWB+YD7xXUcIYfDvgO7COyNSHg/sItCNoMcBnkQMhTuB230slLEfgP5 DDIm8DrQN7SF+0DdkLXwDlAf2odcBxsf5C/UhWeB+4ONEbIfbESQEYdb7cSm iGeAPCgL2Q1toE48Dzw/3DNkOMh46D9kRMihkNuAZYi+QzZEggyGZwGZC31H OfQBzxRHyIPIg7ZxX0jIUynXoQzqq7SFQvZEXsifleVwHXIo7g+p8jzuDeeR F7+RD3Wgj5W2tUpZF7YmnIOtCnlxT5B18dwq7Z14F3hWlfI5ZO3K65XyO+R5 5Ku0CSIfEs5V2v1QB2R52PEqE86jLOqutJnCdlUp++M87FjQH1AW+TFu8G6h I0AvQILOAh0HOk2lPoE6oHtAT0Fe9Bc6CXQg6EXQW2CHwxhAOdSBa7DHoRz0 Ieg5OEJPgp0Qv5EHdkL0DTw6iEOFPgcbE+xN0BWhe0Gfg60UbeE6zuMc7HbQ 8fAdQFeDzQy2NMSMQu+DjghdDuegR+IImx9sapW2L+RDwnnUAdsbdFDkgd0K fYEuiv5A/8c1nINdC3oy9M1T1v2SB7YB6NzQm78y/JKgl8JmB7sXdG3YCGDT gv0OR+jMsBWgLBJ0YNgXYL+DzUCwRSxLbF7Q6/+/bg+7A+qDDQE2ArFbGRW2 MSTgVkF/h+0AvH+waeF65Tno3jgn13UdWiYQmxfsDLAnoDzsBmgT94I+Qwf/ /3YPXEN52OJgV0D+yjK4XmkbRILNovL+YSdEKrVmyn1X2h1hV6y0Q+K54Znj OcMGgOeO89DlYdustDPi3eAIXR7vAjYK2EJhY0A+1IOEZ4q20CbeBe6l0vaI e0Nb56wHpQ+4hneH9wabQ6WtBvYX2PdgS4I9CjZD2BphO8Lzx/uCnQXPsXqk wqaH5wi7FWIkKm2PsEVgPKIfsJ2AGwq2OmAzwDYImw2eK+qBvUyuW2vF9oWx gPeI6yiLupHQFyRg1qMOYBzANgZbXg9rk7tnZJMbGEnp1kaxucGeCHsZbEaw kcGWAxwt2P1g0+tgPS/9Qdne5hbhmnSZm8U+CVsebIOIf0aduAa7ITC7gGOE tvpEtriBg4EEzCTk0bKie2DkBcG+91gvCI4Azpnmi25l7gDOh2BaZFov6Xl0 t/BPgVcQHFeIax5p7nYPNXcKfy/+j7MKwFsl8dC3W3v13L1Tfk8w97m91svu eyIHhB9zfKRAcMqQkA//kcCDiTrwW8ubwqMJTi2tZ7rvNQ8KhhfqAv856kVd EyMHgSMmCdezzANun/WqxMH4zFf1nHpIygPHaJr52v+O/0vWa+CQk7zTrcPu qZGQnutfE5w1LYsKfxa41sE7gCNw/sFp5zffdD9uFiKu3v2UWaTna3aDGwCc T+D/Ao7LUvOkYPItsMLAQAGumHCPgV8KGB7Ag7LM48IJjvyImX8+ckaw1BCz j3PID7yYgHnGDT6mTeZZ99rI23INXMlaFgU2v3u/edG9PlIieXPNE+7Tka8E kwL4goiHB27XJuus5NkcOet+KRLVc/dH7gLzQ/du8wO5pvV+4Rnda15wazlP eNbwG0ctfwtOmJaBpezOyPsSbwT+eS17CzYd6gP3FfIjL/oETDEtP7uB6YW2 UC/6A76Iw2apnD9oXZJ6UAZ5pD5dBnUhgRMN9wEMhUPmR3IdR5THuTfMT+Q/ jugHyuCIOlE38oNTGnUjH/qJdnFvSFutc/Ks8NzxbPFeHo0clTkIGLmIDYev HDi84YMIXzjEJP1k/F6E+ROcYHXN6uoL6xd3/8g2sTXBn2KjcbboZ+OPImDb /RenRWRtrLXAicG3je+wr7lVbO349rGOYt8Y9hbomLANAIcXejHsKZDXcR0y A+yQWIMhW0AugtwLmRy6CvQU7NtXyt6V9i3oKJDjoV+BExQ6IHRU6PNI0MPh 3wBbg56r+gPrBhg34EkE5h0S8Am0jH9M54XPR5HWO4v0nC7+KMCMgW8JMPrg EwI8a/i16PlPfGGAkQ2OQeBm4vnBPwf+PIgjQ6y5lqsFd1LrUcBvLQI+G7AN 4a+D68AC1muV+EoBYwZYTcB5ybOGFGtZSLgagVcMbHHglwNzXK9NgtkLHORe Vr74XsFHC5yHep6X/3p+LCbjhWLgweo5rHiYsUvwe+H/Bb+wJ42iYuAj6O9V sAX1dy2Ye8BJhT8Y6msYWSZt6DlWcLiA7QRccPinAY8D/m3ACgbGFTB7gT0D 7DzUBzxxcHPquUXi49AWsBiBU1NifSM+dMBcQDwccNHB6QEfOWCAAw9XzweC x/BshMW/DZiyWi8WvGf9zUtd8InTc4PwMIOLA/gCyKe/Ff3MPpT4O+ASgRdU z+nigwZsU3BOwl+rupEgWFbwYQI2IrDZ4KcEfka8f70+gmtP/IyAAwpfHNh4 4H8CXw+MW+gekHthk4dMBxmich2HfAJ5FboX7AEYi1o/fBNj6bgxBfgGReBN bGM06A//F8i3WPPAm1zbTFS9zebqrmBX5Q/2U1pOFv484IZs8N0mXI37IuPV sdhEpcePxGbGg08r3aa6aD6sQsG7hc94crCHGuPsJBw++H/BzFYtnKvV3ZH9 akPoHfV+9DtVtaQKNYnVonaFDkr3NhFONldhM+pZ3pR6FDSV462RFMooaEEe X2saEnPSMEc7Gu5vR8Oc7eT/QFcbcpe1pH7xVOFAyvC1oAFWSxpU2obGedNo cnYPmlnam55MGkDzMhXNLyRa4PXQgoCHFiYNpGfLiOZmKNL6B83J7k9zQv3p 6RQ3zc8kejam82Z5JM+zGRVlrOBAWlxm0pL4IFriGkzLSgfT8pIhtCI0lFbG h9Jy51BaUjKIFmWbtDBjoJSRerJ12ZyBtCQyiJaXDaHVzuH0fGwEbSi4jTYn jaItUZ1io2hTwUha77hN4olXO4bTyvKhtCJbpxxdf9Iw0nMVrSvMpM0Zo2hH yRgKWmNpV6GXXop65ffmlFG02DWIZmT1Jq/ZmXoHmlPrnPpU31uDEoIG/e34 R/0V+VvdDP4jz796rCrVciVSPWcNcgRrUuO0WtQsUptS8+qS1v2pbYqDOroa UXqoCfUKpZAqbEUjStrRHUlppPU88hX2pAcKXeTz96SJsXQa7+hCI30dyMxu Q319qZSe3YQ6+BpSy/x6lByqRfXi1al6UgL9Fftbfee9JnyARYHLwvMHvD89 P6hJoVeEz6lrcINg/IHDsTA4UQEjblCkjXBILjFOiuz6332KY1rnK9YylOCy 9A42t59zmuLHjbjMYdGdwicC3JLL5s92zbRq3DbagPuXt2Bvdmd+MHoL52S5 eVnJYN6YNJJfzBjL+9Im8OGcLC427uNTvvv5fPxB/qhgBseyH+XvXU/wr0lP 8+9lc/mv2DN8I38+3wjM5/KCZ/gP/zy+XjiXrxfM5d8z5vGfsXn8V+QZ/se1 gKsmW5wYeo5rJeZy/eyl3PhUHjddtYJTR6/ilhtWc2vvGm69ew23StMpeQ23 fGM1t7i8ilMPruIWJfoY0sf01dxyqD5vrObm8ZWcunsVN7u4gpvfXMmNk5dz /bylXGP7ItayO/+ROY9/LnuSf4g8wd/E/fxZfBZfzHyY3ymfyie9PrZ99/GR pHv5UPZd/FLSHbw5MpJXeIey/kb4sXg/1noy32f0YG+gM2cWtGcqbcW9rBTu VNiIWwbqcbKvFtcqq6bbqsLfBa7Z74W+s9+MfWprOcrOCRRLvCPiJBB/AHw0 +KMDa65FrK79ZuRT4cgGt4TW3YrgGwh9u7uxSeQXYHfqb1llW7eq7cExSus4 Ksm3WLV3PC84KdMCr6nljlPqdecnKhb6VdUsS5Bx3tefSqNDHemBfBflFLpp jW+4fB+F1kR6r2A6fRt/jKqcWCA8fKl5q6hLfD1lTNhGI8p30Z2999NU9Ro9 FnuTFthhWnn9FG0+dZb2Zl6gw9tL6URSjKK7v6fY/F8pbv1JxgNVPEnzq3kc j9f0NMuo42n9Qn1Ph1kNPWmhxp70B5p4el5v6umVleLp815zT7++LTwDgi09 nttbewadbOMZmtvWMyKhvee2tA6eUU07ekav0OkFnWZ09Izq1NEzcloHT+bW 9p4RV9p5hjVq5xma2dYz+A2nZ1Ca02MG23gG1m7j8Uxr7VH3tvL0v9nC09eb 6unlTfF09zT1dHEkezr+0tDTNtLAo787T0phHU+TT2t5GjZN8tS/vYandnai p8akBE/CA4bn5rR/6D9l5fRj9nX6qvxX+uTUT/S+8T29Pfprsjd8Tq+fK6V9 Fz+k4Kz3afPFs7Q6+W1arE4Iloc/703B+5icc0jwOsY49grWCF3eQX1ubqHu 1zdSh9Dz1NJeTcm5ywV7oVrac/RnyjNU5nuCPjVnkf6u6GSOj47FJ1IodDft zR9H2wvG0CZrJG3IvI1WeYdRXuYQ0t++zMlzo256OjqAcjL1HJ1FZIUGUq41 iJZagykvewgtdw2lvNAQ+a9lHHomg2Q+f9Kh53dLz+0lA+iZiKIFPj0f+wcK VsyzTg/l5LtpttWX7o/2pHFmGg0ucAofX9eCZOqU04g6RxpRt7Qm1CcllYZE nTQuO43uj/Sk2WZfeip7AM1NUjLennD2Jy1T0kPOW2ma9xZJD0dvpccLM8gy B9LalBG0I+l24SoMBe6mw4Es0mOf9obG0ZaU0bQyY5isN3rtpen5vWhyQQ/S ayjdXdZVP+Ouwj04PqML3RHpTKOzO9LQ7Lay3vUINaV2Xgc1K61NdUPVKTFQ lf6J/KP+CN4Qzr8/zBvqhu+m+tf8Vxm+KpSQYwifoByzdcrTqUCnkEFaxiDD W4X+dv6jrgf+Uj84r0MmV++Z3wn3oJbD1KrQafWE85jw2A1z7VI9AptUamCV qhlZJBijWm5UW83ROk9/NSTiVMAeBX4b9FLIKrArQy4H5wW40eF7Dbxx+F/D P1vLx8fAdwIZBXt28C/GfhFkbdjOsQcNWyzsiZCB3rDuEfsG7DzQ46GfQ7fV 64lgdBcbn7u/Na65q0aqKGBnN7VqK73OCT+vXgPV75G/3HHzT/evkT8E9xaY Zd1jTYQnbo7ZX22OjVSF5kSl9Rel5WBVHJmk9sTuUCudw5QeN2p8JE25Yy2V lrFUqlVX7hf4o9WdCSpm/Sp6kpZxRV+BXAZfbGCzA38XsRNa1ypG3AnwrcCv FLeeFhzVDP82e4J3n8RRr3WdsbWcaoeDX9ingl/Z70S/sc/6rtglwW/sc6Fv 7YvWD/bnrl/s78xr9m/RP22tW9jV4obg94F/KsEy+HfHDfvz6M922PzCfiH4 nsQhIv6+d3CL3cq1xtbrrd00sELwClzezYKniFg4YAvgeoLfkpgmYMoCUxPx IMBqBEcdMJPh5471GPIlfOUhv+r32h9c6pBXIWdCpwQXYbqvieCrdjeaKv0+ Vcj8WGwtsK3jXQPHfryxrwi641vGV0VfGfGi2laixEAAtw24F+AABB7u2+YD gssAzH+tgwiHGeLxwDuS5l0vGAydQuvsnvFNwnWFWETEriNWdYfrPXu/76J9 IH5ROKnWGmfsOf5jElPfL7pVMB1qOhYLhn4Nc5HorsBnAA7CUN9Oe2hop+RD 3N1fzvn24WCW/Yizr3B6ICaoqtMQrhtwNgAzFdh3wHBD3Bownj+LzLKLfJPs tc4Rgq8BvDr9nQpus34GxcDO72e0EJ6QiG+KxNXptV/wXcFHlxHYJjGIiCsE jxlwJPT3aA+MvWDf7Twgse6bgmftI7FPbF2nXeb9DzDV7UR/Vdb6Nyd5q3FN RzWukZfANbw6ZScwMCWTgtW4dn4i182pruWKGlw/vwbXcVXnmvEENrKr8M+O P0SeOuP8BtxZ9l7vBTsYeN9e5npLYlSBzwBOknTfRjvFv9I2/AsFexHxbuCz QEwaYsme8g2w9dpvP25l2NODveysYDdb6+nCFwjeP/CnDA22tW+LtNdjtYuM vcUx097mHCM2BMTngfMLWB11HEuE36KGtUgwNoHjCbzEV2J3Cn8HeFoQI4cY t+m+XhJ3hucNjBTgOr5ojAU3COJWsA/uzjZfd38Q+R77Vaqfs4WaYHURvWi9 cZvSMoVwSYK/u3l0peoSW6/SQxtVZ8d61Ty2UlVxLlRa3xIc+iZGbQW7Feyu sCfA/wFznB7nEuuCWJt8a1Sx/uZFn0SMGPgXV5hDJd7wX98Cu1EwT+YE3ZZd P7TUBibkh8bDwpsGjFd8B9PMW/6Hz5Ljc9uLjUG21kmE/yPXHCT8ZZDBgM86 2uoosXaIr/NZPe1nnCQ8M8ArfDc2zdZ9E767aq7nJA4U80LbyFr7luhmwR8E RgbwFBDbDu67E/Ev7dLgT/ZPzt/tcu/ftpFVhROyDE7wGlw1VoWruKqwYepj UhVO9FblOiWJrL9f1nIbdyltzLeUNeO+gVTOCLbgvoWpfGsshXt4m3JaYWNu n9GQnVkNJG9rb31um+RgvW5w96SmghOakd+CqbwVD4q14cF+J5uhNqwyW3Hf vFTuGWvKXWK6DqMhty9xcDvLwR0KGnLneCPu4kzmbrFkTs9rwt3LmnB6jj7G 9TG/CffIbMpaH+W+mamsQq1Y6518u7cTZ2V348mFPVi/V348L4O1DMtap5Q0 N0XxvHzFC4IezvUO4jX+4bwpNJJf8N7OO11e3pWtk9fLO8vH8lbvaF5bNpyt 7IHs9/bjB7JcfKezK4/J6MS3xdvz0EBb1nIfDzPa8fCsdjzE0ZY9ZmvuXdic 0/Iaa/m/DtdKS9Q6xg37cuhn4VEs9H1mvxK9ZB+I6PnMcUnPRaX24UCp4LRu c50XfkPEYyMO+WbwWS2rjxEuIthBEHsHrGNgD3U0GhXDvgT8c/CXwh6GvQnY c3+L/Il9SqV1UZHL9byr2roC6tZIvhoQ2q4GOl9UQ4ydIqcPD+xSY6J7lJ5v 1QOhkHo8VKhyfSfUlui7Sq8D6qQ/pkr9P6kfA9fVP45/Va3SatS4PIlaZNSj tk4HdXM1IZevGfVztaCB8dZ0m6uD8Ko/mNSLnna6aXnpENGbCzLH0+uOe6g4 7T6KhKbQW0n302nXA3Sm/AF61/UgveefTrr/FAreTQvyPdStNJke9xWqyeYh N2J/O3kbsdYP+BZXPs+w3+A1wbd5+/bzvHXSOV6pTvPcU8U84403eHroMM8u PMrPnTvOW7ef4zfrfsYXrDL+Jv03/m70Nf4w4wc+OP8SPz60kLtE1nOo4G6Z PxE/DP+CqO8hpXVR4Sf+LHpVXYr8oE75v1IngzH1ke9H9U/0H9UiXpc8Ba1F h9FjQ+Tg/NAoWhUaRo8lZVCmrz0lZ9WiN43P1PDgLlVkTgI/s/jn6XlTMKAQ x3pvMN0G3yA4nXaZXls/J5lrgSFaaH4GXhHwoR3DHi/WXewhwDcZ+8rgWAPO FPj2wsHJdkpgpWD9+MxXBe8A2MQl1jd2UkE19mS25kVBky+VPsyps1bx7QV7 eXHKCT5y8RP+8uovrN8r1yxPCNdKSAwnHq4a/rPkBl+2f+bjri95t/kBr0w5 zXqN4odSXud7px3kUYl7uH9kG7fpsJb/NRfwQd+dfHuoE19y/ihYTYjzfDDy mvu4c4oa7AuqhZGw2uQ9q1ZZp4WD+dZovuDvg1sYtmjESX1o/FCE+FXEB2PO RDz/Bv87tpZV7LTsxpxlduPc4CBpS8sxfMV6jP9MeoYThlpc/epzXMO/iKtf fI6rOi3+I2ue6NPvZjzIr2bczevMTH7C1Z+zMrvxoEgbdmU1Y60vyJzVubQR 94w05X7lqWz62/Bwqx2PcFV82yq/FbsCzbhdpoMbG7VkzYUufSN4067iqMLV jQSua1ZnR35NrpdWgxP8Bn/iuGpv8p21BzpetF9zZtngaWlgLOsfNN93+81+ 6lfn06pdMKAGRl5Q+n0Kv8D9Rkg9Gj2qljnfUi87PxTb2w3zpmpUkER6DiU9 v5EnrzXpb5oGxlpT/7IW1MuXQnpepM7RRpQWbEy3pKQIx/lkfw9aZJr0ivMu +iI4m7ROTs5ZaynDt41uL9xLD0Zfo3kHbXreUUL7bn5IJ+fH6PKGn+n3ujco cWhVT9Lwap6E/Ybnu/nX6JX4JZroeIV+SJtDv8X/VLB5an2Evyn182h7D6+Z 9TYf9X7KJb5v+L3R3/GFzDLWegj/FfubG41LCvd4oWnYe3vn8GO9MsJr5g0P v9h7bFjPq+F1QzPDjyVmhLXeEa7zdWL4hcz3OG30en6yvD8DQ2i4uas41VdX tXGtVeujJepj50+Q1UmvNbo/3WltdDidd06npJzF1OngOvLkvECjHHtoTGwP DUvaRbe6tlCKvZKuFeSQHi8yFzlzGlA48IUa7tul3ooBr7+6go8CuJxh+/Wa Lxd3j2wUjh7oLJ1jjVTD6DLhudDvnfoGU2m8swvdHelKw9LakV6n6AfjOuxc qqNrnTrgvFN5fK3Vn5EbbvBgY+8JthL4gIKvENgFkeCXti/Uk68Fc3jorJ28 KnCaz2V+y/+u+pcds2uGm1+uE27etG64saoVrlU/MazHAH9Z91c+U/I1HzZL eWf0fV5/pYSXZp3kp+wifiAY4kzvS9zx+vNiS9rsGMW9ClJ4q/+cXRybBJ44 xGW7IQ8Z5kKlZWLldu0QjpLW5hqtb85X6yOZgk/dxliLfdBj4IlEbD4w2oGX NsgRFFxk2IuAlbPZ9a69N3TBPuL41H7X+a39XfCarfVT1muCfE9Yj/uVpHLv UHPumpnMzZx1RK44H/9Wz3FRqQPYNeDcvWHdtHuWNeWZzj58MOtO/jEwhxte XMad09Zzv8hWNme9yEOSdvIgV5Ap7QXOyN7Gt5blc0/nZu5+dSOnj97Iel7k zinrue3Vtdwkvpz1+sgXAtn8fMkIHhFpx78E/xCckklWdxsx02OMvW6t+wOP W3WPblSj4ruVXlfVVNdrapr/NTXR9Yry+l9Wei5Vva0twAcWfpIa3kXqe+cT qth5n1phDVW3BzuBd0NhL1GPG4nTgu8W9qOwLwa/EuzVOn0N1Juxe1Vfc6va 7HhXNQol0Z2urmJDAZ5lA7WMusc30m2O3TT1eoie6c20/moJ7Z9zkU7EvqSP Yz/Szyl/UNXvqnjqfJToady0lqd5y7qeFp3qeZrVruOpfTjR86P3OhUUfkgT pu2jLwKzqdz3t0IsLeS9k34fD7u+kzf3fpdLh/7ECblGuKFKCrdcWi/cvlPD cJfE5HCPCU3Dt0ZTwv1LWoQHnmwdHtKpbXjYp23Dgy63CfepkRpu+0eDcOKs quHjN7/gGflvcIOypTyt8BYG5y+4JQ4F71I7IudVw4wk0jo/3W5WYAPruZS0 nEidQo3EXq11dmrsrEXNS+pQuxwHpZtN6Na05tSnpDnd4kihTvmNKDmnFv0d ualKvN+o/NC76jFHoV4nDop8ku17Xa3zl6gLoTKF9VXrG7TEGCyyRJWUhbre ldQtcSP1zt8ic0DnjPXU8OoyuuJ/jDYFRtLAlDZ0NnBFNfWuUNjbvWo9WVwc mSQ4Yomhqjw23om3hkbzj5lzuPX8NTwyuJtzfMWs9Sb+wFXG5XP+5tpFieHk vbXCKZl1wlq/Dtcelxi+PucvPpt/hbc5zvPDzjc4I7SNa+/O5bfiPpE3+7ta cmKwKh8MXBJuyxRrpfDQQa4HljrwEhCjD59q+IphrxWxMfALxH4QuDeBtQG8 Q+D67It/aH/ljNtGoApXixp83fsXOBHtTaGzgjUHPPBca5DwFwLLADHj8PWC Dwf8cBCDgT1WxOAHrBGCVwldFvov+O6AyTjYCtpB7/t2zYxqfFtaB/meLuc8 wo1bLud+8a2cFTzAT148xivTT/O2yDnelR/lFzu8z5uGnuUlzpP8uLeQ7805 yIO3B7mTtY7rlOXyV+WPcijnbl4Q8PCYko6s53g+FfjKvt3ca7/sHG9jbxC+ 0dj713Ow+tL5qGpprQb3lert3SJcQh/HZojccMy4LPvAwCbItF4qBl8fuBkb BZNs8N6HzS+K7zUPFmv9D9yCRdjfRSymlkEQn6H2RO5QdWK5aqS1W63wn1Ja fla18xKpu6spafmeHk3pR4GsEXQocBedzZlGXyY9Sj+XPUnXg3Ppz/g8up41 l+KBp+mXvKfo5/In6afYHPrF9xT9kTOPEvwW1c9eSq2iq6nn9U00+GCQsgoO 0OyDRyn34AnaUvcc7Uu5SK/HS+nVlh/Ttozz9NToIsGSLst5gvqUNqcDsQla /r7Ldpe35P+U5vDg3CA/UVbIq0tP87qcEl4ee4vnFdhaL3mTZ885yvNMm9c7 3+Ei72X+vuQaJ+2tFk5ZUSfcelX9cMq8OuHENVXD7ziu8JMdirjJueU8LfsW 9gZehh5f9FNkjtrjuAB+CUrOrEV4Dt8a19Qh/0dKv0u9TrLaHD2rPgr8qFIz 69LYaCfKDQ2iw/4s+iD+EMWyHqXPSx+hs/nT6EDZBFriHEwTU7pT7+zm1Mib RNd85epD1w/qfcf3SusxysivQq1K6tGgeBualdWHtmaNplOF99MPzjlkZC+k apctumHNp0/KZ9Lu0B10f3lPahitSbN9R9XDRm8F7NYMXwu7nT8gWG3fROLA fdEyaQv2eXvy2vhwfic2lWt2WMw9e2/miSUHecmVE6znVD7t+Bpc8fxR7o9c Mv8b1noX5214iyf5XtH65UaukryQ9/sn8GSrB7cpqc9a97H1vC1cd3c4CwQT qpux0W5irBD80gLfeMG7KbIuC+4I9nDhsw3fA9hF9TcsXDG9zeb2PucEwWXq Ft1gZ1jbhNuhmWOlfSn2sH23sxsw5oSvEftmrWL11B5jnKoWtVRL72rZmzW8 C9VOp1fscWMie+DXOwAcWA0jNe0dztvtRoE8wfQCd8iv8T/sdj4H35GUxkuS BrPuG/8emcvNrq/gXrvzeVTdPTzlyiGelXOEH4u8ybNyj/DkVYf4tosvcffe m7hByjL+JuLnl8vHsb+gH2u5U9b4z2JX7Y3Os/a4QIHwE4D/+Ir5W/FtRodi +M6Cv2aB6VH/ieTI2gketqHWTtXXt1U1dixX54IPqgeNXloeqSLcb/CDg18m /CA7R9a5j0U+cw8wW6r9vgmqsbFcjY8VQEdQ78e/U4lmVWrpr0e3RJvRIKeT bs/pJLb3qaUumhXqIzjNy8oHC858gXc8HS28l05k+OjtwgfotPMBOh6dTEei 99C+6HjBsg8ER8i+8Kr8YbQ1MJoO52SRfhdkTFtIqfYqGpC3nSZlv0ILS8MU LHyfTpR/SV9k/kK/O25QVafhqZpseH5N/5NOn/uKFg2NUOek9TQ71Fev21PU rY4t0Ou4X/I2Xjr0JIfsj/lY3cu8J/ECW6OPc5b3AGfkbOOuGzawzssTgvt4 uesUl+R+w1VPVgknF9QKp26vG27wXo3wlezfeOXFU9yiw2oe5mjH4HJ8Lzhd JWfXooWOgXTYm0WvJ91DazKH07icNGpQXoP0miV4zu2sgOoUWKfuiL8sz/Fz 5y+qcWkS9bJSaGSoA02J96Dpeb1oZrw3zSzpTdP8t9DUmIsm+bvTpMLuFXsZ SWmk9Tu6JyVdcLDXOkbQiegU+jvtWWo5azUNyN9O49U+eijpdXr03FGa7j9M Y+J7qP31AF30Pyx8BbP8RxTih2FbfdX1MWyt/HBab15ROJS3lY7m3f47+LXS u/ls3jT+LS2HG1/N41t7b+E7jf08541jvGb72/xi5D0OWu/zBvMdnltWzOOs Au4Yf55/cM3h1RnDuX9GS/7Rui64fwO82+3mRoUtrqex2b4zuk/wRF9yfmBj zcH6+Wf8BvCdGLrcNW85+Gbsg8FLggGoZUwbfHDAndL1AOv5GOIy4Qf3r/Wv u48zVc2x+st+A7gftL6r2PWFahCpQWS0pmnWLbQg6BH/g5ygm8ZH0qiJUZtW GqfVhuBt4N7qv8o3zJ7rtMHfy8NS2vHjBRm8LjuT95WO1wr8ffxhSTb/7HyK a5Yu4uZXV3J61kZWmTt4eP4uHunfzcPKd3Lf/K3s9K/laucsPpnj43k+xVqm Yq2bCH4r7OrAcJ5u9bKdwQb2Feu3YnATgesJXDIOqyawmI7Bnop9mlsj+e4c q9h92Cp1f2pdlXt1BGsqrWMKt+W8oFIcuU/2evs4topMtt08ry5YZaq6K4E6 ZTaiTLM9zUzqQ6uN4aT1b/qg7CH6OfIkVb2+UPTR2r5cqpm8mKqWLSQth9OV nMfoo7wZdNY3TfYa2TGZ7IL76HjJZDpp+ehMxlR6z5pOl1JmyDrzffxxKs98 hmqVLqYWyaup16p8Gpv8Mj3mKqT8Ve/SW+Ux+tX5J9XdX93TelF9T1p+Y0+n 6Y08zS/W8Vyf/xdpWZhaXVlN+A7gk/SIqy8Pi+zkw7mlXB7SMt6mxHCN/Qnh H+3rXLTqMq944xRnm69z1rQDPNl/iOc6bH7x5nv89sGv+ZtTcf4pcp21jsov qw958sFDbFgLWcsRDF5b+OE0yksiPT7p87JHyLAXkpGzkL7O9NO+jAk0PdSL 2jgaUHHkshru36U+Cs5Q4JbD3hbmQa3LC4/ILO8R9W30N9UnLZWeiSoKZ06m 8tAzgqPfNr6W0jLXU+e666l9h+epdXANtbiyilqkr6b2FwPUKzefbkvaLbq/ tf04bS47SzszorR9znlafD1Cd6r9et1fLv4yW4xzCvFHWaEDttZxOJr3EDed tYJviW9mNXoHu2Pb+dZT+ZyWt57bqLXcMnM1t8xfzc7gWu6Yvo67zt/A3co2 cKecddzi+ipOshfz134/74uPFz3PldOM/wjdAD+4fb8jZJvBF213fLvw3ACD N+L70q6ZVI1dvmZ8T6Sb2Gy3m2P41aS7+YjzXt7nmsArHcN4Ynk6p2TX4UDg DHiQgXVZNCbSUY11vqy+jPyiOpc1orElnSjbeys9VTiAFpZ4aEnpIFplDaON JbfRiylj6UB0Ar1elkWHzSzaXXAH5WYNIq+3M9UwE2ict0B9Z12DT2bxXYH9 dtOC2vxEaYb4m1z1PcnVyi2uMX8RV21p8bW8HP7cMZvfKZ3Kb6ZN5APGnbwz Ppbzc0axnit5sWsQzwn15ymunjws1pY7Go3Evv5WLCa4xHrsafllhf2d73HB JgSHYIk5Vcs1ftmTSQoslv2EerEl9j/GAjtqPWSv8Q23XWYzYBELLhhiI7Ss oS76HlZanld6HlPVHQnUqzCFJuf1oOdSTNoRH0NHffeS7iddLniEfos+TdVK LKrXcik1ca0gPc9RSmglJW9fTvWSllLi7ufk+/yybDaVZE4lLbtTMHOs2DrX xzJpS9Jo0vIIhXx3UyR7CkWzH6KvUvz0n6S5lDjrOWqYkkftHc+TO3EH3Vt4 kBaWh2lf4kX9Hf9IxuQqnuTCWp7ONxp5+nRI9bj7tvL0K0v1dPA29FQ1DM92 73lqlrSSPnf8ovBMPvLO4FUTTnONBQlh16Jm4UF/tAnr+T7c5mR90b/2RD7g yQWHOH3CRm6cspyTNyznLlfW8/DgLvZteJVnBN/g+5yHOGPWNtY6EE8o6MLA YYestd1/Xk0sTadwwWS6njeX9DOmL0tm04vR2+m2lA4U9X+vdf0lCr7d0NWA twisTdjotVxmvx7LAs5xMfzPe5ibVDNHHdrl81KT68vpzsT9pOcPOjy6lN7p fYUu5JXR+di3dLzDl3Tw4CXa4jhHedZbtGB0mOYqW/R/a8Nxys0+Qc9Fj9Nj N9+kcaMLxIZ3rGQiOXw1CTxHwN535TXjS84Z3DVnA48vKeCprtfYd/BVHr1h D/c8tYnrTlvCH5Zlsx7v7MvsyX19qQwuuH99/9pf+H6x33d9b5/zf2t/6rtq /+n6G3ugeo1pwqOzO/Kj8b68zpfJrxlZfN41nb81Huc/S+dxwnyLa8YWca3e uVynNJfrjl7CddKWiL5bo3AR3wjN54+yZ/D2/DE8Oqsjn/J+JXt6M40j7uXO Uwr2s09zZlHb62tp+IZddO/ug6TnVJEfPJkvUNvIWqrSeyEdT5tCS8oG0RhH J2rlqi+2tv3Bi8JPAduN1pWhBwyoGqtiJ/uW23uDF+wm0VqsZRp+3J/By8oG 8/L4ENZrL2fldeNbXCmwcbPt+1ywxsEZWDO6yP4kMlN8ni+bj8j+NPalwel1 wLhk/xr9w07Nq8vK24rvKe8mz+QZg3h+doX/FeagAb6W3CCppp4XPrfvMAoE bxS4kTWNasWQaRv5ktSJyBRwc6odjvdUtRKDVF4rejrNrfW/LPqh5AmqbeVS auYqatsyQG07BCjVu4pqF+SKTlmUN4m0nEDTsm6hkYEO5MluTWZ+G9HBsv23 0vLYENJ6Il0sfJj+sOZRTedicmQvo6b+FTL/twsEqKtvA91alk+eoS/QqNLd NPHmQeH7yX3jBO1o+R69efVT+iCljH7cfZ2MGVU8tSclehrdleRJya/jaTmj nqdFej1Pkyu1PNWvV/Vc8JbRvByb9PxHp+NfKXBIRDKn8KJJEU7cWzV8q6N5 eETL9uGBzjZhrT+FsY/w6PWjXLPlYp7p6MMJmQYfiX4Czkm7a0Ey53jdHCmY wr9YT/Fvjhw+E3+A/Tn9+I/ADfv72OPglh2AOU1/I6rU+5P60PhBLY5E1M3g swqxCcrcUfyZ8xHBYdb6pf2HecP+NvKb/aLrfbtLbL3W02qDwx3xKapZvLbo p+3LA+Tf8CYVHvyMdDvUaE2Sp22sgafTXY08beMNPMneWh5jfhXPhTfKaNfo KD1xvVA4j9JHb6Smc1ZQrcRcSsi26PeMeVSaM5P25owTDhjotnp9UODKBO5/ VyuZ1+QM57PWNL4cfITPxB7gtSXDeUhSW/4i9Iv4jkw3e9la5xO9T68bRZjL 4ef8uJlhD3Pusn9wXLfvyunKWibiRr48HjwtyDMzjvCaN95mPZdyseNzPrkq xpz+Bb968SPWuiprmZKzhh7gXna+fJvvJE1jLTNwemETPu36WjCNm0Rq2Yjh uxJ8TJ2Jf628wc5UVDCJ6g5dovWrzcJXNfb6Xhp2cSd16b2BqpYspD3OcTQ4 6NRy2hXx80sPNlGIvwOnKfzP4WfS1Kot/NQVMZfrJA7jjPGNxA4UmZclBgQ2 WOADIZ4LsWfA1UL8I2LEgR3Z19pafIszRbCB74zvsyPeL+3knFp8m6sDPxsj PpRzF39WOourvLOA69pLuFFuHjuCy7h63UX8VexR3u29g+8KdeW/4zcFH7p2 MBH77e5NvpFqvGufOuX7StUpSRS7JPwR9fdN7khL8U92FTQj/ZyoS0oydXY1 ps6ljaijoxG18zsIto86ZYn0m6NcnXd9p16Lf6wOmpfUSTOm/or+rTplNxJ9 Cr6+V0NPUou6q2lg9AWavPsQzU20aY39Nr1Q8B69nPYhHbhyUct/F2m3/wPa FjtHz189Q8tavkXWweO0YGhYyythWlJygtaE3qbtE87TwdxLZOd/TudWfUuf qZ/lW72e/xddm1ROn129SgW+D0nrOPRWyv3k9b2s0kLr7Y98M3jBhDDHh/7J zUvqhNskNAjX+Sgx/FY8xvdED/DHxkxOCdThDsHn7SERJ3iq7fbxgP1T7Lo9 M9qbLxc+winbV3LPkk3cs2wTp+au0nrFHNmHaxKvxeDQuM/oAT8E4RmHf7zD WibvDnvXU1yvyv62/m7tk8GYYL8D4/qzyNVixHqBU6+JqzYF/WMpJbiSHpgW opdLL9BXjjjVLEnwNCmt5Wneu64nOU/PPXUTPF/M+oX22hdoRuEbdMupzXTT epYO5t9J84NEM8t7U06emzbHRso4vpj3MH2aOYveivqEA8+d1orAqxe0xir4 rU3z3WJ3j2y0Z/uOir43Kr5bsLJxfrt1XrijXzY+LMqyuhVjbV8bGW6PjxTY ev7mR8v78g+lT4h+qtcS+Q4/2v0jl4/+m6snJ4S1Pheu4UsI/x25yZ9n/MJH Cz5l/W55XKCAUzes4lOh+/m+WHc2QlV4puuI/Z9Yjq47DVyxgn8LrFPE5IDf umFsmdL6ruy7U3kr8vl60qyCPvSA10VmoA3VM2rQzvj7qpVzjRpqtlWIJWxo 5BUBoxaxJ7Ahg4u+XnyJ2uY8rxqW1KTMrPY0q7APPRsnerpsgOj5PTOa0dXg 72pW8IjS85VCbNce40JRW6dDOID1efv9+HfyHepvhScmdec5hf05L2sIby4b yTvTvLw3NI73xO7grYHRnJc5hGeYvXlIiZMb+ZMY+0UU2SE+ReDKRbws5HXI Vb7Aq3odeV/22UuC38g3NSdwTHWOrlPB4FgFvz9gFwE3JNNqX4yEGJyxRmc3 7MB6DlINYkvVVKfWwaOfq/oFNST2AHEDWn6h7yOPUz3nUkoLrqchZUGaVPAK zfEf02vnW7Q18xztOfUB7Sv9kPZOuEA7rp+ntdffpgUFYZqVf4TuK3+F7ih9 mUYl7qHRBXvorvz9lJ33Oj0XOU47Tp0njn9OX0Z/ISNbr5uFiZ4G/9bwVOtV 1XNJ/UgLncdF1/3J8buqH6xhP106gIel7+KD0y7xlcLf+Ef/dQ4XfsFPJB3j lMyVrHVrLWt9J5xHsPHk+0bZmb6X7IR8gx9LyuAv/LM5dcIqzijYxkMP7mRP 6AXuUrKea15dJOuD1vE5xVuHC4Of2Y9Gj9p3GvuFK3eT/6z9reMauDDFV2VS XneelNWdzaw2XCtejTH+8e0jNiXT+5LqkdOU7ML7qP3lAE0tDdEWdY5Ol39F X938la5av9O3La/RufxvaU+HC/SE85jwEVa/+Jz4yGYFulHXYDK1LqhPvb3N SX9PFAyNJb3+UfWkReTYvozqT1pKf0fnSxszU/qIbRfjbqtvtLrd3Iv4P/iU SlwU/DCB4QRcNqwXwJwot54Bl69wWQwobMkn0nycNms9z7aPcijzY/4+6T+c lFMt3ORmrXDqU3XDzS7WDte9t3r49yt/8en0r3lNwds8vsM+blq4gsOByVqn 78GNS5JEVt3ge0f4RQ4FP7Jh68S+UJOSWqxlB64RTGDseYKHAT4pek0r1n09 NszYhb0I4TXrZjRRl4wfpb/AKdFygMR0VTGq9EMcK2Jt7nMdUtXTEmhyYQ+x j/xa+hTV9uZS/dFLqarTonPBB+kZB1HzWB3CeoV1E7FVnfzr7EjoS9FF+0VS eUjUySq7FXdxJXO90upc6vtJfCZgAwavPHwdoUsuNAYKX1h9s4bMbXp+AGcq MLb7Y91FrO5u6wP3Tesfd4qvjvjI1vfVUIhrRBw45GzYsXcY7xUPi7S1D0Qm 2L8759kJPsvWspmt50g7w9wmfMJ6nVWjorvVV664gk9QTo6bXi29iz4umUG/ OXNEjoBuWL3DIqqRt4hqlS2meteXUPKq5dQ6bw11HbqBeoe20MDrL9DIobtp XEEBZR08QFq3E47Ex32FwgO57o0S0vMEvRu/Qj+n/0FJE6p5moZre1qPrO9p fq2Op8b0BM/pDl8Lv+XJQh/pb0EB7/8xVwa3zl3Dk/Jf4Ucz3pR10Gmt5ZfT xnP1aFUGXwF4nydY+8QnGPgF4DjWsrh9NPipPSDUktdlZvInpTO5euIiblSY x8nzl3O9lKVs5C/kL8tnS9xG0DuW14SG88roUM7PGsWvu+7hj2Mz+Gbes1w7 pPUmawlXLV3I5wIP8tyIm+s5a3ArxxobfrmYyzBPBwIj6N/gAuq6fQNlvvES ZY0+oL+vAzTKuYduvZxPjWblUWn+TFoeHUID8lrSz7Hf1aJQROnxqHoHt6i7 fPvVLjOqagQSKNPfnlanDBde1+rpi6hV7zWUvnsjuXZvpi5pG6hZ6QoqL3yG jpr3io23U14jOh//Vj3gD6l6sSVqS2SU6htMVYg5xd62/g6L2hoOW49pPc5u 2k+k9OdrhTkyN+l3xFrO4eL4ZT6d9DXbwc/5pctRnm8yj1J7WOv1YudFmVuT mnODSA3xc00trMv6/nleluIjkXtYf+/c+HIed+6wnvuc28IZhdu415x8bp/4 PNeLLuErBY+xHov8SFpf7hVI4WuBcuHn6ebYaBc777MHBFtifwj+osXYK0Fs ehtnA+Ep7O3bopa53pJ9KcRYNTVrU/NoHaqbXZ0+DVwV33ktx6tZ1hHE5xc/ FRxgO31r7Wne14SLBpw3Uxyv2k3iy4Uj4S3j/mLYt31mT1UvskRNMPep+QFW q7yn1VLfSfWI86jK8G3TbT2n19ZhqoWznnBuAwsIWOvAuMd+5drI24LhP8TY KVj1va3mwNFHTGB/YABB3kacPWLGo9b3wE5ROw2v0nKXmuR9Rb0cvaCuBn5X Ws+nnq5mNLjQSbeVtacRpe0kDqGzozE1iNWgXx1/qjPRr9Uh8yNVEPpQcexz VRb6j9Lrh9jrl6QMprdc91PVyEJymmvJs+EF2QvJ2VBMGzLfoVduXqLTV7+i z1w/068t/6R/R/+r9fYqnt/O/UnvlH1DS4MnqfvVjfRckklp/vVqYcRjw2/0 u+DjnJa/nvvX3c7t1fP8ccZM7hNvznqc24hFfipYpJzZDWhiWTo9XHorjSnr SA3jNenpaJEa5ewI3b8YnHw18hN4VnYf1ro1G9MWcpO0FeyctJbblq/lVN8q ru/X32PuQv425XH+ICmb34lP5ZLgVH435UEuMafy6xn38BprOHtDnRm2Dy1r 2J8bs4ufjgxQ2DtRZit6vnwEnUmaSlpOJj13yN4S1kb4/CCW4LL1SPHnkUfs 6f7D9o7oefGzBTcN1m5gwOf6Bsn3qPVout/poq15o+ntggfo+7QnyPAtpKTA YqrTcgklFS4mY+hC+tr00xs591COz009Ak3pSOwT4dqEHrUx8k4xeFww9n4x /7BbZNSTb2dIWlseW9IJtmaeFOrOE43urHU59gRbc5doY65hJfAJV0z2PuBv rnVI4VmELwFsICuCp8SPYHigndh7vsiczQ1debJvOkK9JDZv39BXeUr8EN95 dR8PUTs53dzIDVou46/S/KzHHk9J6cmtffUZcQ+QV+Dr3zHSEPxuxa0iq4Uj QuvvxeDlWGMOt/VaZ4+N7BUur7PmFYmDgJ+sw6rJDcpqSMzaP9F/7I+CP9p7 zQvCk5ccWi58JtOs14qBu49YWC33q2pxS2UEt6kpkUNqduCoesj1uhoV2a30 GFBHffcql6+Zgr4JDL7/GH8h/kFiiF83PineGXkf/kDFy4wh8LPMAP4K9NSZ zj7qqvmk6m1uUU9GjqljjssSmwP9D/4qw7PaEfTlcQVpNKa0I1FZK+pY1pAS C6pSJPCl8vve1Gvo8+q8c7paYHnUxFi6mhnprfY5J6g6kVx1R+xlddC6pLRe SkML24pt+k3nRLqa8yTVcS2hVi49N+dspL67t5IK7ajg7t3+ovD4DkoM0pAr QcrMfonuqFtAeh6gB8teo6lJr9HY9Jf/j6czgbNqfv94p5L23BaViKNEkRqK ZuY+Xx2ESpiyFeHKVtZByNqJaBFuVKLUpZB9EGrO93IQv+xj52c7/PDLPvZ+ P/z+z/sZ8+/1uq/bzNx7lu95vs/6eZ6P263TYvd1Ybqb1LCb+Q4S901uatjo T9g4pJxOPaH82ejacrJxcvmI0qAyvSXkHQ4J75KRm7d3DzcebfneVqNj90Vw nrstPcTtlW3jNL4XZmWQh23bu3V56eiDy6rjyvtNLpVP9Y8YRoYaXWHcQ+V8 cFtZ5bpcmnhYmfzksvRl36oUs/fh3Uuope0UL7QecHq66cc+MagzbD01Nmbh kC84INtRzk1HyKGFnYX5B8wUIG7csnClX5jb6Fu+16KsPkm5b0WX8nfhb8aJ WBlt65knU1O6W+iJpUcNTEHnt652Pe+fb1zBGpc63f9ubmF/t19N6L4JfpVD 6+6Sc8NKYcYRvfa6t/2zWcHq2wOLNxnHJzxObRpmGW6H/oaBhe7+r+B/1rPO fZCHPyhYlfw3viwZFe+YwCk/ItjW8Nn0vuJ3zY9HGefV5/GPntzoPenh5RY7 zSzvNH1heeS3K8qHbLqzPK7uzvI+968o71S3sNxqclxeG08qT5lbYT7oPemb flztnYY9YB3gkKqJ7jaOvQ8avvXdiu3Key/tUz463E1jiqqynq98y3sHG559 VTi+vDI9tHzTxtHleOnI8tQZw8oHN+5U3rWuh+Fan23MjEvNBSv8FrWz/C3B OOtpeSL4IBkY3ZQsDsbCfWNcIuqPGz/LNfEzCbw6hdJQ44ptVRf7/lnROLbI o25XuM6/nU6zPgZ67VvoP12X/MxsH9kxV5RLil5eSP8lW8xt6bZb09nt3rC1 1SsqpvYy/0PvWeOEP+Xphk/k8oonxWW3SYdotrxXOEOeDU+UDwtnyVa5OTKq 7na5LntOPgl+EHBmGuO4cxr2djfOHe3qJh7tntt4ovk9b/ae5hri05zaAPeP jVPcM1HB6tj4h9QY34inGn/0z5tmuFYLYtdh1GzXbdxct23DAqf35QZPbtqT o2bc7o444h7jFj/TP2b5iGPW3O/y7y13nYpXuxWFQ137za3dHVGNMJMA7s6O lW3KQwo9zcd5sPYd459i/qH66PJslsmgtLs7dOrObnzFQDek1NN9XPu9DE2X CPNAVNcl+1aUmMVRnlY5vKz7sNzyrZnlHn5eeZvcgvJWlXPKP+cuLq+dOKl8 WuWw8taVHcoLg41+69x84546Ih5kL/U7fFY4x++QXu9H1dxufWXjCneajMPZ C7+T+slw29Qzw4z5R8zrgmNlULDIsNlqv/3eNbcaT9yBtXdg54xniVkc9wVH yuKKF6VfMec0DnArokPdE7lj3braY53KoNP41h04o59rt7S1u77meVFdJ+Q4 mIsF17L6Ncm0YG1ybPBA8lwwJWH/MMvrvvSt/LC0t9TGI2ROup+cG1TK0LCX 4J8zd4kZmcRZavuSV4JTbVbGntFS40VijgS9NuwX+FA/bfzBU5udWhpWXtYw rpzWnlB+Y/TU8mubTi0nmyaXl6wbWz61uGd5zxm9wTH7W6OX/VG19/o9ck28 voc13GVciR+XvvfqS5YnRAPL8eiR5bvWTSg/s7Rg2NN3K84oq7yVn5xxfHnV ezXlWenI8qTKweU9GntZv9arhS/9wnCj8b3C3UsP9h7hUuOvAzfOMyF2h29W 4xDj0dunuMLvkd7sVS/YfJZuNXN9+4arjMdtU+l8/3RQ8HE00g8Ke8BPmLwe bKpndttr6Zf5s0t7y+fxudKvtiij61bJlJo60c/YnprV8JTMyT1LvsewzreW XpY76hrk7uwN4xFfmb0qi4MXpVj8h6hMybKKV2Rt4X3ba1v1buv2quxjPbnX 9j7APbZpkvUM/zL6YhfUzXTB2pmGl9OYyOnauNUzxlusMn10lTurcS933oxK p7rALQsOcRozue/rLnRdZl/jBgy+0Y1ot8wdNHyVOzy4x2K/aX8+6s5bu85d sty7WR8+5a6qfNpdeVnqLti83h1dcZ/1Mn9busB6e9lP4woDhNkiYe0NflbW xNcKD/TK9FV6OfMHZ6ulY9jGqe/urlm6n1uydKybW7O/K0wc6nZo7OJuaHxe Louc0Nf4Q3ah3xj9yx+wccfybeGh5S/anVfuUJpd7ubnljtunm39+6uymvKh xZ3LP2RNeOObwjEefm+N85Lf4ksScNXMQ4F37anseN8mneV7pfON42+LeJZh ybL4HL8pOt+3K1xlPNT0lcKhST4HX+j9im/92vh9f3pprf8rvMJrDEauPf9G aarcWNgouZq2bv+KHd0JlUPdScEe5qPgR/6c+w9rIW2zK2XnUjd65JhzmKj/ lcCB9nv63+TS1FtPEXMiybc9HEy0Po249JRo3Cuvxl/Kc8Fn1lt8enGt9E+L UhcdLf1KORkX32mzG5mVMy0YnqBDgriFPyEdQg7aeh3hHF4XfeC/Lv6i/kBQ br05KH9f+5t/quIT4+qsCpb7L7JzjcNut7SH7xl3UH91e8O1gZe9sLbef5pr 9Lv07l4+pji4fHW4X/nubILh2p5fOqWsOr6cpJPLqwaOL185MSofFw4pD5+x Tblz1qb8Rt0mv7TwkvFwUsuHDxq+TThVHw3ft37LzhvblHdMtyrvXtmzPLSy V3nQxu5l9ffKW0QtwXYYbghOz5HBSt+9Ya7XWN5q8HCvwx+nfmJyUzBG/cgW 8MVXgzVlxtK/05/yuaitbB12kLZha+pXefU9bTaUylRefV6NFQfJw9nRkivM kQnxGlkavyQf130vuaVt3dB2vdzYGTu5KcUKd0FWZfHUvIFNs0bopQfTwPyS 8zdWumkbh7mTNlXYsz9r0142PwVcm66R+7Si1rVaGrvum+e6flOLKhdLXOWo Zc7lVriR761w7s/bXPXy5a7y/mWuetRyp36A+ZkHD7/THf3evW7K8jp3ljzu ZtyfOPV1dN8+6c4bvc4dPfw+t0enpa7VuNjdtvkQN7xuG3d3xZvSvmK2HBrv bL0FFwTV0q+mKI82vCeDcj3c9Noqd8/AI8zu+tHH2ayUY2YMdm2zVm5MwypB Z2EH4L68P3rbdxvdznoOR9f1L+//XljedUaPcutcy/Kd4RvGD4rvsX2pC9yw yZHpPYmPP9L3Qf5/8RXG0U0Ngl6DboV29kzJR6tf4Z8OM4unwDIOKSwxPs4+ pQXWp6txgXG83ljc6G+vaPC31r1sMkjM9Hh8jF8Xf5AQkz8ffZZflo2Tro1z RH0ewymDc7y/dKR0DrYU5kfeHjTUw7PXK+1gHIlwJXaL2xEDEcvUMx8Lf3dz 6VIZW7da5qXPyiOF90T3hui1i/q7ckzd/bJ1Ok8Wp2M0JmxBH3+e2UDwoKl9 rqcPW31r40ZT/9l6vOn3Zg4Vs6cWBqOTTtHVxtFHDHVy9HByXPCgYb/Zr+cE TyT3Rm8lrYOW1sd7f3yk3yq9xvhd4QB+NfrSetW37d3Z+i/3yPUuV9T0Ku9a 6FEO525V7jG3fbntplblr7Kf/YbaT/2duTf84tyLHj/ktsZXrO8RHba58Ifv VNOm3Htdx/Iuld3Lw2u2Kecr+pZdu+3Le7XrU955Tbdy197tyj+mvxsWCI7j Y3MP+L1Lt/ru4Ty/Ob7Uv56e5u+NjvA3lkb7K0r7eNX5hp/dNwh9vzjn0T3M m2LO1aPBpGTroEOCfwH/GvN4VbcyJyw/LRsmn5VqZa/0FtEYRuprNc6r/VN6 bezgBi7tbj1Wwxp7u6FpT8ubbD+3i+uVdXA91rV3vQZ2dHout1e6jVM5d2fX NOEiHylNNMzjTzUzLM+pa+66Dp5rmJqtw/lNr07zXY9R81z3z+e67sPnuV7f znd9N1zn+lcudLttt9jt1XCLi2pXuoMH6t7bcK87qaHO1U58wl1ymXezFz3t 5vXe4K4e/IybMTVxJwQPuWjUStdn3QL37+B8m1V0SLiz6xa1cxovyUvp5wL+ eud13dxxFUOcrplb33uye3Xpqe6Vjae4tcVJbm60vxuzsb/7X83/RI8ns6N9 hXkNQTQz2SvoY3ynYJHUX7X+cPVv/aRwsEdWmP/F3LHTgmGJyluisovfZv3J 9PfDG00fCjMPvi/8ZrgTH31kXNpqN4zXFjzT/dGR/sXSyb5j42zrY4Qbmpjk P41/+I4NW5Q7FLYo/9j4u6+L3vWTKu73X8fT/Q5ZF888NHpuBqQLbSYicy6Z 371l3Cq5JPbwKJoPTK90u9qrvPqG/q/scq9y4feLQnL5zHWoV59Y5aK7LA7H yr/T88CqSq/gWtGYRtYHk8WF24PxZKYe8+rqyZ9/FfxiPITMIme2JnMW/x38 zBxiyYd9DcOnnxPmFDL/E36DkcEOcPPZPtU9t35l8No6cg/6+3XMkbs0KNdf HEhSEd2cbIg/TfYs9fZXpZF/sXCybx3O8r1L13rVF8ZZzOwEjd/98Npb/N7F W32+YbnleA6sucPyK3BDXxjVG0f6vXVveeobH0ff+8bS7/7Pur98y4YW5Ra9 W5R/Tf/jP6z9zj8Zf+yXRi/588P1ZiPz4W1+cHGx36lmoe/beJ3Fm6rH/U61 TTzIYd0NvmfNfIv74OOF47Ym3kX1xpb+kfg9MBBJqzhO8MuZH8KMdWa6Mt8R fPslscgn2dmyY+MN5GjkrIrH5fLwSVF/QC6p8XJRVi8XpfVyWV1THvXOijdE dbbh+4KohfUS7dbYw+3fbkezH2ev29up7XdLSwe7R+omuteyU92/253vfq+4 1LX46goXzJ5p2KI/Nl/mfg4vtnzLNxUXuF83X+xaFWPX+b2rXZ/JC9yu0SJX XVzuxhZXu4ml+5zqS3f2gsfdJXO9m/PtM664+h9OfWV37fDn3CWjvSsUH3L7 Nqx02/RY4P655kybD7Pr6B5O/Qr5R8W/bJ6XTO3rbqoc437NLnaDPrzJjbv/ TnfChgfd8VMfdGOnr3YDPlzodI85jUvcSxVfyBPhscK8cObv0Y9H/4/6Z/7M +LGEvh29xjz1XvCi2xevl73jW2VQuEj+jC8XajDMJ4Xns3/Y1bcMY39C44P+ jmKDzYB6K/qK+U7GdU8+AQwbfMn0Eb8Y6x4Mr/ZV4XJ/cZaY3v6i8Uf/Z/yX Jyf3ec2Pfn3wodUXt87m2XyI94Nvk4PT1TZHkJ4j8HFqD/30wnr/em6T7xq2 Kw+s7V4eXNq6vN3EzmX1N/2imheMH7umsAs5lYT5jTOiBK5E6ZhuIcyrJLaj 5gvGR7/r10SH+zaNs3yfeIHFQNwXs1iYywLuAM6HKF6ZV19Azi7sLRpX2Gy8 8eku8nO62WZQMs9c91ql2sj6q4J9jQv23vgI42gFe6MxY/0BwR3Gg9or6Gg8 r+R0dklvTLgO3evJkGiJzVOEw1Z9eJsfqHozwR/vG3TxZ5b28s+FU/xWuTm2 H0+sqPOXhmU/t/ZZf226wc8uPO3pcyX+Ozi80/pAtm1YYHVfcBO/Bk3c261z s3zXdI7fsaLo92q8xY+OVvljs/v91NpH/TkVT/izax/3JwUP+7HRatuPzNiA Wxr/mTmI9D4RB8JvqjpmBHqmidt0KFymVcOCW6rh8WEGru6p/EFhf1mYHiTP pgX5KDjbYsYPS2cZplT1l/wUz5BONVfbLCGNTWV+zQabDfd1zS/Sbmprt01j RzdwXXfLkSLvGi+5mtpdrM55Vri34Q0WFA9wy2sPceofOT/1OPfCwJPd2+9N c1l0jvsuuNDqXeCrNC5yKtdul89vtB6qvefe6vapW+EOrL3DHVp3lztq+r1u UnC/O2LNPTYbbFh4i9vu5Otcy2yme744xS0pjXVTRlfYPDzmE4xas6NhHTZM PNF1/vZqVz11uZuyqM5dVio7jQ/d2Wc+7g4cdYfrnLvG+vmDdS3c+9kZovJQ xXouisf4vaM+/qbghfo90l5yROkeUf3pDqrs7y5cU+3m1u5vs6qOLwxxAwZ2 c0/WfSw7BkX5V9rIPKGEnKHKideY23Sxr/nIrym+6afWPOrbVFzptwk6eXKG 9MMww/b6+Hmb7w4f8aR0N9PDxDAfhN8ZVvObhl98ufEjX1vzhHHGzy+MMp5s dK/Ku/8gIJ+zyuMj0+fQe2nH8s4zupV3LnQr96ztUCbn/mD8jj+q5l7jgIf7 +4/0z0T3XfJQ8G4CT/YRpUGGrYZPfp94hfVJ3h2+6V/IfW5YEF/7kfXyqq4h 72rzYUrRawlzk5AtuLSYNc18fD3m+h2CG5LtCp1thglzS5iXgv2Aj95Hx/mj g908XNnMFy0HH1P7xyYyh6WKviowAfAs6zETtdfJ0em9CXUR+o/CaCs/oTDQ z8n2808Ex9rsHrU9lsPN1c7xnRuvtlwJmDJyb3C3w61+Y2G0zV54LDzGbNim +Hyrj2DTmnHXPWrn2Twfcgk8w71rbzXbCLasOlruB5cW++7BPOOxvzk82Ga2 wDsOdnxWkCbnxeuSc4N1Nv/0lvQlyxfzgsObOagtgzjZIm5p8QT8BPj2R0X3 2tzjJP0w/3L0Rf6f0bf5/wR/5tunrWWPoLecFO5hftrjpWPkzXSqtM+ukqHZ EpnUeJ9c3JiIflfuC9+2GOLd3Dfyc+Nmad9uC7dNZSe3W25rV123nRtXGOAm L93dqb5yl0XOYkps553tJtjMM42r3NObTnDPvXeie3Xqqe7dyjPcl0vPc5tn XOravnWl63HZPNd/4EI3fOItbtTJt7vD5G535KZ73ITSGndApzvcHoOXqk64 1v1v7hXu5fgUd1vloe6SdeKmpcMsT3Pd5gOcPgvXsnGm67e06KKale6IUfe4 YxvvdxOWrnGql1yf5QvcF+F5No+TGQf18YeWF9Xrk4uzvOj3ZVjFLbIqa5Ct BrY13xfc8IPxUS5deoJ7YuCxTuXQnbB5iOuatXXTGh6VUaUdBf3OLCdy6cyH 2ida4TvUzvbHZbt7sIzU3M4JR1iOUnW/dK2YK6oDZFr6KHjFZHZpXz+2sNqv rX3fb47URx3YptxpaZtyi9f/51+t/dJf1/Cc11jObCQzpJgR9G54ht+iZpYf WHuT5SGuqXvG5jF+XvrRt8laWgzVt3eXMnlFjRXLbXKtyp8VGj3YYuZDXZRL /InZQ+ababznT8rqvPoH/tbiy35t3fv+mdrMP1OT2TyZRcUX/LnhOstXYl/6 Nlznt2q8xms84jtms32uOMf3apzvt4uuM3vK/KDP4lp/e1Djp8QVNnPpy/in hP2M/DL/V/VTsjD9R0JNgBm/70XfJK+kXyTEwtRxwMldHTxj83fvit9Qn+9f ieq/RP0fiyvbFVr7TnEbvYY2tj86Z20sDu5d6qhxdydfUerl1aeh78RLqa+f FAz2h2cD/THxYLsm6qrMR7oyimzfrswO9XWlo/1j2SSbXcmMJeZ3qb63+Vwa KyTqPyb4TNTUqfmRDx4QdvPqf/vjoyFefVN/YKkfuVzP/UyNHjUu+Q+C7zR2 Hgn39//zesE1BVcU9UfmYYJXhTMHjhU4eeGbZB4VM8mZLzeqsKNcnObl0Wyi qI6Tobmbbb4A83XIsa6teV80xpXnsk/l+eJn8lzuM/KNlmej5+CTxu9tvl/7 YAu33dzObs9ibze62N9Nnri7O2vzXu6SNeLmbNrP3Zw72N1VO8F6G5+ZW3Av 153i3m043fo2Pl93rvt63XT3YzDD/Z5e4v7ofbn7a+Pl7j8DL3M/brzIZXXn uJeXnuI0xnF3B4c7jZWcyrbNTDyvVOku772PWzxwrHts8yT3fnim+++My1yH ibNd105zXdfcXNd+u9nu140XuxcnnuxuTscaPpFa6KcNP5jPPrn2ATkyu0dO r1sri7MX5JXclzYLdGBdd3dA445u0sDBNpt24tLdrG4z4L2u7qfazaLxofQs zhe1CYIuhNMJvvnxwcAETCZ+Gpxk8Dkwa4P5dLtGPSQsbcU8xbzGHuTWmNFe T65j15La8GiM5VfpFwBLpf6y6fSuwVwfFGf6n6IZ/qfCDJvf1j6cbXPlsLv0 wjMrjb6Bqyqe9osbXvCl2tfMflPLebz2n4ZR1mfo9Vn6Zxsycr8+yX3knwg/ 8GtL7/sHa97xdbXv+sca3/fl7COre28ofGo5qAfSt73GNn5p3Ut+XsOz/oKw 3mreE+I1fv/c7T5fcZuvLCzzIxpvNdsD5mbn0o1+u/g687PZ08wAozfom3S6 /2fhTJtf90R6jF9TOtzm1p2fVvpCNNRPiAb6w8JdPL1pJ4RDveo4f0W8j6cX 8dZ4nMbXR/vnC1P8K8Gp4Ob9w+nR/obsQPs+OBfmvfE6pjDYn5AN8epn+0sK 4ouFg6xmeEdc4+kJuCU92M9L97fvHV8aYvPMqC8Rc5OniaIdwDr5fdMd/H6l 0HK9ul/8gVE/r3bJfAHyx2eX9rZ6q+45+/4uQXe14y38ncEbySHpncm7wRlW b1UdaXkwZtWeH1TVdwyurnfBivrTgkcNR6h+ss3sJjd2TjCiin0NfxQ8M/Bb wHHwQvqvPPMm1QbLqfGeomsidYWjpSE6TVRuRI8t/ytcYb0Hv8QXyy+li+X7 0oXSWLhINkeX2mxNerX1Gcnh4T2GIVoYbpR70jflqfRj62F+P/xWY97v5ePS 96K+nM2YIp7dFP2sx/ld/iz8ZX34nda1cT1ndHDb13VxA6d2d3ts6uVkTV83 ekZ/mzF6fHGIxYrn9q50F5aq3aW9nc3InjpxmBsfDnQj3uvjtos6O9W77pOK H+TZ3KfycO490RhF3qr7ynrDyAkxr+u03sOsDnNduwNt5oHGRe70muFO9aL1 6X9WapT5xQ0yIrsVzItML1RZXf7MaC+bscc8jaMb7hW1UfLP0rdgB90ODV1c //dyrkehvdrvn2Ru6VnReE9UbgQeYOarz4822HzIgXF3/0v8H3J0huuFW/Wt +Kv86FJ/mRPsL8vjQ2ReMErUFjAf1biEnwo+qfoiOC9pV2ptcwPZB/tnJX98 7YPWV3h4tsarD+rb52b7x6Nj/CnpHmbTWqeB5zvYiEsDZzZ5QMNCleUH/S25 l73qJ/9jbrNvPbBluU3YqqwxuNUMk8YP/U2NG/05uSf8+NwaL3W3Wd0Ov+Gw 7C5/es1aP7fmWcOrPFn42L8RbfKfhD9Y7Kx6XO3/F56+F2z1JZG3muKwbKnl v1Qv+89Ktf7f6Xm+RTjT9yzN9xXFm9UO3uVPSx/xF1UkfkacWN2HmQ3kqulV eik4xeI9bOPYwk5m0/DZ2ZPUJu4vHOmfDU/0Grv5TYXzTTdQ/321dKrphhXR of7KUuR1zW1/geNkvqnKkV+cjrE5otS+uhSv8duVrvP9KxbaDE3ywj+EF1ne /YKsyu9Z6O1/TH9PVkevm/2fF2xI1kbvJ/RmVcS9/LRwuF+V1liO4cv4PLsO cJZgLBaVxph975V18PgM4HNujEcn6vcbRwJ5ReJYuAvOjh9PdC8lHwXfJ78G /zV+AGz6CemDiepCjVuOTjSOSuBgoAeFPQ5nHlwScJTBZ8dM262CtlUjgx1M P2BH1LajO9ZTj4cLDQ6fveNbjcsETg58b+Ljt6Kv8mqf8+T86T2Cv4V4DcwJ c1OZZQY3RodSky3Kp9tJTbyLnBrtKZfFTuZG+8vV4X4yI8rLcenuojpPdgm7 i8ZkNtN/fLaLnF4YLupfyl3xBIu5VTZEfTXZIbxBNM6QPXJLZc9i06ui5mab wb594XpRORKNdQzn3yW6RnrG86V/Y1FGNNwqY6PVMjl6QFR+5LzadXJuwxNy UmOd5dz2jJbajJUOpdnSqjaWP7LLZHN8qfwnuEyC0kxpm7tKuhXnSq/wWsuH dg/nSafC1dIyF8tX6fmyITpRiqWD5OhwNyHv8lv83zz4Z7CJvH8e/2j1RNVp ltdhli/zdolx4aKBEwh+K/jgyA/C4wmvBtwL9B8cHAwwjove0bUJc17w5+Bv eCbOkq+jX5ItS608dRXVdX6XtJvt66i0g59QGuhroxH+6mA/r/pDY92jrJ// zXCaySDzOpmTs0N2vdV0Ds7d6afU1lm+9Ko09fNyG/yc8Fkf1z1lMzRPDOt8 TXy32ePqwnI/IrfMdMCYitVe15bZNdSf/JLii3518XXzCx4svuPvrnjT3xa+ ajNrZ2ZPGk7p6Oxem3E7pG6J71co+j41C6wOzBx29Sn9rnWLbK7vmHC1P6Jw j+6P+/2k8H6rB48urvIqmz6Mb/Ad4tl2L8zqujub4DXO8TdnY/2d6XjDv9Lb SJ24a8Mcy93uVFjoB+Ru9OCMu9Wqz1Oa6d8pnW42nu+CT2LO69TCMF2Haj8r G2lrhx7gc+AMvo8u9J+GtTa7v5wdp3Z4guWn6QPaM+7tmUXSImjh1QdLfg/+ SPD3dyp0Nd1EXoyaDf2yT2cn2HHvTid49ZH9yHR7j29+efAk+zdZEo9N8PVU t1kNZ9t0gdWr0BHMwtyi0FJj7vZ+h7SL75/m9P46m15njhG5Lz5LH1m76Cqr S6hvm9THkxON/5nHlwyMb7J5b4PSmwwPD28Kf1d5SVQfMcvEZprQR0O+gVn4 1BOejD9O0HX4IF9GP9ksBf6mPkXyR3A5eK9q+BbhkCN/uSoYb/Ma4Z8BV0Mu nDwI2KmX4y+Sz+LGRH0Dw/5qfJnoPdXDmQgmn/qxns/qxXApMQMSf2VksJIY pJ48C+cFO8dcXNaLmaB6f+vh56S3Dt8Z/Nz30W/5VnEgumes9nxQeodxj8Nx ukOw1Xp6t04JHqnnHlQ3roejGO5B+MTgjaqL37XZLqpz81+kP+bZwxqn5Jel L5supAcCLi84zeDNg28RPhS4dpr5fNnb9BLAZ0rfATOu6KlmhtoLweemM+A5 YiZ4r3S+YY+4Dmos5GtZO43xktXxeONqIU6/LTg0AV+nfg49IeRtDScNXyIz r5h1BZclPK29go7MvKb3zDCgDwTvJJvin5M2aUv1pTur3e2gsUA7k134aKjp U9+alN5nfDPwzNCH8UrwZaIxf9Iz6uCHF7bxh4Q721zki0Pxswv7etXxXuXX 6iHMx7k8czYb+tyg0vzZc7MR/szCXmrPh/tTsj0sZmXmL7M/F5TUD4/G+VVZ jV+WjbOfqXGCiyD+JSZW/85yXeQqmCfMcZkNzNzky0rOfsZn1nUxP/+owq5N GLDCID+xsJv9fHg4yB+W7uzHlQY0+eWF0OLg0YX+NteZvx0Z7mq5xAPCfr4q 29bqD7qGvlOhDRgOD08Pe+Cj9Lvk3fRre2dtvgl+TZhrhn1WmfOtCoH57Kzr f4I/k5+izcmf0V8Jc7fbZ61997C975t2Nt9+SNTT7xn19oOCHuYT8Hn1y40/ iDwE9X1mNartSObHG5jtlXwb/ZrAUwVmZNu0k9UDwsJWfpuso+8cbunV/iRP p58YBhPfBJ6jM6PHLKfBi7nSZwSPJdPSR5Ozo8cNN8bz5vjMZOLFzGd+p3sk OTi4M+kfLEyoj2pcnWgsoPt2XkKfCDUv5GZhsNHmvKpPkFD7H5musDxfEhyX gJHRe7X+vIeCd21+Ov3iYHX12SVr40l2TM4BppR6PTOkiGOjaKWdl2Ow16mP kB9lhjv8VmDhNE6Gy2r9tGBt/SWxJPRLwQFFnUJ9t+Sd+PRE9ZMdo3/QFT4l 4x0iR6u6bv1hwS7rVYevZ1Y8fhJ/g9NKn4HVPcET9I47oqts36kesJoJdVS1 zZXkSOBVthmEQWY8v2objSuZa1N9wnnqBwQ32vew9eAXVEfaueDWQifRn8T9 wMXMbEU4TulZpmYBhyj7Gr5keLvh6yK2I+4jR0/dg/oX18tMel7vBt+Yv0ct knujHoK+4DUneBb9VKlxxTqNC9fng77GdaA+pPE9cVy4oMBY8M7vuNabgjHG /8WscOoqrJse5wn4nPT46/ArmVeuz6OenJLqPdPzbwbTkp/iGbofLkvUz0s0 dk7A1arNtLWmxkw/uOrL5rn9FsvCEaZrYzkQMB3Uzj4IzrKcFf0Lz8QF04nU kOGyAtPF8/ox2GzfBQMPv9UeQW+zrbPjfY1LjBrY/fGRup8mJ+XgeHvn99jh 64IDE+YEonefCI41GX44mGh4pzgeyewR67Hh/fJgH+OM4R7x2xrji6ynVf1R y9nvmN5gcg0OnD5Q1gCeM+YU1sYjkgPjfkl1vF3SL86pzG5tdhh8/oL4APMD uDaN/wxDTu0enKfGk3Z9aq8S7k9jtvohcU/77tR4mNlI3rHlaiOMN03X1mwI 9T31W/Ras3qVV3uRK6Anh5nEyDhrCG8b9kdjI3tWrAvrzPdVJvFzyHfWg6dn T6psrIMnHvsHbzk5Q+bBqW9bqfKxHi45jUfgkKvnuxonJfi6PFfWQGPihHrH scED9vyRL5WlKjjk4RRH7uHO0/1kfOz6Gfi/q+DjAzerz8nyIarXwCeYTDHr Fi477CC8Dypb7AHDH9CvAg+eyl+V2shqsEXgGrDh8IpjU5v51MmHwpmuesP+ zrvqgGr4dOFg3ivoY3VW+JDhQtPzYd+NL5zPqU6vbhe3NswgPCPNXMv6zG1P qx43Hmh4spnxCE80nBzUkbDnzAvAr4JfFw5W+NXgXIWrtZlnlbwgHLvkEtT3 N75e+ICZ7asxmfE+E3Pgm8G/DCcyXMSLg7F55nw9Fhxj3LDwqtJ3Cm6B3mpe zFnnmHANU6PTfWa80hxPZdc4m+EwBvvFZ+HNZfYm2BSNY4wDEQ4U6tHwncKD Cvfq1uk867fMxXPyTXiUm2xOArN5e8fX2u/UtzN+V64J3lnmzsKPyLXAc8zP vOA4BlcN5wp9vfS+4T8Sp8KZqn6vrncx3z2da5yuXCN9ffRZ4zfBHc1z5Dl9 F/xmPOe8w5cOrzkzbnluYEnhZ+b8XIfuf3s+/Iyv2swZzXrAXQ0vHjzV+H/D 421MXvrEnYwnnOeOPCAv8IKDRUUu8KdZW/qAeVZwN3N8/Ey1e8bNy7PiueN/ 8tzB4zDPDP5Ini3PB1nkfOTr4QU/JNjZ+K3htYJPGo7JZv5m1RGW0+c8cGHr 3rdrpuecn5kd3cztB2cEz43nqH6APd9mrlvkh2eAL35jPNrWAR5x7gl+dDjV 4arn/tkzcLfDdQ3vNfzQ3A88v3DmdoqvNtngHHDswrnLzCH1O4zX1qW32Tvc OsgW/Lnw/+4aL7J4YkR6q9X64b5VHyYPbpcX3LMaY+aPTu9tegVNXLT0GMJH C5cssxqpbcAdC08Ov+Nz9GuPim83jls4ckdHq2y+B7/n83DVEh9cEvk8tTP6 KeGtXRy8aPXNOH7KjjMmXWXzsqm7wQdMbyTv8A/DycM9w/1bHS+364UPF+7c /eKS3T/yzH0OC26xdVf7YpzB3CuxCVy+fJY1qI6W27WCF2OeH9y06g/aPasv YjEJWC7144zzVnWs3QdrxGe4D+tV1L8ZR27cxJHL52emT+bhvjNe2/h547kl voF7Fu5V+GVvjV62XBGct6wLXLZ8F25d1oo1ZnY0M5OaX5yPa+RcnJcYSf1h W084gLm209JH8uobG4cT9wcGqJlfWHV3/tToEeOHgOuXe7Lv6nOEZxjO48po mc2yBlsEJhV9wc9wLas9sHVBPjge3MF896z0MZMHjg0HMc+FdZ0QNfEbcy3I GnIBfzJcypwLGYFvGT5leA14RsgRfWbwNHP9fA+OKFt3PSf4O2SKdeD8/J/7 gcuYXBJyxefGp3fnmY/KeZBL1oSfkXWuAT5leCWIa/ku8sRz55rhgYanFtkh BqWPnxiYF3ucfYietvkl8WJ7wTHOtXNe1oNnw7PgePyOvcA6IOesDc+E6+Ka +B38y3AuX5TW56dHTTKnsYbxG2sckZ8bPWsyxc9z42dthg4zkhenL9g73Mil uImjGP5fXnAWL49eUbv3iu0zvqMxjB0bGWMNNdYxWeC8nIPjwXcMr7HGv8Zd DKfwougF4wrmOyemD5kcoGfQL8w0QAfBqQ2PNvzZdp+6piekD5rs8oymxo/a eiOrk6MHbP2Rl+b1oN+e7zXLD3oHWeP3nI9n18zFja7gZ86FjDXrL/YivNWs P/fEvaq/b3vm3PQJ02GT4wfsO81c3vtEK0wnwHW+b1AyOUQu2RNwcHM9vJr1 ocYp9nfTs6pb4Btnf2BTOQZrgv5ljiZ6ibVBN/VPi2YXkCnyxcgRHO74BNSf egXXqh1cYC9sBzYfXYjexnbze+rLcK6jDzvEs/O5aI7JJ5xqHJOfsQ/qW/7/ a/v4ejuv6VXdz1wr14YfgH/R/M6Le+CakX/uC13LZ+ErZ3/Y3tL9yH1yH7zb PH2VdfYm+gDedPU77bp5Z53RZawlz615b/F3ONvROTwD3pn/C5c614geQGej G5rPzTNHL2AnsAfYRfw9fCf8K/ycbvHcptkbukexAdhIdBl6jPM289M3ry82 A+ww18P52c9wW6MHkC/2LedFDsmlIWfIEXu2WZ75GXlGxrlX9KrG/La30OnY F/Yv9oCcHjzc7Oul0Uu25/g93FPwp2M/sAe8w6mOLHMu9h06nD3F/kEm2S/I sukYXSf0HDoffdNs88BDoruRSZ4nso6fwHNgzyLHrDkvPntAervJt+2zoIm7 nufGXkFf8TMygG7mmbI+/J71af6ZF3uWfc31cd3sUewa68QexJ42ryG2FhvC 2rHP+B0v7pkXOoQ1Rm+xnzV+sr3NOmMX+Q66AjnlvvEBkOPKeJk9S+6Rvd28 Hrwjs8guP7Mm6A1ki2tlj/N/vss+GBIvsX3M/kA28amQf/Yt+xL5QobC6Abz V5AvZG/76Hp4ekzWmvcwf0POkEW+o/GiybPth7jJ1vI7/s/+wgfi/PhDVUHT M+T6WXPulzWelN5nMoF88gyQB/SX+Xi6H7FN6GbWhLXhWNwD1815OAfvrAPr wf3zfWT95Phh83fMVqgOxW9gn2NvOS/ywJrb8VX3cS//v/91zfiZ++Gc/Iy9 4P/oFT7X/Fn2IuvBfsXP4//cN2vAPfMskWHklHPhT5h+UFnnObJXyWkjv/gP 6BQ+3/zi+/i+fIfPsnbIJnKIHeJ+kEP8CmQDWeT+uUfkGV+Cc1MX5FjsH3QU 984641vaXmNv6Wf4e7Mvxb1Qs0Zm4G+i/o2uRo+3Ca403Y1vD+6vS3yN/d30 tn6HmI/YD/nBLmAnkC2OxWct5tAYDlnsGc+3+JDjoP9+iS823UgMsSA+IJ8E x1kMwme/jy80G/R+cKbFL9Qqfg0usXizWe6ID9vFV5mNwqduPgfXh77le9RK 34lPhyvU9PFLwSnGH0rc81M8I/9XcIXxnf8zPpM+XYvLqPcRT28ZXZlvGcQW qxMnMy+TnmO+z/H521fBdIvt7w4Ot+8yN4zP8jlicPIAvPMzx/kgOMtiWb5D boBzMdeB7xLTLYrH/H9MR+zKzKKT4z0shqfeQEwI31ZzTEgMz3c5xovxyVbv Zc24H87FnDbun7+TN+Dz8+NRxv3OTF7mBxGvEgNzHuLX8cFAezXHs8SnvIj7 +Bx5CvqemYvP8W4Kxlg9CTwtMSdxL+e4JJY8MwuI1TkW+dED434WQ5Ir4TUm 2Mn4Ojk+eVPyJ8TExOX8zIvrYh0OjXe22JRYmfiY2HtwvLXF+cTq/YOu/x+z 885neKfWwnnIe/DOixwL8T75EXK1rC2/4zxcDy/Wf594e8vFcK3wB3Af3A/f Y+1mBiPtHnlnTZl/Q46B16h4R8sRnROMsPtqXi+eHWvZ/FzJ+ZCjIGbn/sgx kYMijwEnG30W5KWS4CPLVb8SfGn5qT+CvyzPAY5sm6CT5SmYa0keAZwAv+Nv 5Cr4G9/5KPi++tHgfXuR/1Y9Uk29TuWkWp91ta5htdq2KrC+TwWfVDIXjNyb 2oh15AzBJn0SnFP1UPBuFdhz/n5wMMDyirOCtF7tGP2l61X24Ki0/BFxJJhD eksfjN4x+0zuR+0k9fT15OjJj5JrpQYBp+2t8Th6FWy2EDlA+GDIheFPYRea bT26AF+T9abPihyk3ovVLfi+3rf1QakNrp8T7E+/4RMdgzbV1DvBRpK/Q0aQ S541eQ/WCL5Z3S/V5PiZP09tVK+DvCS5znpqF9QGNLayugK59cOCXaq2DTpX /xxcbPUFcqDvB9/S60XfSJ7nBveGHpPzVjNvAo5a3U/19P+BA6NmQm4X/K/a TptZCbacZ8B663VU6/VU6/3YNaoPZ9hPlb9q6gSslcZW668NDqhnziLrp35S va6f5VepCdB7+Vpw2npyvRpLVel1W40CPIp+v5ocLrJAnlWvz2SBHCzPn9oI x6cOrPJBn4be991VYFZYK35P3xhywTqzFk8Ex9rx9Bor+S6cLswR4//keVlb 1hHOQLUPNpMETmf1Oe1cNwcv2TvPTtcAfJzlhjm3XtP/v7OWrBW1Ce5d7XQ9 x6b+wf1SU+FzKsvUjcDfVDXlpJ8gb13F3E29j/X6fauV8Hmuj2vhGVNzofbC dXEM5ILPcL+sC3hcXk17poX1zIHzUf1keXU9ptXB4IeBX4F8NjLz9898vpKe Au6He6TOpd+1YzLHj94Yzsl6sMdOC4ZZ/QfcoF67rR95e54zsto6mFWvNtXW gJ4+vkPdTZ+T9fVxPPpu9Lvk/J/Q1zruhzobz5Haml5HPfM+ydfrnjZ55BzU mPQ4dh5qTf8OzrfzUpOiLqT3YM8YWWMNuYfm+hPnpYbP/5EpanqsIWtMLUr3 na01zxIub3oRmd/K78FOcm2sAbLAs6D2AA8l68Zx/+b9ph5h96LPlP1ptTD2 BffD8ahDcI2sDTURniHH4Rhcj6693tfPul6t0ZHrkHN0n173OuQJGeD4uofs Gprrcqw560Utg591H1jtskn277b1R8bYq03Xu8P6ZvlkTZqe+VPrVFbgvjbZ 4m+sH2v3d/2uEplB1qhpIsvUWTUOsnfkmpohOuEfwb+q4NhCNyKDfJ56JNzo yCXv6BfOiVwgt03nmDlCz2E//y0jI3heXDfXwbVxrbw3Xz/rxprxfFhX5g2w tmCm6PNCBllXdAe6n5oo64d8838+w2eRG+wKMkA9iN9xHD7HuZAndAD7hZoo 187vuB7wJRynWX54DtQpkUt0Cy9kCVngWtBHfz/n+ib98bvJP9eH7PD80AEc i73EsdDZvGNrkCfVc7YP4WNmT1CPBavC39FF7Bl0sfriVktWX93wfeh9jXlM 7/F5rpE9h1zy3rwfqAlzLI6LfuPz/B9sIHVq7K7Ko+mA7sE8elntnOhV5FH9 U7s2dAJ/Z++iO/gbeETunXvUdTYZQbbQNewbzst+YX353d+2w54Pco/M0K9H /RDcKzYDPA26Dflj//D3ZhlCNrFl+BDIIXuBvYF95l7Ra6w9dXaeHc+oSYc8 NYJjYZ+oJ+Kz6GfA6oCZrNZnUs0cLq4DWccmoXu5F87P3sW3YV9gf7F96H7q 6qwP9Wp6Qs7K9vKbo0v97o2L/b5hyQ/KLbL5Na+n/2YWWLVL+0rX3FybU8Ps xMtqy8bbCWesnpO5NNVgLdRf9e9FZ/h+paJ34Qq/X1Tyu4dLDAcPXgb+efY2 +cTRUX+bzc6Mhd/DS+WxbJIckO4o5BFOCR6ppvau9j4B1zK61N94vehNO77u QX9b1jS/AGzvpMb7/APhUV791WRo2lM0LhT6ddutae2Y5/Zh4TuBt/jlwilC voB6N/3nQxuWGI6QeUKro9et//XU4iN+23SBn5YO8/B4EeOonyS/RBfb7LnR hVUyLLxF/kgvk8mF3cFx4iPXg3cFUweOCPysxgZ+UWGMYe3B8fwv/p/VxsF3 sPazgshid/XTNIZrL/D50KdOXpbYAv5oMAXd4rmJfi5RvzWpjz6kB89mQjAn BvyJzdoPzjK/EZsEzsNmpqWx1VSI66m34vviB3waNNaDGaBX9qjoXuvDgeOX HhuNvRONL80nBV9AnZ29gi4Fp0sswrXhy+Nrg81l/4D1p+eWeRXMo+U1O37a 5uvo/k4mx7vzO5Nz7Afyqfdaha+k9qgaG4PuRX9RFwcTojGBrRXYBeZ+gzkG ewCupcnP6Vr/t00wXYi+4vfMQAU/A14QbMCucY+EWb/4legQdDGcqs0+XbP9 RU8xM199VfOb0Smq420fcl34WegL7C/+RLOfxn4F44ZvgP/aKg6YbwBnInMa DIOg/qr5FegH1owYBH8bfnA9TjV4Or0m9qphcFgDZoTofdWDEWkfbGH3wfGY PQpW5IHgHfsc+gP/jf2ta1St92x6gTiG540N5h54juBkwKuAPwBfBNaB6+U5 wzml91nP+bHV6Cn8Y/UnDV+gdg6sJL4ydhNfzY6JXmWt0PFgfMAj4csTF+lz NT3PO2vL3/D3VbbB/Fn8oGtp5wHXAJ5Bf7YY5G8/UvX3j4YPBCMC3kTl2/qn wZRwP2BDsJX4kXodhotg7hlzHX4PLjVfHh3Kc8O+8R3WD3m6K56Q0LvKfaPX 0Y3EGfADq42qhueCZ4INIf7h/pC/l4Iv7J5YA2wvOh8dC7aEWIKYAoyJ/r1a 7WoVehjdTh8FNggfnbXnOMzvY62QNfR9U2yxy//HKcQRXA+xFe9gQNQOgpus xh/hurk+7LrGG2ZHsNeci/2gulv909ftupEj5Imf8VmJcYgx9XlVE0dyz9gR 7Cf4nlHR7TYfix5A8In0GvF/eBXBBr0bnFFN/q5t2kompbsJsz8vjKpln9L2 kkU/WH7s2OCB6sXBi/X/i68wPN/q+PWEORT0CKvutJlyxJX62WriXHLJL0af 58HE6h4xXCx5PnIr6ofzTOrpJ7gm3s+wR/OCUYnqImYA8ExMnuhBA9emfqHh csDjLAw2si8snwKeAjwCWNfN8aWWnyMfim0gj8bfyDHw/Njz9KuNjXeyewZj hF1ClvEJmGtC7orc7aWpz8NhC08bdWX0O/UouGPBbdDngM/Js0J+5gUbLE4l pkZHEGcj89hxcINgLsgxkWsk37siepV42rC+apfzS+IXrQYA1gLcDjoV/+qQ YOfk9qDGsGFgmPDN8BfIG/03vszqQsxbY9bVyvRVy92C2bgneKsaWUafgfsj 7kAeVHdXk4MjH0munJw19QiePbnQlunMPLNpyAeRp1K5tPgcGcXXQI7xU8Al sQ73BEdYzQwebOrlN8YbmcNitRnytOQv4UhQ/4t8he0/9g16DD9e9Ww1eBby +tR2qd3XRe/aPfF/6g/UCMizgnfhWaqeMp2Ib6dyazEtftvbwdfVYJbIE9+S vpT/NP0h/0v8H1sb1nyLaJbhXNDRxAD44sQf7G/yU+QTwf5Q5yHnQ40WmaUG DH6A48JnRZ4siFsgD/SoVuFv4zcgQ6wNeCpqZNR1u5S2tD5V+t3ULxOVN2E2 C8+b54QfCQ4ODB32gDgY3U9Ok/rTr+l/8ntl28jh4SA5Ka2Qk0t7iO5fGZr1 lM3RH3nVs4bL4d55Pvi1+Lj0zpLHpGbLMXZPm/juBoU95Lfov7bWrPvfuRyz qcgJOujvPAMxqPn32EL2NfqIdQY3RK2e2gj1OWpi5IP189Ufx2cb3vvEsKKp PzGsMkxzq4g5NQ9UP5H+Mz8lqrDZva1qYlEZlpfCU+S8UqW0D7cQ6hX0E+GL MKMAnYpOQGfjb/Cc2NPULFV35b9Lf7W+fXpg1DcwvDz7lHwYnwcPypxvdAw6 H5wgPhT1/9ZpoOfrpb5vP5FCX+kRt5d18QemO9Ar6FLw9OSR1Hc0XB4YOnL2 V6VpnvWnt6g63k5Up8juYU+hD4DaxAfBd9jver0209focPx9jksthD6m7mF7 2TbtZPf9j/Qzw1tQAyDnjk/WId4ij39BPhh8FBg7cv3sNeqcr0Zf5oNSC9my 1Mr6ftAj7DuVQ+pC7P965ivuHvS0HCI+FtiwC+N6+gdsvsEbhamiMZWoHMiP 6UXyWHiMnJPtLcxY0n1l8k/u84/0zzznoW+QeiW5ambV6t+SuDTSZqNsFc7x WxRnWd+Jy/oyOzdp0jun5X9Mf89flFXLS+nJ8l12gfV1vlWaZj3/Vdm2cKda rh5fjtwpWGr1ATRmqAbLS8xZjW4Ev8HMD7X7wrNnb6Of1dez+TbUgtGtYCvY f8QfYGeob14S+/z8aINhNcBugB2iDkydCWyaxr/V+FPgV5EXMJ34EOjENdGb eeYLDix0F/XfZPuoi3HslqLXTH+qjrd8PT4hdga/hv46fD/8QXL41EjbZq1M D6wtTRLdM9bftTQ+WA7LdpYvo5+sZkUuFJ8QjO+W8ZXofMP8EhOQL6WuMz/e YDK0ZdRKOkVt9Bm2FJU5q31TGwYPga2hjk+dCWwCNWzsGvei+9j4osrpR/mn 009M56qsGYYFbAg1w6/j6VYrwLfFbwRfSt0EHAB7hLogsR91PvYc56SuRs0O /NlnUWO+XaG1dCq1kR/S30wns9bUxrCz6g9ZXZLa59NBxiwiUR0i/dOc7cXP ox/tPol9qOOBowRPABbMOECytsz1FeaKqc4VZgK0i1pL17StwEPQr5Czv3FM 1mlt/L7pdnCU7Gf8VzDWuk6Gdwa3D04Z/5jaaKdCG4FPpDG6yPoDq8LlUtW4 TPpEC8QXjhM4SbCR/whOSuiPggdkQXSAH5H1gRM3IR5AH9wXHmm9uRMKa0T1 rqiMGU/WoIpForpbJhZ2E2yM+nPkw+u5DmbrufQ20134lGCDqUkyu5uZ66cW 9pRrSvvJVVkkas/lv9GfhifAJhOTEfvgI9LzMCkYbDEgOHji+gnxGpsXz5yJ zsGW1t83JO7pP4y+S9TWJvgx9HNSh8Vv6xa1ky0LreC6MCwWOlHPkeybrkxu S1+xGFF1XrJPvH2CXabmBR6hIfp3foesi4wPBsp14YGShMfJV+F042hQP026 1F0jqi/kncLpMj8aZXr02TSzOje1PupLf8aXm67tWegghXioLAxGC/MgT4+H C3qfWpzKR3JteIDNEZ8bPeufrPnYP1PI/LWNG4w/Qo+ZUIt9NTpVTq9ZK/V1 H8oLuc9lWe4V0XuQ67ID6NGkfpYwq5WZGFNKFV7vx7gGVV8k8EcQF7H/kHP6 pJmX/GlQK+qfqu5fIjs0XC9Z6RybjUtdm74s8Pz0rDAzGLw/vhuYBXqxmF/Z Mm0hYFjYZ+QRmaXIXCzyefiM1Mg7FLaQken2sn+4o/QpdJI74gbz06iLtQ9m 41dZvpRYhXiJuqJxI6r/CxaEGdc8P/UvzI/A/h5fGKL3voNorC3g26hn409r 7ExN6wlia/wacmbE9tSaqP9i77HhH0ff5zUeY16f8RmDN7B+uHhXw5RvF3c2 HDK1W2ThmTiz2WPscfrclsYvmb6gXkVNgfoOtSNym/gu1O+xOceGu4vKrhQL B8mppT1F7aLpXPCC1NNUhonLqtnTbwenW50f7CB+I3KDDeuctjE9sVOpqzAP 9pvgV9OTnENjyGr6D+iZQIbJUej5K8EdY5MrC9tKoTRUxocDZdusk2AzwBsz g1Z9WauFqf9WTS4FvBW4GnwusAnUtfEFiV+x4+xNsAhcl8a8+e0LXaR/lpOu QTtRX8cwItR4eabku3me9PnhS2Kz2X/YugXRc4anMQxtUM/8cuOS/iv9K6/y a/YamcKfx9+gNwBflbwe+SSuDQzUQ+k7hpsFWwTWgJo5db5x8QCLc8BaYC+I K7CpYBjBp4APwj9nbYntWhUCUZ9PeF4b4k8N70ENn/ouc1ywf+pnW5+RxnyG 5WD+HDqca6UPHBsFdoB6I/dN/ZVYBVwF+Cp9zvkehfbCbLBdSz2MP4leRnA+ +PTUAIkZ8VvJGxCv4v/DI35YurPsm+0gGmvKvfFbhgvU9ba+TGo+5KHJ51Pr 43zgXL9Kf87Dv3hotLMgg+hYfCIff2TYC/oz6JvEb+ad2TX4L2CImHPRLW4n g6OtjdNnRLit7JVuI3DJqC8myOOr8ZcWU2IL1QaYvaf3UvegzTgGr05tGPuM zO5XCkV1h/n9XBu4H2r6xKHsd/oqtkmvNUwV9hv7Bc4DLALHIkfV3MuC3vgx mGGYWHxGdEMYbSXqv8DLYvsEu4WfytxAcuQaq1ofHfkIuMzBsWyM/2X6fc+o t1REvaRX2FHwSZBVYj98DvTXnenr+ST4KL82et9weeB8iNXBGiBr9FW0T68y /Cvr8mf0V54ZvPiarBG4mXzQ13AErDH3jm2Br2ZhOFoWRWNsjg0zCPFL0D3E YdRyiH+JNannkKsl50IemOv6IvhJfbf+op9R/3uKPJUebzYVfwE8JDNx2sWt bVYos5foV9T1TVTemMFajU/CvmPeFfZL4xLZWDpJHk6PltOyPW0WNTadGSqN 8e/MXPDqsyaPx8fQS2VzqzWuN3/4n/GZclW4rzAfBdwg+S76o5nXoDGB+SXE nGAYyd/DdcLMlC+j8+SB7EiTT+JV4gTia3g2ZkdPW36Z3DC5t8nx7jZjQd/l jlKN3FWaINPSYTY7m32OzuN64Sdn77LmYAvon1B/zjAH6Dv1X8BZ5D+MzzKs N74jM9SwBWDEwDKQB14ffFhPrpNnQE8IMXT7rLXJC/MYOodbCnMKwBuRD6KH T+Mz42qlBkZuDDwJfUfEXOC8wJqBxaOvAbwiPi59I+whYvmmua8jsCGVGrOq Hj3Y9Bg4bXqsifuIMbGNYHLBuREb4INiK4mtiG3ZW2AdyBXw0u9YzoN+S/YP +wo7gC7j2C/HX+SJq5mT1DIMhNiUfAEYHb0f9KD1jFIXpwcM24G+QY405rY8 KbLJenNc8HOvpF+oXW5vuoOZdMQO7C18TuSBHJz6wB4+UDhY9fj0N67HXvSL crIsPMTmLzNv94HgKNkvCoX7JzYlPmHmg+4Dm7k5K4iIM0aA7yFXgh+GrPBM 6eFo7nWYlz5rf0MvgQ8Fg4Z+wW9ANjTerIYLFr8NjCCfQbY4BvUQ8J/o89/i SwxPhT6iZkx8rO/kUlgX+w7xAz49MfJ/4z/NzyAvRf6dXko9p/XxkhsFj7Qo fsFmk6pOkerSdqYnwfLxzDQOtRwc97BN2ElOC4bJBWG1UGPCXvGM1B9L1K9K qBXRI4n/pv5IHn+DeGJCYaBcEe0j90ZHWP2poXCa3JceIZPCwcZJiM3EF8M3 ZsYC/jH1F2JA+pDA4+4Wbm25Dvz2qYVhckDYT7BrPK9dsm4yIOtq+RnWDX+M Ogu8v/vEK6ynlfoIskt8pLGYPBdOsRj+7nSCHBLuLOvTDwyn12RH/234HbB4 9FqRGwOXRg6NHDRxJn4+mHbklbVTv1duTsfK6tJ4O776LFKM/mG4Mmqd1ANU LzBX3XQKzw29AP6M2BWbwV7oE3UyW7JvEEpltK0MSLtKq1IAH5rFyzxHsFoc g5qXxlTJqmA882KrsL9nR3uLxnvG85QrzbE1x38Ew8bzJm/MXkePgil9Kv3Y +jTAf9JDRx2YGgQ1vSPDXdU/mSUut0L2qV1hx+0ZdaDWSf7P3xKOszkbu2U9 PP224Pr1/mz+Ssfc1aKyKsX4IPNxwHySE/i7JlsNlpE8HfaSvMDehT42Iw27 AL5LfX50AnkZqyPgD5FnRmfhC4Jpx46SRzo9Gi5rCofbzOHvggvln6UzZVFh jNkjcKFgMciJ6B6zOiozAFQfMtdyPf0jzHLqEc+T/WpLcljjXTKi8VZRXSZz S/tbroJcLHECOWr1S4lFrF5E7zO2kT5TZIeZmPi72ETWbYvSLClnx8mQqKdg I+CgnhLVJbrfzDaSIwT/iC8HJwG6RvenLEvHyQnhUOmbdpZ3oq8NZ24Y2CBH zGyYKjBgxHnocfToVumWgs+Gz4Qu5b6QXeqWR8SDyI8mqvet5xk7B8aRvAX2 BJmZme4j54dVcmhpZ+lT6iSq50x3kQslj01cRX2MXm71r6x2Sn2RHJ9h4sMK qwcPCG+UHbMb5OtouqhNNb5eeiepc4FtIAcNlpq8wtHZrjZzaEYpL2dkw2Vs YSfj7dgU/Ww+FjaAeo7KS6J6MdH7NT40ngc5iQFhNzmiNEimBcNF/Svjyqop 7CLkH8ixEA8QR6o+S5gBy1yq97Mz/Iw4z0xbai7V2Am1k9Ixmy1b1l5p/Ajs Z/I42BmNeeo1Bk5K8WvJ1ll7f1DWz+YzMs+qT9zJeN/AU4Ahxz4zmw2OkofC o+XKOLI4BVw9OXfmLewe9rQc70Fhf6/61eY5Mu8E/5qYVvW41X/oscSPp35D /EN+kxwTvVTk3sA9ExuRx8dXoCZILzjxoNr/KtXX1eqnVeuxDCeBfmBmLfoU jDN9HeQWmUlIzEP8Sf3tkXhi0j2da/3z+PngV8Hdk/8Drw9WkhqyxqAJPDIa O1k9i1kncDNtiD7NI4MD4+4CdyvxHn3s3DszuJl9ySwu5t3wHebKgy8jP85+ p9ZAjImtIc7eO+ojzGChP5V6JXPSpheqjIOYebZ94gUJPg42Gx11RuNaqS4s F/07/JP0jSUbCif6bSoW+Dbhlf7EbKgHc4qOwY59XZhu86NXpTXGG08fAOsF 16rGockW8awEDll4P9QfT3SP2x4mP8zeYKaWrpWsiA6VmmgXIT+Kz0dMou+G VWC/UL/BH0PftghbCDUa7D2zpJjL0SXe0uaCgHGg9k9eFDlkX9ZGIyxuQyaY wwB3F3Oldsy28swg0VjI8sXgE4hpqBuhL4nPsDfkr8jNUmvFV8Afo4+duBU9 TL6BOAdcKnMp4BXVmDyBBwSdARchM4jAtlFj4BlRc8Ov/BvrvJ56m8qF1dvA BCJ71BPp+YMPC9+T/mX8VbA94KbAGxFPoovIR1BDJ3+nfrU/MR3qjykN9ioT /u3gdGY358lr4n/MLu0rB6X9BJlkdg+zTJhj83LpFP+P8CSbFfXP6FubAQK2 m5j/+fgzqxVSB8BvJF4kT3hO+niya7SIGe3kitexP5A1fCx0LHqLWQfkWMBZ gTdD/1LrKcRDE3ib1Pf0B8b9bL4Lvgv+KDk2ZqX9VJohT8bHW16VOgi15B/S C31Uu9JH0Ur/aXaO8avz7JCl6aUqq1fB90hvu82+SD+w2U5q82wmCnUkdAp2 kPUk383MJvKnzKfdHP9hsQ91Q2og+PLEi8S8yAn4BzAO2GPyQfcEb+XJoRNv 0teAX8l8DGQReadGDVcMPgP9UPjX6CGbHRC0rWL2BTJOvEbtBFw9tWBkhLoy +xDfG79M4yvT7cRc9IaSl8aGMPMK/plXwlONS+WRaKLN5yEm4bNw0/6czRCV G7kxGm25KI1B8YVshvUP6W+mG9R/SZr2x3XM4wOjWk2vB3k0ifsKHH/M3j8l 3UO2STsKug1fD/yLxomGL1GfG2xgFX3/1AHwn8nLkzPCT+K8VpMLjq3WPWW2 nz46/By1CebvPBb803rhyD0To5OjIlZCP5ATIn4CQwReAiwfc2CI+6jJqt21 vBi9fsQRcMKQa1AdIe1KrdXH+c2OwTHJUyGn7EFy13DQk5uHNwC9Su8Az2Hr oINcUdpHdH/IB9mZ8lB2lM3KpO4HXl3lwmasqz/tNU63mcgj0lup5awnP67P SF6OTjGfcovCLGmIT5OTsgrLO+uxyb9ZvhadNz5YY/kY7Cd131lBanP1WEfj ctf1o5+BPgC+S/8PsTs5OnJxzBJvF7cW/DtqUKw5uoN+GmIcbC29T/SCjUxX mM0gv4He43jUAcF8kSvbFP+cb50FlhOh5kK8AzYRzOXfc1eryI/Qm0NNn9iT 2IzekiZ8yTnWUwBWgZwu9ph8AH025NCoGRFz0ENIfqVp3sXzhjEEH8t3wD+C XyQ/y7PivpnHBi4RrAv1fH63PphsPfnds3YC7xI4wN5RR3i3LDbR+I0aeULe XtcvISei95WoLCXkANR/zDfGv9M7Y1wJ4BLfD8+UJaWx5ofQw0fsoH6hYd4e Td+zPa57kHew7vnro+fz5AqJtZgNyWzTNmErIZ9EDUN1p+U1yIkRt+paG86E 2JgeIeZd4HPTU0iunV4n6uU8H3x3dAM1Q2aykc99L/7G6rmqu2RkuIPlN3he 8HEya4J1xG4x34bZOeTRsEH0nBEv4eMTa1FfxO8lV0aNm31HvpJc4PR4fR7O eDA1zMz8KP3OfB9qP9SQe5Y6GG9jh2gL+AMNG0AOGL1Bj/Sa+M08eTo4Hpkr q7bQ5mWqrTUfh742sCHoOHqvwHNwLeQ/V0fjRe2S7bkXSyfLTdlo0TUU1bEC 5oMeXupFyDL1iS3jVmbbro8OlDeiqcYj3KEw2/iWmbu5JBorurct90Qel5wD /ZXkAJnhQLxPzh4bQixKLJarnSP94qKExRukQ81soZ5zaSayR9ZLwF4yp5q+ YHQhMf3s+GnLS5E/gAOOGlRaOkE+i2rlp2iGfFw6W1Q/y/SoSvSZyPvpN5Zf oweYnDS5THK408LhxnXyWHCM4VqXFw6RS1OB589mkO5Z6i3wZyJvYDWGlHrK oKCH9A+7ypBCT8N83BAeJJ+GtdKrYb6u9802F7Rv7nr5tnCBwGPNNVIDpI5K Pys4KZ51r6yD1T0eDifKr9nF0jm8Rno1zrd5pKzpm9lUmZftL+ozi/pUlien PkMuHj/whHSIqB4VHx9H7GbXj29/VNS09s02kFowOgvZXRAfIC9kJ1ktC+5D Yjn2EDgWvoMuIp7Dx+8bdjH/9vjSEDk/rZQL0iqbW6y+mKiPbWuALFD//Sna bDl8/GpwLDdkB8qd6XjzOcl9EjuS6yaGIBYjH4dvxExEeExPjvaQuYX9ZV10 rLwYnWx2VH0BffbTTSaXFMZarp96OLkA+kbptaIeBC4CWZ0QDZTVhfHGu8L3 Xg+nWg55TLCTYSjIa+E/sLfAzFxWcMYd+GYwTd6LzjDb8WTpeFkZHmYxn9pX i/V+ijfnn4kyq6V/Gf9kc66pOUyNh9l6wyPxdjZN1MeFY9102quFU+XOcILl Wc7NRthsWnis+Q52/bhwiBCPosOof8G3rfrd7FbP0nzbCwNyGqdWFI3bkFww PgE4FPYkdoB6BOuJXJLvJT6sypbJMaX7ZVpurdq+Ojkou8OOhU8yPx5l31dd ZbkJZmzg3/BcuKb60mRpWRGrHi6KyqqMqVgtY7JVonpbts7NN+7gOeH+5GlM prcK28q2YWfZPwvl8mAf2398v2/F9TIkWmLzdgcWbpKtK+bLH+HlsqF0osnr WeHeMq40wI6DDOMrcWzyMWF8g3FGbB9fL50brrb54GCINOazeeKPx8fo9Z8i nxVqZXPhUuPu6FE3T8K6G2RQdpPs1rBIn1nRfIA/C5dbHm9NdLjtQ3IwxPvq t1vcWx9Ntpm9vQvXym7hYt1ny+y+4YMaWHeTcQaSL0A+2CfUp9kDhWioHFEY ZPsMfnL2BvKJ/LQqxbJ93fUyLLhFbcVKOxbcBWF0g+VrwIRclUZmN8kLUmPZ rxDKrHSkYUZy0RypKN0sB9beoTr4TuNn3qvhFuNkV39Ani9MsbhR7ZgcmQ4y PUzucmY40o4Nx1BlzTKZlN2n6/y4nBetk6nFR2V8uMb4FbsV5sqm0vnyVHiC rekL6UmG00LvHhDcIadkD1OzlqtyT8sVdU/KeTXrpFB8SI4q3Kux491yWO5u +LF0P98lY8LVeu0lm5M8uLjY5AYsBOs/tGGJ5LPluk9WSr7iNpOFXXI3yU6F hTK4ZrGofyBja1bDTyBHxffKoaW7ROpus890zebYjHj2kOnldJLAJ9S24UrZ ufZGkeg22TdXkn2iFTK89hbZLV0kO4ZFUX9atsmutVfv2mstX9YxvNr4I34p XCwfR2fLxsJJhs+5JzjCnj+6You6WTbvmfPX1N0txzU+IMdHD8rE2vtsD3B/ 25eul7YVV8m/wnNtneEYeyo7Xj4vnWuyVlF3s+XlTml8WDRekzPrHpPJhQdk 34aVhiH4MdAYKzre9M0/sinS4ukrpF+xKAfW3SFTC4/KlTWpXFfxvL0uzbyc mD0k+9WUbL061M2W/5Yus96L1g2xdKuda3tkZLbC9vqFNfVyfd3zckexQe7L 3hI4RG9pfEn17tNyWsWjAqe7+nf2DIbULrHc4f5ZSSYU18gJuYdkas2jMrX0 qD37QvSQ/e6Uikfk7OLjJgvw36ofZHxyhVivq1iS/g1Fw3r8K6uVZ0oFeSE4 WZ7OTjCdzVpzz/mG5TKlWGf3A1cy3Dqsicaesm3uOtOV5CHJSatvL3DGXBTm 4f2Ucni81TeCmpmisYl0qblGtgkX2N7iWfevWGiysFuwWAbXLpZdKm6SvsH1 pitbNsyULwvnWb2unB4naeEEeSYqmC74uHC2/BjOkM7Z1TKgcaGtsfpiclb2 mJxXXGfyrn6yrc1ejbdI79K10uLTK+x7YNqwmxp32nPYquEa6RuqrqtbIurj y2HZXXJs4/1yWuMjck72uEwvrBf160RjKjkhfMj2D5/bLbfYeOfQW90r5knv +FpRv0B2iheavuQZ7V1zq+FXxuRWy4TaNaJxmkyueUBOy+mzqnvUnuuJDQ/Z 36R0m/FTw1H8eXSu6eF1hWPlmbggH6RnSouKmbYXNH6V0TWrZHLdA/Z98DLM Mp+U3ifjCnfKPsUVpj/R1xo3G/4Fu4hv83t2ic053z7S+61ZYnaG87r0NsNN 7R2pngtvlp3qFkrvmmuNw5Z1Q25bh7OkazhXdmi8XgblFklF8WbjDbV93LhS Dmq4Q/XYHaYvR1Qsk91zSySsvcFsDnuTvfN+cKbtXWoi5NCZ7Q5/PbKwW7ZI 9mjQY1bcSn1V45LbTTcdFK4inyFVFcuN96hvw3WicZj5BbcE4wyrB2aG+AEc yPzCKHkuO1E6Nsy2+fCHNNxpz216cb3GpU/KlXWpXFzh7XfUG7arvc56ovC/ bkgPNI51/Dns/cLsINkYnWT2fKfSQtMth+TukiPDe43/7YjoHhmTrpLK0jKz W72y+U04zewiqxc/X5pivhC1YDgcsC8r00NNfyDLL8enGM/cr+ElxrfJzHp8 Tuxmn+IC0/MaW5gf9GThePNT8Nvwu4ldwZLg45HP3TprbzXIQ7IBqneG2rqQ 776yEJmdhMv7jHAvszdRaQeLQ8BbUBch7wEOkxiB2JI5S+QSiDeIr8DNUIsl fsBnY2YIvge5XbAtxM/U0sl9gYEhriGHy4xG6t3Uq4kHqRmTK6CfkPwQeV/6 66i9kN8jhgNnwjmoU1E3oj7E9cAnTd6Wuju9GNRIyGWMCLa1V4+4PXkoi7Wb Znu+Rv9zNbhr4iVyoMw/KMRDDRv7bvCN4YXJwZKrBJfNd8GLkN+gf5L8Ij0p 9AiAj6fXAdwCPT/UHqlng2n5uz/f+n3pBQevTR2DvBi4lea+EWJ7+jOYQ0u+ H8wvPUHMQAWry/xUsNzkJ7kWeqHJoYGz1nswjCD5UWojzEgGc0r/E7lUcNjg JZklTL8oL+aZ06vGTHdys9Q2noyPJ3eWcA3kG6nV0XNFDxy5AvID4Kp5ZuRV mMdAPRfMIT1SYB6YfUysTM8mf+f5McPiuWCK9Swwg4b8HbEeNVUwpeQwwL9Q +6bmQR6GGjr5WubNkPMCtwSe+e30K8Myk9s/KOunNm0P25fYFT2f+eHgK4lj ZmUj5frCgYbTwLdMssmyoXCi+WHw1hB34Gu+WDjZ9tu76em2N/XZWt2Q/YqO wo5U1i0zn2hKVKfneUIuDr3MzJ601xWFJ+XsuscF/rSTax+WU+seMXszozaR qxueVn/uJeObS+NPqKXJt9Gv8mf8l7TOtXRt01ZOZdV13tTG5da0dd3WtXM9 ovau98SOrm+7Lm5ArpsbmuvlKqdu66J1O7iDevd346IB7rDcLm5CcaA7om6Q O/q9Xd2xjYPdlJoKd3ppuLsgV21c6NdWHuBu3jTWldYc5u7ufbi7t3CE0zjC raw4zC0pjnULlh7gZm0e6aaXqtzUmmHuuE27u6MH7uaO3DTIHVW7q5tY2M0d 17i7O3nGHk71gzsvqnTTR1e588Mqd25Y6c7ovZdTveomLB3oNI50O0fdXMt2 gXug4W3zW7rUXiOLSmNku1JnYZYXmDdwa9RZiYewiceXHpR5Dc/KopoX5Iro SRlVvN3yFOQZVaao0yXwH8CJoPrO+KjgbVD75y8OxDMnXX1g8v02y5iZwx3i 2caH8kX6Y6JxoJ8WDDdOwxfCk/3nhXP9t/EF/ptsuv8uuND/mF7kfyrN8L+V LvEq08aFrHbI+GE0trMawIi0j28TtPJgbuFKoxbBzPDO6dWGOaDmANaXudL0 itLrRf8Qe4D+RPpVyPGhc+jJIUdF3pycHbmyfcPQMEjgEvR4xpHet/E683e7 1cw1O0se5q7CBKsxwidC3A4H0BnBXhaDq+6UzrlrZFDjTeaTjg/WyFG192oc c4/FiMMamrhMiN9ez06TFfGhFpuOSfurjc2Zrkdfk0NkD9KTBdaKOgR4GubC gJWkH5jeVvrf0YenBHsmPKN7grcSjRVtbv/DwUSvNt13T+d69YX8yMYmHqBJ Dfd59bv9SWmdPy17xJ+RrjUevhlR4uPCU35+3Qa/KH7Bq37295fe9qrb/CsV X/pP0u/998XfjJcZ3iH4BHNz25Z1n5R7TG1fztW2Lbff2LocrGtRVpvnP2r4 zr+Wfmn8YXATrav5wCfZhz4tfeKfy33mX0m/8G+GX/m36r6CE8O/WPu5L4cf GwdZqfiav770vL+spuxVhuxa4ZU9svEeP77xbn9ww2qv/od3DbcZh/ewdKlX f8Y4ZtV39dtWXGecwRrPGX8gNT9e6jN59QG8+oO+R1FfdfMM3wx3psanftts gVef2qvP0fQqXmf8i3DcwmEGj6nqSL9nYanfK7zVuFbgUDwue8DX1j7hZzU+ ZRxMGhf4mxtfNP7iS0ren114HB5vP6VUZ3y4p4SPeNW//qKGej+/ZoNxoMIl /2bFV/7fFT/7Hxp+M46nbyp+9f9qbARXbpyNz1V85utrP/QPNb7zf0Tdebxt c/0/8Lb5utdwzFfCzizUQYS7rlYyKx1DZUq7EhrkZEpUFiGiHFOueXNNCZ3M 7M/OQiLCIZljG5PxyJDp2+/zfG+73x+fxz5nD2v4rM/wHl7v1ytd3Ls/zZ6c SGcP35POKe9J7eredNHY/emqiYdTd+If6c8jT6e7hp8LHdSJsX/GM6Svfe3I o6k9cm86pro17Tt5bdpl5LK0xdDstP74GSn75yn7l9Fn08vjos/04dITx6Ul mr9M2e5P87aOSPJWd9V7pN/VO6ajep8LbaZ16+mRo5PDOrq8JXKG6qDvr/bu HFzNCDyQfKY6JLkcMXF7GtwpLIC9HkYaHt3cVPMijsfGgB8St2dPRZy2nBp+ /Rr14hEnXLVeNPJq8jhiuNPb04qVykWKdZtLF2W5fGBQxYLEm86rvxR7j5jD 4iPHFqtPnFxsNH5WscXw7GLHkd8Wu49fEb5JnmPx9/bjl4TdvtXk7L7fOnxF 9qGuC1/tjPKvxfWjj6kbKay5i602/8wV66GZn6qXnPmZ1ZaZOfOFZWfOrJed ueHEMjPXHp4+c5Vq0ZnTx6bNnHrM3DPfn/ygeK7x7+LBsRfznvdi8ez468X7 zf8rpvXmnrlsveDMtRpLzpw5vNzMbR5eaeb2l+Q9ZmT1mdtNrBp7T7ZjZq74 wtDMaRNzz6RndmLjjogR5HW1yHZa5LLUo7I95qkPD40ZuXf5NbWAdJ3Eieyr 2XYq1u3NCsxDXjcKtfJqHPI6mA4cujG02FduLtrNv+luNmWF7kaXfKz78Xrh 7tsj76Uzh+9Om4y2o3bpV83N087NNdNurbXSsc1N09PlaPpEdUr6wci1of1J 4/ejOy3QXac9vZttuu4XH165u+2sVbpbTa7Y3Xin5UJ7e8lqavfdoQ+i9uD4 8raU7Z+0dnNWymtxmmOoCk6GbHeFNmj2RdPGo+eE1mi2B2Idyz5bynZp2mby grR2fVpoCGX/Kp3T2jZ0Ouet5kz0M05tbM0uuxEfkxpQOYb7yxeiJmqBap7i v9V/A8MjbwevBB+d7byNYG7gquUJ1dDBcquhYbff1dujyHtR+F5F6+zwXdYe nhX+cqM8LOpdxLDWbC2R/b2XAs/HFnug+k7UQ+L5Nu5PaGwRvOlyDnCW6iBg DuEG1WjJXcE54JuHN8TtT/dnpfYioeuSbafQQ1t14qSUzx8ac6s3TklL944L /W77LH0k+sO0Jmks0Q+m2fil4YvTPkPXpl+Wf0rnTdybrh17NN0x+kx6bOLl WJdeH34nvTX8Xnqr+V6aHP9P+mfzjfTo6MvpjpFn0tXlI6E5ecLEn9MRZZ0O Hu+kg0ZvTIeMp3TEWB06zLPKu9K5E/ekC9r3pQvr+9L5rYl02sSdoWXl+3uX V6UvD12atmzNDk3JtYdmpVWbJ6dlJo9PQyO/SHlsphdbB6RsJ6YrWl9JeCto ysDx0HSnu5p9uHz87dIt7VbeY76d8p6d/tb4Trq89+XQmdymuXL6eGMoOCjo qdJdgb+hC/N0OUnnPbFXdqvWCj3OS9s75j1w9/SX3rfSvb0904Ot76bHmvuk XrVv6rX3jX7slfuGXtwbzR+HLvoHrZ+mxuhhKftooZ+34sRYyv5x6OXh1Pjp RDedOHl7umj8/thfaW3eM/J8umvy2ZTa/0jj5UN0qtNZ1d1p1uhd6eyh3Get +9L42EPpT2NPpcdHXolnMN/EnN2hWfN1lxqe1l2mt0B3uXKhbrZ9ustusFB3 2TsW7C7dXKC75PjU7uKt+buL7j2lu0ij37KNG79beCi3h+ftLrzafN1sW3SX mD61O/2YfKx6ge7HygXjeM3rF+6ueMdQ9+MvLNxdfmKh7jKT+ZgHT+0uMmVK d8HJebpTDp6rO2e70c0+Tvf9+oP09vh76bWh/8Te9WL7zfRi+WbKflT6V++N 9NzE63nsTcrNpyeqV9MTo6+mJ3v5dexVOI304OiL6f7qhXTf8AuxX93Reibd 1HsiXV89FprBlzcfTNkXDl3w8ZGH0rXVoymN9fc6/ZfX0uibJ9qvxjmeHHot PTb0Snpo6KU8Bv4Vmod3Tz6X7hx/Ntuhz8brX8eei3M+PPZS+kfvlfTM0Ouh Xf7G0Lvpg/L/0hwTH+nOMT3f3+RHunnM0CBPbw29l/7VfDM9OfFqHNdxbms+ nf7UfirdPvxM2DMPjudrqV7J6+Bker717/TP+t/p6WoyPTLxUlxDtqvTHyYe inl2YvOOvI/enA6dSKHhuu/EtTEPv19ek74zfHXKe1HYGLhd2EA0k61xXxi7 MH2q/k1asXli7NFsvYVaR6eFqqPz2DgiZf8p9+v3Q8eQphndNfpmB1Qbht5S XotT9gvyOJ0rr+HvhFYy3VK494OrTugKwSjCaqlTs69nf7Czan1S+KnZv4Z5 k9feSD7X3iH/hpsUL6taQbW84gNs7UZ1WNQgWr+sffAEMGc0DOnyLd2bVmzQ XqZotT5V5D2kuLrcOfwQ8f58f8VaE6eGxqcmfiVOKS7zZP2D4pJqh/A91XjI x25cLhfx++wDRLxy05Hzwhe8tHyguKf1fPHs2OtFHqPFU73Xirx+FReM3Bcx 3i0mzy8+On585HL4pXmdiZgQu188X92t2N0647OKLzYvKr41/IfwRfdrXx8x SVqG2W6MfJVaMzEWsYLdqss7azSXiDX6D82dgr+Hjp2+36g6K2qrcfqpebIn qemAL8LpQJfqvOZI6IDaTy8deSD9bahvK1qDjW+285m9v6YDJ25I2UdOazdm hQ27aHlMWmzymPTR8vjYMzcaOyt9aejisEEPHc7r0NAdsRZfXT2SbhrOtvnE Uymviena8UdDJ3Csuj0dNHZjjL2NRs6K47zb/En6S2OPlPs8nVBvnqrysyn7 r/3W2jB0wg5uzYja9dHWZ0JfM+9voeubn29oX9Heg6OjOyVuIuYEw8/PURcC c6r+WD25/BnsO9w2/DVMBuwBjsx/Nt4IXPrnGs3AXOB4Fd9QlyX2plZIDphd CA8Kb6rOJfsmwSVvrOKoxdlAk068i20grpP93+DdoV2nppTOJ7wiHPmtjW+E ppAYDxwhnS1aP8dXt+XvvN5ZvbdY2qO1djq3+aWYg3OPH56mjx4XXFCr906O tkp1UlphbCx0nGkgTi2PjPpv/FBzllWar/nzeH7ZD01rTJySivbZsYe0xn+f fti4Pv2k1U0/H7o5HTlyczqs/mPaf+L61Br5fWhFrlPNCj8o23/ppeaB2Rfb M69R38z2+TdD5/SJ1g9CI/WD6qdp3rEj0jyTh6fGyGHp9d6PgrOK/3h8tVno v326vXSarzendTg01ulcqvn9T+PQTl19PbQL1Wbiz8K1QeeU9hCuIhpPODjh 3s0DeDn1GzhO1NPhNx1oncDoiQWqS4ThmasxR/AywFHCscJwscFwd8Fb93kK j70Rvgu/UbbrO9nW6Xyj/n1om9FercsnQ4sTT8vv6gdizOFbgU+6pvFo5636 XVpn6Wv1Wums8osprzdpgeqo8CfpW3596Pdpn/qavGbekPbvXZ9+MHpt+M15 PqftRy9JW5azU7a9Uzl2bsprR9qud3FqVb/P8+CGdHzrttDXvG3yqfT0yGTs HXMfM0d3gfY83YWnz9ddaKd5ux95/b/pzdF3s13xYrpx7PF0zug96Zdj2R4a 6aQfjOc9YOyaPIeuSz+r/phOnfxLuqz193Rz78k0MfLPbIe8knpjeS8deTX2 ztsnn05XDT+Szqj+GlqeeT0KPd5sjwaH2UfHjk+L9fIeMXJ06BFn/yzPxRPS J0ZOCTtxZu/stGmVfdrygrRFM9/XeDt0RFcbPTktWf4y5XU4Zfs33VDvmn7T 3jr0iWmY7lOvlw5uz4ja7Qta24XupjFEi3POqkoLjByVFiqPTgsOH53y2t8f a+Vh6d3GT9Jk+aP0r3r/9Gp1UHq3PjTNOVKlaZNHpkVbx4R+eN5rwt9m629T X5D3rd+m3cYuj/XLHsmH1jf2z+Mm/hTr1Sljfwmt8rPG7k7nTt6Tzh+dSBeM 35curu9PF43en3479EC6rPp7+NFXjj6crqkfSTe2Hk+p+ke6aeKJdPNwL9ZB 9sftzWfi+elztkYeM+nyyb+n2RMTadbYXdmmvD0d2boZjjztN3p92qd3Tdpr +KrwSb7WvCLtOnR52mn0d2HXbj92SfrC+IVp8/L8NKOZ7duJ08K+FbPwXLIP FvPvvt5e6fpy19BXPLxZJnx0dA7hOukQ5jUs5bUt1hn6nOoYetVrnUfql8SN O3lt61xXP9rJ/mlnz/LKDoy2+SiOLRYO9yqGDE9OSwkmC+YL5w09uz7v6GnB yQTfLMYkjs73gfuG5xI7/lv9Qvg/aipnNpeLOhX+zYK9eQq4KjgrdbI0Qfgx an9/UnYD2wZLJY48d2uO+P3e5bpR7wCX+Ew9WrzdPqRYYPyowOrADkxp/zzy yKfX20Qt8cdaCxYfufm/M96p3g+/Le8pxc6NNYvr6l2iLv5zzXbEgAe51exD xT6d14Zi+/KS4rPD5xar1ydHjA8WJNsjRfZXi42rcyKHmPe7Yrf25cXurSuK 70xeVRzUurH4ea+GNca1UbRb9xaXjj1Q/KHxcHH16CPFH3oPFb+d+Fvxm/E7 iyPadfHd8auLr9aXFpu2zotc8DojsyJ/t2F9ZvGZ5pnFuvWsyEkt0Tu2mGz/ qDiv96XAg+FhkbuBW4NxVH+lZhzXERwDvWbx9t3LTwY2SrzQvodHaYPqTLH/ dEhZhL7u/e29Y5++tLVj8A1+qrlUooNJpxJ20LiAfT60TuELfbw5FBrbJ1Vb hv9EB3vO8SrWC/Gfj7aPDz9yqP2LeJ9Wd7bR0pHl59JIe9X08Xrh7G9PRhzy F41bQyuX1q2YLdzywr150wqtofCvVmkvmrJ9FNqX1uQvVBd2si/cmbuaQ75I jVTEg+wLeC7UPdAGwNcEB6lOOtvUM9TlaLhkjDnYKvihF6s3g9dGzV++rsAn wamJ08o/GGPwMnKf844fEbgReKjsywXO64rqK5EzV2f2o3qjYrT9mbAn4WrE ksR9cSjw/fdprF98v7Ve8a3m2sVO5RpRv6LGVO37Wr0lIo/n+vKaE7gsnPt4 2WHLYW7hOXEG4C+AP8ZHpp4DX4lcE944fJ44suat5ox8GrtjotpLrVXsxz+u O7G/0R6evzl3flYLpE9Ui6e1e0ul9eqlo8/FCBarp2Sf/yPJOpHnYNj68OQ7 Ny6LmPoOjd9GjUa+ntA0zb5WR0zvwfLFTq98LTRU1Rrkcdc5qLwxxo/YOww8 nh7PTu5NzQ1NTbho8XZ5BHhYdd9qHXF44vOBHaXxq+YMt7paVvoKNDPwnagF h33zHOHi2XMwlWrmX63eDn4Nmud5HkYdkzVGHaO6CrlO+Gt5T3g09YzWC3UX crI4KGD+1EnSTIebhEnHl8IGx9XCDlHrJ7+Iq4puZp+38bTg/8X/N+BOVMsA l79wY77Qc7yvsXfoN+OCZIvQmF2tWiy0a7/b+nT6aWPj9It6k5Rt/HR4owyb ec/WOhFHo3G7afXxqDOiFb5XY92ItV5a7pj9y73Sm9WP0/xDR6ZFho9JS479 MuanPX3+5pHp/cZPI/5mDl9RfiWd1fpiyjZ2OrrcJB1efzb9ordJOrW5dTq7 98V0abVjura1S0rl19ItZSt+c221S/gnzveL5udTHvvpkFYReZg8ttOKvaFE N3ue3hwxlhYtp6Tl2gulVVqLppWqRdIS9fyhaztUzZemVnNHY+/fWT3bUYeT bdXIDeHsxLWJT4XNlvcY3ClRT/vJ6jdRe0IHGxeM9cpntI6/Vl/eyXZAaOza 3+jeHlPe2jmh/nP4rNYztb0+p6MrN4XX89j61qgJsDeqC5lSzZVWbCyS1i8/ mj7XWz5qsfI6ke2flUIPHFepOgr2r/i2HNQmZTPt1F4j/aBcP/pGH15Z7ZT+ WO6e7mnvGXbPw63vpTx/U7ZHw/fu1LulK9s7hcb75Y2vxHrs72uau0Sdyp+q b6TsR6fH6u9HbkyM6/XmwXmP/1Fomud9L0209kq31q10XXPXiEnRb7bu8rm+ 01s37VmuEz4WzeXdyrXSV9qfSDvUqwVX7CbtfB+tZUP/HM/OAuU86ZXG21Er ktekWKPzHtkZra4LnW91HmV1bjwDdaXix8Yyvj/4fnlm/MNseXzT6mBpiOJ/ UuvNhsCDj0dHDh5Hs9rXDzmog++DDqV6EHqVea0IHRo1V7g1aAaoIRUvoGch RgqLj5vE2iluANsNE2G+8+PUAdIRh/nFhaX+GQ4ZNwcsMw0jHCHZXpqhvvxj 5YKBn4ajheFWnwp3mcd5YEhhDvM4CE4dOGAYTNy08qg4z2CXf974XPB95WsM jKTcnnwCrJQGZwTTJv7wTnloYBzhxrO/FPXGt7RageWCgVynPSswZKPldcWx vVuL03p3FmeM/bU4cfL24pAqhd2SbfNinbFZxSojJ0Vdb7bLiw1GzwwMDYxR 3gOK40dvK85q3x22yO+HHiquaD1Y5P24mN24r8jrY3FS+47il+0/FT8b+2Oc 6+uTVxTbty/J+9nsiJHAQsEq5T2gOLq8pTi3vqe4ZvKR4i/NZ4uHR18qnhx6 rchzJ9tpzxSzh+8LvNqWY7MDs5TXwuLvje8G3gw/3cvtA4sFxo4qVmufHHi2 vLcUea4Hdkh96NutQ4pZ5TbF5u0VgoPNGqxWQ50YfP605jzFmtUSgd3Ejwyj jQsLBkFtAW4X9RRqQ+WV8n0GNgQuBEetGmO+Iv5I9en4W2FE1FvYa+2zuG7x V+ICVj+5Z7VOcGmyRWAy1DThWsVFhpPSum98qxVRc6POgQ4MfkV1KfA0eCZw H+DbxPWR7dPgO2A34/qSf7cHqRFapzU9clTZBoh8Mp4iOHE1hDiGDuxtGHnp M6ovFL/t7RB2yQ3N3aLd2NotYmRX9XYqrqp3inz+bY1vFk9UPyjeqn8cOKzF W8cGhmrN1ql9rPPECTHe4Niyv1X8q7d/8XQ1GhxSee8N/CSeKfkh2FCY4Seb +wbGTf4bljWvV4H5u6G3a3BJZb+vyHtX2EAwuzDweV2NGiUxGLX98Ef2Xzk8 WG85EPWceNSynRfzVq0yjBMONHXS8iJqE9Wsq0vV5EnU48uV0L8RD8L1CJ9E 3wRXj3gku0L8DG+OvH+2QYN3E/cWDAAODrwGng0+ioE+rliE+APujgF/h8/Y JmokXRMeQRwTdIvEjuhoyavRbcLPIFaFZ0INBL6Wgb7mtdWjYauo6cv+Gt1a Y6XI+2PgvPGhwb3LY+K4XL5eqFihGoraf9wG8PTGS77O6GPjZLPGCsVWzZWK bXorBX8BuxQngjmzYb1M1FXgzIHVwb+D502u1DrGh1LjvVRjWnAozd2eo8Cn qkaO9pvcK20yddrq92jXWadxduCkwvFCz2u9xhlRE6Sey9yAIftCtXJwftm3 P984r8M3yceI2BDtaBy1MFh0FeDB1Fd1Gv+4UbwNJwUb4NBGt5P7rPNk/Won z5c0rTd3WraxUMp7S8rXml5vvBN+yw2NxzuXVg90Dqhu6GxXXxw19fasF6sD OmpGcQA6P5vjnPIeeejg2MSr2SwXjmMuVM4rPt85s/5r1K9l2y7wLPxmuuHq juC0Lmxs38k+VcS+3M8yjb7WN/4rGIwVyrFO3gdCP1z+Gz5FbDDbu8HFSPMb Howtjy9UDeyH3Pqhh+199ao4ctj4YmvWIPuvmLv/6YSr71u0mtLBfcrmtDap oc62aOjKqw/DAa/+Dx7HteOHUP+rFl6sTG5ezfDb1SGdecsjOnkP7yxcH91Z rHFsRz21e6Bd7n9cJ2op8Ses3DgpamXVBeLV+HLj0qgPzvZ9J6/NUQ+effvA /rzReLfzdvlexNmeL//tejt5n+7k8RU+Rp4nYQdW1U1i4MGHrJYNrwQ7ctV6 0eBnWbexdBoul0p45b2vxtOzZ8tlP6Hzs/KPwY+vjleO9/D6png/2wW5356I PB+uzVvKXufa8tHwObPtED7MVvXseHaeKV15Mfe8dsQzsO7TesdxRv9cvhX/ Nr5s/em7fc6d6R0Ywez3hg4KnCE+bPYRLg37VF/v4FOhUSAXz6fI3wm8ovpP HNvsqGy/b4SvEyZTra79So2u2mBcD+r71IWrSTUvYUDxSeGDo5Enb4y/S7yc bYUbGHcmvh95ZP6RWikcn7jt6vLJqLvBR2bfxQ+qZsha/UH1fzPU9fC51Oet 1l4s9qtsKwcGSv0OTCv8FK5rHHkwGTAafjdn2SjwNKnLm9lbNuo6Dm3OLE6q tizyWhw1AnDUcP44Mi5vfqWY1d4m2yibRo1uXm+jVgxvDKysGhh22qn1VkWe i5FnyTZ24KlgdeHZ1QipOYFpgJGeMvbzqPX6oP3T4qXeAcUD5XciL5Tt6OB+ Uh/nvNlODy6Y56v9ineqQwPjLjYw98jhgQkTL3Ds5+ofFk/V+8YrnLrvZV8s 9lqYisXbx0ZMafHRY4uFyqMDx/5yeWCRfYLi9sa3Ym+VW3qy94Pi3d6hRX7m sUfDYnx24pyoSfnSxEVh131+sl2sO3R6YM8XGjs69uyHmt+Le1Z7d3W1c3Fr 4xvBdRIY9PLYvN7/pths6Pxi54nf9XGQ2Zb7/tg1xR7jfyhGRi+OWiP4ZX3E Xsg+TNQ0wiGf0NiiOL8ciTiaPsU3+UH50+xvV8Vcw4cHdu3d5k+KF6r9437E StQLndccKY7rbRrxkeDvaA1FnkUdplrnbJsGfwncAzuc/y1mp64J9xbOobK1 fNh78jT2SGMVD5oaW1pr7AB5HjEh9bs4LmFa1ZLDQKulFl/Bb4obg64wneGB pjV9YrhlNV1wrmw29bS08fJ4CM69/Lxiz8OPldeNGe6BHgU8Ef6WdXvTo77L nprXokL93lL11EJd9aKtKYE94lvgYLVny0Xin8KPDJuDy1NNJo4VtXjqIvOe Gc8RNjb74eEjXF5/uTij/EJxXHOzwIbjflDXtle9TtRTwr+bC3n9CRv6onL7 4or2V8ImS+2v9e24PJ4d17HOr0bie2w1dUzqQNQDZpuq+FJz1bAd1Ivh0YXV x5G9W3ut4AyFt9ey7RVcTQM+QDWf7lW8F+cc7gC1uLAzuATk7cRkrDfZ7w7+ w+xnRo08fnC8SHhhfC7WI65Hl5w2Mtyx52Rto91ILy7vxYERx3snP6p+GA87 v9Aa5/u4lQd6r7RF8XtYE62NdCjnrg4P7gd13p63MZDX/dCqXLL8Zeibwj6z a+CeYeXVQhpD/A7cv4PYknGNR1qeMnTa85jBoWyddZ/8UOuq9VTfiEFlW2YG /k68BfgBjBl+JS43HCxq/PFXsQ3FvfCEioGJb6kL1n5XPyBXGefHsY+TAFeK Omp4bvOATYobhg9tfuBkwxmIQ1/cEc8YO7jP8/cZ+io3sEPodoklw8ziirFP wZ2z6+xbtKLk3fhbcOa/rDYNOyv7FJ38DMI+yH0ZdkX2J4KDgC24amOxDj5d sTH123Qs7J15/oV9RNtlleqk4Ncty3M72caMfRkPCF42Nsfi1bGBZ5N7hfWV X2TXsHFw5wanbqPZ+Vrjk3Fd/DjX8Hi1TyevVx1cFvK4dBbkK9lj9nR4Yboo uC3YUXQx6FLYx9lk/sept2/juhtpt+Dcwmsor+mcdAXosXysWjC4RnD54CzD 54AjB38f7il8W/qXBhN+HvwSVzUeCQ0O3PVw/2wJfDjymbhU2CHuZ/Nqhbg3 33M+95vnI76X8Fnhrt0PrQq2SfbRIl/Npsl+YNii6vtp5OjbbcuLOnl+RNw9 +y3RxJHzfOlsUrY7m9V9mx1fY54P8SzwN+a5FXFi72WbIn4nBpd9nrABxdzY z3n+xLHo3sjxr1KeFLxw/2oc0Mnrediyee2L8cHO9Rw9Tzx6xgXMqPvSB2xm fYuXQz6KfornozYCf4NXeWA8XJraEBpb2R6MeIBcvudIQ0ucVsz2Qy260KHC 7yCGRVMKr+AAj4p/A0cOHx4HLV2QyxsPRs0KPiMYBE0OG689TQm+Iz8S3xuu WHqoeHX5/vRyV6tOjhiWWJf6YvU8ai/wd1mHxLryfhr7El1LNT00puXQ+Mh4 NnAr/bF8IvIJavTxhVu78EnSk8URxoeG9b+wcX/gIBZpTok669V7i0U9LF4N 64rf4x7mv+EJu7LaKXg0aBRbi8XGc9+HvYebi6YJzkucIXja1PjjHIDZ4BvD ZvAD8XRYk/EBPF6+EvwM9hgcY/u1Nihy/wTXg1pzcR+cVvJc8oSaffz46rbw l+0t+LlgfnHE4bCw37oH/rOYPltVvgfHHY4UvIeuD9c37lf7Lk6zrXorhm8M Z4R3wB7ND164N2/wCGbfMnI2/Obt6lUjDoPD/OLmDlHTr75RjcD17V0jF4lL RS5OHYyaLVxNi7anxPXxs+WB1MLgoVNTxm6aZ/iIyDd+bPxXkX9UY5f9r8AW qadkfx3eLKO/5fqC16zeKDgk/t78bjHHUBW1t3ncRDxQneBnJ88pypFzI3/J vvvU8Gm4y7IdMlYsP3RC1IurDWy2TihWGjuxyGMwOBTUFeZ53K+BrC4Jm1EN ZF7fIzaYffzgXZfHHG6dFvwLuB/Yy/BWcly4FLN/U8BvseN+XW1ePNfcr1h+ +ISoJdll/LJi99ErirxWRA2wOChMNr46XCBicfwrPrY6MXuP+BruATy1+Ipx EOoPOiDismJn7DPcpGJu/Cc5MuuI9W6dalbsI/IH6qrsN9aAvA9thEsVvxGu VbwG7BG6CPZ9uHOauY6nfsR6/t3q04Ft2a/aAN87P9maEnop6t5w5h5Sppib 9nAcrXylvD8W8uPsI7zduHnzvcY51Vyp2cNfAiMnlgLnLjYG1w4Dh1dXrE2N qNykfofxhjW+pL1DcVT9uRgf6tPxJLNJjUG8keoI5TvxLLAH2eq4MmCU1V4u PHl0seDkUcUczap4tvphcXOzFd9VI79Ha+3ii/XKYbfm/op5tEr7Q52O9krh w422PlPktTr4SfhiJ7W3DHv2oNZGwcf/mfqjwXXBzpGjjrxadVbog7PBcECz T+AA9Z+YEl1g3JVw1bhT8ICz49jj4k6eGZ5yObm+dvBngxeWXosaObzP6gro RfGraUTJNeBIx6/5k2pm6IvjW/I/Tix6KLBI/HKct3h6HIuN09eBWXhDds+6 jdNDp4wuCr+D7YjTiB/hfvC0w27TqcADiQ/Hbwfag7gu7R/2BVzhOPpxrKvR hO+G65bzx+GNe4xdRh/pQ67E0Dej06gOUh4FZyGON/pBNHfw+uo7Y8t+EdzX jd3pIMktbyiPzO7K+1HE4GDW6JoYy3iQ5q7mCG08/s8ny99Ef7MXxVfhtGid +S6bJz+DbC99P+wq9Y5qrthB6iDp74hlie3h61Wfab9VZ0kz03Xg6mY74irM dmUnn6eT96vOxuU5YZfI8eFczntQ5E9xMcOZmX9sSfFDjb2EXypfd9ib4m7w qXnc5Gv8c+fbjSsjJiT3B78qHpSfQeQfaauI2dHiyj5Ah75OvtbgvBOrY2PO 1/h52DnZRoi8pTjSXfWzkf+GvbmjeiZwZPKRK9cnRh48P4/Qrj6y+lzYYmwa tqhcvbik65Nzl1vP4yQ4EOUq8QjDgdIczOMjfifPL9+vBjWvhzfmcR/1pOy+ PJbjvnG/it2xi8U5XQPbz3NmF6svVcdqbezbs0uFHutA89ZzYu/TMjXO2E7s 3F81/hzadfTgxBTFtdhWNMdwL3muxje8ZH4+oUmd7ZB4/TDGThvvM3jM5Fno k9JaYxvnc0a+RR7RuYztvtbfsqEnKm6GK4vmOJ49dcmulX6vmljjhw3uvsQ6 1RWxy+lLsLfpyJo7OLQHcTd6y3RKHcs1scXl69ni8kXscr8zX8Xd8OnBKVhD aH5ab7I/F3OYLWj+uV/8V/QkcQLDocJR0WCXL6ARz0+V5zRPsz8SGg/Zd4n8 hvlm/7imsUvofOHRwyUM/wCDIFfEthqtrgt7jJYLv1nOE65KPYgc6M8bN0es g2/K35RXgb3CZQw/y1bEy4Mnih/pVcyPHyoXSrPUXgUjq7H3NDaUWhg81mxP fjofnl3Gr5fPkNex59H2odUll6DhLrMP4kTi99KnwVXHHoRv+mp96Yw816OW nL1HW8g94EJ/sHpxBq5jmiVyIGojgwsnXydeK7gxnEvuH+8aXJC6dDFPNgPu fvxPsEJ8Y7EkORZ1YjMby0Uukd6UuksxSfaeWld6UDgiaerQ7rF+Zp8gbFs8 7fpQXEvO+OzmthGzzHZ65HFn90aCd1Z8CD+lWJeYwi1VK/YKXHXiG3QN8OOo /RRfe7k6sHi1PKh4vLVP5PPwD+GaEVd5uXwrNDTYwLi1xFPtw2IzYkJ4tIIr uPxycX5rJDg9xHfYjmqx926vW+xWrlV8pf2JyFfLJ9IuEUdig/+4NyNyi6f3 tonrh6HHVXlub9vgF8O16Fh5fQ++AnlxNp/fHVt/PnDx4oR/Lr9Z3NPeM7gY 8DTIbZ/c3Ko4ol2GPfCzauPg6sTNKm+I70Ic9o364OLN9o/DvqHjw77WL2JT eMEWq6dEvtc4nN6aFnmxVcpFC3y/eMfZ8bgU5O/Fktno2YeJc9GjhY8TTxF7 xJWQ97/QnaArRDcP7pHPRTeM7UYLjJ/BVzJucS6KJcEo8O3wH8MA4UKkr/ah rvX1dDXpVlkT7Lf0W/iA8pTiVfj8rQXyiWp44cxh/T/k3A8ubDYHjgKNHoZ1 ypqlztd58TfmvXdGXtMjl5zt0bAV+GxiOnKh8qB4+dhHMFfyBfxYGi18WjYM vko8zDR3ccyzn43V3B8xx80/fFdir3KZuCVxg+KszeNjRt7bQpcl25OR9+Y7 yhOK4/FH8drW1ZOx9shzyyPyMeHscU7ITfAL5SbUuMHrq7HDRazR4vNKe4Od 5G9zCHepPsQtnPfE4ESVv7UWW5vpO7k3Prv+kjfJfR8anp6RPQvPdt5vo7FT xA7sKfYCfd5f/28KfVuxMLhX+ww+ZXlJsQr4dk1NgLoFNQB4teWK+C5ycmIV bC1aRPJ0OBny8Tr5Wm6Uk7OP4xcV2xHjYCfwL3AFi3v8sLFBNPaR2Idj2jtx ativXDeN3S82Lor4hvzfc41/4/SNOBsbQb2n5prsjzSwxEHETcRB2JW0zY07 ODY5WLqw+gK/r/gUrgs8FOJT4nauQ9zLHi4G4zrozX7IAz/QjA/9dzYgewK2 Ql5sjcYSYc/gyaAHzN9zvXgx9AtuEPlf8R04QueFBZV/k1sT/2Lv4RrP4zxy mnAZOMEvrXaMnKx87buNn4TOcrbNw44S93urcUgnj9WI/z3T+GGHxuIgJvh0 NRo2VF6H41XzXh538ZtsM0VsUj7Uqzin+CbcpdwubTn6ZWw8zxmvvvtlo+T+ DF4Oto9YH/w1u5etvF1jtdAV+2Y13NmpWiPuD5e8fqBbSrdAjAq3CXsKtoqm LwyL8a3BWMJRitHya9ktfCIYFzws7BP2ijoZax8/OdvgwSlg/tLOsf6px6Lv xTezh8olwh3bv/g4dJ7ErsTQ5Vnw0eKYYY+IL+GXgeewT+V5GdhcXIUwD9Ze ehX4M+EE+Dl+Ry8BBsI6K3ZAI83eqL6bPZHHQNga7AT1PPKX1hkxeXFufJuw CmG/NOcLzTo+tlg7m0c8nG+l0SdRi0a7gm8kTm+tw9FHA1EuCreheDtNruvL x2bQWbBf46t1DL+Rk4A7Y3PAlOFpgPPAq2GvUENMl4oGsL0KtsJ1iV/BVFgH 5Sf4eWJs7D21cWy7o8tb6ARm/2veyCmxST7dWjryrbgDxfCsr/QZ3Q+bCd+n PmE7idVZe3FZ0AAI7vps74hv5blX0M3A8zlo8rFsqoHuFL11mgvwtI/VL0e+ gq2Fb1yei50UHPu9dSMW9dPmxhErgJfbp14vcsH01ey5sHLwJNPquQvXsmQ1 Nc4P24TPz/er1meLUxtbx74tdyWXi38Jh7r4gxzihs2PRf5MXEPuDQe82IY4 3l7NdYPjT44s+xeRy4Whxwl1SLuImJnrxX+IR1MsQ26aVia82dfqtcKW+Vmr n0PDL+q3eCLxTLEp2Dm0fuDyxTRcu9+J98EH7txbIzit2EV4bhxD7poNkveI yCuL5bF7Tq63LI5vb1bQmHCPcto43d0D7KFYj+/SHYDpooGkX37d3jxirrvW axbq9umO0gaRM4Irh0UUi/1Ba/247t/WO0RsUv4Pn6Jz4n/8RGvxbGu+JTYR drc5LkYsJiPOkn290IBla4mvGjPGjtymOWaO8znYQ7CZdF3Ee8VDrC04m9Sk i3/QsmDz0EuBj8NVBasgVmJNseeLs6lbEC+nWTOor6cRTrfAuic2D7+nLtB6 x25j19BWgtsSv2HLeGUX0Irjf9HcYhvA37Gx4C8+xKJeR0vd32Ie1k6YdDFr uUUYU3NT7EP+jC4z/Ck7i08HW8Z+ZEtZi+mz5301sID8PXX7tEXx4fNBxPj5 EmoX5OFg2/mDcGSwbGJQXvG7sN0OqYoZNJRnVdsExgPPPy5oeDO/Y/f5jT7H 5wRDq8/FK8WxaDzwV2Hfsq1CPzdsIH/TYmcH+szeID7lc7UHbCSaEGwAdg8c pT2M30/DlaYgDVl+cl5vYn+mfwR7ZI/DY2W/5tfTGhZXkqNif+D9EK+Q4xEb ETsSY8l+QuzZeLLs4XQD7eviJmJT4j1qLcV11Fvaw+3v9l7cQnlPiv13zqqK +JHviEmJs9jbYZv8Xr4Jvkl8R4wEvmmB6ih6lpGPwh1kn5+rrgKv9kbjx9H8 TqM/5Lfsifeqn8T3fc9v2BpiR3JsvutaXaPzy3GJJ7ElBn/TXMl+wv9+73qy bxnaEtkWjjwoO8R5fM9v3Jdc2TWNXQKbJJ8JC+b+YFQdW9/kOUbHKfqFjUK7 I+/n8Z57FefCS0bLQt6NrZltgYgTwbSJGbkXMS9xNDXe2WeNludCZ6Hy6Lg3 uu9sLzavZ80uhGejk6FeFlaK/Slvh5Offqqx4D22nHiU77Fz2JBsbLm6D7G1 N2bbJDSR6AewLdVW5GsKXcJBLLU/lw8LTURxevaPeC/9bLWl1gvxG3YQm8gY Ny9wtls/8jVHzo6PlveAyNHBc/JJ8JHLu1kL5ODk02gQqQXZv7EhTvXgMecD 8VXonoo1WEPhANgNeIzFX/iU8vVwoOwOvhY+cXgFe78YuPVG3iG0XuqHIt8m hwX7DBsgf0C/VH08rWY2EU2bbP/HmiJuJEbBT3JcNha/DS5BfR6cMX9WDTQc i2OL+9DjwH2V17Cozbcew1OIR1nz2HvwrHjf4B1wYt9VPxs2iniQuIRcBp54 fP40DeTs5DFgENh9MBBw9+w196dmkB+oL8T1YUjZU94X+9FvcGdyerDD4km4 r9khYkJwD+oH/Y4Gopg33n/2GMxt9jXCblT7JQfovsWxxJDgXiMfk9+bs2oU 7LRe+VrU1dnb9K2/9f8gnoVzHx5p/eqjgc/euLVc2A95XQtd5OzHRZxLbZLa M/bss9XrkYv0HnuWHYb30e/ZHbAzI+1VI8ZDN51t8ul2HzMXx2vOHxrMrl88 otHq17expehDsunkNOUu6dHD/2o4I9lfoUHZXjb0tdVKwZKw7cSP3BfNXP3A /hNHWaO3eGi9sS3KavngFnfPbDiYP33Ppsx7XNRKqbvyXNgT+PbZdIN8Krwx Gw1GGfeSelC2hGNFjLE9LTBfuOfYdoM+lQf2XfkluVqaktvUK0UuERZpl3LN 0FWDe8JRhF8Qlzbbiy1GawzPt9zg96v1wj79RW+TyEnhR7+0tWPgDNutL0Uu ly4Cew5O2rlD7wdnRL4W54Njp2N5VvnFsCvhsS7sbRfYOHWArsvz1z90C64t Hw1skLoF+tLPNF6PukTzFg5STlm+Er7beDZGrqweDp/C2DXX5P3lpsR36Hux Zbxao+z5bAMxZHMdVs36I+bDfhIbovma+3NDPn3ejyKujlOCP03TwR7NF817 QsQQrLNi5bDa8jq+L8YvhwNnMa0xT6zf9m9+KpyJmAf8MQyxPVp8wj7ArxeL ZzewF+QZBvyY2tcaV9x4YuOO0D9lV8ABOT5NVHhn8X82RrbJIu7PNmP3yR9Y 2+UU4GLlGeTR8IbltX8D8fx+jmGvsF/kzOA34JpgNtQU0uOVT4PXYCPJzann o7nHJsKTxRai4cLHFvOn9Qv3gXeAHpG4npoCn8HmismpcXSt9Chpo8pbiHuI Ickv+L9fJ7hUaFaqlVIbmZ9f4L7ZVuIf4iLiGuonxYLkmmGMxQXgfvwP10OH S4yI9ik9QzaNvBh89jL18R26Ofgn1q/OCFw2jE/2/zublufF3+q5YKl8DpNP qxl+BzZHng2OR/2dvJtaUDieb9XjUZcnZwXzg9NN3Z18V16DA+MDJ+T4ed8J Pka6jUuWvwz8PZtE/AR+HJYcNgwOCEcDuyL7IGGbsCvcF1tEXktfiBGxH40t OT/9ITbGfjT+5OfYerBc8E7y/vpPbEWMSt6KbcFuxY+Kz1bfG5vGKC5WHK/G uFiMvnYO8Sn2jBihMSkPLLaVx76aoQ09d/4JX0JNvNyWvJjYGu15uC/npRGl hneQV3Kc/rEOy2N8efaM8buh2hS4b/g7NXJyvHJ0cqX0d9lBuGLz72Iuic3J 3ZkD5oO6JtwY8OLGs3Gc7TPjVs5Z7OgGfLfw6HKw4sry4+aRmCmODXq/fAm+ G//JvKH9KH4kTs1voO2inibP/6jbpUkH+4RDgA1l7RJTYteozYJLF9el6cPf oVUlNq7e2Rzkn/EZafvxm8TnaVnR3YGNUE/DD+ODwQnQ/hGToicllyKepC6F H8tek6vJcyV06fK9Bk6YVjbso3iV2AsbwrospiHmBLsEoyn+IhbGtqPFas6L K9PyFb+XE2enwKvCXtkH2WdsBHXdNEB8xqZxjdZyPpy1HKcJn44eDLwHHIT8 G3wnG4H9IPc0dzlHQW9bTg3mFI+SvoQF07di7/xH7/Er8SvRSXJPdHLEW+TL vNp36D+z1difsKn6Vf0OvKscJEw1viZ9qOYKfsXx6FmzOdie4kM02+Vh2GRi fLio4Vth1+ADXBdfn4/qvmEHXBuNNfUE+ppmjriNGNKqzcUiTidHKZcphuV+ 4GCMmdDpzHad2BpMMDyx/nZP9k+4KvUEMOJyhOKH2lt1HzsLP8Negdtm89As Pqq+OeKIYh00tT0HOsXsTvUP9mSYbtomdKf37a1f7FmuE7bax3sLF/qYTav/ 3K/aM42Pnv3JGXmdDHsfDmpG72PF9u3VAiMjTxgY6/Ynwi5jN/EJcC/b8+H1 HMNYkQsWE8zrdeCm2X5wQPBqX+utFdcj5oRnA77MOITvk5sRR6HJJgbCVsjr YeAJxUrFHR2LhmjYbL2lw3bEicAXoCtO04nfIB8jZsOuYG+4LrlLPpF4r1o2 9rW8pD6Tm2OXep7qavWlvJH4pHitvjaH4R3laPFJ02AyzugKOQ67MupLenPF vBQvxMFofg6eq7is2kF5VRy5/qY9/mL5Zmg30aXyGxhqc8lxvBq3MYbZX60F Ig4J4+cc03pzh30t5oVblN3GJlN/SguNPwKfpn7AnJTTksM21+WJ6ffIQ5sP xrq4rDgs7Do8prFsPRSzyftKxN1/1/hyzD/5ZLWD7zZ+EnH37K/3c2JVP95E 2xcex5oufvMhhiHW8V0bawV+Va7F3qGGiDYz+0huAB5B3s8ayyaCZ5LzyXMj 2x2LB7YYvlZNmfiLmMLW1UqhOWd/lANiR9rv7HU0yfjf7ER5H/YI7LV4BftD jEJsQixBTgtuxJ6IQ4Z9lPecDbKdGT573vMG2q9h9+FTh99gD2r+ZhfZA2Gm 5eHUj8OA6AM+vhghW9fex24TL4TzgPdQmyufBXeUzx3NHi3/Z88TT8QnrzZd nADuV+0VDlr5E8dxvfr2wz36Bjap3OGH3FWRP6ObCxvI1oZV7PNAfOQzfksv ENc0W1BuUS5HjCzbDqEdOcDTyK1lGzPshJcaB9KovnGJxi9vzOtM1DLjoYe/ kUdiV/utV8div/jdAOvMtnd8eBqcPWzxbPNG3o4tL17HLmGHi7Goefa77zWu iecAOyM3Jd/mOchfskn5D+r8cZJkez3sDraU3Lc8IcyQY7F35LdcBzsI9/Yg v6o2GyaPHaxfYHpocHtW+navxrqBw2HbyGnqW+eDCaULmu2HsMf7nNfXwHhu lPuJrir7ZQPjCTYfd7++1peOma/D+SIvL9cv5gMvp5bXK1tHnpyt43O2Ey15 +X2YwnwdMf77Gts/3CivfYEbpUUn9i32AyPilY1jfqtBNm/NP3aZY9KsZj9l 3ytsHzaT89PTtfbDhsNri4njChTP8X5f03la8MOIWzmOccquE89Sk6HGXOyX biuMkTom64pjwCzk5xO6Cmqa8/iUo4rf9LW0H9lIHj37/FFTDdPod3Tl1QzK CaoZsUZ5D/bS9bEb2GvwAHxRaxxdCP7ob6qtA59JD1fs2jWIo9mj7He4Hdgh cgi0KNV24XqAeWKL0H93/ewTOX+/Z1OwI62Z4nNyD2Jo7AzaEzA+bDv5L3E2 WEqckvTwojY525HWVzVEjgdTgFcJPpLWHtyvmJQ4l2uCO7U/i2nJ1bEVPB9x MXj+7I+GRoV4vPuFh4C/gE9Q/68v9At8l9j9ZdWXA9/FtpR/ZZuytdWVw4Pw 82lV0ruAacAtzCZnv3ouxgn72nm3aqwU8QCxf7/1XP3tGdJ19blzyA+wA9T5 0FqFsR7kZNiT6p/Y25p8BftW/+sXfeS+YPhdG33gpRsLxPHZPMY//Jp9C5bD Ps9+FMOUTzJGxCmcM9u44ZfIl/Cf4TPkSuyHctD6Vd2Cmgg2vVwJO18sVizS Ped9XKwy8i7yLfk7sQ7wzc1peRe4OuOCnQ+nxaaU4xLbZAdlPzH6RR6cD2+/ 5HPltW0jusP6zfiFZ+GDyDfjn/T81WdkXzbmJH1iGBzPR4Pz0f95Pw3b3LWr 15Cb5QvwK/gp08vjwrbD+eQ85poxw9ZiX8mPsZXwmrh2dp06ReNy9/KKGKd0 To13cU+vbKldqstC44/GXO7fwFCLC3uWdzf2jDFvHrkv/bBhfWbYwfCEbG91 beLVatlg6eTp+RfGrNwe/8Vzh2Mypx+uvhcxZvY6rDY7H5aPvec6Nq/ODzve nD+1sXXuw1UjF5fX8uCCsi7qN5wO5oo5DV/kWeHadkx5M9cP18SXyz5E+LfW UzhMeG7rJxtV36np85yNQXhJ+AIxNfZ94ALLsdD/tE7Rg2XXGn9478TxjZ3X GwfHc2bjs/1oQMIysPkGOXfPxjgwtvWHezA32dri+Mauvv1Z+cfQ0YR7yrZQ rCe7lJfFXJH7FGe3VlsfB8/GGiiHYA2Cq2STszPhE/gv1jfjgh0uJ8GfhkfD f+IZWY/lHOHY1BCw0cWx1Q6qkaBl6BrkNM1P1wyHrn/lNa1F1gf4eHU7crbG K9+bf2P9tjaYR+al9c8+B2s1yCWKC7DJ5HHVReDxP77aLNZyv7XmWMv55KtU i4rVx75oLrLLst26of3XXkvPft3G0oFRU9+pf12T5+09z868E/fko9PSXavR z0FbD6yL1j3jxNy2Zpm/aps8P2ujPdN3PEdrMz/ftVnXYevkfOx9+D3krY0z eVz7IDve2uycNI/UF8ASqlGF3f1mOR71x2pgYW81uFz5C9iXbauLAmtjTDqP 5j7tt8arsQAnq3aajwOfgh9HLgfn2W31U4GtgfUfaGvbj+1Rrl2swTWrMbCO 8EnUioo7GNuDMa0+1n0ZP/YY44BNgL9GXl3swpiwlniG6gzUa2iOz//3TI0n z0V/2jNovtvP2FZTq7ln0M82HhzP2FHLbS8RFxnkvO1Nrt3+xMbwzI07OtHO a+7hPGAveZZiIgNstf1VX/qO9YN9wS5QRyL3pOH4F3uBA7JniSOZs+IN7kcf wjmJh8jp2QdgicWX5Ois4eYY/JM1Xi7PmmvfU7/DToh4Ve4XtX76hk1nn4Tx ERfyHdfn++wg6+2W1ewZ29UXx5gwR8Uo2F7el9vyjMTD1CVbPxzP567FnmmN Uz9j/7CO0FFXM23csqfYIwP8gLoX/Wy8a3xTuAPzCQbB8xusCWxja7c9XNwc TsIaDu+AJ9Se7BmzXdgZjjF4ltZm80m+lB3rmcM5mIvmGxynWhnPznpG58az 1scRL8j3IGbg1T362/OAP6OLo+kP9Vs4vuRexa8OrG+Imhp1MPYUdUNsRX1m D/Ac2I3yp/KVsDBiEXgwYFXNKbVgnoPnZOzBoeKftO5p5pkxj8fcuGHDGgua v9kyxhUcnfXTs7L2sQfFKP2e/eSVPcDmNvfFH33XM7ZXDxrcjGdpDrDL3Qd7 gc3GrtUnxqN4obXAdbB52WLipmxnfgEdec/FPm4fZBsY+/C7+lGf2DfZFnmv jefh+chB8bms03wP/rL4r/gw20x9kLXBM/FbuLioR83Hdm/iu/YKORR+G+7Z 9RpnxB4hdsxvcn36x/wwF8SIBnhh/cEWcBzj07gRK+N72Zuc1zxif3j2eN/Y /huX54RfIS9uvVefy5awX4hxs+WsWdYb/W+usH2d64iqjLXdHmVf44eK98vj iLvzPfmD1jpjnh2nD8Kezs/HOsW+4XsN4tH2CHsau9oc4SOI97ArxGfFmsSZ xJVgELWJ6p+xd8Bks0v4OLCGcIny8WKocoliYGJ5YsiwWrCMb1bvBiZTnh62 y1iXb8SNoZ/U2oqxioHymWC7jH17BZvTWLZm4cHM/nCsHWxCe6k1mB1oDXMc tqMYqxpevhPbyxqqpticsbeY83gb9K8YF1uGfW1dVh8ofup6xVrhR+EucSmw Ca3J+BrEI/lgrsNebn21Dtjj3IP5C48qdiemyS5kN9hX+Eh8b2MA94Gxyw9z PPlUfqH9Xr5AjI6tM4jNsmO8Oqfr8Jzt8+LU/AT9FVrP2UY37lyTfcZ1m5di q2xvvAx8Un0uTirOK2/s+eCXYDPCkMRzaHRiHbJXDepE2Qb2LXuQeWt+8HfY 4fY2cw9mw/pjLzSmzRXz2HMz/wf3IfZsn+JT20sGe4e9ROMf2/+sP+ob9Qu7 3HHNO/68+2LzW289K/usMao+yXgVL4ZrVaO0T31NcLrCbpjj6n74NbAgntVx 9Z+iP1LVt33lIfxtHLCh3Stf0V7B3mCrweyJvRij9o4B/4fjytd4NvrD+/rQ em49cP/6gh3PbmMLmqvWA76P9Z1vYn217+gLe1D2HaPfPVdrC9/ZuMFBM8AI GevaQM/HXOdPszvZWcYj+8bv7At8Jf6H+xL7UEfKjuQfWlv4wOL6cnTqy4xZ tvvAzvM8PAu2nvvkm7FXrL1iMQM7mM1tn7bvs1+Ndc+djcG3sN4av7Sj7AXG HTvFPetbfQELzl8x78S9xKztp7gJ1KDxI48vbwtMkDFsXRAT5x86D1vTdVkv rQv2P2ul/J39ku1jjMD4RAw++y04e6yP9nhjhj3ATraX2jvYM9YnOHbj3jyz dvHh2YHWBvuJGhdYafkVe7u929g3poxnc3rAk2Lftq+yrexl5jJ/3ngyf/3t fjYozwz/1Xmtlfx/YywwpHW/b/j/nonv25/FBuxPA7yU6+PLWzc8D8fge5mf xomx4T3XM6iRhu+ydpvvMOn8Xn3jnu2F5qVYG/001xI2RLYFND4gvgnHch+e jTVYzMzaD0fl/UH+1bNnTzqe4+o/OHrntT6Zy+xT96of1OFZP7xnLPFJ+Sns M/Pc76wZ+rZZnhD7ANvbfuEc+spv3Yt7Yv/aTzwHcQ4+dsRD8t/mtvUVv49z Ru1fvg6+Ntvc8zKenNcY0u/WH7a2+zdfjDk2vPNYt/3O/VlXncd3XavjGjfB 85jtHM9Nfs2Yci2uUf+4fut0zJlG328wP9mh7E/xFfYGnwXu0B5jrzH+/E7M SCzEemmf1seuz/oMp2dcWNPFz9ilYmXGr/3IdbqWge9jTbbf+1+/Dea1vjI2 2GjWMb6o5nlYJ611xsiAj3cwjsP2zuuhcWHch22e9wzHchzja7BX2FvcE3/I vXsm61Szoo8cW5+4H2sejKV+EK+2Noml8f+sCzRpfZc9axw7tjXUGm5dtcby Y/iU/I1fVpuGH2xNZmezNfSZWKP9kN1u3ba+28+sv47HpvFM2JfWb2vlwF9l 41pLHVd8RN/bRwcxXeuruCD+Ues0TLY8gzgsuwO+nE/Flva5GBhc0luN98K3 Evd9qfFW5AYch63qNzATvs/HUjfofXbkAOduX2BD2xPEhcVw7GnWRffBR7Y+ 8s3Yu65J3Mi9qWXGyc6eh4PP4yJic46FZ42f5rx8+Gcar2+0SGNK3Kt90ufO z4bnB4j58BHgSfA7s/P9L6/C7hf3Y0t7zbZPxH1w7UxrzBN5ODkWfoH8pWty TjgMx3ed6hb5HLC+6s3lPeX91HWzxekgiw+6B684qOG71mr8JmoD5T0cl78q ZqTP8zHCB1GLOYhViA+LVbD92eli2J6fvI9Ys7jGfY0XNnqs8Uro1ng2PmPX e/W/7zku/Jhji1OzN2FfxL5h0bw6lzgLTgmf4ck3DjwD40S8RA7A+cX65ffl rDx//gTcH7uFr2Iu2I/ZQca1eRL+YV5/vA5wzfYQ85iPyoaxB9qv+IJsYDYH G519DVNgPnqfr8VXMfftefzq4JnM89/6Zj7ZN/lP5q/YL/tMnJuNJgYh7uh7 1gO2rPOLudqrxe2t1Xw4+zQ/BfaDPc83UOsNpwNPbM21B4qRWcvEyu3vhzf6 ticMAlwBLIh4GSwwnqML6/siPySuxjYRh2OnsDv5C+KmalbVpanz5ovBArBp 8IvjFvc5/AbtKLVe7FT8NHDDYq5ixr6jDt+1i/fBSMOF3lg+Hr4YzIC6NfVx MN18N7VdsEjBk1y/8D/7F84aplgsFy4argWfCmzLoDkGHRTcvXAQcA1qg2CX cfzmsRS44uVaCxVLNxeIOmoYGtgItT6BlWjPG9jwqP1vLRi4YDxLn2wvGbVi aozghHEIr9hcpFipvUgcb8Ad7Fy4f9Ssex9mRu2Q38ED02LDFwinjOMaVhje FoZWPTeu4+AcaPfPjcMGXganKEwz7Q44GHX7MMpqw2c0ly3yvAjMMdwwfBEM Mzw1DI7zwiDju4J7gXdepbXo/+5tzbJfX+dYeW4Fb7Lju07Hokmj9m7ZxkLB YwM3HnWGH+KsvA/bnO3qYuXeInEv8DrwTWq04M3jnnKfBLdCOTUw+OrLHc9z mlrOHdzPczXnCAyN2kfYb9imAbZmwCWlf2HJ4bphWTwD94Jnp1kuHN+bq26E hjQeLHgYvNHquHAD6dPh9lKB2V67Xiow5DDn+ATcR/BbVn0dH/Vkee8Krh+v X2itHP0E160WEJY5OC7zWICN129f7X0i8FNfKFcOTk/PxDOCJ3dO/a1/ov/b /bGFGytw642PB3+W88B+exaeiXtT+6ev8WLDCMHM0XDDG6Y2wthxD+oOPW/8 C+7PM8Y5Zjzqdzg24xTPV4zXZn/sBvdib55i/nquaHDqg2cAJ6T+zTh337SN 9BE8m3rCwM03l48xA9sGP/7pcum4P30D9w5z5Dod17nNO8/T/Ti3cQEXr6ZP v3rGxg7OJef0DM0R3GfGk/EzwB1aR/BvqPsUD6J1Ir5vnRFHgpeCM3y3fj84 1MSGxIjgBeUU1AM82Xgt+5GvRF2HGggYJ3Uo6mvVU8hlqf9QTyuHIEZhbcY7 KW4qNuX7cgpqYK15fmv983t1KPxA9jefhb8vP7JneeX/+GDZuXwg67JzOI71 l6aDuIiYSPCF5vXd39Zra3nUlGQ7WdwXd7w8mdiD8wbfetmvWcFpDKcf91g9 E/yz8jHuVZMj02dwXdZdsTdrPL4u67HfwWbSG8p2QtTGwo1Ze9V6eBbqJHCl qP0198xx48zchwu0dkxpzRU5HLozcG/idDCM1gA4UONFM96NAbg1xxhwy6ol jvWgN3+sAdZqc9f6Zp4Yk9a9jVofizVQfYi1FuYv6l9b/flhjKq3sBargbC+ 4nHG3Z9tyGLneo2ouVDvihvWZ2pu8cOqqf1qY41i1+ZaxTfqT4Vu1/fb64U2 Ek6RbCsXh/aK0ANQP4u/WT3GQVW/ea9qf7bI9kXUtp7W3Cb4RvCZ4ZRTq3Fx b/tidnO74BS+oLVdaG9eWu4YdbE4UurW14ube18PbjS8Zbc1vxntr+W3i3vK PYu/1XsHx9xEuVfxt97e8Yoz7c5yj+IvzT3iez7Ho4yD+flyv+LF9gHFi60D gp/P/8+WPyyeao4Wvfa+Ra/KrbVv8Y/ePsVzjf2CE5l2Bb7leceOyGv1UcH5 PL19XNEcOSE49lacGAvO5pVGTwzNhRWbJ+Y5fULw3+Fozv5WMe/IEcH9t9jQ scUK42PFypMn5j325Lx3nhTfX2X8pCL7Wfl5nV6Uo+cGlx6Njs2Gz89r5nnF 5iPnh16pRlNj45Fz8rM+PTgB1xw/tVht5OQ43hr1KcHd57NsvxUzJ8/Oz/7c YpORdvH54fOK7PMW2a8PfZHsFxefH8rvNftcghrtDnzSdD62LHMbn11sPXpB sVU9OxrtkC16/Wuiu0ZbLfvwxWeHzi02mziv2KI+v/jCyIXFtiMXFTtMXlLs NPq7Yuehy4rsmxe7Dl9efG3oimKX0cviva+MXFrsWP22+NLQxXnsXVxsM5nP 07wg7jnbfHG8Tcf7bfPx/H+zf++f77WLzw3lNnFu6G9/fqId9+W63NcWzdnx e/ewVeOCYpuhC4ttmhcWW7cuiHuJ+8qfbd4+P5rflO1z8753VvGZoTPjGQyP nxY6bp+uTi/Wmzg93p/ROyv4EzebPK/YcmR2HG+biQviurepLyi+MNrXjt+i MTuOqX9mDJ1dbFCdWaw9eVpo2tKh8+xXGsljpXdCXuvH4pXGy8qNk4pPjJ5S rDlyapHt7TyHT4/nSENuo/KsvF+fE5zhG7fPKWZOnF1s2Dwr9HE/PXZ6se7E rLje4bHT4vl/cuw3wQs53P6wVfm98d/k/bL//7rDpxfrj51RbNDKxx45K/rR 8y+rc6NtMtouNin7bbP6vLjHLYZnxzMpx86NezdujKGNR88Jbsns8+c98zd5 v++fO/ty2WY4I1r033Aei8PtYouJ8+OZbFteFM8eT/lIK7fxi4vtmpcU249c Evo43t+2dVGMJa9fGL8w+tuzjWeGAzOf2xif2cj90uo3490Y3mpidrHt+EWh RfPV4d8Vu4xdVuzSuqzYqfpdjLsvTl4Y35s5fE6x/vgZwZH5qYl87UOnxau+ +nS7/wz01XqTp8c9uc+1e6dFn6833Nf5m9HI11Cfne3Js+M+Nxo9q9iw0X8+ 64/k3w71+8H3o5/y8/lE+5SY/yu08xhojsW6YA1ZdejkbEOdWqw9NCvbRWfE s8HJqc+3m7w45tQu1WXF7uUVMa/c0w7Dvy2+MHZhPJ9i/OwYs8YbPZ5VJ0+K Y65W9tcbmkLZJ4uxt1z167y3/KpYZrLPUfrxOo/JsbH4zqrNk0PjyJjMPnax 4tCJsebRZ15k8hfF1JEjQ0vvreYhwfGE2+np1mhoNPubNg0OyxfK/YvXegeF LlKjfVi2gQ8PDlRtvskjiqnjRxYLDh8dx6S3vHTvuGLpxvHBm+pcePYXmfhF seDQ0cWU6uehEd0YOaz4T31IMVn+qHim+cPgxL+/vXdoEWn3NvcK/tSHq+8F f7+1/vX6R8U7rXwNrcPy3pzb0GHF+/VPQv/5jeaPQyfQ+v9I73vFXfUexQPV d6LRAXipeWDxr3r/4qH6u6GNc0vVKm5utIIT317j+/YbugZ/aexRPFh+t3ih tX/w57tnugLZX497n3v08Gz/H1lMmzwy7gXfvobrNfv1xSvNg4onWj8I3QDa BVe3dy6u6+0S2gnXlrv0985qx2K8/Gpxfblr8HHp71d6BwbHFq4tOpOv1AfG PkezSh/QQvhz+5vFjeVuwZ+FSwOfp1pH3BR4OvBU0GL4ZbVpvE/zh2YAjgu8 YfjHfl9/Jeokr27tHDpEdLNpEvnMddm/cVvQL/Kd6xq7Bj+939DQ8r69/9Tm 1sVYe4vimPLzofnwo8aMsCtwhuAgw4OvPnO/coNi/8aGxYF1bs1sW7Q3Cpvj kKqvFRH2RbV58JixL/CLxHU2vxqcabSU1Iae09q2OKP9heLE5pbF0a1NgseD vXJAtWHUieLp97pftUFxQHvD4ke9jYqf1jNDK+G4etN+n/Q2Dy4T/Guzqm2C 6/e03tbB6UFD8pRyq+KkcsvixHqLqEvFm6KO9PvlelFvokaEJgCejt3bnwzb a4fG6sE7snmZfeZGM/wvtce0N7zPTsOBQh/qp72ZxZHl50KP7JCyCG2A3atP 5vVz1ajNHfjB4XuVi4cfyD/D6YxLVz3u4NzqaEPDKfvSfiNeQKNVXY1YCp+C z4ArRlOLQSOEXcsWfqvxXsQocMiwudUAqVWBZeI3DDRg5T/E5sV+5D1gG+RW 5b5gasUv5bjocovjim/JkcmHwErAJItL+Y18kjiT+C/+M3FTsdS7G88H5los Th0b/CgeEZxoGlw1LAL9Sd+Bi4ZxwaMBJy3HTydXjE78E94OHhJmRmwVlhOO T8zLtYobixvCZMOVOqaYptglvKm6vL0a60ZNBzy3OKUYpXOppxOHFFeEvYLF EocUB8avAocrXuz6xDtxuqrLULOhdhc/mBoBtQXqENX6wtWrU8CruWJjkRvp mqsnVAuJb9Nv1QCrt1CDu3Pjsqg5oKedz9fJfnlwcqgXUe+L94zmjZoRHKn4 J/DpP9T4XnBL4NfS8FnkNTk0g/C6DrQc894ZXP7qVLNNGhzNuObpDaopzX5c J4+NznH1n4IflZYQ7Vh6QtkH6zxevhI6x3nMdd6p3u9knzZeJ6v/dOjIvli+ 2Xm1fLuT/bTO02VfF/ml+s3O49UrHbq09KKWbE9NK9ZDafPWCmnjarnQRKRb m/3tRP929XqxlPs+rV99NLRTs/+dsm+elm4ukJarFkprNJdIee6EnmLZWj40 InOfpjyHU14zUvZ/Ul670hHtMuW1M/24npF+2NwgHVBuGH9n3ycd1dwknVBv nma1tkkXtbdPF5Xbp/HWV0Pbkf5m3jvSffVeobWtPVv9MOV9I/Ta32kfmj7S OCxa3rPi/39XB6e8P6Tn2/ulx5r7pAfa3wktynuqPdN9jb1TXuNTnjuhs533 utQYOyzNN/TzNLV9ZOhOh7bv2PFp2eavc1+ckLINkFaoxtJK1Ykp7+1phdZY Wq78dVp++IT0sbFfpeVav07LNH6Vlh86IS038uvUHD8hZR8nrdI6KWV7IDTu V2qdGH9/fHgsrdjLbTK35olp1cbJadWJk9Inxk5Jnxz5Te7r01O2o9JGY2el bKelbL+nbCOnTdvnpWzbp+zjpM3Hzg/N7GxzpmzLpM0a+f9W/n84t6H8d7v/ /5at2Snb2in7GinbiqEVvnP9u5TnfvpG7/fpWxPjac/WlaGLvud4fq37r3u3 r0rfGb46fbd9dfp++5o0OnJd+uHQ9emAsRvSQa0b0497nfTToT+mauSm/Exv SkeM1/n51umnvW46dLibfjzZSQeN3Zj2b96Q9m1eF3rxe1dXpT3LK9Meo39I 3xr6Q9qjnVvrD+nbE39Iew1dlb4/ck3Ka2Dab/z69KNmJ/1s/I/pyNGb07GT t6ZfTdyWTpj8c/r1yJ/T2NjtKa9D6aTWHemU8b+kU0b+kk4e/ks6fvy2eP/E ofxZeUc6bPimdMzorakauykd1rwp/XyiTj9v3pyOHr8lHd2+JV5/0bslHTd8 Wxxr1uhd6eze3ems8bvTOSP3RDu3d086b+LedEHrvnRBeV+aPZzbUP/vC8b6 /583eW86e+ieNKt9V/pN+8508mS+hsnb0wmN2+O6f1n+KY//W9MvGrfG38c1 870M53uob4/r9pvTm39NZw7fnc6euDvO2S7vjfOeX02k2c370oWN+9PFQ3/r 67SP/D39vn4wXTn+cLq2ejTdWD2ebmw/nvL6mvK6kOrRJ9NNzSfTH9tPhHZ7 Z+gfqdP8R7qh91i6fvyxdN3ko+ma4UfT1aOPpKsaj6SrR3Jr5b+HHon3rh19 NF03/Fjov3ca/0g3TT6Rbil76c/l0+mOkWfSXRPPprsnnkt5L8lzKrex3Eaf j/f/Uj+Tbh9+Jt02/HT609hT6dbhp9KfRp5Kt4z20i0jvfSnKr83kV9Hn0q3 NZ5Otw09nW6vn45j397r/33HaD5H79l0b/18nqf/Sg+OvZgeHXk5/WPo1fRU 77XUG3stPVNPpqfHP2zVZHpqMr9fvZaeaL+a/jH8anqs93J6ZDi33kvp4ZGX 0kMTL6a/D72YHhj7V/pb/UK6d+if6e7h59O9vefT3ZP9e7mz3b/+uyafTXcN P5f+2nouPpsY+2e6f+SF9Pfmi+nh0ZeiPTLxUnps+JX0+Mgr6R+93Bqv9ls+ t+vUnhh7NeU1Nz013G9Pj+XXofw60m/PTObW61+/+4nrr16N9lgjH3v0lfTo 2MvRHhl6OT3YerF/X5Mvxf9PNl9LeX9Mj46/nO6qn033t/J9Nf+ZHh/Lvx1/ JY7bK1+LYz3SeDk9NvFyemL81fT8yL/Tc73X49riXPmYfuM+8p4QffrMRP7t SL+fXxx9M71cvpVeGH0jvTCe20huY2/Ee681/5Ner/+TJkf/k14deTu92Hoz vTL5Vsp2T15X30/vD/9ftPdaH6S3Jt5Nb/TeSW+W76b/TLyX3p/4IL03kt+f fDe93Xov/bv9TvzmP433U97H0n+G30/v9t5Pbw2/l95tfBB/v9vMr0O51e+n d0beT2+PvpfeLt+LY7/Veze9OZ7PMZyPN5Lfq/Nr9V56b/yD9H9D/03/N/zf 9N/Wf1Oj+ki3cfBHunOONbpzNBrduepGd+5yju48d8zRnbeaszvlmLm680/O 1Z32ztzdhap5uws35usOjea2d25VbtfnNmu+7iJ1bg/3/47PR+brLrzBh9/x 3nhuB+f3evPG5wuN5mNN6f+vLXRJfn1n3v//m2Py8e7Ir5fk1xfm6y46MqW7 2DtTuouPzN9dfKf5u0tM5Fbn9sL83SW3nNpdsjW1u9Q7+XW835aaPq271FBu q03rTt+y35aeyK/j+fWO3KYs0P3olgt0l94gv16fW3uB7jIP5/bCAt1lX1iw u+zDC3Y/Nppbe8HuMlPy6/X5vTtym1iwu9zIQt1lh3KbzJ9tkD87JrdZuR3c f12mzsfbe4H+uSbzOa/vn3OpZm7D0/rXeEm+xjq3O/Lfe0/tLjE9t6H+q/+X PHhqN9sU3WV7C3aXHOm/v9jw/P0+uCTf9/DU//XBYqvN3130kindRaZM6S56 TO6nh3Orc5ue3997Sr8fj/mwr4fmi75ecIPcGrkN5fbCPN0FH+63Bfaepztt Yu7u1LG5u/O/MFd3yvVzded7Yc7uvFvO2Z37kjm62dbvznl9ozvnrDxepje6 jfZHuh/ZILeb83gazeOq+d/03tgH6Z3R99ObY++m14ffSdn+Si+33oq580L5 RnpuOM+55r/Ts+P9eZftsPRk79WU7bCY3w9NvpjuH3shTVT/TH8tn0t3jj6b bp/M62P9VKybfxzN6/hwXsPrvIaPPhZr9h+aD6fLxv6eLm0/kC6q7k+zJyfS ecMTKdvN6cyJv8aectrEnemU9l/SSe070ljr9nR8+7Z0THVrOmry5nT45E3p 0ImUDh7ppP3a16d9J69N3+tdnfZuXZW+3bgyfWNoPO1eXZF2G7087VZennYZ vSx9tb407dC7JGyJLzYvSl9sXJS2HrsgbdGcHbbJJmPtVJbnht0yo3dW2mD0 zPTp9ulpndFZabh1Wlpz9NS0Ru+UtPrQKWmV6qS0SnlSWmkk20SNsbT8RLah mr9K09vHpcXHjk2LVsekhVpHp2nNo1K2ndO8o0ekuRqHp480Dwub7fXej/Ia dGD6Z3P/9Fxjv7zejaYn6x/kte776f5q73RX89t5j/lmuqm3e7q2vUv6fe8r oeF+fmskndPeNp3e2yad1tzmfzrwP++VKfvJ6SfVzLBNf9BeP+3ZXie1qk+l rzbXyPe8atq6WinbXSukz9bLpQ3ay6RPNZdKa5ZLpFV7i6aVykVSngdp6Xpa vvYpaUo5V5qz3Uh5nITmJ9v7/uqFTn6GnV/Vt3UuLR8IDYa/NJ7t3FQ/0cl+ Suiy46ehscA38PdIdXFnh/qS4KqhWYXLF6/egF8P7w3+wOxnB0/O9tVqoXOA I2bJamroQtDyUitNf+v3ja9GrTKOHvXgarrVIuPWVRee7ZTAn8DAzNM4Inji 4FmyLxV+HzwGfwweBe6CLwaLDjeMFxJGAh4Lfh0WCwYDJhP2Aj4S1glOAp9/ 1PdVl+IgjzwYTKOaL9hlvG7qxeStLqn+Fjz9cnq4aGHA+dByWbjs5bPgAuAc 5KDwJMjxyVvKIYemXGv+/+UUaQjTI5QnxXUlLx95zPZSxTrl9MgPRR69/FhR VH2eDjxc9ArFH/CUiTloODHkh+kp0eTBgRocXOIHVT9+IJaBr+JbjbWLPaq1 4xVn13fLT4f+Ex0f3KsRX6k3CK76n7RmBqfsEWUZsQz88sdXmxV5vIbGzK9b m0dcCD+rWArdxLOqLxbnlNvG315xx8+uR4KrCw+qGI+Y0u/qvs5nnhPFePur oRkq/kQ3m4ZmHiPRxIXEh8Syrqx2iu/gUhWjkneiiy339KfWN+Jv8bcb6l2L iWqv4MCXV5KH+mN79yL7yHGe+E359YgJ0v28tfmN4qZmPkb5jdACFSO8s5Vb tUdxe++bwaEvHideeHfv20We1/H57c1vRW7Le85Dg+ruOr9WubW/HbpUNH4e bH838lpilNn36+tV5e/T9naMOEf+m463WKLmOLS+7+3tGecTO4xW9c93b2Ov 4t56zzin912b6xXjHFwzzffbet/onyf/rY9oi/r8z63+OX3PeWlc+d99+sz3 aZjK5d1U7x66CnX19Yhz6u/I99Vfj/f8LZ5K/zxih/XOxTWNXULnMrTQmztH 3NFzvaqxc5H96uDBjbFQ7Ri5RO3C5vYR/zNe6B7RMhDXFL8TCzTGjDVjzhgc K7eI96MNeIIbWwS/rnFKkxZnsNym+B6NTXFIsdPs90dM0TgXr6SJgDfZmBe3 jFhga72YH7TVaDQEt12eT/iHaXDSOdilvWbkXXcq1yi+Wn+i2KFeLbgEt61W CT0tOqqDtk1z5eBQ3rK1YuhDmcewNDj3YGjkheWJaYnjRYbtWLs5PbANsBnw MrSfYDbkmldvLh74HN/3nnUETzVsBM5C34EPgimBf4GbwD8IVyT3bU3CX2hd wmc9tT13IVcOj2DNkj9/v/F/kRP3GeyLV7gm/NRwUjgb/Y2DUD2kHLpYpCbO SGck8vSNN2bgo5G7F4fE7wJfhe8R96W6Gt+/s3o28ACwAKn8R2AnYAPol2r+ hwejtQmLAO+gwaTBhMEqwCeoW4BRg5XQ8MGIc9JEgIdXFwG7piYUTkGdDDw0 bDzMg/oGNSHqsmEhBk1NB/0X9RXqGTT1zRq8HFw6fDJcLyx0/F1fGH/DTtM+ 9b99B34aBl1NDOyeOgZ1Xnic1DdEzUfZryP0v1fvwf7CC8INwldrsMb2NXhl 2F4YQDh6GH7/i+f6DM7PezDn8b0P69ngjgPTm9+HSYRD9L4aA1h3eHCYZthF tXsDPgr/B569PibwiL7jfbhjn8ELq5Ub4PDhe2Hp1bKpXXAcmGTfV38H+6vm 0zXCuLsP31W3pD4DZtGx1APAUMIeq5tQawBH7NgwjXDM/lfzCfccNXr5XK4H 3hu+Un2Y3zq2/8WxNfUPYtkDng3HgeF0Ha5fc8zBMQbfdRzxb9fobzFx76vN 8B3vaXDPfhe1G3W/+RvXk1efw2CLr3tVk+I4tEEG+hy+517Vfrguf8N5qy30 XtQGNT7s56r/fb8f1FOwh9yHfvE7r+5RHaM+ivtt9D/Th2wo59acy6tr8rw0 53Xdvud954AXdw7PxjXpx7iWql+Lq3/0h/pteYSBtsjgOcOGa/oBz4H6PK/+ hw+XZ1AXBCeuht/fcPzqjtl9nqO6Md+FOfe576nxl8MY6AD5rvO5D/3tPd9V AwCnPnjPtTqO+xncu2t3jd53LtfnfO7D71yLmhHXOBgjag7U2Xgm8MLsVVwl jqefPCdNDkWdsCan4RqNG7kXfDd4z+CM1VupB3e96ja9L/fiuPI28PF4T5zT NbkWfake0nnVIePpU2ulLg3uXy2Pz9Xx+F+d1IB7WR+qnRrUsPlbLavvwSs7 p+a61Ra6HnkZvA7qxHzfK2y/61d35HteXbO6Lb/1HbVfcjneV5shp+Oc8Mya 3zie7/m+77oudV/OyR9wTWoD/F6OCMcEPD6cNky0enoYa30AS6/uWh3BoG5M bkntNKy92gO1XtkOiNwWzXN1DvD83s+2QdQoyHkNeF7wH6i1xnHBT3F8TR22 WrcBJ6F6AN/1W+dSEwDzrzmuz3zPMdQVZBs+xo/6Anwn8nOa+6uqz8Y5nNO1 q5dQ9+Y6XbP79L/npmZD33hmakqNAzUbPlNjoZ/1nxplz0V/Gl+w5Lgk9L1x BKPuM2PEPFSnbZz63PP1yi/zmbForBpfnq3vORafTa2JMe276mn8D8c+qNfW fO44cOzGvnnnO2pMjE/H8uo93zWX/N449hufO6f3zAXH8OozzTk1c81nxv5g TfCez1y/3/jMsfwvV6qpqfM959Mf7sV1mIfO7Xeu1Xe977fqnvWHeWF9Ml+8 535913ec17m85558x/wyx/2tmQPGvvloDvvbd/yveY6Dz12P46opcO5BLY1n 4hmbR8aU1wGHgDFifBln5qOxoobdXPNdY8DfmnFlHBkr5qVzuyZz1pgZjCnX bC0YrDmu13X4jXmtuUbf0TfGhd/4nt8P6husZbj6XK85bm67Jp+pGXYPxqnv qKcY8F0M9B7M90FdtffUMpmf5rY5rL5H/YdaEOd0j4474HqUk1aH43/z1Joi /6y2Wa2KelG1JGqEHIdOBs4itS5qUGgW4nkY8Kioa5G7xmkyrTEP3s2Ig+AS xP+ghkdMRJ0TTp9Bvc+Ahxa/k9iJfPqAqwk/DM4lehl0Vr33WGOf4PBTu6Pu B8czTj78An2OgV/gVt6QhmQ+TnAH4iTEmYvvua819dnrc18Hr7JXfHG4bXEG ynPLcednFpoVctw4r/O5g8/OK844XHM4r3EBy5/jvsZJiEMPNzDtzdxHndyP Hflw/Il03ml94UykPUqnnb5FXl+Dtxh/MS2LPF5DZwE3MY1UXIsavQa6VNmG CR0IWsX0KGhD0LfXaE3RJqVdnG3x4ErOdnon90ln4+qczpbl7NBJ/XLj0s4u 5WWd/Bw6e1ZXdn7YuL7zo/rG0Dc9srq5c3R5S76OW0O3PfslnfPLiU72V6Jl n4UGQyf7NZ1byl7nzvLZ0DO9p3y+80D5r86D1YuRQ8/9EHnzV6u3O2+X73Wy n9aZq26kuZpzpNw/aUp7rpT9tDTUmi8t2Jw35TGZliynptxnadl6wZTHX8QK V24umlbvLRYxxC/Vq6R16+lpnXJ6WqO3eMp9mtaul0pFuWzKYzlt1Vsxbd5e IX2u2Uybtj+etqpXTDu2Vk87N9ZMeS9KO/RWSzs0V0+71mumb/WG07frtdO3 m+tE26uXW2Pd9L360+n75XrpB631o/2w95l0YHOjdHA5I/24WaS8B0f88/De Z9Mvepuko+rPpWPrz6fjepum4+pN0696m6VftzdPJ7W2TCfWW6ST6y3Tqc2t 02n11invYens3hfT2c1tU95rIsZ6fnskXdjbLnL5v+3tkH7X27Hf6h3Tpe0d 0xWtr6Tf119JV7d3Tlc1c+vtFC2v1emGeteI2cr/a516t/THcveU196U7cZ0 W+8b6bb6Gymv7+m25jfT7fU3U16bo93Z3iPlfSf9tfXtdHev3/LcSnc390z3 NvdK99Z7polyr/S33t7p773vpL83v5sean4vPd7aJz3e7rdee9/0dGs05bmS XiwPSC+090//ah6Qnm/tl/7V2z/+z75GyjZ0ynZnerU8KL3WOyj+nyx/lLIf ExiEN1s/Tnm+p2xvR3u/+dP039bPAqfw3/JnfczC6GEp2+vRsr2ex9Hh0bIf FS1wCa0j09Sx3Eb6bYHxo9K04aPSAu2j0oK93JpHp4XauY0cnYaq/9fVnYBr cpV1Au/KAmGnFSFskgvDGhYbg6TDLaTYBESgERAcBO4wDA4K2AoIyJICsq+d jSQayFX2RWhUJp3bH1IgyA4tjsNOLoqgrAFEQJA5v7e+/82d+Z7nPFV1tjpV 36lz3uX/vu+pi517Tl3caP8plW68q12vn7r42bXTFjfZefri59ZOb/PxjJKx /9ze0xc33Ty98A5Hb56xuPneMxc333/m4pbDWYubr51Z17fozlo0HrOutXN+ dHdmXSu75d6zFrc6dNbi5zfPriNcRFvXFj+/85zFbfads7jd3n1t3p+9+PlD Zy9utn7G4nb79i1us/+cxT03L17cce/5dd34zOrzlutnFXbizsMFizvvb2nv BYs77Dq/dAMwF7ffd17l323tovbttPLxgsJQ0B/cfu95izvtvKD0Cne9etYx 3GXlwsJXwF00vrowGHfYef6i8e6Lu+y6cHG3/Rctdq1fvLj7zlcu7jZctGjr cvV77NDa7Zr7v+O+8wufccc951dfdzl0weKuh+a+77zvgurrzutz/t32XLQ4 ds+FpePQXqLjaOtr1fFcnucOh85b3H7/efU8EpzIHaY2xl3nzcfNfYvb7d+3 WFk/t96f57vdnn2FHVkZzq1Uee3dKYdPgVOBTVH281efXefe823WW9rb/o9d 59R/dEx3bv0vVbbnnMK43HpP++92zunWQ0t7z67/wrn/9Jb7W9pz1uIWm/P/ fvTKmfVf1nw4NM8HR3nm0dFXz+lme86ouXWTlXne3WTX8jidVjibn91z2uJn Ds3ztebt2jINp9ZcvuE0z+0brJ1c6frTSYvrX92+gf0nLa67+Yr6Pg7fN38z h+9px0Mt7XrZovHNi8Z7z9/V2lh1Dt87Lg7bOZb+6MebL140fnDxo80XLX40 zek/hhcvfjD90eIHm3P6/vTCSt9df8Hie9MLFt+Z2ne98oLCHF29/vzFl1b2 lv7Jd9/4wsVnVp65aLzo4vPDsxaf23zm4ovrz158afP3Fv88/f6i8aeLqzaf vfjc9MzFp6Z5vYFL+uzaMxeNrl0cWv/tWqM+vPa0xSc2n15r18fXnr5oNOyi 7ZGLv11/6qLRyosPbD611jvr33s2n7JotOOi0aKLd608ebGx/lu1Zjb6tbBT kvW08a6Lv1ibj38+PW7x5uGxizesPGbxxuExhbVq/N5ife1Ri1evPXJx2fCI ReNDSjd26cqvLS5Zf/jikuHhiwvXHra4YOVhi4umhy3O23zIYt/6QxaN9lyc u/krdX7O8CuL09YeuDhp7f6Lk9ZbGu+/eNnKsGg83uLFa/ddvGTzvosXrK0W 3ste87zNExbPWTlh8dz1E2oPghH7g2F37UnPWrn34nfW77V4RnevRaPf6mgP e/raLy6etn7PxX/b/IXFU1Z+YfFb63dfNFpj8fjNYxeNNqw98NErLXV3Xjxy 7Y6LR23ecfHI9TsuHj7dfvHQtXn/fPDKvIcOwzGL+3a3WaxOty7sWqMHF/de u+XiF9dvvmi00uIe480Wd1+52eIew81qj77z+k3ad/yztXcfM92ocG+3Hm+4 aDTQ4ubr129z/nqLm3bXW/zc+nUXPzMdtbjxylFtfh5RtMCR42EL9EGj0doc +8nB700/5Ne50TzfPfhP3XcOfmH65sFPj18v+uKTw7+IiXrww+OXD75v+NLB 90xX8UN98J3TZw6+Y/rUwdd1nzz4uunvSld4/vjBg+d2Hyia5iXdXx88sXv3 wRdOBw/+0bg4uHe4omKoN7qzaKEnj287+KTubaVHfOj4moMPGv+0YmKc0F1W 2EN0VVujK6aVWGJiZYkjJpaGGOpifNE9iu8lvie6Tux5dF7jNyruqBgUYmiJ +SmGRKN7KtYqzKTYr2J5inGOvnxR967yj8zXsgSvCXMJm8lnsfgrzvmu5iuZ r6kd7cffFD/UaF0+EtHL6Gl+sCUxUhrdX36G+Uhmi89Psjh5jvy0sStH0/Mf wC8BX674CXw/uQLeAw+CZ8F/42/wzpGF4P3IlciLyDLJW8leyZX4+2ATzi8E 3xMSn0h8WLDR5seCfyg22uTYbP3EheITKL5dyMolMnQ+2Pi7JHNnl8e/Ff// bBnJ7cX2hDfm24o9I10AW8jGj5TtJltmugU2cmIjsp9jS8cO9JjNG5UelB0q /QZ72NJ9drcsXQi9J5y1GE30JY+Y7tC3b6ow1I/evFPhsZ+wftfZPq67W+lm 6DnFJfofm/eseJN0OPSacOmNziy9jzjdEj3QqdMD+tNXHtQ32rJiNdItnT8+ tPDhcOISnaY4kGJZvnZ8dN9oyMLN00/C9kttfau427D/4jyKqV36tum/lU0c PaNzerbo7NhB0DXC2n+he3bZZHy9e17ZA7CDYOPw5XG2eWt0YNk3tPW/bzRd 2Wk0Hqr//uYLyxah0XX9f668tOwkfrL2kr4bTuzbN9Mfvn/sGz/Ttz2pb3tS f+29L+/b99RfZ+8r5rT2iv76h07qb7Dn5L7tb33b7/objaf0jW7rb3zolLKF u/F0St++x/YftjSeVrZyP7f/9P6m3Rn90TvP7Nv+Wse2//Y3H2ebkMYv9bda me1VbrV5Vt/2977RZX3b8/tjppZ2ntuvjLNdHluWRleUbc1td862NWyvGh0y 28IcOn+2wdt5QdllHbt2Yd/opP7YfReWbU6jtfpGD/V33XVRf9eVi+a8dn73 Xa+8xs5p52xbdc+VSyr94t5LZjuilYtnG7J27XjPQ+187ZKqW3ZZ++by4zYv KTui466+Jv3i/pbW536O23lpf9zKpf299s62R46/NF1aNmpsfHJddfbPdeqa ndKeZd+S8rW5XtmK7VuOd88y7Zttmtz7Xnsune+7a25T99bH8potFHuuew9/ XNdpW+Nr45KfZIzGs5UOLce6Z/kc+y4t26vG+/cn7Lqszste7FA77p3bl93U Nvupsnlbv7Rs69iqsWFjJ9Xo50r+K+3Y87HLus++y2rs/jc2UY7eM/s5z2Lc /h92lMrYfrHRMk7/EVs8/4d+dw0X9/cYXlnPXDZ0a/NY7rnrkv4ee15Z86PR 532jref+Vlp/m3Nyzbav8rtX1v/LxsuckFdzcJznHVtQ800q2859F9TR3Lzr zovKLotNlvnb6P7ZTms5fxudX2NodHx/57X5nTR6vfrWDxuwtpb3jX6fbcHW zqvjHTbP6xvtXt9JfSvtO2l0e7+y79zZZvVQy98312l0fN/o9rJdrO9t/7n1 nbEP8w36HtmWHXN1S4da6lre2vyN+l6P2Tynb3R73+j3vtHp9R032r6/9djS vrNn26/pzP6Wa7MNmHTzPcu1YDizv9n+tjZMZ8zHlXY9nlG2Y2zFrB+NPp/X kpbHXrftYX2jz2udabR6Xde6s7ddd3M++7NGF/SNpq8+Kn//af3O/adWWaPj +0bX9z+zq+Xta+vXrlPbPnRKf4OxrW17Tqn1zdrGlu2Gh07uGx/bX3/nybUG Xn9ztvdybPxu3/jesnu73t6WN51U62Wj+6vtUd0r+iPX2to6jX3jY/vr7jyp v/HVp1Tbo3a9om/0f3/E1WOtwdfa+fL+qOnl/XW7k8o++ch9L+vb3t0fuf6y ur72+sv7ax2abc7Ub7zEfNw39kdsztdsm7t9bV0/dOJsi7Zvzu/G2U6Ord1h V59Y+VWvnXf7Tyw7OrZtlde1sr0n9j9de2m/4z0vrT2j0Sr9T9fnoz6qbOey z33z9U/Hl/aNR+l/uP6ispWzzzi6/uE4J+X/vv5HdbQv/dvwwrL9Y+vWaJX+ O5vP77+3+YKye2PjxybwW8Mf1l72jbXn1d7Hjtve96/dc8se8SvjH/RfG5/b f3XlOZWfJJ/Nov0x9oBswRt/039xePZ8vvKs/rPjM/vGC/WfX3vWjMUZf6fs BqVPr/1u2R7+w/SMOv7v9WeUnTqMDXwPrAwsjH3c0f4NUyTJe+/6WuFk2L07 f+/a2oyTGZ4y0wArTy5ckfPF2pP6xh/9P/aBjpXXPbF/5+ZvFjbG8S/Wn1D2 ePBO79h8fGGk3rLyuP5t679RuClxE9nuNf6p7PJfP27DznSPLhtAtMqrVh5Z tnRwWGiYwmetPaLic0tie7Pte+X6r5Z9oWtYGrZzYmOfPT24sDRoI/G7z9x8 UGFo/mxtT9FIl6w9vOwRX7Fy/8LOKDt7ZYnL6R7anzzdv3wNNH6rf+n4y33j zco277T1B/YvXxtmrM04Y3DgzF7U3Xe2H+zu0794/b5l5ygut3jg6uwdj+9/ b6XRcpu7i35j7+eevzfdu/+fa8f1v90dV3SfcvGi4NjQf2KBw/DAuBXOrfWB Jmy8XcVO1/Z/jseV3R/fCU9fn3Fy8HJwP/99ZbYFbLxG/5TNe/SN7yvMz28N d++f1N2jbzxg/5srd6tzdChfDWKvw+E1vrB/XHfsfJzuUkd062PHu1Rcy8es zDTsY4e7VAzL8ukw3KF/xOYdCs8H18fXA5wf+vdXx9vPx/Xbz1ii9f9SWEA2 g3Vs+eKrVwzSzduWr5g6X2lpum3/oLXbFk39gGHGEvLnw6/LsHZM+Z7ga4bP lAdOK2XXWNfDbcqvDz8+v7x+m/IhI5+vGDaL8Edih7JZ5MeCvwvxU9Hx/FuI zYquLyzT+tEzVqnR/Pzd3H26aeGb+MqQX/5outl/Dz8+/APdbm1nxYuV+DFy LVYWPzISPgJPAfvkyLcS3zx8fPD5wTcQPBR/HuVjacmP8LnC34oYZhJcJt8g MFL82cA0saHk44ZfIPFf2V3CRFUc2JauNR1WvoL4GcH7lP+occZFOSb22Ten 76+KR8tXvJjv/zJ+b/VfhhkTxX5TfNLCTU3fKt8vfO7yS+Wc7xN+qPi04hOl 4l3xg9L9a2GlxBMTp1dsBP6u8GqwU4WRGj5TeFU+sP6y+8xWwtfxD/PmcfYN k7hacK7i00n8b4l9wM8MO1E8IV8vF3Ufrmv+vy4cP1Q+u+Cq+H/BP/I9ip+U Gt9bfoj5m+ELBt6Kb0v4qudMB7b8IfIZw08x35T4U3aofD0GW8X/JZ+albo3 lS9xOCo+2SW4Kv4i+ZqFreIPjd9Nvsz4R+MjEpaqfEa2BEsFP8U3Jh+LwU1J fCnCHvHPBgPFPxqf15WGUwojg++Gj4EzCv4GJgbeBa4j2Bn1JPgf/DpcB9wQ rIw8ybk8WBLYF0eYlMTFgWPRDsYm/cCSwNDAnMAHqQNPowwGSV3XxuU59Amb A7MA90CfCqfCh7lngI2i36Z7phumX9WXZzAWumy62WBJ6KH5uoV7oYem36Y3 p68ln6CjhjUxBs9mnPqn6ybPgFegE9aXPHp1+np9wIE5h70h56Bfl9yD7pdO 3HjcV33XdNj0xa7pieF1PAPdvf71Q+cOOxS8kGs4BOOC13HtedwLnkBb9bXV n3bK6fZhG2ALtFNGL+19Ofde9eu96dOzeV/6lDwX7IIyzwEPwMcwHb+xwAyo F8yBPmGM1IF5Cp7IubFlDP6P4Hvc232M1/3Vle+ZJHXdQ3tJO3XST+6hb/Uc lXsf+oblSkwFeC5zWIKfS2yR+FJ2hF0y/2DX5MFQaWueKjNOyZzPXIaF0pf7 eP7ESILv08Y7NM/EAHENowjHFtyc5/Y/+R6MN/9PYmSZk8ZkLMahnntLzo3B ufeRd+KdGoe2ntV3qJ77e379wLJ5X7BezpWrq8/gxDyPvOD9gj3Un2trSfBx kneuve/fO/Es3p961hdHeLusK/rPuzemYAvh8rST8p8pc2/tvQvXjr5bx9zT tX69k6xP5oTrzB3PZ/57bvn5P43DeZ4l7X1LvkVHc93c9A3D5kn+X9+3dSnY HHm+L/9/5rtz35E1wfrjP05cB/WtAbA+vjF95FvwDasbjI0xyPO9WkesN8rg dIzDGgRj43sni4U/C2bGEXZFftZJaymsCwwKnAicjHNrMBwbnIoEI+NI3guj ArcCayOukJhNcCnKvSvrsL7EUOA/li9Svs1h2/QP0wInJh9mDFYMjgXGTXwk deFTGl1YGBQYNP5y+aGV9Avroo9HdHP8GPY2cCv8qsKlwcbwu8D3KcwK7Ip6 /Dywx2GXw++qeCV8qophc63u8JJ3O8K9iKsGE+MINyOuSeIBiEXMXwM/rfzC vrP7bMX9lt7efar81p7eva8SLIwkzqa4Q/zZwry4FuOv0QGV+JWAicmRnwf1 xRyDh4GZgYPhA4K/XDHLxR9ng9TWlPLxwEeueEiSuJdiUYjvfHH38Dpve1r5 khDnE4ZGXHI+Jlzzlcu3r1iByugKjuluDBPEpmkLa8OHrjjU7RkqBpMEe+Ma /uYh3WtO+IXu4sLhiIt4Yne/E8TAEE9zR7dDXIyKg97yd7d7VZIHq0N3scTr HC+OqPw2Bm0OSK3dgWX9A2yyxMBuc65iZEuu6UDaWnClONawPvLb+ym9CLyP OvLbmCqepNjr4mZrI3+Oy/6cipuqDv2K+J7S47u3XCmWpRiVYlvyp6Gd2JHi oPKZIe7lD7oft/t/ojBG7MjUFYv1Vt0NE7O+YoCKr02HA4MkvqV+tGn3ujIx wJWnL2OVb7z6UF88UWX6lfSrPGPSl3P9ew/t/9mKdzo/zwVVJu6rd+Z55enH ufcp33uT2rtf2sO9/YD4nLBUc3zOo+voPfn/2vuu/6r9rweuwWC9+/g5xitc 1o7jl/+rObK73Q9Wq+aDevLUm49X1bG9B30ccG9xQcVwVWdZT1/HK3Pv5XXd UzyWzD/3n+eUe12+NQeXY3Lvupekf8lc1I9xpJ68a8Z8+XIe13NesZzLu3Nv SXzcln9C+4/qO2n/RX0nYq5LxifNdR5S3xSfLb639kz1XcnjA5tPa9+uGDv8 wzjnL6aN+T7in/r2xa19RXf/+7R1tuKwK+NDxhrQ5m2tI/B51gc+Z7w397MW iL1IHwiXB7Mndqh76Ms6Is67mIrWKH21OVJ9N7ql9Ip8eFvnrFMwfOI5ivnG jzcfOnxcWyMTH0pcOPEa3dc6pk/3sD7yu/Ob3Vvbs15Z/sH5vWnvvuJJ6UN7 eky+c+gvlVmXHfni4VNbO/Wd88fNb451nP9svr353+ZT25G/bWs9/+r2Bv51 lPGl41o+X9wwj2KV8b8O+2ifcS0GK9tPewkfPNrYb+hR+QOCrbQvwWHy/519 y76UPU59ddXhB15MoMQA5cc7PtzFtFNmv7TXunbOjzxcp/3V0X5pP5UvORdb S+KbXbl93F5rf4X1dg7XDVNuT1YOZ+oaPhu+2zFYdHhxdAO8NtwtegAG15Ht Kzwr2gF9oY66cLroDNf4LbyXcrhVuF0YWW3QDOgD/SWOqnJHtIn7oW3guNUz ttAwwR/DiLufsaIz9I0e4aMf1jf4Ye1c68t4gjOn7/YM7o8/1Fdw68ZiDMGi qwOnbrzukWfzXOpl3J41GHfjMV5t1FXPOFLHe9Qn2ko99JRyGObQZsalPH26 n/6k4Is9g370qx9jl5TnuSR1Hf2/9P1oPrYEwevDI0vwAOqJG+C9KpPQYOrD GJsbjvD+aMakxHrLvIIv0A6mmY2BeZh5iZ4TL5mP+8SyTYwsNJ/vwPdhbvN7 n+/C0bUy343vhM2CespgG/jM8t0pd56YuY58aqEvxYr0raZcfzDVjnz5a6+u 71UyNint0LDiMVgf0J3WFeuFtQN9aT1Bk2bNcYSbVi7BZourgCaFvbaG8leG DjVWthzWBO1+3P1n0aTiGFjPrC3WI1hu6yIfZ3Ae1jX9WqeMwdqmT+nb3Q9q jbPGwnSjbV1LYh6gk+WJk+BoffSerE+ew1przeWrDF4cNjwYceuztVm/1mNr sXtbf9HPxqcc7a1MQmdb35PEo5bsB+qf3L23zsUChTX37K7tcfYZ1875aFNf meR+xq88YxJDwvjtYeJBaC9lz9GHMbyu+2T9D6610VYd/cvXvzLjUT+YeHib 7WMxdnuU/8ZRv8pSxz31kfFJubf7eQZl/nN1/SeSa+/aHMm1ds79J2LjZo90 L+8YXj/xLcw37fE79kn59r7EpZBnrqiHN7Jvmp/6ZRtgTsjDX5nz2plXfCSY P/owV1NHfbyL+cMmId+ub87cMbe1NQbfhj3VHpkyR7ybue67E48k35Dz8Irm O3yT9r5NfGFsHezJ9t70oX/frG9XvcRTSbm92rdtPbIG+NasB9vXAuuEZ5DU dwxvbP1yrY262ce1D9/rPVj7ss55J+6XmODahAawhlmf5DtK7p8y90t7afsa KbkOPaL/jNc3771ZL9A8eZ+hZZRlHfEe1ffe/JfOve/QSd6796nM/x77EnPE HDAvrE3mUOaTNcC8NZd9r+blh7ov1/wzr333vh3fmDlufmeeK/d9+r58a74f 37O66EffoDa+JXV8n8rw6PmWrQ/6zzrhe1RXmW87a6TxKDc265dra61vS3vP 5x14h+6HxkbPo3mtlb4Lc9Q78w2gbR/Rvb5oYM/jHXm/vj3PjO4lJzAOz+kb zbpoPNYP78x78J1Zv+0vvgvv3PprzfDM7qM/64l7uYcxWhPU8435zo3Rc1jL 3c/3ry/fsjz7k/9Ne239v5G3mAPGD2NoDJ7VPEkM2cQ8MrecZ2/N/uyIBjBX 0ba+CXIidGz2dN+KvTCx78iJ0IToWXQFuphtojIptAg6WD22UWRS6Bf2V+gf KdfoHfQWminxn9F+6DE0F9qR7ZhEvobGJIuj1yAfI6NjdyfFLo9cPfaBZHzk lWTbZH7kmuSW5JKx0abDie03u2k27nQpid1TuqHutNKdiDUnvhw7fHF04C/F x2KbL6aOxHaf3xnx+8TwyjW9lHixYp+J5cb/qpjyzsWn4zvgv0/7y78AXZcY gLCbdGDy6czE6eHDRtxA8cbozsR04MNAHEyxBPm3qdhv0xWlgxNvmr8DsXrU E7Oh7cUVN7B8I7RzfnD4RqDLO2N4X8U55U+BX5z2rZUOULxeMXmSxPVpc7ri aL51+IeKtSOmPZ2jOBJ0knSUYjzQU4qtLrXvt+KMOvKrA2tK1/nRYU50op+Z vl6+I2BPXbe5v9p4zNKdtu+h4vLQrYoLIU635JpfHklcH3Eivj/9qGKy0NfS 5ya1b6viQHRrO/rDNudYEBWfY+Wwvn2Tpe9t39h8XDmidMOwrmKftO+uv9Fw 7TqvGD5rcwyfnx2uU/plMUfoncUY4XtDzAj+NxzpqemnxUW5xXT9ij+irOKP LPXciUEiwc1Kdb6+s+KR8CUsPo5YJ3x+iA9Er373zZuWbxD694o3sYzJIt4P fTydvdg+4lHQ4x+/ecs60vPzSyKeCr0/zACMgCM8gbgwMAfOxYqB0+XbhF8T mAPlD5v+y+wLZZx9oMA4/Mbasf2vr9258BCwEOJZPGm6e8W2eMLajJnQl3p8 Gz137YTCasBxwFkob+tL/8TpbpUP6/EH67urnD+WJ6/dozDAMB/K/nC4T/lf FhMDvuN3V36psCRwKa75rYYHgXGBO4FLgVv5/ZXd5XOav2s+ZBovV4lvZ3iU 5w4nFMYEToWPav5mYGFgW2BW+H4+ffOB/RnDg8ovtcSHtuvteOOz1h7cn7H+ oBlrMz24fFLzrxR/Nnxmw+Twf3PB5kO38Mn8aLe1sM4d+bq+dPPh5QsHfkcc D/5zLlt/RP8n06/1jY8tDFD5CV/Z0//x2q+VfyaYIBgheCE+d9aHR/Xr64+a 8c5rj+7bWrvlw0kMkNeuP3o+b3nw0HBH/Pe8YZoxSHBJfD29fv3XC6v0hu4x lcfvE9wS/LTknA+oN608tvyAl1/y9cfWNb9AVaddv234jf6ta4/b8lWuHt/q jsr0AR+lvHwLKZ8eV/7O5VV/fJ3rY232N64Mnir3g6tSpq+63ziPpa7bPfeP sw8q/qiUvaWb+3LuHjWG1odxGPcbx8fM59P8bJ7du4F9qjF1y9gp67/Vv6N7 Qr0775pfdH3WfdsYvUfvWvI+9WN8xqaN8jeuzX6U3Eu+a3h1uDB4sDwjX/L1 H3XbMGPLvv9snOO61PU0H/3/8vVlPvAr7z+H/5JvrOqYS3Bm62uP6l/VzZgz eDPzjh93c8z8ky5Zf3jhzfhiN1fNYX7aL9p8WB35aYdDq7nNR/va7N/JfD5/ /aFbPp/EqfH9lD+ylV+p76a+sfZ9+p58i74zeLMz1h5U2DX+y05Zf0D5oYdN O2n9/v3LuqFwZL57fuol8XCsDS/s+vItX9/6uPRr392nvvv69rsTCktmneBD zVrDJ77zZ3X3nrFlbX3hb+2p467yw/a0tXsWjkycnvIhtTL7mH/i5mzDYP2C GxO76zfWjy1fUnuGO1WcH/6jrKcP37x9raMPW7l94b0qb7p94cbgw9hKwHbB evEZZ80unFdbt/maKkxXW8/FVBMvS1wi+K46b0fXjZepOjBe5ed+ZcZ52ScK 27V5i4pDZw/hp8qx0Y2F+YIbE9+MPzs4LPuhuF72J3tNo8XLvxV/VnxV2e/s e/Bed5luUvsav1b2SXso/1QwXGxH1I+/Kv6txB6zr9p37aliewXzZe8Vs41P K/742KjAb11r87CtmGWNN6p9nu8q/q3YrIjZx7cV2iC0gms+9WG30BDiTRVd 0a7Zv8B3oT8ktAdcF9sYvq/4BQymSzz18hc4fqNiCfLHL26hmIV8YClzDd8F 2/W3wz8W7kuMQz4Hp2GOkQW3VdfjfA3rJR4iX1hiHSoXB0ye8/KNNX6MrKn8 Y7lGt8F3Vfywlv/K4cNlA7Rv+EBhutB3Ynyh/WC4YLvQgPBd5S+r0Y7wXGJ+ Ja5046UqbjFcF9sidKW4t+KKwXc9o/urol3FOBY30jWsl/jJjuhZ8YjRq+hZ 6b+Ob6324hOI7St2rrriPu8Z31A0b/nimt5SPrbQzMGEuRbHTHxjNLVYt8GF 8b113+lVFZ+64ggvY8KjxfnbksTUZTuFnkfz8yGpTzF5YczEzxUHOHGd40fL NSwZf1g3GE8ujJVzNlr4iMQDhSWDH6vjEjMWLIcE96Vt/C/BjsT3UnwpwW7E 35RyWK/4pnINiwLvEFwMHAs8CzwRzESwLTAU8ZEEe4Rfgo2IbxYp/lDwVfLj qwXOAV4C5iF+TGAk8GZ8F+HPJDiJ+I/Bw5Gtk+fzPUOGj7fD75G3O5KrR4Ye /Qb9Axk5ubhELs6fBx0IfQmMG584YhDTReA9ydGVhQ/Fp5KVwzjgccPPOpLP RM+D95VHp8M+L/WjA0o+2TA5emRE5DlkPGRM+OnoluI7xLmkTmTi+PDElhAb Hm9OhkMORiYUuQ++3jX5EL6eTAg/75zcRz11wveTRZAZkCeQ7UmRT5BXuCZ7 IA8iayCPdU4m5F0Zn3GQHZN/kIWQZ5I3uC+5E/kD2Qq5DFnMjm5Hjc84ySr0 T5YSGbe+yXb0Q4ZjHGSOEnkOeYly9clDyCqMmYxHvngg5ChkR+QfZJ7kKWRM 5E2R1ZBpkR05jxybrIb8JnItYzY28isyWn040ofClZDvkFVFXuzcswZvIt94 yHfIkjI28i/11Nk+XnXoaB/Tval0svS8xgzLoo36/LaQjbtHsC1iodAVO+oX xsUYJfn6oxeOPL2todW/OCvuQQ6mbbAx2sl3vyTttdFX7pU8euLHdW8uf7yO dMeOnoVOGsYm5cHd0HvzR+OcfE1f7il+NN02jI34L3Th+nEOm8MnjTraiRst z7X70Fs7JmaMe5GryVPH/fi2cW/98XsDg0O/7rn8D/kv9U9/rv51u5OqjzyX vsgM4X+Mx3MlprV62rmHep5DGf370d2ZhScyDudwAG09Lh29tp5Hf9rT32sv aW8c8tz3Vt3Z1Z++9J/6+nPd9pi6v7zcB4bJUYJrun53co3/ht0p9XzqGwcM ABtl+e6Ze6mvTD+5l/vIT139Gh+7Z33ASEnBPLhf6runvtpeVtgFfTt6H/QQ MBXwEnAWsBSNr2rz9J6Fw3INV9V44Kp3QfewOrK5hrWAiYDNaOtuYavgqoLZ cM6HNGwV2S+sFexVW9dOkOCu2hpVqc2Dwn68ofv7wo7Ag7T53uqcW8dgQyT4 LPlSe4bCncBntbXnBDHQnbf9UxygStrCfGj7qO4Nlce/tTz3Oqo7gpwb/sr6 scSGHFNjhgVp69cJ7MyN3TN4Nvbl6oi3zkcTHIr3JqbRjOF4SL0r+CN4rtb2 BNf+T1gU7/6J3d0rZjtMmTH4X/xf+vGOPadyWBj3877h2rzPtkec4D9T7r1L bb+v/9zcML/4koJp8Qyey308k/9Wvv/Q/+Ya3sX8MP/Ma/NIe/9vsDTmp7lk bpk/l3ePqvmnLN+he5tr6pqnMC++Zeufo7XAOiY/mBf51p6s5/Ksj64la4X1 3t5At2AdtzaQ9csjx7d22zOs/9Zq9aLztM/YW+gutElSLtl/7JfRI0avaK+l 36Cfuar7du2R8iR7rT3VnglfY691Tj/gnF7Ann7kOOvxDuu62uslezV9EB0B /Yc93N5KN0feT9/mnE6KvgBdA6+CtoEZoNdHw6CB0D7xW6gOOoiOAJbgMd1d CmuAfkB38Tn4jG7GKdAHRP6PTpOPnpPHPyFajR4AXQhnAeugf/2Q8aMVyff5 r4MlUZfugN5AWehNNCM6Eo6DT0nYXboBdCnMCh93aFB4XfSqdmlLj+AcbQtH 7BwWGL4Y3Rt8fOhhNDNMcrDfcNB0CWhr2GhY5/gzdQ4PrU58z6LVYbLjWzS4 dPoHPADcPJ0E7HvxE9PLy7aD7wf6Bz55+dCNX178hAQPD0fP927a8cfrGl6e LqOul+3Lt+80+++Vyvcvn77DK8pWpOos20p89e4cTy09CDsZ/clThtfhvxev Qz9yi+nMysMnFa80nLHVh/vinbSvvNancn22va3KHG89nr1lm6M/R3oW9jt0 LXguPozZ8NDD0Mcoc83Op/iylvTjyAaIv4xjhwuLp5P40GAXhK9Tfux4Yflb VofdkDrK9a0tf8l8L7d1p/wWO6oj3z3KvqjVpx8qP8ztHD/pPsauvufwHvw/ 3hG9EHsmPKp2/DT7X+mh+GTGv/IZfa/h0nof3p+j+3sP/EjjXT07X87epXdD 18Rewj0cjR/vK994vBfv1f/mmfT/y8OrS19lnOYAewO2UN5z3rnx+c/qv23/ k77jg1qe+2kTeyrPq44x43vNr/iN1o/z6N08G15ZvnNjiB9i/C+bK99H2Ti0 a9+Wo3HGfzH7DPfH//rWfL++U99j7DN8p2ws8s3Gf68jvpjdgDI2IGxLYjtk PYgtj7XAeoEXzvoR35/skaKbhJezDqnDZip2Avjj6DbjhzN+cek+rWX44eD/ 4Mmsc7BzeGe4s/jqjK0XHji4OkdrMB2sfPwzXJw1VB69rfUZRgw/HR5ZsgbT 6cKJWf8drfX83Ep4ZftEsI/ayMf7wUfgua3v1ntrvzr4XRgMemn7TfAReGP6 e7gHGAp7DtwTvhhfic/F3+Kf7VX2LPtZeGL7nH0t/Ke9L7gq2AD7n3x6dXsl vbpyR3wyftKe6tzeax+29+I/XWtnX7bHy7On27+DmaCXx1dKsVlwjjbA5zkG 50T/j5bAs6Eh8EiOaDk8GfoCHSIfT/fo7o3Fy4W3Q7+gadAu8tA54XvwDugj tBV+C43nGt2OFhRjRYIdZtuAdkTLwTijGdFp6L7Q3uhPNDa6Dd13p+4mRWej X9Gu8tGIoRN/0P246Ff2DGhpdCCaGP3MZqGd727zEP1cOG8+luDKxYEpn0vd jgMpg/me8eA7ljjxqwr/7Rpunv0BPD38Pcw+jD08PvuBRucUph62Hb4+GHt4 d2XawtYXlr793F+79l6rDzFqYN5nTP6OK2Djl7YUypb0/hHeeY2h0Ygb7bk2 Wt8bsPDtuyh8Oqy7sbFvUM6WAY7dc7k/mwC2DewZ2C6wpxAXhx2EfHYG7BPa e64YouwS2CB4jsLStx97DfcQV7StWRvtvhvtWcsuwrvRJrYPsUOY7Q/OvbLx Rlc2Om6jzX+xeMqGgb2GozxjMGb15rG9vWwh9KVP18YTOxDvwrn3wgaCrYP3 nnfKJsIY1DE2deQbi2dW15ENhP9jGTOo3tP8n15cdRNHKPYVsw3DL1T//iPv xHj0Zwzu5Z7y9StlbN7lbPuwo87dbx7zt8s2Qj/t3W6bTyceWB6viB3N/H/M 82S2WThxy1YivnLZOKjjG5jtcM7dsnngXxd/yRevbwuvh4/CK+Iv+eP1HeEp lbFb8H351tTD4+IN8Y3aOOLptMHvSvIdfaO+YfO3PSPfvsWT+YbxqOw12Brh x6wT+EdrhG8fHx0+1FohsW2SF/7WmoDXU2bNsYY4x9vHbkodPC07Crwpvt5a pB5+0dqD53OOz8TL4lnJCaxV+MUZ1zjzgNY5SR3rHVkMmQvZC1kL/pDshz0E uY4jHpIMxrm6ZDzqW1fxfPhCMrEk+WRW1mUyPeXkS/hI6zTZmaTMER9pXcdD ktE5l+wB5JXOg7Ej41TfeXB0wd6pG7s3ewe5JsydczItvKT9JjwneSdMHb4S pk6ZvmLT4V76CyY2OFht1CUnDQYZr0pmG7xa9kF4wuyn9tBg1fCa9lXY42BV nZMv403xq+S69mC8qGMwpcrs48HTsflQh3zbMTHA0Ank3cE62vMl+7x76A+u jgxbIi9HR6hLfo0m8Fzqws+xl0T3oIGU6ct+7vnQMfJh3MjF8d/GrF84TTzy dgwpugQdQp+AHjIm9ArZfuw/HOkH9KEMnWMM9BfoNzw1nYJx0BGgh2KjiedG LxmLY+6PNkOHOZeHt3bEq+PNE1cAbs+43APtJgW/l2SM6D73UxZ7Fn2lnffl Xurq1zOFZsyzKI+dizxlZARSnsc5+tB92DM4Jm5CbBgc0Y/yYtOApiVLoN9J HfICfbm3pFzSr2v0LXsKicxBfmhT9cgsYs9CBmEc2+0v9BFfjfpSj27K/HB/ fcrXBzqdLouNh7z40I9OC93uiI6nz3KMPQrZiLzowmLTg26PHYk6uY+2iX1O nqMdeQYeAw4Sv8JmRhs8AoylcjwHfRx7G31rl3gedHPwl2xa8BtkM1JskYzH vWOD7Kg+noMMJ3o9mE7n6qivrbzwNfISc8K1e+N7YiOkD89nbJ7bOL0n/Una xAYofXo+/5f/xrV3rp2j7yv4U/+Na7pE79JRmbbK/feO8vWlfuYSvsa8M38S S0CZc2WZq74L36xv3JpAF+jblcL7KMP/4IeUb7d9wSvheegErS3WMTxSbOGy Xlrv6PysoeR/+JngiK117A3sNfRw8q1j0e+RWdpL7C/q2FPwKtGP2WvsG8FF 29vwIfZIeiv7W2Sn9hPl8hOLAK+Ch5Hsk9GDOY9do4SvkezDyu3TjnQo+iBn dl/7oz0MTYAuQU+hMb7ePa/2OWNQx76PhkG3oDfIkemSyJydz3lfL1oGj0MW juaI/Tb7S/QM+gY9gxYig44exDW6RR+zXfa7D6Cx0GTy0VloKnRYYizQcaB5 0D5oMWVsV9Ul+0fHbbf7pl/AS6Gv6CnUj94C3UcPgV50rT/1c45WpHdQz7mj 8tCREroyug4JTTnbyD6+eBj3NBZjas9c+g9l6FV8UOhWPF34nmWciMqb27x9 tzbSrD+Z6zp3f/bssy3xbPeLJnakx1japu+e7X8v3z3ziHM9dKr7oJ9jY7yk ra+Y6564ezmG4h3Tp3rsgdHgxuQenoNNvnfjnUrelWfHtyYpZ2esPbqcvXFs 8/0vyozJMxmTZ/Fs2poX6cd70i40v/pLO+cDaOTluO4z66ceX8+Ax/B82tHF 6G+29X738e5hbPL9f869W+Nx7f+T3Ft7/33mkGfET7jWp+8BX2Aumpfml2vn 9EPmonPl+IhGn9T3Er2bc0e6ILwFfZXkWt3o8OiZJN+bvBxjZ62t8sgh8A2+ T2W+e++JnMJ3S6ahDH/g3PeNR6Ajc2S/LY9fB3nWCtfqy8NT6M9RPt4CL6Ed /sc3L4/e07V7GIM8uix56uuXzip6UryLdcQ95TvX1pi1s6bhTchtnH+1e061 wb+Q35Dr0G/RyVq31MWvKLe+4VfotKxreJnwM9v1YNZQx6y71mH8iLVX3azj rq3dWYujO7O22xfwK3T51m3run60cx9HdbWTH1mWa+uxNTxj8o6tz7Pu/+ZF U+Md1DMuPJZ7oMHtZ/gIfIl+8WAwFXgSfIV9zv5mD7NnWf/J4/QZTAh5HVqe fsx91Mcn4ZfgRfAa9lv7q3tpqwxPhO/RDk/hXHv5+Bn7bHyd2HvxI8rxKOSV aH98jXruwcZHndj66ddROcxLeCDn9vXYBuE3nLNdYt+KD8L/4FUcYyfvHG2A P4ruD+9kPPgPtKHnREOEl2KXh97IURv18B6hOfxH+KbYpeFZ8EXqxzYPnRK7 XbyNfHloGLSOc0e0DhpHfnBXeCc8Dvs6bfE+SbEbpnt0zU6JjtI1GTHaSNKX 9vLxKehx/Ej4JPxM4q/hlfTpXD5eRF38El4FP4M3kZzjXcK3SPqWH7m6o2dC V6Gv0e7oZ7Q1OTseCJ9iXOqjNdHi4a/QiuEt1A9PEfoU3Zr4W9qhSyPHDy+A ZlVHG3Twdl5CXniE7fHiojdQD52ND4g9e/wFhI8JHg89rW7s5PELsZ9XnrrG ILmnvhKzC/8QO3pHNL6E7ocR1C/dh3b0ItGJKJcnOdfWPeMDIP4Coh8Jn+E5 w6v5b8LbyUfrh/4P3a9uaP3wCf4TbRNLDJ8ZHtZ8SXw9R3wkvjG8rjmFp6YX of/wf5t3Epxh7OXN3diZ4rGVhWd3D3y2Phz14zsKfhHfHzt+/fkG1DFvtdWf cUSHIz/6+fii8FzGZn5mjvs2tDV+R++EXt178LxkJ9Yuawke2v+X/9/94gPA M+GJzA/v0z19w755R8+ovTElhqKxWXc8B5mFd+p/MUf9R+oblz7okuiAwkt5 9+5P7iG53v7fe7a8Y+W+S+/AN+g++W89v+vIFLTH4/HfoD/Je0uMPM8YjKox 4k/NM9+eb9XR/PT+fEO+Re/E0VxN3D33y1xPrMZ8d+okjmPsIn1nvkHfl7q+ Ce3ih4M+0X8j3/+XhP+X7xtTRh+Z2JoSPaV6sBPxBZm28BPy9C253p6i38y1 c3pRPt5gKuhM+VmDJ6a/pZeNH0w4C/7hJDabjnSvdLH0r9HXwlLwNceOE9ZZ HoxFfBgGjwGjARcNV+EowWDAXNAvKycjocul84bBoHOnn6dnTkxZ9WA1Ktbu NJafPWOmTy670ellFUuXvrri7bZ6fPIl7q6jMQTLrb7704/DXVRM3pbnXHwP unPY8eA3grsoXf4SVw5nAaNurMZMN0/XTicPB+B56tgSnb36sBV0+crgFejt pWAl4Cj0EzwDjADcgrwqU2c8b8t3KswBjAMsQsUiWSbt3Qc+3nnZy05zfedw EvqRp19YCRiERtNWHdcwCjAHjtoUrmOc8RWFtWjniWGtD3X0kXx4g8IkwJK0 cTh6P8YK96Af78GxYmsP52/dM7gNz1JjmGb8B6xHxinBSjR6vLAjrismyxLv wfaX/1m2v5I6xunZ6z7DHMvbuf5THhxLvfP2jow3dgfytM879L97JueeO3HB Pa9x+88LP9OO5ryjuOBsKeA9jNV8Mndhh8wlfcGJGI/5Ep+x2hpbYWfGC+p+ 5p86xug9ODenzVvjlV/P094nbIj+4X78F8ruM15W9tL5ryrmeJvv+qm5tYxj DqcEL+M7glEqnFCr7/lhPQoP1eo4d3/tlcEX+c58V1t12j18n75T3ziclef3 jOrFz6Y63ok2vln1XHuP8YmqD/X1HR+9fGg6Vye4LtfxH2pdgFFJPefxMWpN cR682Ha/m875OI0tu3VRgltxzcbDegnvwqYDRsWayRemc+svuw9rnTUv/ncd 2cgn3nPs6OFayJBhV7SFX+GbExYvNh72Cmu5ftiC2JPsK4kDzUYElg5NjF6U tIPDk+xlZMvK7UWOkS3bx/QXLAzawl653TeUvdzeG1m08cHn6NeeHZ1BfGXp y55tz0cLoKdDB6Ir5Iees8fbu+3p8aVp/w+th05HM6Hn9BUfXqEh0CjOw0Og dfAaoTviJ0w++g1NF97GtWeLnwa0nWv0UOxO4rcp9CB/KrEroYfCh6Gj8Gz6 QSvh6fBx6uIV8XKxJ8En4v2c4wldqxvsKD4Tv8kuBaYGX4ufxW/igZPwwfjl +AHCk9Mp4pHgaSQ8uDK8uzLn0UHi8SXyZ7JpfD25BGwMuUKwL3Ax5BpkxTC+ 5BkSeQh5BBkD/5/0u/Ax5DJkKWQxMDLkN2QusMbBtdMnk+PIV59sJ5h2siJy qOigpeCT6bpzTL7zyKKUkRnTaZMn6T/jcE5GRB5FRkTu5JqcSBmcPZmJazIg uBQySvI6YyMrIgvyrMZHXkeeRxbnGciO3JuOnXxPGfkieZsxkn+T55HPwfmQ adP1u9Yf2ZaxGh9sOJklGSD5KpkivIEEO6SdcnLu4L3J1tzfPSWyUmPTh7ru Hcw7eSPZH9m9/oyR7JwM0Fj1CSdAXujonZAD6l99cjnv0DU8uWfz7tVx3H7t WfTjvbgf2ab/yr38T/pQD0ZB35FbKtfOuIyHTDL4dXXJOt0n/mA9v3tppx/n xmD82rp2Hv+y8T3p2RyNgdzQvDD38ozK3ROWy7V5q9yc8RzwEf43WAdzyByJ HYlvJjI635NExmYO+ZZ8L74j9ST4CfMoWHoyOvI8359Exhc7J/Y59ELqSNvt htwDFoG8zrnxkVua33RN5HNwD9Exua9x+N6NF96CvFGevq0B1gVt9em+wcgp J7+0dsBweA5jJ8ck66SzInNUHhsAeAjrjbWHnmm7TzLn8YlmvM7jqyiYCWsY uaJ1jf4ta5yxWduyFjq3BnpeOAn6ODJPa2P8MClzJOskl1RmXY1/TZgM9gHk oLEdcO/tfQXfKE8fSeSi7mOMwXXoO7pBukJHfciLLyT9u6cxZT2Pr0952pHP ei95Rs8fX6HaO4ed1Cb+8dwjz5Txuc7Y8xzay3cv+wwcB/lofKWpF7sJdeWT vZIB25u085yO8rKnkfHqS5k9TZn9TZ/6cM88q6R/YySfVcc7TD1yXO/T+6F7 NU/MKfOD3JVcw55MvuuZonfVnmyULJVcJfuivo2NfNb+TNarbZ7TM+s388Z8 jMwZHUBGbX54H/qyf7s/GkOf3kXmpPsEK+PduI9nUYe8R1s0gffl2ljcix6a TFsb942fOO/Ctf8o8vX4m/PevWf9+G/IlNxbf+7rXFKuL/+L/iMnl6cftI33 7r8Iltc99C9PO/f3HPKCDdZWP+Tw7mM+GQ/6x322+7rTh+dTTx855vlzjH82 R/24lz68Zzp7+a79X8rJ6PUfvJN3EMyT/iLHV4cOIH4l9SsvPjG9g2CizRH/ u/849sR0Eo7xvalM8l+i9dCMaMJgm8xDZfmv6Q305RhZv7XYfcn30bfkZWhj dKl8Y0dDxn7afAtd6R5oT3QtGaYUXERkmOhg+eT16sonl0NDO9cvelg5eV5s u/VJ7kgOiMaGRVJGthjs+vY+YDRSN3oAslI0uvvFz1nk9amH7o+/NP2Hzifv j09f19p4L/pxrp2+tvtKw0vgVZzjQ8gBpeCYgqV3JI8kt8eL4Esil4RDCeYK r+AZjA+/sR1ThTcxFuP1HNuxVp5N3chRjRUfE/yY62DHPLP7+K/wI5FHex/x p0i+7R3rA4/iOjbx6jjXh/PolcyN+HQ0fv+P++tfCnbG/xw7fP9t+o0s3Lxw rg/390zmqP/FueeMrZt3kfcQOb33TGZMB2HemAvoA9+tZ8Gnkn/ij8lg3c83 5NvTnszc/6SdMvm+H3PTe/bfG4MxOnr28HLB2ZEtk31Hd6Xc+7E2RQdHB+Ye eZb43TMn9Os+5nr8HeQ/15//zvsxvrRXFl1G8HvmXvRo+pYnqRfe133wyuZh 5llk6fQo5OLB0+lH/5L65iM+PFjMfA/hs81x/Lhvw33yXejLN+BZJfV8e+r5 /7RVHh2b+vmGcu9g+iLHd+643Z8EmQHZu3Nt3cMzuVbHfd3He9LO0b2CAYzv CnXIL8jTY3tIbkF3Qh9gTpHjxyd3/EZHL0dWH/sg7cy76PfiA5tcJLJ98hT5 0RmQ05D9q+cZ2SqpbzxkPmQ2iUsSDCJdADlPfHZ4D+oYu3vQBZDxG7dyshlj NAZtjdW4XdMHOJIDqWMceQ/8Nca/o3buFz0FWVH0EJJrugTjlU/25Ft0Tt7k GF8lbLHYYdFBkGk5khOpk3hWZFqRVSnT1vsgK4v8jL4iZeRnkjrKycecO6rH n4qjRB4ln0yOXxXPKSnTVt3Eu5FyHX2JumRyuYeytMu99E2GFxs0dZ17Xs/v mmwvcXb0oU38YxqXPtm6kSOSMSb+E/lifMYoowshm5RHvkgGKV99cksyTPar 5JX0JOSZ+qHrYXOX8tjgOScTZavnmjxUO/JVcYwSC43s1Hn834hvlJhHrrUl n80YyEo9uzqeh21n5P/ksu7jPbDxI+Nlo0jWTBZsvNEb0c2QKZMnk/OSQxsb uS/ZMl2MuvLlkaeTZ9Mx6IuMOXJmehzyc3qByLvJlsmI6XfoaUqW3xJZNpm0 51SPzJsMXd/k7iV7H2b5Ox2P55LojvSj3LU2nouehww/z6KNMUZPpJ+S5U+z XSi5vT7oGtyb7sE7ikw+sfTI9PVbeqhWn9w/9qna6Ut56ZKGc2Z9TrdvS+cU W1o6EPkZq/p0Lu5Lt2I80SUk0U1FVxTdVNnfLnVT9CmO7qvf6mOaY/5FLxVd iqQ/9fShjrL0UTqF5fsovVHLi+2v/rfskVs53Q8dCR2Ma2MzztLddLO+LD5k M6YtXc/yfqWPmmZdm+cr3VCrZ775tuWZR3zJsg++23DRbHfMtneY7YyNgW0w 3Yxny3vVT+yg81+5p/zovOh3pHqX4zU6uXpf4zz2rf9xOmfLF1beX56z7LaX 77/e8XDOlu20eWc80U8ao/pS2YxPp9TzxoZb8n35Vuh2ouvUXpsaw1IP6tw8 p081530XNcdbvzn3PvSROVx25u19+GZiw+5eZZ/ejr5f3yW9Dx1X6aum2Saf jTI/XrVujfP6YE2zFiXuXGI5Wu+se4nrFl1Q4sslNqS1zPpEv0M3bn22fluz sxdYw63f1jjnyq17UuIo2v/s4fQyMDT0Jdljo8dXrp590X5oL3a0f0v2Ze3t 1fHrZa+P/y57OX1NcAP2aPe3Xyeum/7jY0GeeYyG0CaxR9Ac7uv57W+eI5gu dJTn8x7tA/YcY9iO09GX/dIzoY8Sw0SZZ9afPdU7QFsZM/2P50mMk9ABxmos nk0/aF70rHN0ExrGe3Iv79K7jf2FPjwbmk7/6MHYQWiLfkMvGZex6MvY6dP0 YxzqeFfet73bWP0/rhODLnSPccSe3L2Vx/7cXPHs6AnloQOD85DveaPv88yx X/cs8swP/5d7pk18bXh36oU+0964jUlbfSWGnudy1HfekbqOiamX+zmad8oz 99RJXf0bg/t5FnNKe9f6Ng/Qde7liE6BEQmNE/92nsW3w/4/35H/QZl3hfZB B6F30D1oHs8dPal+5Pku6WDVR085N4fRWmgE4/AteV/WEt+vtQHGRN3QfJ4j tInxhI7zbvXrfuo7amOc2hir/NB2iZGIRozfksReTexDfXhuOJzEFfWc7u3o G/O+tAstKN96ZF1K/eig9atMnmt9BqcTmjJxIhMfM/EyQ1vC6NCHWyeVa5M4 k/6/nDtaJ7LG6i8+3fVv/U1c3e3rLx2+NuqmjXqO1l/9Gnd8uLi//MT2zDjl aec6PiS8n+jhtYuPGPRuaN7QufrXj3J5xozmNH5jNFZ7gzruHf8xniX4AnuG PLQyOhMNnGfU1p4Ez5CYoeqqV/iG5V6lH/mO6nlP2hqP/oNnMH5jiK+axBk1 dv15p+rqy3w1BnQ4X5toR3usuuaHOWs+FL3Kd0zb5/nwMEfNF23R5fGlWdir 7mVbvjJ9P2gA93MdnBRawP6tbfER3RyX2b6OtkGX8DdS8WyX70xb40Cj2Of5 JPFcEhq+/Jm08dn30fGwWqHn0QH87ejTUT66HT+gbegDNIjr+H0pHEwbZ/U5 zr56nFdZo1mMWf3Cfi1pdtfK0U7ax3+P8SuLjx9t4ncUJs24ihZq5RXHoLWL fxZ13Q+9o9yzxmePd6m+Z884/I/opfID1FLoK8fEznbtmf138jNG7YyvsG3d KVtt/I/GU2MfZn9CuZc+KhbweM37Nk7141NIebA9hfdZ+mGFF3KuXTBA3pP3 7Nr/VNft/za+8rXU5qB7qaMP5erq11pA9lGYoWH2Y2Q+eXe+o6wl4RmN3z19 S4nNW/6X2jNon29QfWPJ3DIntak4462O701evi1tfAfyE8PXN+s7kBe6M+ug ddT6oZ3xKQtmMuuw/MSIlmc9swYmLnb2gOyF9hprvb1GWWQH9ifJ92/fkuxB aAd7DVpVW3uTMnu8lPi7kbGgGYInDeYo2Pr/HxcOrx2ZYHDyZHOx+SXrIh8k 2yWTJ08lkye7C06bLJS8k5ybzNyR3Df2B+TOZK70F7A0dGT0KnRisWuPv1U6 Hjqc+J+hs5LoR+kR6ZPi/zRxx+hJ6W3pDOFeojuGhUm8KO3JoOnI6ZTp0uml XdNr02fTh9Nd0yvSXSvXl360pSun62ano74+6NHjO5S+kr5MvjqwJmwh4STg a+gJ4zcVlgC+ARYC1oV+XT6cAD+VsAzK4BqCI5HkwYDAucBLxLdDfFCyiYLb gbtxX3ZhsW9khxZ7Mvad+pEHuwIPAUcBjwE3AcsSfIp6sVdj78fmElYmfm3k O8KlqA8PAs+iPD412ETKjx8cdWFCnMOxOOoXxsU9EuvXtfcYvx7s8tgKGnfs 8fiVYbcnn02efDaZ7ATZAcZecsbcnFo2iPKV8zfDhpPNpaSvOT7rMVtt5+NR ZX/pyO5xGQ9YKvvIpa3h7tgvsq9MPNY5Fu2Jy5i0Jx4/x3QVd1bc2KvKz4ky bWZbzDnea/n6afdgJ8k20fhiJ+n+7sUedLbjvCYubOLbzvaRJ5bdpLSsx87z wOyn5X5b8Wkzrm0xbRPXVh8Vo5f/GnaQnomN5Nzn/co3ED8x/ADxQcMHkP75 pImvm9nHzI7yHcTmd/Y1c275m+GPZo7b+5T/Jyawoz4TA1iZfH5x+LQxLvdQ L/fiZ0ed2RfR5VtxheNfR7n26vD1I+YxPz1S4h3zH+RcHh9DbX5veHa+ffgb 0sZ5m6PlA+jo7vr8F2243p6nriP/RmIui9ksNvNx3S0qbrM27V2Vf6P2DVZS Tz7fR67Ff+ZryLGtCRu/3R238Yru/nXe3vVG+243Gt+20daSjfb9Vmp8fpXz afT8bnWjvfu6bjx6tWm81EZbVzbaGrLRaLxKbQ/daGtIG+upG2292Wj7W3uW l220/bGN7+RK8sSkVt7Woo2279X1R7r/UWPQr3u3/7bylWvvXurIa2td3VeZ es7TX/vP6rr9P3WvtrZVG+Nr32odjan9pxvtv6+89r9vNDpho9ESG23Nq+eQ PEfG3f73utbWtX4aDbRx0+6M9q7Prf6ktnZutP1g477dq9v/dN7GHKP6VvVu 25q68Yzurzbaer/x89059d79d/4b122uVV/e4XO6EzbavrnB/1Sbt/UOGt1Z z67MMxm/5/Z/+q/5njI/2tpbz+9Z2rpec4jfJd+A99u+d/HAN9pevdH2gpqX 5r35pA//sRjf8o1fe/PcHBS3O/6j+OWKX6d8G74h3+0yvnb5hvI9J951rRV+ c8zs3Uv781qrlnGta/2yzlgfrKHWoMSWXuIVt2zhE4vaWm1/iA80Nteu7TH2 DPhB+Ed7UPwAwAPGvhkW0H4Jdxj/R0t78C1fvsGnwnXab2FJ4VfhSOH74gPO kY0wHB98HSwsPF38McRely2vZK+396MB4nsIrQAjpx68G3oDDZGYz7lWhn6B 05ljTn6naBoYL/QQGgjORjmMjXOYksRqTexIWBN0VeIiJqZzsAIwSrBE9N30 yrHFou+mF4c7gT1A20VHjNYLloMuOHZ+0vZ4dPHNkiO9Lf1rZHSxVQxeHQ0a Gyu6TfKo6AXRvWhbNCuZDBkLuhZNLD+x6fDAeN1g9dHE6gbnjz5XJ3IDMgw0 ORqbbCb+LfE4eA+0PZ4ZT4vuxwvgHRzxwPjT4gXxPY1XIq8Oj4pP2ZJvDzNf hrfCwxSPt4yDJ19dfI9j8XZLflO74rWGU7d4uMjay0fsMPOj0TPhMaOnSt3S m7FZGc/aOsdbhXetZGyNJ1QWv7P6MI6SMUwz/08HUeMcT9/SFWgb3rieY3lP ugw6D/qHslsaz97SV1WMv6VNk/Hi96ITiT0Q3SJ7mXuNl1bqh1dVzJC2ntbR Nf+u4vnR1fTjqyoeyep02eru4U+qjVgjYqDsHa5YfejwmooN6D+ld6HjefL4 tjbnD6z+7vRXq08f/qL6o/9hgyTOiXIxVR7RvX71YdNrqo30sO617Rt5c8Vg EUtF+a8Or62YKo+Z3lhla8PbV58x/WXFD/yd4a/q+PTxL9p386aqS34jzsqv j2+s+IPPmt65+uzxf1V8QUdp73hFxYFJLJinTG9r39xfVvwX9Z45vnP1OdOB iu3iWnrucOXqHw2L1XF8d8UgFItQvBlxCcWgabzKVoxCsWlOG/5m9fTpb1bP Gt+/eu70t6uNv1k9b/pAxbURn7Cuuw+27/IjqxdNH1q9dPpIxboR8+ay4WOr fzx8tOIW7hs/AMtT128e/nfFMJQvVo70mulQ5TU+p2LqiG34lu4fVl8/fLLO tRXnMLEPxToU87Ct95XE43ln99nV/zV8drXxcHN8nvHTq1dOnxPnefXg9PnV A+PnGs/7mYrnI0biYvzC6oHhc23N+Gydbwyfr1hA75q+YO1bfd/wpYoJJO/9 05cqXtB7x+X5+I8VS1HsRMcPj1/m52z148NXVv/P8DX4yIqd+M/Tdyqe4hem b65+fvhmxS4ST9F140thSivuoiSe0VfGOfaR+EbiHv1r92+r/zJ8r+prJ96R 9OXhO6tfHr8Dh1v1v959f/Vr479VHKb/GH9S7YxDvavHH6z+cPxxxWT84fDj itWoXJn7fWf6QcVjEotJP/LFdvzu+MOtdv8+zOXu8d3hh/YdOM7VH0z/sfqt 8d+3Yjn9ePrJ6k+G/5yP439We3V2rOzoxX0UI0q8J/EgfzT9uMaj7k+Hn64e PnT9jvf81L5VMaXUlxp90OtT7EjnFTuy1dXX4Wtd73n199OxlWs/zbElu/XW dnlf9Vw7HrbS9alffbW86rflVx+tjbGr49x9jU8d4zLetFfP/T2LY2JbuXb0 br0v78/1vw0/qvf1vemH9X6T5z/y/uR/e/r31W8N8zv13/u//M/68r98cfhW zYW2769eNX2r4l99bvpGza8vjt+qeZS4nWJ4fnb4RiXxsByVV2zPdhQry9wT P6vRGTWHHRu9sfqp6WtzauefmL5SSSytRg+u/v00x9L6u+mrlcTRElfLt/Ce aY6ble/H9yQGaR3bd+goPql6zq+YPruV3jl9po5ibf3l9On65n2z7+g+XeuG mFt/PH50dX38RB3Pnt5fsbSsTb5JbfVrXXrV9LGKsfXyYar4XBUzdZzXklOn ts5NU6M53lcxuZRL1jHrnTZiuGp/wfTBiotl3RSPy3p3Zvf+1bOG91fsrj8c N2r9tY9YS43pT6aPVswue4C4sPYK5faTrOFidVn37QXqWacdJXliymonfleO YnE9YXhL7SX2LvuJdV+e5PrB3Z9VfFv7mzhd9pNfGf5s9QHj+uqDpzn2rXhd 9+/Wq+4DhvVGy71qdRgur32t8A3dHDNXOTyDPbTi7HaXVFyuX5ourSOcg1he fKqXH/dxxjjAj5S97bRvy+YW3iKYC/t+4SJaWeESuhk7EL/zpVNY2pySC6Mn 0DpkxrE/JcOV0FVk92grR/LcYJnIZtFqZLnktcqCAaBXid5LXvRxdCHRZUXf Q35Lv0R+G5tQehU6NzJW9CXakkyWrg9dSk+I9qTjRWtK8lzTxUT3TxZLBku/ qR06l2wUjUveS/aLLnUPdemR0cxoY7pXelp6SvQyWSwcIbltsAbqxaeIOsEo 0qnDSGoDN+sc1lA+Wa7r+C9XjpaP30U0vDLYS7Je+NJgNWEz4UsTC4wMmOxX il8X+OL4voCZDb418S3iB12Kbwl4BPn4j8TOJkcmLw6endx4O/YW1hf+F74Z XhnWN3HqyZcT816+OvISPz7xxeCI4fTxR2TMEtsANgj4I/xU7FrwWvJjlwk3 TLYb/0J4tfhzjW0GHo6cWVnsb9i44OfY7pArkxHjD8mX8X/hGRNLKz7MYweW uFhk03xJJVYWGwK8Jx7TeWJGsSHDrzpnt4Vn3e6/lz2ZOvxK4WXxrfp3//iS cs1uzHiUs1GTT/7NB27iYmnvmTwbexrXfGzh3dndGYd8cns2P/rAYyvDt5N5 J26Ytvju8Ors6ZS7v3EnLhR+nezcMbFqvBNj8y7w7ez38P1k3+4j/g2ZOJs4 /H1ibnkH8ZeoL/fnR4zvsNjzkQ3wmWjc+tW/trGb1UZd+cbn3ca/V3yEuY/6 8YPs/bln4o+xo/Osxh//jv4/ddjbJUaZ/r0rdc0F88AcUKYP1+aPucIvZeKp uY6dnuRa/969+bfdp3Lsh3NNViGZt/L1awyZs9576ulHXq7jc9J5fGU6T/8p 4zOTjCI6HfZYvjmyDkffXGQj5Ce+Ofnmluvof9gp+Y6jM/L9qesbjC2bb9W3 yRZIv+yHYjulXDv2PfRMbL/oa6wfrtngsEMge2E35X7Wh7QneyGbSXwE+dYQ MhprjTWEnZI1Jj7G9MeeXF5skNgZkedYr9hMWKP0kXiJ7D2MSVt26cbFfsI1 PZs1Th/0bdY9siAyHm2sodZMsiG2HrF1j49V/btPyq271uHYOpATOcZeJfYr 8dUUWyG2KY6Ji+E8vpJiLxNfYrHvcZTInOLzOb6K7TlpG18D8VOsjj0ovo3t XbF3iK+B9KPMPfVNf7ndP1lsFuIH175oT2VfQa5lT5XkBXsW/0PwaWRe2afJ voLBj58u+fG9BYe2Pc5ncIDsF/SrXnwIwWrFjxA6IfGb4ndIXfemB04MFXXR B+gR+K5g7pXRRWtLpqY+eSCZm+cl5wq+JzSKvsntyNeCIUFbKdMf2oaum64c bYauIptLHCjX5GrugbZCc7nWF7mbe9GN6x/mJ7GY0JHoOvQaGaC2sADoR7gD 9KA+yPdggrbHtCGni8+RwqMMsxwv8aDI/tCUcAOuk+IrhfyvsAzyhxkrkng7 5GXKyNLIyQqPscR/OA92pPAgSx86ZIdkZ8FfkI+VzGwpN8sRTjfY6OCKg7FG hxfGeJhpcLI05xLaHq2uLXyyhKYn55KPrkfno/vbnlV+avjWke8avY8XwB+4 lvAD8sQ9cuT3Rj5ZHNmb+ErkW4kJrK16x02XlHxOIsMjj4vcTl2yPXwMngRP g38hk1NXXsUkbukh01wH/0OuV/K38bUloxP3SZ70a+PrVh85vL6OjY4oHz14 JLJUcZEfN72pZHRiLOPTfn1449x/95qKiyxe8tOGd1Q8ZXX3DG9oa8RbZrlg K8OXPWn689UnTq2v7s0lK1T3aeM7io/7r8NbV588vG31qeP+6gfPp4301GF/ yQ6TJ26zenhDZeR85IXy8IVkfmSU+FRjzX0iX9Su+m313RNPKmY0GaE40ZEb yneeNp5Dnn7IQfGvzkt22fLd07m21Q9+d5zLxJXWl3u6V+7nfeKXK271MOfh fat8Gb+6nmdcPmvrEy/sffhfvFO8r/fq/XiX3o/rlDtK3o130eipet/+h8dP by6ZqvNHT29YfcT0uvrv5D+me1Pl+5/NNfOMPNe8CV9tXuKfzQPzBe8smcuO 5qlk7prLfC6Z8zn3DYj7JRa25LvAd+O5y39V+9bIp+8zXFY8OTmw+vrzjahb 83qa569yY/Q9mMvmurE5Gi/+XhvjNkZz1fvwDrUrXH1bc8jXxfP2n/rf/Tfu 43u2LhiT78R34JvyPuSRh/u+3cO9fJMV97s9i7F5Lt+iWN+uvUv3qfGNf1rv 0BpB7m49Y8thPfCu3MNz6Vc9R/c2Ls9oXdC/96J+3rn3nbWo9AMtX1vv0/j0 aV3xP4pfbs0wHvIR43T9yPH1NT8aL1Rzwbu01gzj5VXumTyLdvowJv0Zn3z9 +4/yP6lX821Zbj1yrh/3db9ap9p/4uhaufurY47qx9ykF/A/OMr3v1iTHMmG zGH/szkt39H/TfdgjtMzOLrWjzL3Sb5xkiXpy3ekju/HdyP5HiXzSPKdRt8Q 3YP1YG18eyVrhPXDd239kaxP1ivfvO/feiBZO+T7ts1B/ejfMbqSrfVuue40 fqXWDzIw7+2c4W9r7Tlx+usaT61/bS3IumCNLp3KMu69Z7C+WHPcQ1m1a30Y q2c2Xuu09UwbY0yetb3Ox3nc8qqfts65h7rGW99Wq5vndsw6WGumd7Rcw1M/ 6/L2e8rTj/HV++rmb1aedV6edc9YlXn+evftubM+Z+9S35itn/k/6z0N81rq vdjXXJsTtXe1cnOl5pl1tM2dfCtSvgvzN3O/1tFxnve+Jd+vb8b3WHuydayV +RZqrR2Xa1f7jtAIJXscLim7K3QIeaTvHn2C1hA/smSUjT7x7aNRQsegU/je ozMsWeVSj8iuCgY5fv4Sm9J54mGWndTSnqrs/abTtvScyuI3snCr4zW6WTRd cMuFje3mmIrBmcZGKXhROE065sRPJGsk+yP3Q+PGDokMEW9Bhgiv6Z7wpOhj 9Dl+AE2Ob9AnXTeZJFo88TXUwT+QOeIF8AZkhLGfhvF0D/hMfBU7IGWx78FH keHFJwTMp/71Ef8CeFK+KvB88f2AX8Rb4kvxoHhOPCO+E0+JD4bvxHfHDwe5 m+v4pOGnJ35lyM3IiPDySXzhwF8Gj0l+QKZAphE/SpFPxZdZYo/z7UX+wvcS mRLMB5wkLCVZEuxHYmMF+8hnVnAjcCR8bPFFBcfItxbsJVwiTCcsC4wkfEr8 hokJMMd1uGILXwjfkhjY0hz/4OjCxhRusGL5vfv4JYZmKz7ajIe7qmLpwc4l BhxMG/wafJr4dXA+YtXB78CewZLB/8CQiUN3efeJK2HKYIzgq+CDxMRTDrsE xyQPngguTTw818FmiY0HUwZ7BL8kBYsFxwT7BKskD4ZLm7YebLym+7uqCxcG uwarpA4cVdvrC5PlGg5KH/BR8FftfyusFoyTuid0l1V++3/buF9VOC1HWKv2 fxfuqq0RdQ63pcxR/bb2bLS1aqOtXe3531LYrbZ2tvH8+YbYg1Jb1zfaXKoy SX04L/Wf123UeZtjdd3Wy6rznO7KjTYHq7z91/W86p3cvbe9x3dVUub6vO6D dY82bzde0v119eWZ2tpaY1Emtb2j+tWP8bk2rud3B7dwZ+obc9vXK7mvcTl6 n/LafKn27uPaOBz15f5tPmy0ebPR5k+N7/TufdW/e0vwbxd3H6lncN32pSrX j/ae13g9v7F5rvTVvoHKV+4eytp3W+WS/hyVyW/f9sal3Uc33tF9Gl6t2r+z ++zGFd3nKv1pd2jjgu5DbY5+rM7belDXknHqy/vVh/lmfJ7HGNzDdVszqr5z z+E9eD/mTaOxat6Zf/CDUnCD5tz2Mufmk/fsGkYPts58861cbzzyoP+o7VGF //RtPrC7bWFHzfe2JtX8gXv03cHxwUX6dsx5WETfjzx4Td8NzCQcJAwpXCUs J/ygmJMwfxL83hzz8rgak7nl2YzJN+279637ttWDb4XHhSe0Zhin/jyL/uQ7 wgq2/2AL7wpDaN2BDYQDzPokWbdm34pPOZDYMzCC1rUZD3i/3cH8zRjmq3bP MW/m2DKwzNZImME53s0c+3SJ995tjYX7hhGHBU/MRWuwtRgWnH9G9ZQ5t05b s63hEow7n4PWcLhz53wEwg5a9+0B8IN0E/wC2i/sCa7pEhKPRIId5FMQTh/O ns4gsRThC+kv6CfoC+gK6BPg8/nxox+h66AnSExE+xmdAJk8GwZycXshe4HE v5VgBeN/zrl90dE1H2X2VbJn8m77K/l4fNoFe2i/JYOm40r8P4kMmc6MjNp+ TN5u/yebJr9V5pwsmVw7MTXo2+K3Cg2AFiBDjmyYPBjGMH6yyKDJj+OHVZk6 ZMfok+3+pMho42+W3Ba9Ev2jaxjE+JRPnDp6TH5d4jce7ZO4DYn7Fn/yylzH T4xzelXl6ChyWrRVfMQ4R285Z0dD7ho/KvHpktgL5LWJZS1tj3PtXB67WnY8 zslm0YXKtVMXXRiZbmxt6Zxdawsbmbra01GjKWO3qm90Iz8qsU+mq5bvXmSq yvWtjXN0qXzyWzpwbemsXTuia8lzyYjJfGP3y4ZVkqdcolNXRlYce9X4rKdz J7dFL8eXc2xO2YSS69LXkw3HBjb2o87lx6eJo/bqo6+D4Yw9aPzdp1x7zxVZ OHofVpGsNjJo74O8mfy4bOwab0Dmi5aXH1vU+K+PrWSeD0/gWp3ERycTJjMu m77ppOIfyLfZuroPuTCZrnEYuzbeqf7cu/zkj3NseeOIfa93hQ8he4eBSNK/ pO/4TYi9cHzCyI+NsOQ9BScbm2Fj8AzamQPaycfPmCOSMpgLPI//3H8av9nm Hnxu6nr3rvEz5py5at6pGx878dETH0HqRbfhm6PXiL9tfI9vKDHkt+Mx8FG+ TViM+FByTT/C5l++o7x804kRAa/MR4I28bmUGCyJyxJ/UvRGwT/HJ1X8Y1uf sn4pp2+JL7BgreMHK3E1ldGJ0V9FjxWMRXxnR1dGryVpY/221lo3rYXGgOez nlqTrb/0etZQuA54cPnxOWddtt7T91nbreXKrNmJO0SHaL/A51nTnevX0R4R nSReMHZ+9Jiu+Vqk27R3yE9MWudS4j/F1yRMhnyYCxgLOtrtMaLkwWHQxUr2 PnrbxJfPXiil3J6YuL/2WHunfde1JFaV8sSzgteQ+CGlD8ab2qPxp/Tg+NLE JnYerERwGnhUfndjY4A+QDvAJMTeQD77vcRgZusXugKNgVfln1hbvGvy4oOZ bQRbO7YRscdzRAOhmdjSsa9AU+FbHeE02FqwwwjvykYuMegltmd4Vgl9ppz/ avwr2k7b7fHpZ/uz+23FgGcXooz9hyPbuMQ1RAu6J/oPbahOYhOiDbfHKMQX iyfufmxK2DEubdSOb7RW0dxik3vGxIPUli0XOy40NFsy9KYxoV/x0/jlNs6K +47HXsYy34rjrq0jezF89hwv/d0V1z5x19HUbIHQ6mh09Da+XD/aoJ/Z58gz BvnaorPR2Gh0edopZ3NkXPgE9LnxodWV6U8b/bFlc5447a49rzx9kxGg9dHt ytjEeU73it0Q+YB48Y7SbG/0gyrHu7DN01YdKXZGZAzGqH/9OWdjpI32+Ady B+9GXc/kKKmH5yCv8MzsnuTrW5m81CGrwLu4J37Kuf+SHZ17qauO/h31pR9H bbxb7ZyTbWijTP95Bu2Uew7vzHN6T967+5BfGKv7qot3Y99lLMZofviPnesz bdwvdnzmhaOxkIWYL/LYiHmHxuOaPMQzyTeO/Mds0NjusQlTT9/upX+8It5P mTqexb3a91B2f2zK8IKS9yQfv0j2g9fUlzEbm/7wmBlv7jF/P3cq+0TJe/Nt ZG57V/K9i9hBKldP3+ZWbC09j/erT3nK8x7VN8fzH2jn6Dswp8KXyteX+a6P zHXn3lnmtu82NqRt7Sqe17eS89jC4aN9/7PN35/U0XdjjWAnx/6UnWt7zspX P0fflTVhtoM96srY+8aOVr/s6Bzdyzrm2hqgjrZLuV+tWdYoa6k1cY73Ol87 Wi/Z4FqPrcVZM63veOKs62SSsZ8WHyA21eyy2V6LO4ovtl9YS/HH9pH4+ccf J+Zo/O3LxyezDycn5Uc/dnfK2eTFh769SdwHdexn6ihjg+eeMHXa2pf5SCfn hdPDM+O58dFs6+2/9mb7qb2RfJfdnWu4ytj8S/Jg3vDF9n8yYXuxPRkGkYw5 8mb30wZ2EQ4MPYIOQo+gK/DLyvDKaBf8LZoG7RE/2vhn+WgkGCq4LD5m5aGl 8Lb42vh/Vg/eFc0W/7vwVfH1irZzTHxFOCN0G/oNfYeeQ/vB8MLy4leVxUcW LC+5PtoVrUmGzy8XuhVWBw2LLoYHwj/C44Rejk+J8JGh2dHd+LgkvAHeDm+A 98Iz4AXwFXiJ+MpJ3DB8EV6Ib5DC1AyzD0hHOhTYGjoWPBbdS9nOLf2j4JXo YGKHFps4Nmvs1PBJ9N1s0xJzi96HjqjiRY2zX0JHuBn6aAmmJth2Oii6pmBd 6JToouny6bPool3TRdNR0fPTPdMt05MHy0JP7ZmDNaB7o2+kW5NHJ0YHRl8G n0LXSydbOvBWRi8c3Rw9HN0n3Tq9MN2uRPdLB00vF31d9J30e1s63W5/6YH1 pU0wKcr0E/1p7NdgLrSnU3SkR8z49RU9aPrJNZ2m+nSZwb/QXdITF36Gbnh4 x5bONLYPxuEo0YG6Bx20to50t/SayvWVep7T0djk0yW7dl9jSv/O1fVc3pX3 XfrK7rWzrn+cdfn+p2CKnEd3qZzeUx1tor/0P8IFBH/gP4ftoKOEBaG/3K63 hIWQ6DMrztoyDlv8WxZOYpjnJ1tM8ztxvlzHr2ZhwMY5Zpnvgeyg/Bst7UV9 G74V+fHHA/8WfaVvDAYO9o0MouLhDadv6Tl9j/GZyr6CvQVZwpYt7DSWvEDf cGzsOvRljbDe4LHJKoxFHeMn14gNBJ7duhGbWjICvHv8BVpjyAXIDcjG6B+t SfF7TKZGNkBeQBZBFoW3t47hb619+Gb8tzVPCmZTSsxT2ExrI36dPJDMEO6S HFEdPDEbCOsvnh0fTjaI98a/k0smRimePDbU/GHjmfHcjuHF8ddwr2wd2Dfw x87+IX777Tews/YIvDb+2j6CT6ZvtX/Qvyb+MNlrMMb4bPpU/DE+Gb+Mj04s CfsTWXCwyPhkWGW8shR5MB4XnwxbTbZsX8Tb4ovtvfD+ieMS3zdk1jDecOSu t2PaxYuJbQAZd+LbkH1LeF35sPPk4vK003986USPiwfG/+J31cXzksvT56IV 8MziOqEZ0Bvk9HS8aA10B18B6BmxhdA3jnwGkP+ja9A92tEr8AGDp3U/dBPa CH2CfsJLhv/lH4aPAjw0njk+VWafLOcWbYZHnWPRX158a3yz4H+v8e1SvlB2 L32/lD8FdCH9iiMfLXQojujEJY145awj3nHlkhcumjL0qTz6GNd4YfwMWha9 jAZGK7vG4+HvHPFn6G10dfTHaO/4MEHT43Mc8TThsfAv+IPwTniEmZdZLT4D jxS/JPTJztv/ssWrOKePjr8QvDNfHhIdHD8a+Hq6Nv48+OPgsyP+OujZ6M3a +y79b87p5+hw6drogOklf787sKWTpAekZ3R0TSdJj6kOnatzOk56REk7OlA6 ZPpD5/qmH41+11E7+ll9aE/36ZpOUFn0n861jf7YefSn7XvbeFX3cfxPjc39 c/267pN1rl9H+lC6Utd0uvSpEl2na30d7L5QY/mH7mvVR/u/8ZYH6VtvNF77 IN1+dMaNNt5oa8LGdcYjDn6u+2Y9q2f2vPprdPDBto5stLWinpl+2bN5BnpZ +tpGj9d71LbR2aXXNQ516Lvdx7OqS/erjP40vl+8H+/7n7vvVp9tfan/23/t P/Y+5avjv6Wjpfs2Tv8n3a5xwQK09aN0qvSh9Lbq6IM+V1nmiqO5BW8gmXN0 surQ+UryjSN+aDJec9fR/KXX5W+Hvxd+Xbxb5+Y7fz14cLw4LAW+Oz5i4kMG b+17wvtHRuI7w+P6Ln2f23lbfK1zvOy8LvxeneNzt/Os1gQ8KN0srMnMk+7g 18naVLI18jBr1TLv+FmutqPKyeasc+SA1sK2Xmz545qxLBeXzy1rpDL6VzrZ +PMii8N/bo9Fhz+kY8XnWWOtzdZjbdXDR6pjbbdPsIsSH82+EHkpfE/8sfD3 Qp9Mxmr/IaulvySnJZO1H9GjymdnBHcER2TfUk6mG/8qiZ3E/4pr+6lzulT7 J96Pn5X4VsHTkYdH92kvZncTWyHy9Ni9JK4mugA9gA9EG4RGiO4TH5gY2Hg3 9iDsRBKfIjE8HRMfIr6n0VToIvQTHQn6Ca2Ft6O3iv9Y/Br+LfGg4w+W/gft hvajU0p8ZbxabCPweI6hB9GkMHXwdonvi75l91B2EUvfJYlfWz73W/2K+9to YLYL+DK8GPxf2SRMs00yWhpvBjeIF8Nz8QmC1i5c9Xh54QrL/nlcL2w0bC96 vDDZjUaHuYYThvWFoUXnh7f6zektM5YcDn2JpQ5uFga3sLSNT4NH1Ta8CH4G JvR505WrfzjMduP8dxQmfnpn2Ze/aFqsvnh4V6WXTO8qDGts0eFa2Z+zPb9w /FClS8aPtP/y43Xkf+Pi6cNb9vF8Z7DL5wuDfwz40BeP7yrfHq6VfWT6cvmh 4DeDT4/zhw+uvnr4ePnD+PDw5dX3DpvlI4MNPv8cjsreN36pEpv+/eOnVj80 /VP57PjA9I+Nxr+q8f3/Wr4K+K7gq4CPAr4C+AZ4x/Sp6rOt/XWPTw9fL38V xsFfxleG765+dfpu+T3gC6Gt7eXrgE8DPg74qOBLg3+E+NTYHL5ddfi24CtB 4n/CkQ8Kfiz4aIhPCT4cJHn8O/Dr0A07eud8SPAHccRmV/4mHPmPkMf3xBHT 7DOifeNVpp+jpsP7I9cP66+1eVjv/KiVI2Z/E11LrT/5152O6K89tLLuiPJf UXU3D++vu3Jkf+31w6vdtdcO7683HNlfazqs+pd/rZXD61rZddaOqGPdo6Xr DEdUnvvpy3WOkrZVt+W5p7ZtrZrT+nLMy/7ruKyvrmdra1nVUz/j2Tke1e9c O6q/YXft/gbDtfrGO/RHDodVX3Wf9bme91Xvsr3DGrNn7Y7sr7N+RPV7xMph VcbPhvfu/bf1s9rI847ruDL7AOHfQz/8ZJgD/FwYh//Y/fXF3wafGfyi8L/y ne6H5WODXw1zpfxldPOc5KfFfFH/G+P3y7+GeWSO8c9iLvKPYX7yeeFcnlTz rc27yhu+WT40JHPY8dD41fKR8aFu9g3jOzPXPzj8U+XxGfOx6Z9XG220+u7p i+Uv46+HL9b3JvmG+LIoHxrdF8t/DT8a/GKU75uWfIu+vTeOf9/W8v9T/i34 xnndNPvSecP0yfKt47rRY+UT49Xjx8s/xvnj7MfCesI/D78+Z3fz+nLm9L7y gyGdNv5N+cs4aXxPrUPWI34uYO6fP21s+cWwjlnX/mA8UP4tYNkLY7603SF3 CSadjIecybrIToFcyZpKzgIvTnZSNh5t7S07sLZ2k51Zu8vGZnp1yVQc4/NJ PeWxGSOLsx9EXhcfFGX31q7J+9i1VByU6dzad8hO+KAoX87jKSXvID+RyD/I SBLjvPwHL/c5MhGyysQej/9fGIlgJ8g/Ew8cBoJcNL7j7bP8Q8gn13BtH2a3 af8nhyUvsZfaa8lI7NfsSskj7PWJV2HfThw08l4yC7ikxANAH8Bvawd/QJbh PHHsEv8r8RfIJoLdThw1sha4AzQIe2OyavIDMgfyhdA5aJnIHtA/6pF1o3vI x+njpcR3RDPR1SfuaOylEyM0/nnRXuTwZA3k9GQRZA/kDuT4ZAJoNbIH+LjE sIbtRuvRsbN9J5NgZ5+41fHpx64fDemcHAF/T3YAj5f4vnTqdBPkCmQMdBSJ CQwLnhjC8IBkC+QI4hPTjzjSi8ASuiZzUA6DSM+Rc7p5ehc6GLQxzCL6OLp4 +ho0NFqaLIIOfvaheHnpd+h6rsGUX1V0euh1eiF69RlfWb5rC5dJl73EYe5e +pkt+cLSv2PJFPAL5Ah4CHqsHMkP8BTK8BtkCXgK+jLXyvAX9Ij4LOd04Use Y3d063gZej39Rh6Bx6FrjLyBfi/yh+hlyRzoauXRWeKF8Et0l661jy41+lR8 lnO8FDmE+q4jl6DrJIvAiznHh4Uvk1xL+Dj3iS9V187xco70rHyTBguP3wse Xj7eD44X/6c+HK98Mo7g6vVLDqIPvKNzR7xn+Ed14gOVDEQ/6mijDllJ/IjG 5ym5CfkIDDz+Nph4fD65SPJgkuXDQMMmy8c3yw9PjZfGs8OcB7MvD346chA8 u+tg1iV8O1kEXDbstuvISxzJNuTBcJPFSK5htckHHMkR9E1+ga9XV1+OZB65 Z2Qx+iT70AYm3rPi+z1bZEN4eu+GXUF4fe+MHEG5MnmO/s/lvF5irw9e6T2T Z5GFkN8Yl/lEToaHx9Pr17jIPLxbsjByM3NGn94jmYT/zjzQxlwJ5lyecbqX fHPPPNe/byXzijzCM8J6RxZh/qvv3Fwxt30XviVyOmMldzOn9OO7UK5/34dv 2dE1nb6jb9X41VOur+j3favkhL7f+EaWrBHkE7Ay1he6e+XxsWztiO48/mjV 16d1x1pibZrx5U+pevT1ZJ9LuWgd45929iENt3NMrXlL7FHp4fUR+cfsw1be U6JvX/rlnv1gR0Yyy123cOzxcbv04528HYVtt/bGloeuPj5vrcPBKsGzS9Zw chRruLWf/NneQO5BTuKc7NlesfSVW5h2SX37B/09TJd9BebLngPnxdeNfYWt kjqSPHp5+5BkbyL7Dm5MO1iB2Xf7i0rmArdu74vu3xjJbcjd7ZNkLXACyo3B HmlfhYt3bHO8dPf22e17q3K2VnBv7K/svWQ45PzqqQ//RrZjH6c3UGbvTix7 +WQ+5DmhA2ABXMdXERqBLgItEb836If4OOLHBt0RHzXB7tF7oDscE0uAbsQ1 mRHdSHw78SEDQyBetiN9Ch0L2kY5WZEjmRK6Rz2yJPIjdRJ/O7HGYQz4eHEd /1Ou+YdhNydFzwOngPaiI5LImfir+b+S5WcR "], "Real32", Appearance -> Automatic, AudioOutputDevice -> Automatic, SampleRate -> 44100, SoundVolume -> 1]], Audio`AudioObjects`audioID$$, Audio`AudioObjects`buttonState$$ = "Minimal"}, DynamicBox[ToBoxes[ Audio`AudioGUI[ 3, Audio`AudioObjects`audioID$$, Audio`AudioObjects`buttonState$$, Audio`AudioObjects`audio$$, "AudioData", 2.25, ""], StandardForm], ImageSizeCache->{28., {16., 22.}}, TrackedSymbols:>{}], DynamicModuleValues:>{}, Initialization:>Audio`CheckID[Audio`AudioObjects`audioID$$], UnsavedVariables:>{Audio`AudioObjects`audioID$$}], Audio`AudioBox["AudioClass" -> "AudioData"], Editable->False, Selectable->False]\)}] |
So how would we edit this video? In Version 12.2 we have programmatic versions of standard video-editing functions. VideoSplit, for example, splits the video at particular times:
✕
VideoSplit[%, {.3, .5, 2}] |
But the real power of the Wolfram Language comes in systematically applying arbitrary functions to videos. VideoMap lets you apply a function to a video to get another video. For example, we could progressively blur the video we just made:
✕
VideoMap[Blur[#Image, 20 #Time] &, %%] |
There are also two new functions for analyzing videos—VideoMapList and VideoMapTimeSeries—which respectively generate a list and a time series by applying a function to the frames in a video, and to its audio track.
Another new function—highly relevant for video processing and video editing—is VideoIntervals, which determines the time intervals over which any given criterion applies in a video:
✕
VideoIntervals[%, Length[DominantColors[#Image]] < 3 &] |
Now, for example, we can delete those intervals in the video:
✕
VideoDelete[%, %%] |
A common operation in the practical handling of videos is transcoding. And in Version 12.2 the function VideoTranscode lets you convert a video among any of the over 300 containers and codecs that we support. By the way, 12.2 also has new functions ImageWaveformPlot and ImageVectorscopePlot that are commonly used in video color correction:
✕
ImageVectorscopePlot[\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[" 1:eJzsvWdwW2ea7zm7+2U/bt0PW/tt927VnZpb0/fO9Hb3uLtvux3akmXZkmwl K0dKzDmBIHLOkZkAcwCIjIODHJlzJkjknJhJyXaHmbp7QCVSstiyWpbb3az6 GXWAcwCRLPLn//M+7/ue/3yn8Oz9//Uf/uEfSv936OHs7coPSkpuV537P6An FwpKszML7mV8UlB2L/NeyS/v/G/Qi//X//IP/9AF/Zc+hvd4X0ZVrxe2j+qD VIleClzse0Wq+3wIif+Ng5QGXgZKFvzLwUiDWMkzoKf7z2JloZeBkwcPEt4P XhF6DQjK8H6IqihRFdtH5AfkwBemDJPlByDuP6sIk/bx3Dd1yLf/wo/0AK/3 I31THP61PfsiZUHiQaBXDlwjewZ2H9BTgvQA2AMX+LBS7z6gp/59eF/Oc1e+ FhI/ps93AIn3FUH3ef5ycCLXfqBXjlx35Loj1x257sh1R647ct1fuev+mjly 3ZHrjlx35Lo35brnrvyrkuSR636kroMf5IDcnuMFoR3Cj9F1aOgXSfoMzHPH 38F1of0c/EsJH+SlZ19wXWRPd095qYhIb4LDP5Z48Gsj7dPdI6eRn5B+qnzG 35XrIAjyZ6IjHAQv+w6uw8uegZP596z1Ml702xsGI3mOt+o6jPiZ6KBjrNhd /UJgewr85cntufBWLfYh9lF90HVv2WZvSmiHuw4jCz0FJ91HWmjhl3PY7/8L Novs47m/o2envs11rwRJHSW/CQ75TNLLNUhWRqj7oCgPC4ev7bpX54e1Yvob eQJRHiIcjHmHBMLnXLcf3HOS/Ba/vSzIHXLlq/P8Zx4U2mGR7424Dt3nesae 945c97q6Cz3ieddJj1z3Utft58h1LwNyHfFNuA4vPXLdYzBHrnvrrnvxFxur DD8Cp3zu1CGuCz8aiyMooxDPFapvymBvhCPXHbnuyHV/M65DH3Qd9s+7LvhE ZWmbYRWxR+BeEBpBESEqogT5IyIEefgR0LsOuE655zp1mKgOveC62PP+ASL7 CD953ONbr//eXEc6ct3LvqODriMc6jr8ITXskesOcZ3IixD5ngJ/udy+paO6 nz7/fr4noX3fcttvszTyg+w7hYX884Rv89v+bBbAKwOPLIdL+y2OTfPIddHH vQb5o7++yCOPkRSxPaJPeZLl9iwHXZAmQlKFSKoASR0gAwEKEKSoIxRVjKKK 7yNKUUOEIcjqEFkdfPL4hD3d7b0rmQaIUoDYI17fdYdC3lPcI547dUg/97Vr 9sPf+Kac+UZ0uqe7x+DlIdxLLku//vJo91xTAycL4GT+l3Fo2+KNuO7gPyGB 8D/hO7QtvkuDw70frMj9vOv2xbPv5LqDjde3Ed7esusw8vB+DrguHc8eA8Wz P+M6ReBJoos+4fEbD7oulEb15ODpn4wq/TQd4dTBR5AgZakgwmSoMFRF0k5L my32xHVJqipFSfPEeCrIQuE9IgdJpzvK40+IUjRxiib2CDLwPZS3hw70vbrB /iZd9+r8mQ7v87p7GYdPQXlTrnsZ35Prnk96R657s67DHua6/RNIwlhlCKsM PgWn3NebgI5VQbw6iAeCWHXgKTh1AL8HQR0kpHWXrltJqmDadcoYWZEkK1cp yrU9knspLgKlOOrjtBZ9LMDHtepz7JW36hBF7acAbora+1R0R647ct2R6/6e Xfec3/ZzsKcQeTSq9oTYHntjUGmb+Z8ZTBUkQK+onua3CF4dhiCoIwfYq14J 6hjEo1E7EpTH0q6LpHWn2gOAFAdZK0gFAlSNlwZ4qYCPCkBPQ1QgDEHRRNNA B0AoXfBCaEJ7T6FQB0VEf1p637PrDufIdUeuO3Ldj9h1ihhBEd8j+th1Kiit BTHqEARWtVfAKkJ7M2xDVFWYqoIeQ3Rl+AkhqiJEgx6VIRJUxqYH6NKrJMgQ yrTuoEhG1rhJGhcRhB49ZMC/NwQXSWstHfAikOVoe1CfATktrTiSJkKCch1k NnWCokxR1Mnvu4Y9ct2R696y6xAHW6iHtFOf443Y7HChfR8GO1xoh/DqrjsY 5A6u2FLGH7M3UQSvDGGUYawqilXFsOnXYxRlkKFy0eRzFMkQVWJh9JlZfUaO WM8R6Th9Jr7UxpcNcBXDTMUMQ7FEUfjJ8hhZnqIqUjRVHIpnBI2XoPUQtX6S JkoCUkT1Okm9RQI2aOpVBhBnqQJMtWcPN0PtZgIeutoPqY+sSRA1SYImgYfe pUm3aKGMR9XEn7I/4/0g6ns9XuxxfB/O/KtVH17+/BKMl4F/3Ll4JQ6x1sEr 35A/35z9jlz3Vl33VHfpAyjmRXHpLBckQYpTB1nKZVrfKLlXT2wX44T1pDYO vZXJbCGz2/D8TkK9mC6Q1QllwiZ5R4NKUgdo+ep+rmqSpXIxVVEq9NcNxPBg jADGIXGRgCRNlWSqkmx1hKP28tRzfNUoX2Hjy/V8ha5WqatVG+rV5lpggK+a Yqk9DHWEBr1LEyOBUZI2SgKhNHjkur8r170ih7vuuSuPXPfjcN1zctsj8oQD rsMpD/CqrlPFofKTpgwwlMsM2Qylx0BqF+Jb+NgGKq0Z8huRLUDzBJh6IbFB QBC0EFq7KO29tK4+erec0QMwe7Q1XVpBu6FVqANq1WNs9TwVCBDAFAncIGmS bDBSC3h5knFWL8jt7eOLWutENfW9rEYRUyjltMg57cqaLk19l7alDZS0aExN 4AgfWGACbprGRwbDJDB2SK57Ohfl24imTQjs+fBwjlz3o3RdECcNvJR0nDty 3Y/Pdd+W2Z7NEnnUUYVSWfpYFd3PC67br7v4szJWEaUq/Wz1ElMygK7vhDGp hHoMpQ7BqEewGqo4TRU1gqqmFoywhdwmpLS1ULu6KF09hN4+nFSGVSpwAEDV 6rkaU43KLBAbJW0GCxuYoamCVG2SovbxwTm2CCTU13GFnNoWWlMrvqUN2dpe 3dGF7BFhRWKcWIyXyCgKFVMO8GU6gdzSLTIBHQZ7DTDBUDppQOig6w7oDnqF 9hKoj695QY8v8hdM2zty3Q/lOvyhn3OU6/62XJee90tQhMnyvTXair3LVDGs KoFXQsQhcIo4fq8HQVRESIpYevqHMkFSxtL903SuS1+Gk0cYmjBdOo4RSmEc NoyKxrJQNC6GwUXxatD1TajmFqSwE9PShWntxLR1Ytq70T0SvEiKkUnRajlW Kyfo1TSDnmsw1ptsdaaBeqW1Q2Q2tujG6DIHpkuBEzYVYEvIXGR9I665ASNs RrcLkB1CuKgNKe3ByHrxMhFZIqLJJSy5gqHUUlRGqspSrx9Q6IaHRIbJWvkC 47HiIuR0PRva69hG97kuuk9xCaj+pWlSEFQgRQGSadI2iz7Pkeu+Z9e9otze lutec34yTuLFPwEjfWOuQ/b5X8ZbsNnbF9q3VabfzsEs9+gYejGUXo4qD5Fl IZLskevCKFUcpUrilAkore1N+YjRNDEGEGKpfCylj6kIsRR+lsLNVK9QNS6S yktV+zlaH6F3oJJVW06pRjLLybwKBr+axauCqGlANQowTa0YYTu2pQsl6EYI u1HtvWiRlCiXkTRyikFJMSqpeg1Vp6NpDTSThWmxM812vqW/u6GNT6ojM1pI WGZxbuklBgtWw4cJ6mGtzfB2QXWHENbbUd0nQkskOImEJOmjSuRQrqMrtHiF Hq3SUzSGWrNF7HDolIZBpmqFoQ3StMG067QBqtZL1TxqWCSg8EYFI1RNlKrZ X+pCr6eomlUquLp3HH+RQ2Le25/C99q8tgYPc9Sb0GC6iS9/BvFQXs+Kh/NG Wr04qZfQ9wy85DBwfS8FI/bsB3rlyHV/znURrDKytzz/6dTfEC5dvUKnQmhl AKP0owEfHvQQNU4yMEdVjRNEFlKvntSpIrfLqB0yaruC1iln98rZYhlTouQr zXUKG7FZXExhFBOrqpnFBG4+raaIzitl8MqYNZXsBhivCcZvqqwVVDa0lDe1 VTS3V7R0wnpEqD4JRq0gGNQUM0C1AjSLhm7RMsx6htnC6R9qamxBwrH5ZA5S 0E7B4TMQldeZlAI+u6ipqbSltaK1vaKts7y7t1IsgUtlCKkMLZURFQoaoKYD AFEDYrU6vM5A0+p4JkOjfVjT2z/MBcZYah9dvUnRbJDBKCS9PaJkTZwMJshg LP1UF0yj9ZN1vif4KWB4T4OP7PcMCpA4ct335zqi/IDrDtfdX63rIIPtdx3h yHXfj+u+vbX6WHSPXYdRhTCqCFoRgUSHU3ppWh9dO0eS96O6VIiWTnRLE66R Rmgg0BoxXAGuvp3U1E0ViGhCCbWuF83rITfLWwk1jFJ0ZSW+rIpUgKLn4Jn3 ifT7VFoem1XM45fV8Cvq+GX1NWWNdaWCxtIOYXlHS1lXe6W4p7qvDymToyE1 6TRkk4ZqAWg2Dd2u5/bbmtQgNa/0JIlZTufCBUIsGX8bUXqORcqq5RYKmktb 28r3KOnqLhOJKvvEcLkUpVIQtFBEVNONINUAks16itlINZkoFiPFZOGaRqVS u6VeNcWSRZnAJhWI0kAo3S3TdAs0jZ+ano0cpGq8VNAD/QSooJ+qDVK1ISr4 iMhB160+4i277nviyHVHrvsbdd3+GvbxkB1GHsIrA1S1h6qYI/YOIgR9lby6 Kg4TzceT6tGsRhy/GdPYjGprw/R2E/rEZJEY19uHFEmqe0AmoQFZUJ2LJMIQ +OJqbC6Gmk2gZZEpeTRqIZNVwuGVcfnlfH55Hb+8obZM0FgBFZ5dwsretsq+ brhEDJcoETINVgHiNSBJD1LMWprdwBtytAgExUUVJymcEhq/oqULTyLeRFSd q2UW1jDyBTUlbXXlbQ1lbY0lXS1lvW0V4k6YtBepkGAAOUGnohlBhglkGPUM o4lmNpGsJqzFhDVamLZRpbx/qE49zVV6ajQBHrjE1gyxNCYmYGOqHSzNIBsY 4WjGuJpZHujkAH6WKsJSpRiqVTqQoj0qWtPZL0YBo495uzXs34nr9m/yeeS6 I9f9Rbluz3U4ZRSvjBAVEYoiSlP7mKppXKe+hCssZXBhTCKajaHUINn15fzm 0tpmWENTVUsroqcd09eBlnVixJ1wuQRpNjO4gqpcxL1STEEptrCSUIQiFOGJ hQRKAZFaQGOVMbnlrJpyDr+MV1tR11hZ31ze1FwhFMA62uDd7eXirjKxuKxP VSnTIZQ6jFpHALUUo4FmAukOSyOPnYvB3aSw87lNpY2tVfdzfleNuk6hZTFZ eTW8YkF9eUdTZYegokNQDn1UT0+lqK9aIkXIFRglgFeDZEBLBfU0nZFqNJIt BoLdSLYZ6SZzra6/VzWkaQbUfDFYJwZ47Z1NopZmGV8g5wmVDW3q9g6wtwOU dul0XbrBds1Uk3qJC3hZaj8DiNA0UNkbI+qiJG2ErA2TtaG9tWkvd90r8kO7 7pAd6d+265QhkiJElj+GeFB3b3+8Di97bhP451oV3w6kQYLER3wCXuJ7I+N1 WLFnP3+J637YBVyH2OzwmXKHzAE+HFy6yRVgqIJcpZ/WPVTJaS4kkhFMAp6L JbHhTF51bR2svqG4oamosbmipRXZ3YkXdeGlHVhpB1LahdGD3Iam0iuZxzOr 7xSg7+UiMkqx2Rh0Ho1QwiSX8hmwBnZ1MxMmZFS20Cs7OfDeWqSovrqvrlpa j1IJcGA7VteN0YqRoKwaVKFAEAdq8aCOrNdTbBaWQcNEVl4gYO/SGdnCDhiZ ee/y9d9gSXlUZi6nrqC2oVjYWNwpLOtpLe9uK+ntKRNLYH2yKrkSoVKjNSAO MJCUOqJaT9QaKQaokjVQ7HqqXUe1GJhaI8s23t4LcnCM4vpmWksLq7uLIRJh e0XIXhGqT4GXqckygKLQ8jRGodbYo7Qq2+2mOtDBVc6xVH46kCRrVknaZHp+ su5RYbufV2pb/IgS4Gt3aV+v1fv87YoO3pfkUdJ7mzznvVfs7UJ/ViSp/ynE g03bw133nTR45LpXgZDeLinEUHp58nl8s6EAy4ERsHgGlsZF8moRfB6svqa6 sbZKUF8paIJEB+vqRou7cdIurEqEk4vQCim5u4d64dp798uv3ofdyK26WVid AUNlcdAlddWlDfDShpKi+uysplt3Wm/da72e0XHrXk9GVm9GliQzW5VfCBQX W9DVDgZmuJ4w082ZldeMqNh2FdUIkPQ6Yr+DL+6qLsn7lEnKZVCyBC2VKOzN rPunOdTyWnpxM6ewo6ZUXFcua6hQN8G0Qpius9ooxtpk5AEVfVBFt6nIRgBv 1JEMBpJRnx61s+godgNUGtNNOqrBQDfbaqz93Br+rVpObktTVWtTlSitcZyo Gy0VY1RSjEqB1moIOpBo1FMNNqZqsEE2IBOZBoTALE/lZapjdCA9KYUCJo9c 94Zdp3j+1mw/StdJj1z39lyHf7L84blZwU+I4ZRBhtbDUkxUcIR5KFQVCUnh YCksGItbyedV1LBLannlPG4Jj19e11QuFBZ2dZT2dVYqu6s1kmqlqkpn5OQU f37m6rGciqzs4jtwRBEOUYYpzGPey2VezqCducE8caPhk9s9n2RKTuVKT+fL T+drzhXpzxUbzhdBGC8Umy4Xma4X2rLKJ+C4RSZ9TsieFnPHVAwbSBywc+rr c8pLzzDIuTXMvN52NAufDb93iVmYybh3rebuDcH9jPZ79zvvZPTeuSvPylIV 5OhgZQYU3EHFTzSzp3u4ozL6MMjq19GsOrJNl3ad1ciAQp1BS7AYyXYrZXqi vktYSERfFjRXCIRlvT1YUS9e3EOQ9ZHVcqpGTdNrmQaQbjGwzSaa3kw0OhrM AzK93dBrGqrXTPE0yyxNhJ6eixJ/0XWUF+YqfycOk8/BGX1vQZJHrjty3Q/q uqdru1503eMG696GJDHC4/vUQI9p6eEgxaVFF8YpAlSNj9g3kM+oz8fCEaTC akIOnlGOoxTSGCUsZgmDns9g59M4eWR+AbOhVNBU2CUs7mstU3fCFT0wg4FS J4B9eOrXd/NyCwqLEaWVZbezyy7eLT99C3fyNu2juw0n87pPl/d9Vi47Va78 AqY6B1efrzJfRA5cQA1eRA5dRA9fQk/dwE/dxE7fxizlE5crCXMY7AyLONNK mVEyZgcFBOoNROXlekJRMy5fykcz82+Xf/wx/fwVzueXOz/Llp4uBs5W6M5W mL6ocJyDDV1FDN9A919HODKqRyrQQxjsAB09KiSNSWijAH1YR7fpaQYtBUp6 GhXSACKHHOSJoXqVlIVBXKsTVAg6yrpElT19VX0SjEJBVgH09AoOLVOv45iM fIuRazNx+u21dkeddaDBOCyW9muFegcPWGQ9UdzeZJXo3vS89IAeCYwTwTjp yHWvNV2ZpDhwG0q8/MfnOrwsQJD69/EDuA4peVWb/eBCO7TjkMAqUntbnT9u MTwCDwntCXsbLj1a5hDau11phCiPo9SrKDX0rhWOzkns1hcRqaV4JJxYWk3I RhAzq/H3cJRcGqOQzixgcgpp7HxGbRG7oZTfXC5szOsS3Be331N052vEVWZt 7aU7J3937mROXmHVjeLKz7KLfne7/Ng95MlM9pmCxtOFHadLRSdL5J+UqU/D NF9Uay8gjVcw/ZdxI5ewo5dxo1ewo1cwU7dwcxn4pUx8oJgahdEjGHqIzPDQ 6C4ue1neTUXkEu5cbzp3s/vMve7rxaSPr/G+yGo+VyC8UCz9ohL6TMN5lO0C cvAiauoSZvYqfvY6du4W0ZlNcJWSvHC6F013Y6kLFPRsLWZOzBjXcaxaillH VIhLVQqY1UJy2NgWYw2NfLVFWNLVDe/orOrpRUikGKUSr1bjAA1WpyMajVST kWYy0ywWtqO/0THQYO3n2Po59vE23YiyQ29pUM+yACjIJR+5jgJGqGnjxUja GEGbNt7+knbvmmccprtDFud+l4vfiOtIh3YuDrmv7ncy4YFJgwfvIU48yIFT b9d1f65VcbBtIfPvByfzPeW1Xfcif5OuOxjeINcl99Z2pYPcgVWr6SwX29tN Dgpy4XSEU0Llagqn3MQpd9HKTYwiwtK4ib2OW2haDqasmFBQgs+sJN6FkzKq cDdx5EwmK5/FyGOxC2jQI6eIV1PObyivby4StmV2dt7r68o1qkndneRffvj/ XbpyPeuLW9m/vVL065uY43m0T4rYHxe0nizu/Ky4/VRRxxclkgsw3blq/QWE 6SLSegU9fA03eQ03dZ0wfQM/d5PozKAs3ye7csn+CkYYzYqRuElGTYJRu8pq XCCzSCdOcY6f7/3gpulMWfepIsKvrnSdLZV+Wio/W6k6XwWeh+svVNu/RAxe RY7fxEzdwUzeQs/ex89lYdyFhHgVZw3O24Bz1tHUEBY7Q0WONmJGxeRxIxuU wlUKhMFCM5rpFhObx7nZUJclbCxqFZT3dFaLexDSPiSgxoIaDKjBGvVEqOA1 GSlWM2PA1jBkbxx0cO39DFM/2zDYBg7pu3QjPKWfqU5SNSmyZp2qWaUDCaYm RtdEaY/n472O6159acbr58PvgefmOb8p1x3C23fdK8e8F133jCPXfRfXPblL lzoEgXvqumc7Z8aIUMxTBXGqCEYVRyrWEIp1rHqXoExxtRFy7/DlCsbtKlQu vqCIkFMOuQ5/B0G+hyJlkKi5bGYJl1Zcy6yoZ8EaWXABFyWowza3Itu7Yel2 Z3eFw1APr7jzzjv/dvnja7nv3Sz84E7lp3n4z4qoJ4r4J4uEp0raTxV3fV4q ulCh+BKu/RKpu1ytv4Yw30QP3cFO3sZO3yXMZlLmMymuTKo3i+IrYoRRnCiB H2PWpTgNm8ym/2jqmSnHYf71g+YTN9Uncoev4Rvfz8D9/LzyUrXlTKX1c5j5 fJXlLGzgYvXEVfT0TcxsBnY+Czd7H72YjXPn4AKF5EQFM1XFXkNyN1DsDRw7 SqB6CdglFnq+jzLUhzMp8CYLx2bn6zQULPo0m3mzpbm4TVje1VHV210lEVVr 1DjIdRo1WgfijXqSSUe0GGhWA2/QUjfs4A2P8K1DHJ2dq3P0AHazQDPDUbkg uZGBbRKwQ9OsMoEYCwizAD9dE/l7dt2rJ8AfqesOnYl35Lo36LoIThXau0dD EK+K7Mt1kb0xOugXJkpMD9ntzaBTR0hAiKDyMtRepmz6GoxxpbA8E1aUX50N wxRgCMUkYhkTX8pFFTcRq4Q4eF1FUWNxkbCkpKW4rL0M1gGr6kaVKbmVWmG1 WUQd07Vf//T4u//63rVjmYW/zUN8lI8/VUT6tIh+qrTmXHnT+fLWi5V9lyqB S9XGa0jLdYzlOsJ2EzWQgR27i565i57PxC/lUZbyyCt5NE8+I1zJX0XXbpAa NlhNm+ymb7it/7OlbyILTvvppx2fZSk/Keq/Reb88jrv4/vATZT9S2T/RaT9 Ksp+qXrsOnr+LmHxPmEpG+fMwThzMe5ior+UGqlkJpDcFLZ2kyTYJgm3SE0b 5LotesMqhzPHqJxqQk8BXIexxmGvBdUUNPKzWv49QVNhS3NpV3tVbxdc3AuT S+EKRbUGwBigMlZHNOghqAYd22Tk2m0cxyDbNkyzjjBN/TV6W7e839YADtHV 8xRNCq/Zxms3yJoEHQwwQTcjvQrj211HAZ8X2iH8SF336lf+eF23/0r8keu+ F9elF3nhVGGCGtJd6HENq9x7VD8+RVTGSPIYTRFmK900xRRRZMaJgCqB/GwJ 9mx2fjasKK80A1aRja8uJcFg+IJy5v0S3uVs7vmM2i8yms7caz1zv+uL7J7P s8Vn86UXC1Vf5mpu3geyM/tJWFsd/8Iv3jv9y9MZn+QWfZBP+qSUdryA83Gx 4ExV65nKDojPyzvPlnVdrBRfgikuw5VXqjU3kLq7GOMtlP02eigDNwR5L5M4 l0N2FdMiSN46oXab0bDJqdvi1j+sF/57W6/jWl79T89IPs3Vni61XkMzf3q+ 62q5MYfguEsw3kBY7qJtGajhTPxkHnmukLJcQHAVEj3FpEA5PQxjRJHMFI6z TuZt0+p26S0P6K3bTMEas3GztilIJIyU5a60Mebl3ElDnR5yHeIzHvtOa1Nh e0t5dwe8rwfV11MtEyNUMrRWS9EbaaCeBBoJWiNJa6JpjTSdhaazUQ0OinWQ 7hji2fubTEO9YquKC1rJumWsLo4HNwjaVaI2StYGoTKWAUL17KPVFo/W2ybe quve7uzl50b2Xv3K53ll170F9X0n1+0jgIec9jIkEL5X4/Vdh3orBntFmx3e gPjzM4HTI3JpCKp4OtTt3Z4Go4qiVGEsEKKAQZJimSYexjVLy1i1ZWwGWsC5 UFbwScat+2X5JRX5VSU5iPv3qq7dqzibXXE6D3+miHe6oO7T/NbPCkVflEnP VgDn4boLCPNFhO0SavAqduoafvQKfBHJFWdXX/jPv8l8/2rBsbuwY3n4jwqZ n5TzP6vifljU8El54+nKxsvIpjyqAF3XTe8A6uU6AWBs1di6DQO95qEu/UCL xlortfJ6bXj+GJ49T2R7SIwYnb3J5j1sbFxvbPiqu116/jrvf5yXnCu0nq8Y uYRof/eGJhOtKyDqC0jSHKQsGwkUYsASgr6C2A+jTpdRZ4oo80VUTxkzWsXa QLN3afxdLn+DzdqG5AllRVbTQ27Tw5qWNVTNSiYshiUGWXhvH29QyWUgzosa ylVChLIJrmhC6NuJeiHe0kkZkXNHwZohqG7VMx1GmslI0hvxOjPBYKMZbQyT lWW1suw2br+D39/PM/R3tptBum6YrPNR1esUYIOYNt4m5DeGOkjf2/udDCbJ 4CoZTO3pLr247NVd9zcQ+b4b6XsqvQ6vLcnXduZhGpQF9kPYj/S5Lu3L+XO6 +3ty3dP5ctBxCKcMEFVBmjpEUy9heowldS2FLFIhtaqCjcE00K+U3fv46tmb OfdzczML7t0puHi19Ph1+In7uM9KSKerqV8gGZ/DuWdgTacrO7+Ai76AK88j wXNIwwWk9Uv04CXMDKS765gwrbP+VGbWfzlZ+m5G6W+zEB8XY46VVP+usOqz cnImrQHf2tYC9KgdYse4aGpBuuBSzK8Ayx5g2av1+PTegNHjt3oDg/7wqD8y 63EvzU17bXavWBYVdmzwBOv85vXGtq/E0rYzN7nHM7oulKs/rwROw+p/l9lb TFWQGrV1veoOmUWqdSj1g4B5WGuZ1dqXpab5DmBGIJ+s61lhtITJDSF6XYxb v9oo2GxqeVDX8kd+y7/XtP6B27YBq4lkE3cQ7F0K280ij7cwOuGZYmShpDxP mp+lyMk0FBfp8vJspSUTOOQUBTPHJy4LaE4RewrgjGtZwwZmv5HpMDEcZpbD zLZZ2FYr22ZjGRwtcoe2QdfP1y5y1UG2KsRQR6lAHKph2YCPBYToQHrTAMqR 645cd+S6v8x1hHS/Nb0/CQn0MrTL+A5jPqMpm4wrpMDKWSVVnFJUDfps9vWf ffLRtdt379/IvHvmes6pm6Un72JOFhJOlFJPVHA+RfJOIfmnEQ2n4B2nqiWf I1WfQ5bDWM+jHOfRQ5eRY9dRc9dRS/cpPmIb8l+/yPpv5yo/ysl/Lzvro8Ls i9VVFbU8ISjUjjU4pmkjk9SxKfb4NG9itn5iXji10Dbv7Fxwdzpdncsukdsr 8/o1/qDeHxwOhBZjEf9qPJyIrEUCa9NTUb0p2KOItfY1Hb/DOJbffJekwrSb G7Xt9ZIulVlkGpSPzEjnllRLKzqXx+DxG73egWBkOhybDUQXgrElXyS84E0M TwS1Zn+P1NfSEapt3KwXftPQ/vvmzt369iSWHysm/x5X+x+M5lV6zRQO13ru UvvZW7LzOcC5fNPFYvul8v5LJVO3EYvZ6Pnc6qVihBuBd5FIi1yaq42zIuEs AuxJkDWsZw0YWDZId1a2ycbUWWu1/X0io7zXaBSbBju0/UL1UJN6tDY95XiJ o3GzNEGmJkYDU5DuKNokRRt75Lp9Wx8fue5H6boDHLnuDbluf4rDKfd2KVFG cI+fBvEqH0Xrhksn8xvEuSRENqakkgpD0asqSKVIFvrsvRs//eijY2ev37iY dfvTu/c+vF9xogx+rBR3spT4STH5WBHzRHHNqfL6MxVNn5V1niyXnIGpvoDp LsBNF+HWLxEDl6tHr1fMXKv0FbJdKEH+f/n4yr9dvP3B3Zsn8ypLa8gtOrZu nKEfJ4JDFOsEeWCSPjzFG55pHlvomloWzazIFrzKRZ9syatcCQD+CBiImHwx qz82EIiMRqPj8djMemJ5OxXZXl3fSK2HwstWB6UcR+N1d+iGVWNO8eQyzTaE dwzyR6faJxY7Zha7Zxcliy6p06NweSFtGoIhvddvD0GflpyNJd2pZGJ1dTMS XncupEz6aGsbFPAetnbudnQH2HwfkvANq/4bRv03vJb5PJTowyv6s2X2L7G2 c+iBy7jBy7iJa6Tl+2x3Nn05h+ArpUZQ7FVi3RqhJkSguOgYdzNxQUKHdDcC uc7IMplZJhvLaGNrbTydrUalZ6m1LK2hDjS1A6YekcXcaJzig1Mc0MkGfVQw kd7zU5sk62KQ7p64Lkl7tFPoC0vMjlx35Lq/N9c9vcHN03I1fUuI9Gab6fsS YlRRjDpI1CzDO4C7ZGomrqyUkI2gZSEJ93GEPBoPc7+84Oe/Pf7bY1+eOXPv 6gd3cn6XXXissOx4KexYCeFYAfGjPNJH2fQTefxPCxs/LWo+Wdj2WVHPF6Xq 8xWGCzDDhUrrZfjAterJq7DFL4tiZczxCu7lfzx58je3r10uxzK7GRI7SmaH K+xY7TDFPEm3TXMH5hpHllrGl9onnD3TS+LZZcWCR7noVTo94EpA5w2afEFb IGIPRKBINhpNTKdWF9ZTrs2UbzPpW08kf//7xUiSJlYxrWOcgWnoo/iDswTT MNk23DA20z21JJpZlM4tq5fc4LIX9PgMvpAlGBmIxYdjifFYcjyZnFhPzG+k PNsb8d3NP2yt/8HtXTfbY72qRKfUzaoPM2p361q+qW/d5TTP5yA1J+9azpbY zsH6L1QPXUGNXMPO3CY6M2krWRRXLiVQyogheWv4pm2SYIfetErmRHAkNwnv rKXMiXljxiajlaez03QOGmim2swsM0hSyRAaNT69l5SRq7M1qhy9EgvYaxgU qic5qhUmEKSBYYo2mtYdlPQg1wGrNPVmekM8MEgFw2/PdX/Ne7CkV2q/Dn9d rpMH9vO6rju8i+FFSQIvRfoD++01ilac8sn0OXXssevUYawqPbMOrwySNWGG 1ldQo8jEkSsJpXBCFppRgGFk0pi5PC6MwkK9/+mnv33//IkPb3727vX772fn fZhX9HFh8YmCso8L0B8VkH6Xxz5R1PBZRdPJsoaPi+qO5zeeLGw5U9zzeVnf 6TLZuVLVxTLwCtx8tWr0UmGwmi25j33vHz+/nsfCNSuwvYYykalCNYAAB7G6 EbJ5gvbIdaPOlgln14xTNOcUzS/JnS7Fskfj8kHpy+QPWgIheyhoCwUHwpHx WGI2mVpeWwtsbYS31gKba6Gvv7F7oxgRSNeP8W2zwpHlBscs1zTR2D/bPjov ml7qm11ULDoB5wq44tZ5vCafzxYODUSiI+HIVCw2l0g411ZdW1uu7S3X1lpk c3Vzc/OPm9sbTo9TAs5TGnbrRX+q7/kTv32b2TSZXak6fcd0pcRxqXzoGnz0 DnLsNnoiAzOfTXLlU4Ml9GgFcxVVs00W7tJbIR7QhTvUxk1iTRzPdNGpzjb+ kqZpxMo2WqigiWk0cix6jlpBlMswIEDWa+kmM9VgpeutzTprn8oMthnsfM0I S7NE10b2dvvcC3WQ64ANWnpzvBD18dbHyT2Pfft+At+T+v6MFX/wpLcPysv5 PhLg6/dwFcFnpG8JdEB3xJfzqhqU+v8mXfdId5DrHoFTR3FAiKB0U1VOuny6 hNWbg2aW47F4ShWJVoqnFZBZBQxeBYODOXXx/M/fPfXhe7c+fufGtY+ysj/I yX0/p+BYQdHHRaUfFyE+LsIcLyJ8Uor7sABxLB/7ZRXjNr6hgNlRVdeLaZKS WpTUNoDeoWX3aMgCM5ZtIXDR18rPX0aUNWnLWlQFLapy6UClchihGcbp066j 22Z4A/NNY862yeXutOuW+hacSqdL7fJqvT7DY9cF7aGQIxwaikQm4sn51bWV 9Q3v1gYkuvTjN3/UOr2oPg3bOlXbPyccXa7rn+fbpoQji+mKeNYpX1hWrbhA l8vg9ZoCAWsokHZdNDQSCU/H4iuxRDCxGlrfDGxteXc3PNurgZ3V2IPN1O5m KBjw2gYSveDX9eKvmS1fs1smMyskX9zWXysdugIbuA4fvIMauoseu4+bziWu FNN85YxwFSuFq3lAFXxNa3kIiY4h2GA0P2AJv2EKtmg1KRI9xWV6JfwJkGvW sTQmFmhkqFXEPjFc1ocENRS9nqMzcLQmNmhj6Qb56uEusR1o0js4gJOpjjI0 CbomuUccgvZ4QVmCeqCkfZ3C9s2q78h1R657a67b22guilfGnuoOD8RxqhBJ uUiVDOXTmnMR2GIkrBpfTqCUIFH3iMRcGquEyKjMLcv7p59/+LPf3PjtLzLO /irr/u8KcqBc90Fu4Qd5RR8VFLyfm/+bzKJPimG38QxsS2Orth0ckdsWtBNe y3zAuhjsd0UGvfGRQGo8vD7pjy8uuz0uP61efIPQdrcRzG7VFHUbS3sdcMUI WjeMM4xSLFMs+yx/cL55zNkxtdwz4xTPO6WLy8plz2PX+QJQAWsOBuzhcH8k MhSJQq5bWFtfWV/3ba75tlY9O+v+P/67dM6J6gO5tpm6gfnWcVfjwGKtfVo4 stQztdI3t6JcdKtXXFq32+jzWYJBRyTUH4kORkOje65bjieDqdXw+lZoczOw vRH+aivwcMP3cN31YG16I7ry1fp6OLKp719t7F1nCMczyoFz9y3Xykag1Hod MXEXN3WPsJhLWSmmu8qoXjgzgGIl8PwtWvMuXQiFugcMwTZd8JDW8g297SGz 5QGzYZ3G8tAI7i7ejLbJrONoQKpWQ5ZKkH0iuEZF0kHhVEc3WmgGO07nQGn7 6bqRDuWAVqi184E5tibE1ESZmjhTk2SAq3Rwgwau0cAU7YV9omhgYj+HyO3V r3x1Kx657sh1b9N1eCjaKWI4JSS6KBFI71VC1YZJ0rG7hJpbcHg+qii/KrMC lwvHZ8FRd2mMQgq9gMiAf3jqs3/6xcl33885/m85l3+Rc/+Xmbkf5OZ8kHvz V3cyPswuu4wiwxvbOk29+knxCBSZ/J2zvo4Zb/uMr3Pe173o6XP5pN6Q0h8H QglDfBUqPL3ffE2Smz+ltH/Zqr3TCRaKrRWyIZhqCKUfJJpHqJYJtmOyZmhO ML7UOeXsmV1Ou25hWeF0AyuP5pwETb5QOtdFwv3hyHAsMpOMO9dSnvWUfyMZ 2E75tjeC//4foqlZvEJXNzBXPzQvGF2q75+udUy1ji32zixLF1aUSyuQ63Qe j9HntUDaDAX6Q8GhUGAiEpqLxxdTqeX1lG9rI7S1Fdlaj+1sR3a3gl9tuR5u jK6FR7di8a+3v4rFU7YBV02L/kaB6ssc/fUy8+1qSwZ6IIc0mEkczCSM55Fm ywjOaooHw0zQm3Z5bTtswTajcZfW+BVN8BWzZYfZts4WJmqaYzUNYTJjiUyY a2PPAvUDWg6oJkv6EAo5FlQS9ADBbKBaTVSzhWiw4A02qtZeox/q1QwB7SYj RzvPBr0sEAp4KYZmna555Lr4nqMO5rp0U+MxR647ct1+12GkwZeB/v5t9vrh TfmtG82lEx0WCnXKOF4VI0KhThligBGafP4GpuZqRdm9qqwC+L0SZFYpOgeG K4ShM6txN0mMvKKKe//881/94p3PP3n37qmfZlz/aVbeL7Nu/frehd/cu30N QWCLGjTD/P6ZupGFuqG52sGZxpGF1il3x4ync97buxyQrASU3iDoD5sDsf5w ciSWGo8Flx9uV/bIPmV2fNmqz+rRFUh0BWpLmcaB0PajDf1k0zDLPlE3DLkO Ep1HshSQLwWUywGNK6T1RE2BOIQ1knJEVx2R1FB8dTyenEsml9dWvWnXJULb q76dzfC//0lo7yepNFz7cNPIVOv4XI1jsH5ouHVysmd2Rro4J3cuqlaWQY9L 73WZAm5b2DsQ9g2HfJOR4HwiupBKOTfXvTubgZ31yM5adGszursT+mp7ZXt1 djXigyrZ7c3YamojEp/Qmpuq8Wp+k61L0q/U9hssw2bHtKF/FnQsKI0LItmc sHOptnWF1eyn1kSozBSvdovX+IBeu8Op3+Q37/CaV7lNcX5zhFLjwtEmMJi5 ZvaCvkUPsEV9aJUKshzNqiXbDVSbkWE3s2xWjtXCNVo4OnutfqBR7ehsM1lr wEke6GVrEgztKl2bpOsidF2Urk08pyxyes3FYyjg80I7hNcuft/ykOB36hG/ Ede9tglf03UHIUHIX8oB9f25LsbfoOsUUKKLE9VQ6RrEKr1MYOUqsvFCISKr ujS/KruyKreqMg+FKMajKojIUgo2n0ODXbr4+b/8y28/ePfS8XdunX4n59Kv Cs7+/ObZE3loSnedaoRuHkdahqv7R4kDU5yhGcHoYvOks2He1brka132drr9 MncQ9IWMgYg9FBsJpyYiialYcGl3vaSz9wyv+2qbIasbzIdcp7KUgoNw3SDW MMywTdUMLzaMLjeMLAnHXG1jrvZxN0THhKtrytM75+9bCChWIhpv3BhYs0U2 RlJbs+s7zq1tz9aWb2s9sLPh3d12f/M132jEq7Uc62jz+HzblLPGMdY8Pts5 6xQtLsudHpXbD3iCOn/YGIpaonFHMjWUSA7Hk+OJ1FxqbSGVHv3zb0O5biOy vRHd2Yrs7gQf7Hg21xdSscDuBhTzQptr0Fmzc05g1asWJ0HnjGl53uB1moIr gyHPVDi4GA35kuFAxB/3eaKz82G73SvqnqurDdY0bDEbfs8R/onX8ie24Gt2 0w5XuEppSBBrXCjaJAY/3cIfAprkIqJEjFJKkUYN2aylWQx0m4nZb2U70kst eBY73+jg6gYalf3SdrOpDpzmgkGmNk7Xxuj68J7rnrfZkeuOXPd347ooUZ3c 0x1UxnpoBt8NouCzzLJMGCKvrLASVoAtryCXwRilVYycctKtfMLtXOy9/JPv HPvVf/vs41/d/vidzPd+kfPzn929k8vAdZvI+nGsdhihHcLZxon9E8zBWf7I bOP4YvPUsmDO3b7k71z29Xj8Um9A4w8ZQlFbKDEcXR2PJmbWovPbqfzWzvM8 0e1WS36bvrhHXyKzVwCjKP0UzjCNAyexmnGsehwLjBGBCYJqjKAepYKTFM04 VTtJM0yzrXP8/iX+wGLD0IpwzNM7H1C7Yrbw6tTqzvLWA8/urvf3v595sEvS 6ujWkZqhpZohZ83gEtM8zbXN1w9DCl2uH1xsHHE2DC81ja+0Tns657w9i0GF N6EPr/XHdybXvlnc/Hplc9e7tRPe2gpvb4V2dkIPdoO7O97N9ZVkIrSxvvHg YWR9Y2UjKZkdrR00tc2MimYnwflZ7eKcYWXJvLw04F4ZCXgnY4H5eNCdiCQ2 V7c2V7fjofXlpbDWFGzuXucI/sBr/Z+1HX/iCHboDduU+nU0P4pkuxCsAQR+ ultg6WX3tMBkvXCNEqfTEHUg3qAnWI0kh5XZb+faHDyLg28a5BsHa4EBcavR wtfOsXT+tOV08T1itINCo2r38cqi+3t03SEzUo5c99fsOmXsqesIyiQJWMOp QmxL+Gat6lc3c28WF+RUFJeU5VcW5iJuF1RfzEV8ehf14W3sB/dJJ4tK37/5 yf/70Qf/9cK5X+e8/893fvFvuRnwdqJ4oELmKFb0I7VjFNMM0TxJ6p9kDM7y RuYaJhdbppe7Z9yiBW/fole24lP6AmAgZApF7ZHECFRvRmKL64npjVhOc8vF Wun1Fkduh6VcZi+UDeSKB7O6+vM6HXmd9oIuR4VkDKWawABTeO0sSb9ANzkZ JshXTqbNxe73sIbczEE3b8RXPxkUTAU75yLSpTiwEjf7EkOxjZnd3w+uf4XV 9KO1o2j9FEI9XtE3WNBlLRcPIhTjaPUUWjWJBWZw4BzBsEA2L1JsS7T+Zdaw u3bM1zkTlznXLZGd6Y2Hzp2vPA93fQ8f+B7s+nZ3ArvbkOt8a6vh9Y34w4f+ nS3X5ppsbKRzcFA6OaWaWwQWFi3OFfuKe8DtHQsGx6OhyURkMh6ch8r2ZDS4 noysJde2N77e3n7gDiRN5nBbS4xbt8Nv3uU1b1Lq19C8RDUviGoYL6c7CLTB tprehgpFXzWgRoHa9D54ej3RaqLZzeli1mplmW1sSz+zf5BkHq4TOyR1ehtb t/yoeqWD6UqWBh7sR+iSz9Amj1z3Gnwn3f3NuO4QXtt1uCdgIdF9x9UQL0wV 3u+6MF4V2ts7PUHQJFnGRHXP8M8yYMczMrJLc/NyM/OvXy8+f7XovSvI32UQ jmdTj+UyjxVxTsOz/+Xq8f/71Imf3f3tzzL+7edZ+chemNCa22IokzgQwBhG N4k3TFJsM8SBSebwdM3obOPkfPuUs3t2RbLgkS94FCs+jddnDARt4chgLDGe SI4FA0vrqbFE4h5PcLlBeaVz+Fqb9XKL4Vyj7os6/dV6S1brYEH3aJlkHCaf RKqn0eAMBpwlGBdJJicE2eSk2ly0ATcVYtDNGPZyxgL1U5GOhVWpa0O+sqpY icmdEdC/2ToVutukud9uyu2xV0jHKiTjxT2DldJxlGoWCy4QtEsk/TJB7ySa XBS7lzYUoI+G6aMhxliYMxpsnI61zQVly0FjMD60uja7s+P66hv/N3/wP3zo 3dzwr6+HH+x6H+wsba4ub2/0jYx0DgwrJmflswty57LR47G6Pf3B4HAkMBYP TCRDE4nwbCq6uJF0b64Gt9d8WynoMbmz+dWDtYe+xSiocdc1R2uFm7zmOI4V QfP8ML6rqs5aTOznsuUN1dLecgCAgdoqUIfQGnFGC8VoohuNDIOJqTcxTRb6 gJ3SP8jVDbV2WMVco52m9zC1qyzNGksbpmujNG3iGc+5bv+pQ/n7cF1kH68V +V7Q4Gu6bt+tHkl/Ba47nMPT2suSG1YeJuwD+x2C3AG/PZ0+9xhVnKCOpHdt UsXwQAILBOmA70Q25d0Lt+9l59+/ejvj0y9zPjoHO3YV824G+YNc5idFjJMl 3M/KuKfLb//k0sf/9cqvfpbxk/fybqO6imsMuY2GYpG9VO6AAQ4kOEQwjVHt kzTHFHsEct1M48Rc69Rix8xy76Jb4vSoXF7Q6zcFQ9ZQpD8SG43HRyPhmbU1 e2j9LqfnZoP2DN90nAkcZ2hOcw2X6q23BUPZbaNFPRMVkkm4YgqtnsVq5nHg AtGwRDA4CUYnybxMtqyQHB7yoIc05KUO+9ijQf5ERDibEDnXZCurcldC6opr Ig/YdtdFhqywc6hSMg6XTUGWg0nHEfIJnHqGoJklgXMUPWS8BZx+iWh1kfp9 xMEAaSjEnIhxp6KN87FWZ7xnOSpdCcmcAa03Youkprceur/+g/+rb7zbu8EH D/w7O56d7elUrNVu6Rweks3OKBbmNStOvctl9bgGA77RoHc66puLBefjEWcq 7tpIebZWfTsQKf/uqm87GdpKbGwl/7ixtjU7v9wlDnDrYnR+CM0JV7B9FfzR EpYViQc5VeruSr0SZtbAzVqkyYTRm3A6M81gZhrNTBOEiWExQyVtTf9Ak3ag qdUqYukn2NooS7PO0oYYuugBv702bzfyvTF/AtGXA5lwPxEyEH7K60U+iuq1 G7gHhEaWBSlPgI4PsdnhfKcW7Vt2He6g63BvynUQQPTRJBOMPNgwsHYLJ/np scwLV/JuH7ud/evr+e/dKf0kp+xENu6jHNqJQu6p8ppT5U1fwDknyu//5MaJ n9z62c/vXy1vzeZp7/KBrBZjgdhaqrBUAiaUzoY3DVPt4zTHJHNgmj882zix KJx2dS54RSshqSuo8oYM4aQtvuaIb/THN8ZS66PJtfmdb/T+tYv0rt8Ru99B iz4gKz9l6T/nGi/V2e4Ih7LaR4t6xyolY0jZFE41SwAW8MA8UbNE0a+QjS6K yU21eMkOP6nfTxoIUIdCrPEIfyrWspDsXV6TuFISV0zqTkCuY5idN7hAcddQ Rd8oXDZRKR2tlIxWy8ex6mk8MEvUzpF0CwTdIh7yp9VNHvCThoLk4TBzLMae iNXPxVuXUr0rKYU7pXDFla4o4I6C7pglmJxa23btfBX6+iv3ztbyzuZg2C+0 m8QzY9K5CcXiLLiyaHA7LV7nYGBlNLQyHXXPxQJLiahrHQp1Sf/WamhrNby5 Ht1ei0ABbycZeLAaWUvsbK3vREKLfXInmZ/E1EZgXHcVdx7G7q/EGPCwwTby qIQxIqePatiDIN2hpTlMTKiStZioJjPNaIFgmM0cs4lnstSrzZ1tOmMduMTQ xQmGKFkfO3Ldj851lCPXHTJr7qDfIKc9AfJblJR+JU4EEnhVBPofPVU2/9OT xSeOZ194//aNn9/I/VVWyYeFlceKYB/lo48XUT8tqzld0XiqUvA5in688vI/ 3fjZP1794g4nr8ZylqG+2WS432nIERmKFYZKwIzQ2nHGYZJllN4/zR1eFEx5 OhbC3UvRjoWQcNorHHe1TrjaJlzdM57eWa9o1itb8KmWAtbYTtOE/xdV9f9c IXgHIzpGUX7G1J3lGK802G4L+7M6Bot6hyslwyj5CE41SdBMEzQzBGCWrF8i G51k4zLF4ibbfFASIw36IdcxxyO86bhgMdHlWhO5kiJXTOJJAMEdgnrqFl9T 0j1YIRmGSUdg0tH0o2wMrphEAzMYzRwWnMPpFonmFZLNTez3EQaD6VwHuW4y 1jCfbHOuilbW5O4NpXtV5V7VeNZBzyawktC5ogPBuGv3K+/X3yzu7mhdy812 s3h6TDIzoViaBd1LRo/T6lsZCrrGwivTMc98POBMxVwbSc9Wyr+9Gt5aj26u x3fWY7vr/gfrvq82AjtrvvV4YmdjPZFYEiud+NoosXGlirVSxZ4oxRtzS/Ql RbrS0n40eoJLnRMw5zoYEwBz3MIZtvLsFqYlfbcLhsnEMhg4Jl2Nydgo1/cI wAG6zoc0xgn6FP3IdX+VrjvgPeXfneuwL7gO+4TXdV1adxQgQlKniOo1nCrC N8TOFNf/93dvXPzo3u1f3s19Lyf/d/llx0tgn5TBThQhThRQT5fXnYULTlcJ v0DD3yv54P/58ue/LbpDVl7gGD/lab9s1t7r1uf2GYpl5kq1Ha4ZwJrGKfY5 9tAyb9jFtC0SdBNo1TBSOYxWQaYaw6lHCcAYTTfONE3yrLO1jjmefapjLlQs G/lP9xg/qep6ByM5TgWgUHexxnKt0Xq3xZHd6SgUD5ZJh6oUoyj1FEYzi9HM YLUzOP0swTRPMi+SLE6ifYU04CIPuWkjXuZEgDcTaV5KdrrWul1J8UpU5kkB wW2kbPRunb6sdwgmHaySDcNkQxCV8tFK5QQSnEFr5zDg7H7XpXPdUJA5FuVM xusXUq3ONdHKhsy9KXetK9wbgG8XQrG8rnImDe6kzZcYiW8sPPijYmG5ydYv mp7ug2rYpSWN250er/N6h4JQDeubjPhm46HF1djKRsKznfJCpetuekpM6GGa 8O5GdHczvLPh20j5ttZDOxubqbVluX4aywmguJ5yurOUNHS3wnazZOwWYiWb EqpiBdDUIIU0z8NMCwkLIs4iUDuvq5vUc+1Gjt7EMRpq9HqWXM8ValRM7RJO v0rSrabH5R4rK3Hkupe4LvrDu04efMqBGvZ1RfddXYfd6xE85RC5PXflq7dT n2PvZqxpcHsQ5I/By5/d0PBFDnPd3jAsEVgnKTdr9Nvw5rF/Pp7/3ns3z//6 xv33cwt+m1P2Xg7qZBnqZAnu8wrM5xXoU6WYU+WE0+X4S6gv3sv5x3++djKr 5n6t9RQH/KROdUEA3OoAMnu0xVJbuXIIY5jFGmfLFaN53Y77LcZ7Al1+h6VM NACXjmHSdeI8Wb9IMy4xLItsx1LNoLtxzMcdWm5fTN3rHv5P93n/vVr8DkZx nKY7y7dcqrddb7RltNhzugYKRCNF4uEK2Ui1agyuGYXrxqv1Uwjo3zIt4i3L eOsyweaiDHipAz76cIAzEa6ZiQqXkt3utW53SuxOKr3rYGCnoteR1WhIu048 DJdAjECkR+0UUwj1LFozjwchMy8STZDrXKR+D3nITx0OssfC/IlY43yqbWlN tLwhdW/JXJsKz7bK+1Du2ZGtbKjcm1rvptoZ75sJOKK7PRMrjbbJ7qnl3hmX ZNGnWIloPQmzLzkUSU7G49PJ+NxaYnE9sbQeX9mMe3ZT3gcp/1eroa/i0a/i id3V5PZ6fHsjtL3p3VhbTiUX1hPRjdSiWOlCc6Jo/mIpafRe1XRGtTebEi9g biNqHuBrdknsVQo9QiIHqJQAl+ltZCxL2BP6epOxRmeiq41EiZ7epWmt1/Qz tCGGNsnUJuiQ5fRxqj5G1yfpUNJ7wndwnfYZ9IO8ejP3h5DkgWUjBzX4Yuci 8pTXdN2e7l4HZZgiDz5iT24hiuwxe+2J19fdq3jvEW/fdfvTGiF9J9ZnEL51 yty3jdHtD3XpWx6n2xNJXF9UqN85myn4yc9unnr37uVf3br1m8z897IqP8zB nCyu+iCn/N1M2Pmqqjs4bAWPx++r7zBkoRs/zmVcxItv19s/r9WeblCerVfc 6dBm9ZiLJMMl8snsruHLtbrPOcov+eCtRkNeh71MDFWLE0jlNAaYw4NzJOMS xbhEsyyxHC7eoKd+LMgb9bUvrmd0jf6fWTU/rZb+DzxwgmH4nG/5ssFytdF2 VziQ25UeryvuHa7oG6xWDsPVI9XgBEo/jTbM4o1LJPMK2bxMta4wHD7WQIAz FKobizRNR9sXE73udZFrU7KypvFtqzzbxR2mzCZtYddApXgU1jcGl07AJZMV kgmYfKpaPYvSQKFunqhbgL48inWZ6lihDbsZw37eWLB2MtIyH+9cWu1d2ZC4 t9K682zJvLtS947UtSl3b6m8kPTWu2ei3dMRCjBK106wTTNcyzzbvlgztNI0 7GsZ8fZN+zVLfpMvOBiJTG+sOh+srzxY8zxc8z5YDT1MRR/Ek7vR5E4ytrMR 2d3w7ayupIvcjfH12NRqZC0cdTb1upEcF5I1fAc2dwfhuocKFZHWkZyvyPUP SLyHRP4DYu02gb+O50WJjEUObrKTNaJpsJo5aiNVomOL/n/27jo4zjtPF/1f ty7s2bO7s2fPZIc2M5lJJmBmW2DJMklmySC0ZFmSLbKYmZmZmamZpBa1sNXM TGpmkVHSfVtOMraT8Wayc3ZnZl31lEp2253YrvrU831/0NCaNjCoDkwth0lL kbJihLwAtZqPWv3x1r2Rwu9w9+Po+8uz7j+6HeVHp2BMmj8i/ja5bz/K++9o 3R/bIQz6et1hr8UpgK85UMU32fsHHbMsozdgdUlVCwePhV464nf3ZIDPGf+A 80GPzwY8cQh8dD4o8nZ8TlRFcc1w9SC2HrPcME8vwxK9SrrPJzdcKxh0r8e4 1CJuVo3drYf5tKH9OqbdG7CXCyH2GSNXi2G3q8bdqtF+LZNhXbjInvno/sWk MUIahJgBJ+Wg6Hloev4Es3iSWzrNrZrnl8/x2xkGr9bZ/xVQeTCp3zoTdLkI cbMSc7cW496Aedg8GdoxF921GN+zmNJPzBimZQzTs0aZ2WBmJpSWiaTloBhA 8rDswhlh8ay4bE5evaRqXpH0U2UjLO0IUz/C0ML5xiGGNqQF4VcPi+zDxQ0s xA8uArE8sgO64thSCgSfDlvJRhLzkKQiNLUYyyieZZXMsUvnuFVLglq8uJUq 72Ko+9i6Ia4ByDDfOMI3DXONgxz9EMc4xt/oY+q7qZqGRUnSwEIulFKwV19z MIz8SW7hFPAn5dfiBPU4bssCu5fMg3BE01I5yWBir2+INtflm+uqTZPKrJOt aYWbOv66lmtWM3RymlZOM6pJKhl9VSqlsyiljdSkIsLDJObDFKZ/qjA8R5VS ZsqrNuVXmfJqTTkNhuwGPZDcutWCMkZpHr6pcHmkYgZZD4FWD0CruiC9baDp Kji7GCkqRkoKUbJ8lOJN6D5Y98G6v3LrlN9Yp9z7EBZVDkieC1qtHJd7Zw0c vRx39nigy2E/z2NBvnahHucCXE499L+dnpzeld8+ngdeSIbhUpFzqYi5HCwx GbF8sbDjYGy1U+GAey3sXjX4diX4dg3sRiXMLnf4dMbg+XzozTLMzTLU3Zpx r7qJh03YkM6ZmP6F+KGlpFHLHuAMODEbTclF0/LGGYVYJlDtgJTieO0s460a zD89BKzrs84ccSyCOFci7tXB3RsRD9swoR3jcR2TaV3TmV1TeT0zRb1TZQOY 8hF0KQhWDoNXIJFlaGQVdqJmGlc1uVg3Q2mZY7ctUfvIzFGaZJShHKOrEHxj P0X1uB76uBkFDNSJA0Dm4vtn4vqm4vsxyUPjqcOTaaPTOZC5AvhyMYZYjCUX TdGKZxllOGbNEq9xRdRBlfcwVP0szRBX/7V1QsMgT9fP1g1wDMPctR6GtoOq rpzlxw8sZAD1FUXPxTCzgOF6mpc9KyiYF5csSiuXpPV4eQd5tY8mG2HIwGwZ VqQgqYzctQ3FsxeqzS3hup67oRWua4VGFVe7ytbKGRo5VafEq+S0VTFrYnwx vZgUkEIPSGUEZ/Aj85UZFYb8Gl1hpa6wWltYr82v0+XVGvIajLlN+uJqfkEe qTRvuaN2BtwChlV1QGpbQIOVcEIxSlCMFH6w7oN1f8nWZb5hneWR3fsG2D9Y lwVRZEMV2TBlFlSeCbZsoS9ByOzCa37pEHDsXOjlU4F3D/rdP/nk2in/a1eD guIbslpx6YPLoQNzj0bmQyG4aAQuCbOcP0uLGMPZ5rUdSai9WjDkXYNwrYTc roTZZg0cTO4+kNxjlT1yrgB0pRh2qxTpWonxqsMClWzPuvn4wfmkkcU08HIG DJ+DAqodLQ8oPBPMoilWyQyrdJbTwdDfrkX9i1/Jgfhuq/Rhx0KwSxXsbg3E qxYU1DQa29af1dVR1tvUOlbZCysZQxWhJvOmpnPm53LwC3krywUr+IIVYhGB VLZMqMUTWonk/mkaCk2fwdBXMDQmksYb52m6l/gBlQMhTbDELkhO10Be71B+ 33BB71DRYF8FqK8aMlALGayHjzQgxxowsJpxRBUWVT01VTe91DhHbl1id5Ol vQzVAFs7zAdk0w/zdCN87TBXNchVD3F1Q2x9J1XVSdfmTzBiBuaSoSspCFIa hpqKpafPsDJx3JxFQd6SqHhZUr2iaKaouhnqfqBzcjRgnhrKkaOFykWlkbP+ TPjsqWDDIDRppXqVRCPna+VMrZKiU62oFSurYqGUS2jumvCNwz9Ko4XniJNL 1XlV2qJqbVGltqgCEM+YV7GRU7aVW72e27KRV6vPLZFklS6l5uFqy2dhjT1j JfXDNbXw8So0rQTJLkRJ8lDyQqTyPdb9wasP1v3nJv8N6/IAmv4CrHtPMvaW Tb9N+tt569Vv1h2+N5lvx/KZ1N/kjyhnOci/F+XrZEGUWXBlOlSWCuIXImX5 UNaZkPR/tvc4cPnJafvoy8dC7u73dzzgf9s1PaxsMKJ3IrRvMqgHGzY0GwmZ i4HOJqOX0zD44jlGUDfaPrP5VFLDzeIx99qJa2XoE6nDvw5r/Syu+0Bq/+mc oXMFo0AlcylD36uYvF8z7dc086RzLq5vLrEflzY0lwVayoHgC2BkYOTMxrDz JliFk6zSaVbZNL2bqrxbMfxxQO7hmFb7dKhT9ohX2Yh/zUB8TUVVa15XfxYE nDKFjFnEPCJPBtCnApnTj9izjwTzgaLlx5KVICnhkZwcqKQ+UVKiNPQkPTNT x81V8cpk/DYRf4zDn6AKViBTqKzysvLW1s6+UthIIgaegkWlYVHJ05j4+amE hZn4lbl40kICaTGJvJxFwBfhVyqXCe04PAi9hICuzEEZLDBTBrTEEbZqlKMF 8TSjfPUIVznKVoM42mGOrpOibCOpMiDU+AF8Ipgaj6AlY1ipWFb6DDdjlpc5 z89ZEhUtiysJskaqspOh6ePqhvn6UYFhTKAb4+vBAh1SZFrWrfGfbgrMJpFO J9aquVolQ62kqpVEpZwgk/LkchJmbjSxdD6lbjmmiJFaKMgplxVXKkurNGW1 huLqtcLKrfyyZ3klG/mlxoJqVXaNMqWBH122GJm+WF05NdTY11/eB2kaxEJq kdNFKErOOK8AJbNwh9BY8vazuyKkqhih/DrAr/nj4hUi1EV/PD+8H+bBlW/m x65xKPbOwX2dH3036Q9fwM2FvLVi+1bA0lzQD85bS7HSvDHJt8kFvZ2xfz85 Y2Ig756q+FMw/NHWvSeZ3wHtPflh1infTCZEnQmTZ8LFhShhLpi+3zfjJw63 vrroc8om+OKZmMvHws8ee+QaUBZdBw9uhPu1wgP6xkMGJ8OGpmPAuFiLdQtp 6OUSHC20B+WQ0XQ6qfFmGfRO3fTxtLGfhbT9/En75/GD+5OGrHIgF4pgV0ug t8ogrjVQrwaofwsmrGs+roeU1EcAimLW6EoOiJAPJefCqZblCQynGCusmBJX zHC7aXrHUtBHgZVHEzudktt8sqtTygrrmrP7e5IgQzHjY2GzkAA84j4ZeY8+ 7s7CerGx3hysD3/GVzD/ULzkK13ylhMeKImP1KQgHTXSyIgzc4NN/BCDKE4r TVdLi3Xq3iVcXkfDPRQ4ZAoasIDwWUJ641HeBLQHCe1GxbrRp11ZOFf+3D3R gpsUf19O9FdQg+S0qFVWuphXxBXU0EUtND54hTk7RSMgaQIwUzvAV/cLlEN8 5TBf0cdVttPVTRRtApgSN0KJh7AS4OwUNC9tnJ85JcqaEefMSQsW5cV4eRVR 0URVtbPUfTzVoEAxLFQBs/CoyAQSmkACI4gnn15V00xrHPMaT2/ga3UspYqm BOZcxaJcQpDLZolU4gpVQuRKlhmi2WUxcpLbMcgubxLl1yhyqw1F1ebSanNh mam4zFBcp8lvVKY1quKq+RGFM9Gp6Joy+Ghz13Dl4ERz11RXPRpWiSSUIEUl SGkJUlaCXC1GKN7krhihKkEov80H636sdd+R6vvzrnU/+Dd+f/4mrQPG1beW XN+1Tp0NVmWCRblwXgmKve9B6k8ueX121XP/abdr5yIB6E4dCb39pNanEXGv CXq/EebXjgrowwYPTIUNz0SDcTGvrcMsFc9S/dvB57OaziQ3Xi+DO+TDPono +llo28dhnZ/H9h9OGrLNGrtYCHEqgd6sgN2uhbo3Qv1aUE/ap6J7luP6lxOH 8cmg5VTociYSn4HA56Ip+RhWAYZfNCnOmxK10ted8od+7ZtrHZHrnhiXXRbb 0/QI1eaC7r6HGvCcGnabB7muwFxJSFcqxoMxcZ+F9eZOPRDMPhQu+EmWH8qW fRREXxXpsZoUrKNGmRhJZk6qiZdqEKQaxWkGUfpLVR1l3B9cbzU/dmN+7Poi +N4y+C4B5kpBulNQrsxxdw7WjTfjJsB5SXA+8gVf5ZKvZsVHS/DRk/1NrDAD P1YrTDTyS0y8zlU+jMmZm2MQwVzuEE84zJeNCJRdLHk7Q1dDVEWNEqJGyUkw VhKclYLmZGD42ZOi7GlJHk5WvKAoXVZWEdVNVE0nS93Pkw8KJMN8+QhfNyYw AgEL9VCRDsSVQTjiRbWeubbJN5gZKhVJsUpQyeflkkm5eAygTi5hqNRcnZGn NsgUOqNCa+CIjDi8sLOfWVErq6jTVtRrKho0pfX6wiZ1Rq0ssUwcV8KKykPH ZoCb60cg7QOICvBs+chkSxcCUYkglyFZZUh+GUJcglj9r7Uu/+382Ln4g3V/ y9a9fjT3pnWWdgdRZH1tnTJjTFAAYx3zz/jni26/unrvZ6eczto/cLQKOXk0 5E5og0cl5GL1yMUGkGc72rdj3L8HsG76tXXR0NkUzEI6ZqlgmnK/ccQhs8kq tdU+b+iLmK7fRnX/Mqz910/av4jtPZo0AMyeV/KQTsWwq1Vg5zqIawPcvxUV 2o6J6Z1MGlhOGCQnDeNTRufSITPZoIlCyGQxfLYcNVc1vlgxudxNYrpmZJ70 cveO9UvN9a6uuj/Udg/ZeQnTexE76Dg7cn0RcouAuEdEupHR7nSMJ2AdZ9qH P/tAtPBAsvxAtnx/z7rXvS7CyIw3cdLWuZnrvNRNQcomP2lbVkQCuaIbzy0O Oi8OX18G3VmB3CXB79KQbnSUGwPjycZ6cqc9+PP3+Qu+ouUAGT5AveJvIDxa I4du0eM22akb3MwNds4Gt2hNUG0QtShFPRQRdJo3BWcRx9iyHqa6k64tnxVF 9S3FD5FSIZQ0GCELRc3D0Asm2UVTvOIZYcW8pGZR1oSXd1HUg4y9g7ps5QgX GIS1YzwjUOrGhAYQ3zDG1fTRJX0MIVKioBoNDL2WLF+lyVapKsW4kDtCXFoU Cydp9BWhhK9f5wDOGfX8Nb1Kr9rQKIwMmnBslNHQJLBw12wqadVk1ghSSlkp JbzY0pXQ3MnkcnR3wxioFI4qh41XjI431qBBFQhiFVxcDZWXw1cBtf4Lrfvh jwE/WPefYN0PF+w/Atofww1INkj+bf7IsQjL+a8sqCIDLMuCWs69ZoNlFeMy h9i6v7O5+9tr9/7V7tKvjl0/dyHo+JlHLo8qPYtGLxUPXq2H3GqC322C+3aO +3dPBvXPPBnERYLm4yCLiYilVCS+CMfy70A65nWfSm77Krr5s+iOz+P6/u1J +8dP2r6M6TmaOHguA+aUj7pSAnGqHLlRN3K/GRrQDItoQ8S3wdJaQYWdo2U9 w3XDw23QoWF0OxLbgp5tmZhvmsK3zOBb8MzhmBz3u0H2ocl3krKca2s9ulvv jHXeQPdcmxq4ghu+sTjmAvQ6IsKTjPFiAGPspDsP5yGY8xQt3pfifVbx3kri QzX5sZocpKNFGNnADBu/zo/bEMRsiiK3hNHbwAQ56Ixpdpwb8JgfvrcEAnrd bQLMhYy+Qxm/R8O6s6Y82LPu3Hl37pInf+WBmOgnJ/lrKI/11BAzK9bMTl3j ZJh56WuCjA1B1hY/56mw0CAqlwnbqXwEljE/RKT2U+SlaGZMz0LcICUVSs9A EDJRlEwMNXeSXjBDLsFRquY5dYuiVryil6wfphvGWLoxlgbE0YK4QJfTQ3hG MN84wtP1MVXdDGUbbbWVKoIIJXi9jqRSUaRSmkw2zqTN8jj9aHRtdzd8bh61 tCzZAKZdHXtDL1zTyIxqlVGp18uVXJoABOZUNGtK2/R5jcLUUkZSCT22lBVd tRxYNJGXhx2owkBq4ZhSyGxRO6amCYZqBHOqoNIyuKz4W6PgmhK4+k3rihDq dxZt//Bk70+x7i2y/kwMvse6vR++mb1FENjXlP146959SfZt3uEuD/yDA3or fxbr3srfonVZEHk6RJ4BVWQj5DlQUQVG5l4w8P+c8/7k2oPfOlz75MzlL055 HTof6uCb71UwdCmn53Lp8PVq0O16qFsL6n47xq9r8lHvdEj/XOQoPgFCSkXS 0lD0DDTratHw0bimnwWUfvS46ov4vs+iez9+0v6r0NbPItsPJPYcyxw4VwS6 WAxyLAG7VsOCascia/uymjoq25u7+oqR0PRJZNbyVB5lNpe7kCwlJMiIsVJS lJIepWZErq1Wl+Tb+YdYBSfejc91r6h1bW+6Odp5G9PlNt3tNjvgNj/shgd7 kOBeVMC6CTfW5F0e7q5gwVW85CH72jo/gCYNJVBLf2LkxK5xU9d5GeuClHVR wlNx+itZxWzvdVTblakhr5kRjwWQ2yL4Dh7mQkTdIWPu0Sc9WNOevFkPwbyX aMFbthSgWAlSEoNUlGAtPdjAiTByI038mDVh3JoweVOQ+ZSf+4yf+5RXsM6v MIjapfyeFRoIQiAUjqITepCWDTYQQgqcmIymJWEYqVPcrBla8RytfIldjRc0 kuQdNE0vUz/A1g5xNZZSxzX8wTquoYel6aCrW2iGBpq+hSyECOTzGt3yqgy/ Kkax6dN8dmlP5yyDrn2+2TTUQRazFS/WxRs62aZJsq4XmFUAeqsm9abRIMcT WS19krx6dWYdP7qYG1PBiKtZDivDRKXPNVXgEA3IyTL4bCFsunII3t4JQldD LLd6Wh7cIRQW5f6mrPvOgu+f37o3a957rHvn/MX76Ptg3XetywbLc962LnOP u0yoHBhdy9Hi8KaJ/3XZ/5/s3b5y8vnc9vZXJ50/P+F95F6qa+mIY8HAufy+ y2VD1yrHnOthgHVeLRj/7pngwcXQIXzEGDFsCB/QNevVNO7fMXcgpvF/+RT+ v645Pwus/X1c328je38T1vmL4OZfhzd/Edf5Vcbg8byRSwWDdwoHgkq7curq G9oqQIP5s5AUAiqCin3MngkSzPgLZ3wlc4GKpTAlPli1AoycjzV0nw1pTkXu kdCgY9FxlzOzL9ZWO3U0Xh/tcEd1e2F7vGYGvXAjHksQL6LFOk/6xD32FGDd PcGCm3jJU4b3lq/4qCw17JGG+kjLCDGxo9a5CeuC5HWhJU8lWRuiHGSXHazH YXzMeXLMeQ50Zwl8ewXodcg7VMw9BtaDPenJn3EXzXlK5n3ki/4qfKCGGKwn hxlpYWZW1Bo7eoMbt8lPBPBcE2aZRTlGUa5JmGMW5q4LC7cERVpeDYU12DZc UN1dXj3YUTHaVwUfq0AiSxHYMvRi+Ti1apJRi2M14tntNEE3W9LLVXVz9T08 8wB3bZRjfG0diGc5fdbN0rbRtU2AdXRjM13ZRhZC+fJFuRonlY5QiRg+O6a2 ErS0OMcgNg80suTc4Tk4XSfGMgmdqLEZyopEp9aY9Aq9Rrdu0AvEol6oKLNR nlTPiypnxlYTEiqRYemovLx5SDMaWwafLsDM1cKnmvvgfQ0QbDmMWoJ6vVSx x93bM+wH6z5Y919uXc53rAPm1jyYOhu8WgARFI2Sf3835leX3L645Pq59b19 x+598cXd3x996BLT4lwCssrrO1s8dKls+GoV6FY9/G4L2rdrJqBv3q93waNp 8lo59EYl3KUGdaduwrd9YV9s688Dqv6HV9n/ftz8aUz/v4V1/zqs65dBzb8J a/4qtv1UUq9jeseDworEmoLKtpS+riDkYDBu+BFh2JcE9SFO+NAnH/Cm7wtx 98ULPrKVhzKi7yrZR0V7oKT6r0nyarIPxAd+kRxzPCv7cF2VVWej/Wj7TUS3 K7r33tSA69yI6xLUlYhyo0y407Hu7Ck3Ps5TMO8pXvICep18xVdpsS5AS32k YwaZuBHrgpgNYfyGMHFNkPRUkmPkZsM7ziIHLkyArk2Bb86DXZYgb1nHmfLk z7qJ59yki24KvKea4K0lBRgoQSZaGADdOid+k5u4yU9aF6QC1pnEOSZJrkma tCaJ3xSmbnEyNrjZCkrCHMgLj4leGc8gYdMpuAzKfNEKrnxloXF6sRe5OApd xIwtzA8vkoZIgmGmfJCj6uNpBrg6oNqBOMAYqxvl6gbZ2k6GpoWmbaIa6mmG Rku1U3QSRRi+al6uATOp8woJikVBkJchC9M0KV++ZWSpJVyDona4hyUTC5Ty 6fl54+aG9KlRsmFQ6jRrq2reMJqa3shJqmPFlBNjSmZiiodj0qf667Dj5cjJ bBSuFIOrg011tMP6ysHjZePsEjS/BCkpRiiK34Dub8y6H7KX74N1f5nWvXkX zesZNmtMnguSVSHFlyKrfmLv/tWVu59ZOx48effEoftffOxqfzk5PAvkljtm Uzh6unj4osU68K06pHvbpHsL1rEMYpc7eD53xDZn+Eo5yrkOe7dx2rcTvz+m 4+f+gHXl//Cw8fexw78O7/1VaPuvgpoA6w5GN7kllicVFZbWJ7S0PRjovg7v sZ8auTE35oGHPCKiHpPGfZlTD7kzPmKcr3TeV4H3U648VJF8tRRfA/nBljir Mmt/ZOi+yATr1OzTVZW2XQ3nwW034T0uyP5b48POMyDnebgLHnmbNO5KnXBl Tnpycd6CBS/RkpcU76sgBigpASqqv5r2SMsMNfEA6yI2hLEbwgSzIPmZrEBL y4I02GD7nSZHrsyAbsyD7ixA7izDv55haZMezGl37qybYMFdgvdYJXoryA/V 1MdaWqieGWXixpt4yWZeypogeU2YuiHM3BTkPBfmPBWmbAmT1kXpRn7mmiBH vBS8NHKFBndlY3wEE57iKXcxzke6GCAlhEqpUausTDG3lsXoIFFHZulTE/RF BJ0KYQlBbMUYRzPG0Y1xtSOWG6g0bUxVE13TQNXX0Yz1VFMjVddCkA1RZXAW MMMyl2USslzOUqmFG+vcdZPIbFZvbpmfbiGxk3Se4Pnu7hAUxBDxMPj5RT5L bDbwdTqlSs2CTBKymzjxVezoMkJs7WhkHry+bGa8EjGRDplKh2ELkVPNoxMt NbC+QsRyGYZdjBIWIuUFKEURSlmMAOZZVSlCUYS0rEF8nQ/W/Y1YJ3kjf4J1 P1qzdzYPv4NbFmDaG8l+PbS+nTzQ13ltXQZUngYSlKLFT2rR/3ox8ONzDw4A yh24feaAh/V+799/7nU9uN6/EH47d+xSMeRs8ejFspFrVfBbteOXSuDHUwaO pQzYZI5eKIBcLoVdr0K51E24Nc0+7iUfTez+uV/539+v+Huf5k+ioT8PH/hV aOOXQcVWwZl349LSsiOqSx8113j0NF8d6biE6AVgcVmAeq8gHhKRD2gTvpxJ X/60t3jOW7bgrcQ/VBH8NCQ/PVCfyAFbopyK7ANhofuiEs6mZpyvLL/a03QN 3H4T2uMM77+JHr6FBd2cg97CI5yJmDvU8XuWtYlZT+GCp3jZR7rsKyf6q6gB AHQaepCOFW7iRq/zo9YFUeuAdcKUZ/IiJSkJVHtqqt9xZuQabswZsG4RfHsZ 5kJC36FM3KVPurNmPDg4d8Gip3jFW072U1ADVfRQDTNcz40zCBKNghSjMMUM yCZM3RRmPhNmPxXkPBVkbYkzNsTpRl7iuiiNM3OfCL3OQN3mYN34U26iWQ/J vKdkyVu68kBOeqChAv9jsVpuqlZQKBc0CnkDLO74CmN+nEa3fPwZR4HgqMEc TQ9b1cxUNtA19YB1VGMtxdhA0bZTlL00+SBVgORJ5+XaJZmGJNeRVVq6QSdY M4j0GqXRuKrR4lbwyJmpEQxMoBS39HXMkYnLPA7NoCEoV6UqFQGExqVVcpNr 8bH1oJiSsZLcGXQVejwTOZ6GROegJiohk7U9mKYayEgViliGlOXAlXkYZYHl EJnlwV0pXF6CVH2bYpSqCK0qQn2d99P3o0H74da9HeV38qaK3y5SyL+b967Y fndJ95vDF++uzMreTP5bWX07svfkz8LgO9y9e2f7Hw6cSv/TrHvr0Os71r19 n/DrKfXtSwW/gW7POqDUZQC9DiHIh9OPeWX86ozvgdO+Jw97231+/+KXvg77 fD4/5HM7fdClCHqtYOxyIcg2Z/BSGcSxHHE8dehAfP/hhOHTaeCzWUiHvAnH ksnrFRO3ayc9mqYDe5dOJLX/zK/k773K/9Gn6TcRoF8+6fg0tPREYKJz6JPI lCcFuV71Jffaql36m2+AulwQfXcnh9wXwJ4EmDcFeZ817sudfAjMsKK5++JF r9UVbxXpoZr0EBgVNeTQdWFeZeahyOAvE+POZKSdry692dXoNNJ2BdpxDdl3 fXzwxszojUXITQLiFgXlQsc4c6acBThX8aKbbPn+Kv6+kuStofpqqf46eqCR Fb7BjdniRW0KojeFCUAZe6YoEC6HQBqOTfdfwg1fmwfeauzWMvgWAXqdjLpF G3dmTd/lzNzj4+6KFu5J8R5Kkq+a8khLC9QxQ428aCM/ziSINwsTzaLENWHK pihzS5S9IczeFGU/lQBfU9f58Wu8WCriGhl+jYm5w5l05U17CHHekkVvCf6h nPhIQQ7U0J7omBFGTpSJn2AUZOkElWpBt4wPZfCw0+wlFIMDY8pHmIpOpryZ oWigK+upmjqqto6qaaCo2qnKXqaqZZnbuswZoolhLAVOaqTpNjlrG/wNk3BN LzYZZGaTemuTKRPrn20s0QnDyDEym94Lg3A3zPQNE12rEkplC+0jSym1xPgm dGQRODdrHlmLGM9FTADJR2FLEJgyEKqiC9pUD52sRAjyUIoclAL4WvDaOoS8 FKl6M19zt5dC1F+Ude/frPI9xP25rXsr3/HtB+b/vHUj0jcP13+32v2lWfdt ncuz/NByk0k2FKh/q9VTave8wZ+efHDkmL/1QW/rIz42X96/dMDv7O89j554 5F0AvV0AuVEIulQ4dqF47Fh636cxHZ9Gdn0ZP3gkEXIqDWmbhTmfO+1UNHej cuJOHda9cTqoF38yueunviU/8S7+iXfpvrC2zwOLDwUmOISEeUT4R6cE5GV7 1BS7tlff7m8BrLuF6LszOeQGWLcCWIcCrPPhTvnyZ7xFc95vWqchAu0uZF2U V5dzOCLwi4S4UxkptjVFjp019sNNDoj2yxO9TjMDVxaHrxDAV6iwq0zUVS7G STR5RTZ7U7FwS7XkosHf1hPvGSluJprXGu3BJvPxc07YC17Ec0H0M2H8pijx lSKfM+sNaTgw239+fujy8sjlFdAVIuQKBeJER15hj18VTN8Uzd4Qz12XLdyQ L7moCG5a0n0dMFzTH5nZYWu8qDVB7Logfl2YuC5M2RCmbwhzgADWAaP3uiB5 Q5SkZ0asgC9SEDeYmNts7D3ejCfwx5Quekst1gUoyY+19Cd6VqSRE20WxJmE SXphhlZQrBU2ayXtMlEfQTCDYLH6SMIuiqSNJm6miBspsjqavJ6maCTLW8iK brqmcoZVNc+uXeQ0L/EGyTIIWzEj1ZG0Zq55S7zxVLqxJVmz3JeiebFJXxVM rOBwxCUYbpqiVjRi0QtyiVhvWKULp0q68HEN8yG5k2npVGTzxGQpBFsAmyjE jJdg0cVwWOEAtLYFPFQFXyhDi/KQqwUo5d7uYlURUlmC+mDdB+v+IqzbW56w nPHPhawWQJRFI9wvLkXtPxNke9jv8j7fiwd9Hb7wvnzA7+gnd0+dC3tYivAo QdwohFzIHzmS0v0vQXW/CGv7NLpvXzzocBLiVBraJhvjkD/uVDp+oxp5px7j 3jAT1Ec+kTzwLz6lHz0o+Mgr/XBIwenQBMfIsHuxj73Db0cm3s7JultdfLel 2nnPupvfWOe+AvOioLwA6zjTvvxZH+Hb1qmJfipSMGBdfd6J8IBPE2OPZSQd r8s/11NtM9Z4FtNxDtfjsDBwnjjsQAedZ0MvCJAXRejzcux59exF3fx5/dJ5 4/LFNaLTJuXaU9qtZ7S7L5n3dzgB27yQV4Lwl8KYZ6L4XVUuZ/Ieqmn/4qAd fvgCGXSJBnFiQC9z4JcEGEcx1lE67aSYu6qav6JdvmJcubVGvrdO9dxg+G6y Aza5IVv8CKAiblgWO+LWhUnfWrchAkpd5jo/eUucJCf440EXGJg7rPF73Ck3 wayXeMFbuuQjXXmoIO1Zx3hiYAPWxZj5MeuCGLMgfs0yFGeuCTLM4nyFrI0q wmCp1FESo4fEbCNyG8niOgpgnRRAr4Wi7CJrKmaFpcui8kVxA1HZSVUP0NVj TCWSq5oW6fAKM8uwKd54JtrYEKwb5C/XZE8NqIXpWTIRTSS2T032kQhzEolE YWDNUOcym/DhufOxiZzuKhK0fB5eNo+pnJ0oncTkIxF5o5CiTlBtHRhciaCX AXMrQlmElOejFPlodQlK/cG6D9b9JViXBVGkQ+WZcHn2mLQGrX+cCvrqkL/t qRCHwwFO+x46fuZza3/A+a8efvq7O4euRnuVwu+Uwm8UQ46ldP4koPKj4Nbf Rfd9FtW/P37kSPLoqYwx6xzouQKEYynmWhX2Tv2UWyM2sG/pVGrPTx+U//Jh /q88Yk8FJV2LjHCPeugZ4eob4RiRcCUr63ZF8d3Wape+P/Q613mwOwHhQUF7 0bE+rJkHHJw3f8FbtOS1Sth7/k/215D81KRAoCM1FRyPfPTbpJjDmfGHGvJt B2pOQ5usJzusF7utVvqtKcNWTJA1H2YjRtnK0DbqSRs9zta0YGNetl7Dn90i OjynXnhBd3xJv7HDurfL9d7hB+wIg1+JIp6LI3fVWUyU42TrV8Rhe+qoAwt0 nge9wIc5iJH28nEHOdZeNeWgxV0wLlww4y+tE52ekW8+p7k9Z9x/wfF7xQ95 Lox4Jox6Kox5CrREy/66tA1hxjoQkeVh3bogaUuUzJ11JcKvMibusLB3BDMe ojkvyeJ9Cd5HRnioJAcoqY80rBA9J8rIiV/jJ2wIYze/TsKGIGVdAIiXZxA2 yMWgOeb4IGG+y/KJurI6sqaBKmukSNtomhaCqmxOWrAiK8Kv1pDUrXRDL8s0 yjFB+WY4z4Dm6mYkWrxSxzJtiJ4+5W0a+Ru61Q0jMNVOEckrciWUx4OwWCyt iStSLfXApuMK8GFJ7Mx0dlUOs6WQOVhGQVZMjxfC4dkQaE4fNK92rKkStlCJ kJdZrsRZLUACw6ymGKX5Fjqg4wEpfp2/buve3Gb838C6dz+N8X3P6340aO9Z XX3PfcLvJOft9VagywHQ5VuWXBWZUFUKTJEKkxVApZVjPNtraSdPBp89GeRw +NHF/f6OBx+d/dLvyJcPfv6V+363NOcqlGMF0jZ3+BchNT8Nqv9FSPtvIno+ tVg3BFh3InP0dC7ItgDsUIpwqpq+3YC91wQP7Js8m9n1iweln/rm/OLmY8cn iZ6Rjx+G3/YLv/Ew4uKTWMf09FtlRXdaa/as63ZG9N2dGLozD3YlINxIaA/q hDdzxpuDu89buC9c8pIR7itIPkqit4bgoyX7PZNkdZadjPD9KCP+YHbcl015 Z0brz2BarOfaT+O7T1H6T9OHT7HBpwWQ02LkaRnqlHrijH7mjHneem3p7MbS 2acE+xeUCy+ol57Trm4zXXY5nrt8v23h41fC0OfCJ7uqNCrUeqr5d9RBG/qQ DWfETgi2E0FtJQhrBcZWOWGtwtrqZs4a5s6agXdbsd8iXX5OcX5Bd3vJfrDD D9wWAv0w+qUo7qUo8YUo5ZkwbUuQugFEBCRlXZiwxo+nYm6QUVeZWGCAvcOb dRcu3BcDA+zyA4t1FH813V/HDjFwokzcxDVu0gY/dksY91SQ9JSftinItDz6 E2RtCbPXRAUyScsCbXRkfrZzid9C0DSvaJoI6g66uXRBljMrzFmWFhGktZZP b1T1cnRDvLUxwSaUv4kUrSMFGhR/dUqkwqtMDPMme83MMxhEehNboUYuE0cX lseZHDiVTjOa8SQuPLeZHJyricoz5pRKi4oFZUXMxkLSSPkcogoFLxqAZ9dA KgvBsAoEvxymKEFaDsnmo3TFaG0xWvM6JXspRX2dEpSm6I/nPSsXP/pTft6/ 8vvWf+Jd7hRv562XfnDlk/9ABoEU/OD8aAZ/sHWSnNHVN7J3PdS3+euxLgOq BKxLAUuqUMrwPPiXB/3Pnwk/dyzE4Uiw9Vf+Xx30+9Im1Op2+nmfwmtRzTcq x+1L4L+Lbv9pYN0vQ5r/Nbj1k/CuT6P69icMH0pEnkybsMlCnc0FXSwcvVOJ 9q6FPawZiu6AX0+q338/7YhP7L5bXq5RMf4xvo8ibz6KuuEXcSkk9mpKxq3S wtvN1c69zdeBGRbee3t84Nbc6C081IWEvE3B3GNi3Tgzd/lzt4XzLrKlu2qC m4bgqSd4mik+27K0weoTMX7/VJh6tDjpQEeRNbjxJLb1zELHGULXSXLfaebw SQ7oFGCdBHl61WLdaf2MlXnedm3RfnPx3FPChRfkSy8ojs9p17YZt3c5Xrv8 h4B1L4UhzwRPdpUpFNDp+bYvaINWrEEr3shZAchWBLGWwK3kaGvlOGCdjXYG KIo2pkVbwLqnJMcXVOdXDPdt9oNd/qMdwZMdUfSOKH5HnLQjSnklSX0lTn0h TgXq3KYw6ak4ycCOIMAuUNFXmRO32BMu/Bk34aKnaOm+ZMVHTvJVUv00zAA9 J9TEjTFyEsy8ZMsjPkHqJj9zi5e7xS/YEBQAI/y6KG1dkLAmiFcLK0gMyPDc cvuCuAOvaV/RNpN0eVOiHJy4aHm1jLjaQFN0sJV9XO0wzzQqWgcL12EiM0xo RIp0SKEKJVBMS7VU01OOeQsocjydeYkjLOvqJ6zKu2dwo2QyS2OeaUfgHqbr o0s2MyvVuVWqwlpeTiGptADfUYkD1UDARc3giiLwYDGUUImQlcCBMVZbgNIW oYFoXqf4DegsQX6w7q/BOgtub1one+vVvwbrCizWrWbBlWlwRSZEUgOT3vCq PH7wsf2RYLtTTw4f8j91NvLCo/LLya2XUzsuxTTfSu5xqZ4+nDr8s5DmX4a2 /Sy45efBbb+J6P48su9A/PD+JOjxVKRDJuJKNuRm1oB3TldEWWtWQ0PrYFdM Tpadp+95H5+zd68/jAnwj7nrF3XlUfS1gPCrwVE3ktJulRS6NFXd6m68OtJx Hd7rjO2/vjByjQC5YXloj77Bm7gpnLwumb26inNSLVw14l02KR5A1iluu6sx sCarlMf/VJr2VXHcp135x6B1hyeajs63H8d3HSP3nqANHeeMnRJCT0tQZ+To 0xrsGcOMrXnOzmLdksNTwkXAupdUpxeWGdYVmGF3Ba97XcgLYfj2aiJh6NhS x37GwBnOkA1/5KwQbCOCnJHAT8vRZ5TjZ1RYK+20lR5nZVq0WsfbfWPdvR3g fXj+O4KgHWHYrhDgLm5HmLgjStoWJ21Lkp+LE5+L4l/JUtUkv6VRaxr6CmPi ChvrzJ+1WCdZvi8l+MjJfipagJoRaOCEGwHruHFmftKaINUyAguy1/kFm7zC DUGRWZhrEgEAxj1jR22wkxSCagoTBJ6f6ZxndRPlrSuK4ilh8ZysZElWSVht oSl6WHt3hPL1YyIzSGgCC41QERADXKSDC7VQvhrMli2qzcz15xSNgWcwE2Vy /vpmx+RU+9QUVWOkYUlTgZnq+OL1nGpTQYO5oEWf38jLLFtMycGVFMz1Vw+P VdeA20ogmAokrxShLUIaC4BBFa3+YN3/Uet+MH3/Ha3L/sa6PLDlAGwqdLVk XJXRQjxlE+9oE3P64KMvDvqdd8++l9ByI6vHPqX9XGr3yZhGq+Rup1Lsx0+6 Pg7r+lVo108ft/08uP2T8J4964b2JQ2cyBg4l9XllNHkllsfX15R2VLQ25s2 C89qqAx09nK653/jmrt1QMTNwPgbAdFOj6OvPw6/9Sj8RkLK9ZJC58bK610N jkPtTojua5N9TvPDjgSIEwNxRYB2lGKdVLNXtQtXDIuOaytXN4k3npGcgWlx i3JrVxo62WWXEvB3JYm/Kor8ZUfOfmj1fmz9/oXWI4B1xL7jtKFj77OO+I51 PruCgG1B4EvBk21x9AtRzHz3V4sd+2n9pzjDtrx3rTutnjyjm7U24KzNS1Yb f7DOdYfrtcN/sM33B94KaHe7wqgdYcwuIJ44Zlcc+0oU/UIQuStLUi17EEHW LIwTe/wid/KGEOcmWbCcXJMRfZSU19YF7w2wMUBtWxMlmETxZlGSWZRmFmat CXI3BHnAGLvOz1gTpKyxU42sVC03Uyso49DbBxdnu4iclkVWxSSrdIZfviCt WVntoCr6mKpBjnqYrx0VGsaElgtSwCIjBOBObIQIjCCBYZir6qeLx6Vq0pqJ qtfT1TqaVteGxS5rVLNKNY8umo8rUSdXbBTVG4trNkuazDn1yrQaSUoN/kna dEba5GB112hF6UhvOZJRDjeVwNcKUfJClPLbavfBug/W/UDcvme38B/9LNd3 k/NN9r5fLQTJS8bkhZbndYoMuKIUrX6YAj5+NNL6TOT+s2HXAytds3vsUpqs k9vsUrpskzoPxTacyR6wzkZ8HNb92/D+n4d0fxTc9rOQ1t+Ed3wR3bMvpv9w QsfppMrr6ZnBJWkFrTndA6mjA2GQvgcL0ID+RldPn5MPHl9y8TjpE2wXnnAT qHNBkc6PI5wfh1+NS75cVHCtruJKZ935kdYLmG6nmX7H5bHLNNhlLuKCCHVu dcJBPXNeh3PQz59bW764tXLpBenKSwAW8tVdyaOFgQvp/n9XmvjL4uh/bc/6 ElKxf7zuK1zb4eXuY6T+PetAx0WwE1LkKQXGSjtp9Y11dhtL554RHF6SLr6i vl6bcNvlP9gRPtoRBr0UPtmRxW0JoqdbP13uPkQdPM0atuGN2AohtiKolRhx ZhVjrcCeUU1baWdt9PPWpiXr9ZWvrdtm3Nvl3N/lPdjh+++IAneFYTuiqF1R zI44akccsSMOfyUAfiZ8VxQpm3biIGyE2EuiSUfJzHXpnLN8yVVF8FRT7mso 3hrqAw1zb2GCF7suTDILE9bEiWZxslmUsiZMN4sy1kVZwDy7yU1b56YbuGla TpqenWJiJ+oF+XM08NDSZP3UdNkUtWReULEsbSCudlMVwwz1CFcxJFQNC/Wj ItOYCKh2BogIEM88KjQNcfWDXH0/V91F4cPFCrJ5i6o14VcVGDqDrFYsylc5 AulScaMxt2mrpMlUXr9W0rBW2GzIbV6Nq1DGVZDCMyeys8YH6hsG2yqg89UI wCtT1oQiH6P6ttcVWZ7XaUu/SfEbP/89QaneiLoIgPEP+ZGfc/F6J8wfS9Gb eRdG5XvyJoPvX7F9L4M/NP8B+iybjXP/5LtQxBbfvs3byxa5o2/lL8G6Ny8z AawrAstLQPJCiCIHpsyFK4thcgfvuoOHw49fiHOMqbud03Muvd0qq8M6s8sm vftMauexpFarzIHjKeAvYod/G9H/b0/6Pgrp+Flw0ydPWg9EtB+PbrcOL7qX nJhRFdvcFNzb6A1q80T2eKIHvOYgvkOd97z89vkGOd72tPXwt4tIcHkS5RwU Dlh3MzjicnS8bV62Q2PZxe56e3CLw3SP48LAZSLoMgt2ng87K0LayjH2aqy9 btreMGe/tuSwtbJXxsgXXpAdd6W+5LEr2f7/UJH866LYj9qyvgSXH0PX7Z9p O7QIWPd1rzsugp6QAdaNn9FOWhtm7PasO7exZP9s5dxL0gXAum3ajV02YJ3v 7jfW7cqT1rlhky2fEPqOMUasWUPWvDEbIcRGBLMWI61Wx19bZ63F2ernbUxL Nn+wju62y/LZ5fntCgJ3xeG74uhdUexeqYvaEUXsiEJfAbOtKHSbGyCEn5Bi bOSTDqqZq8pZJ9Wckw5/W0+4a6J5bTB9Ntl+Zm6IkRdh5luss+zQE2du7O1G XhcC32SsizPW+SnrnMQNTqKJHa9nxxksidVykmS8GtxiUwusqxy9UIbj1eAF bWRJP0M5wgIGWMWAUDEo1A0JTaNiMzDGQoRGoN2NCo1DPG0PS93D1vZx1O0U CUJsJBmfU3RmpkbLVsoXSAQ6nz3d0S3JqzOXdxrLO7ZKuzYrepW59YqUCll8 qTiyci4kD5tXNtrXWTcEbUIIgOk1DavOHVe/adreUsXXeR90lqjeiPp7i9+f bp3yPSl6M+9Y986rb/3KvyLrLPnTrfu+g2N/Dda9/rDXPODvAfK6UavKkZqc fu4nl9L22SW4RLQ4Z/VcTGuzz+y2zey2yeqyzeg6k9Z5LLntaELngbix30cP /zay/zdh3f8W3PHx47bPH9efCCq/FF32KD2zqCqpti6gvcZlpPkOpN0NsA4z 4IUDrOtyexh4+FHoDRePsx4BdpHJLk9inIOAYTbiakikfWz8mdx065Zyh5Em B1S7A67r0mLfBeKIAxNky4fYiBG2q5hzaux53fR5A85hben81sqF19Y9J1/e FfswoM4ZD/+hPPHXhTE/bc78/VjZMVT9gan2g4s9Rwj9R6lvWoc5o8Fa6S3W 2b9h3fnX1u2w3Xb2rNsGrBOE7ipSTKzAieaPiYNHaUMnWUOneWNWQoi1CGYl Rp5eHbdSYK3U07Y6nK1h0dq8bPPt2oTFOrZlFt4VBO2KXlsXt5dowLpd8ZMd waMdQeBz+n0R9LAcbaWasNdMO2lmLhrmL5uWr5tXnDeobs9ZPi84vk8FQZtC yya9LQFQMhO3ROlANgXpm8K0dXH6miTdLEw18wCTLdYZvrbOwt26MJm3FDM/ XTq5AIYtTQ3hZwdJhCGWYICnHBLohvm6QYGmX6AaEGlBAHRCA0hoGOHp+9nq Drq8ja7q5ui72doOshQjMdBMm1SVWqDVYJBwPGGesjCzOgbnNXSJq9rXSjqe lfeo85uEqeX8xFJuVAUxtBATmoyoqu0YgNTDaGVoRZFlb8lbgn2w7oN1/8nW ZUBWM2GruXAFMIw3YvQhxTP/aB1zJbLjdu6wQ0aHQ1aXfVaPbVbP2Yxui3Xp FusOxnUeioPviwH9LrL3NxFtvw1u+8Kv5ejDQseQ5MdpyXkFYTWFHs3lV3vr row23QB/bZ0HDuwNG3oYEHIiIPSas/vZe75W0cnOoTHXgiNvhkQ6hUbaxMWf KMg43VFuD2mxH2+3m+s4t9RnRx6xY4/ZCqC2YsRZwDoV1kEzdU4/e868eH4T f+E56YLFOtLlXeF9DsYtJ+CfK5I+KYj+l+aMz/asOzjVvn+x5yCh/zBl8BBr 5IgIetxiHfq0xrLnBLDu3J51ds9W7F6SHF5RnV7RbmyzXHf4PtuAdZbqFb4r T9VTfMcbPyIPHaUPn+CMnuaDTwOlToQ4I0WdlGPPKKfOaGat9XO2xiVrM95m gwBYd+UlzWWH4WGxjv991gnDX4lCXgEviUNNKy4C0AHVxFkg+plL+pkLxvlL 5uUra4TrW5TbLxhuL1geL3i+LwWBr4Rh28LobVH8c3HqJj95g5fwVJCyIUk3 StLM4rQ1QYqJk2DkxH8bMyd+jRolmvKRrsQqWEUyXgWXV09gD04y50BU5ihF DqEbQGzDCB+odvJRkXRMuDoq0A9y1jrp5jaatpWuaaXp2pjaToaqnyadV5io OjPXoCfPTM8iR/Vm9ZZeY5KKtJM4ZW2XoazTVNQuz6jhJJaxYsqZEWXE8BxU Qu5w42AbeKUCLS5DqT9Y98G6/yrr9vYPr6bD5ClIyxbi/FFpG1p/JaTroEeZ SxH0bFaPTVb32eweu+xey9fMrrOZXVYZXSdS2o7Edx+MRQDc/T6y95OI5k+D Gg/6VDo8TnuYGBab4VWWfacp70pb+YXeussDTTdBHe6IHs/xQfc58H302CPA Op+gS3e8L97xsQlPuh4WBygH5HJYpHVi/NHSzOOdpWdA9acwradxnTb4HivS 0GnGCMCLtQRxVoGyU0/Yaabs9Dg78+K5PesuviSff0a6sCNw4096Zfr+Q1my pdc1pn02WnoUWXdgum3fUu9BwsAhcv8+5vB+EeToKuKUHHVKPX5aP3XWjLPb WLDfXLR9tmLzgnRum+oE9LptpusOz2evdIW+5AHWpetI9yea/4U4uI8+cpgz doIPPiGCWongp6So48rxUyrsad2MlQFnY1qwXvu61zm9pDlvM9z3et2jXWHw rjhsVxy1N8MCidoRhr0SBr0CKp8wUIu7KIGfUI7bqCfP6mcv6HHnjYsX1vGO G0Snp9TrLxkur1h3tjmWvc27/MBdYKYWRr8UJ72Spr8QpzzlJ6wJEw2SNBPA nTDFwAWsi/uDdbwEFdFXOHdXTgpcJYZrKXEmWoqeU74q6uYIx5a5mAkqHkWW QhlGCE89JpCChPIRgaGPY+5gmFqo+laavolmaKRqW2naTsoqnK8i6TcZejOH Q5ueACkMMs2GQf3UtLml3+KwBN2D4qJmZVadOKWCG1vBjCynhuXOR+ZBcpv6 B2ZqULwCjKoQ88G6/9bWvU+w9+Z7rxf+U6xT5EKUOVA5YF3annUlMEXJiPiM T51zxuiForFTeQPWuf22uX1nc/uts3ttMrvtcvrPZvUfim36t+Daw3Hgo3GI L8MHPwtrPRBYZueb6hwUEp7ok5xypSzjUkP+5eayy511V/ubnUc7PBB998cH 3eYgbjPwh0/C9t9/5HDX/5qT54ngBKfI+IuR0Rcjoy5FRtslxh0uzTzaVXJy rOYIuun4bOeZlT4r8uBp+sgpywwLt15F2arH7bQWE2zXFuw28A7PSOdfkuyf kc/v8O/K5jwy/f5HaeLHRbEf1af8dqTkMGDdTMtXS90HCH0HqX372IP7JKBj cugpFeqMfsLGPG2/MWv3dM7u2ZLtS8LZbZLDDtVpl+kCzLC7PN9d3uNdXugr TtiuLEWJd8U2/W/y0H7m8CHe2AkR+JQUZiWFn16FH1ehT2onrIzTAJu26ws2 Wxbrzj6jOL1iumxzPHZ4D7b5lvXcbXHoK3HEjgW6mF1hFEDWjih4WxDwiusr Gz8jx5xRT9hqLUc57PU4B9PC+Q38pU2i4zPa1VdMoGc671j2NvtbrBME7wrC X4kTXklTXkmTXogStsSJwABrECbpeIlaHjC3RhtZkSZOtJkds86Nky77yJYf aKlPNJQwMytyixWxwU5Y42aZ+aU6abNQOkjiYGaZ9HGmGsXeBHNM/Vx1B1fd xFQ30bTNFH2TJQbgmy6atp+2OiHWkQ2bRLl4kU1Sb5jV60/F5nXBmlG/vr6h 0cqwOGJBIz+jQRZXwYkuJEZmr0QXIaPLhpqgtWhuDkpR+O+A9v0MfkdC9Vv0 odTfu1b77+ZtP1+/zxt5D2jv+vbmsoXqzZcKEYrvLNp+f364iu+k6I+nEPbv u/fnuv3p64y+y91fkHVQi3XZMEUWQpENWy1GKpP7mOciu5zz4bb5o6fzhqxz h6xyAOj6HQpA9jnDB+JafxNS888+xf+Xe8GR+LFjcZB9IV37AiutgtJvhoa4 hngEhTulJJ4vyLxYXni1ruJma93tnpa7Q50esH5ghr03B7m3iPZNjN3v/cjO Pcj5kufRgAjr2Hi7pPgLyQmO8XHnEqIPFSYfai04OlxxCFV/ZLb9+HL3KdLA GeboGR7ERgi3lqFtVBYTrPUz1q+te05yeEECetSFbd4dNcEtN/DvyxI+KY79 17rkT4aLDiOr9083frHQ/iWxcx+j5yte/2HZ2Gk1xEoPtzahbdexdpuT1k9n rJ/OWb1cOru9bL9DcNyh3dmhu+2wHuxyAne5T3a4kburaXLcnemGnzMGjrEH jgtHrGQgWwXsrApuo0Fa6cdtjZP2a9PnN2bPP5s/93zZ4emy/XOy0zbjzjbb a4fnt80L3OEHbYufbFusi96zLnJXFLIrCtwVPXrG9JSOn9JM2gDQ6aZsAegM c8B4fmFzxWmLdOU5HSiZLtvsuztcrzesC9sWx2+LE17nlSRpS5y6JkjQcaO1 vBgDO8rMDAeywYs2MZ5IZz1VK4+11HANM9rIBfSL3eQlbXLTn7Kz1/j5emmp RtnCl8BIbOI0VY6ia0fZqi62vJEpbaKuNlNUzRRdM8XQSjZ0UbU91NVR5ire uIVXKYkSoXrj+er6c+nGC6n5mcy4ITGZ5HqNaIWxVNrJBapdfAE5rmA5vGji SUlf8UAjnFuC0RX9+/3tv9C6N4viB+v+1qzLhioA63Itt0kD36wWj6tDO4kO 6cNXS+DnCsZsc0etcoZsckfO5YNPpQ/85knDPz0o/Z9exf+fR+H/7VZyOB58 MnFwf3Dp6dAsp8ioO+FeHmE3/cPt4hLtM3Ku5he5VFTcba736G7yGOx0hfa5 Tgy64kBuK+iAgoyTnj7HfUKcndwP+QTuS0myyky0S088lxhnlRR7OC/xQFPu kcHyw7Daw9MtR5e7TlD6TzNHrHgQayHcSoa2Vk0ALFjpZ2zN8/Yb+HPPSOeA 2fMZ+cJL9m0D1bPwyT8Ux/6uKOZn1Qkfj5QcxdQdwjUfInQcoXUeYbTv43Xu F3UfXu07phg4oh45ogOdMMGOmhFH1tGHtrDHns2ceo4793z+6rOlmy8Jbttk n23Kw1fUwF1+vBB+GV3yj6S2/bS2g5zOY4LuE+L+E7LB48qxkzqolR5x1ow+ t4E992zS/sWs/faK0w7l1i7dY5cJgPl4lxO6CwzCgsgdS5371rrQHdHjHZH/ OtlZijmun7HTAaVuxt6Iu2Cad1hburRFvPqMdOs57fY2022b5b7Nvf+mdbuA mZZ9ensRW45jPBfFmznhRs4TIxvobxFGxpMtfoyW5L8662YkB6spoXJ2gub/ Z++uo9u89rzR33vfe2fOOz09xRSStEkaBsfMDDHFdhwzo1i2zMzMDIntGGIH DTEzxMwYg2Rmy5LMbEt69n2kpj1NzzTTc96emVmzstZ3aSlpnPavT7+/vZ+9 n6mA3Ymw/YnQvcnAgyn//ang/enw7YUI2mLcykLm9Gx912hPzTApf3g+a2gh fWg+Y2g5fZCcPkTLGFx7PEh5PrycOzLfsro9uEojzi9T947nD49m9w/IO3tL W9tjm2uj69RF2voyca49OavXL3bIPXbAIa7eJua5/5Onr8YS2WfE/katn/PB ug/W/fOsY11SFwRbxx78YfTC61YRWT1SIa/uRJbKhpbIBBfLhJVIhZVxub34 DP3gz+bxp5CJX1kmf2oc96968VedXgl7ZAvb+6k4uWo5IPVt7hvbKCNt7zh4 qHgH3wuOUIuP1chK0n2ZqluQfb/suVZ9nl7rK8O+avzDKDlTM26Elfp9Y05L zKUgX6Fgd+FAN2FPF14PF64Qd4402Lp4/sqHvE0Z/F05QgPPREfzJCZKJKbK xReqJVbrpKivJdeaJLfapHe7ZA974V4ndzyocDymuTtqEeP4eYTjDzFu3ye6 nXsRcrMshqMh8XpH8o3+lNuj6ZyktJvTGVyLOXzkZ3y0PKHNQpGdUqG9CpGD asHjehF6kxSjVfmkTZ3eqQv1mUB9Zsw+C3ofCpBcxwokq0P/MviIZyxdYDJT ZC5bZO6Z8MILwZVcQVqh2FqRxHqx2GaZ+G6F2H6N2HGTDKNNGfToQgMm4A0a kGzBpCOYdgbTLuxPJ9g9MENgTmOgOQytU3G+RoDWIr3WBA/mMltt8tvtd1jW 9akdDWqdvNFljhkxiSbMCfNfWGcDZuzBWznfBpp1PpgkbJOwW0QCPKtuE+12 SA6se5u7LDcGCWujjtQpr43pwO2J0N2pkN2pgP0Zn6PpwKPpkINZv515r80F n42F+JWFgm5iQ0n/wNOh2Yw3czB3jwaXHsHcDVAyB1efDpNfDi9UTK/0kGlL 1N31ffrC0cHC4e7q3vbi1jpxZ310c5O4QhtfooyOjdYnpfa4xY46Jbc4JOV6 ZBU+G31QshpdRX13e+KnS05qV3/F3QfrPlj3x1oX8JN1EeXkUJi7mhWTjA7Z 6FKp8GK54FL58CrRwJKLDk/+bJ78EfLh58iULy2TT1kkf2ac8L90Ys9YPRF1 f6Do7KzjjDWyNzKyUTclqCJsVAlOml7+90LCFBNiVLIT1PIfqr7Kvlvy7F59 nnbbK6M3dVZPkxSssLwoayUdE24k+kqIL3eo5+1gdz4vV043hxt+zleTA28/ i+YsSeJuyORryxHufS4ynC9GKhafKhOfq5JYqZOivJZcb5LcbpPZ65I76pNn PRc3qMQY0TqZxCe5nA23Oxfh8HW0/TdZPhcLQy/Wx1zpSLjZn8w5msozkco5 l867kiNKeSa2nie+9Upyt0Rsv0LisEqUXicBNcqCFhVmiwbUoQ96TGHroD4L Zj8ajDmNPBGsD/1y5BE/KV1oJlNi8YkMOVduNU+akiu29kpyo1Bqq0h6p1Tq oFLquFqK3iALtdwF7Vqgy4DZY37ca3kygIVGbcG4M5hyYfUx2CiWV3gwi19u klqsF6E2S1FZA6zsVrvCZqf8DmuxTv1wSJs+rM8cM2WSzJnjlmDyx72JH62z BTN2rL1dODPszNrSp62OJzG741ZbY7Z7E86bY3az7SbkPszqgPUmyW1ryn17 ynN7yot9o5Tv3gzrNO7hrPfRLOxe8P5s8M50wOZc3OJyXtd4dWFvS/bAePrQ XOrQQtoAbB01fYCcPbKUS1oqmVhqXiAvbh5R906WDw+oe9vr25vkzbWJ7fXh rW0SZbt/frV3c3VseLg1KK3bNr7b7VGRa1ZxZn9WBTW2mhb9k2P/R9ZVU/6K 0m+crfh7rYuqpkZV/ZwP1v0x1r2Hr18d9fqlZv8waD8nmLU699eElK+Glq/C AyycqEpKeNlKUM2KfnqrTGyZTHixckS1TGjVOZvsTxEpnyHTPkelwPkC+fBH 6/5f7ZjTqBRp91BtL7yZu7GZg56ZtZ6ZlQaKoEZwVPfwVQsOvRsfo5yRoPQ0 VaHwsVLZE8XXefd7SnQnmi1qnivY47/FEASMkQLmFtdC/W+E+ZwP8eTzduN2 d77p43Ql3vfGk8jbhYm36zL5Wp8IdT8THswXJRaLTpaKzFaKkeuk1hult5tl DjruHMHpkqX3ytB75E56VcGE1SPXGwGIL6MJn0daf57leaE45GJDzLWuRI6B ZK6RFO6JNK4fraM+l4Ct2y6ErRNnWyfGtk4atCiDDg3QpQu6DaFeuNqZQ3Cv I7oMZnC+Djk19khoPFV4LkNqKUdm6Zn0aq70ap4E3Os2CiV3iqT3S6WPq2QY tTJQgxJo1gDtBqDDDHRaMLsRzG4U6MVCA3jmMIFJtAMTdmDcGkxa0YmIuWrh 5XoxlnUN4nCv22yX3+pS2O6/uz9w7/iNFmPEgEkyY04goAksmMKDaWtoxoZ9 tNaBTZw16ynlKTw0bQVN49gn0ZD0Gas9Im6P5EAdsJptM6UMEqjDdhtE5+1J j51p791J//2ZoP2ZgIOZoMPZQHaC4RzMBe3N+O/MBG3Pxa1PpUyPvqjo6sjq m374ZjGln5I9uJ/ev541uvCCuFwyvtKySJs/OFk6OF7ag63bWdvZJG+tz2xt jmxuj1A3Bynb1ZTVkY2dseaxeu9HA26ZZfbpOakNj6un4qqXo1l2rbMX7laj a8hRbGfC/z7r4N+Bx+F1dv52Ll797by7gftL6GpWf3mP6I/3Tf2cqN/v3j+a 36/irxL1bv5e637jyNgf4R47/32sY2clCP7fSgU5onQ5tIask9IkG12iGl0u EVBylpDzCSrtFCbjC1TaZ6iUz360zjzpM5P4f9GKPGseq+IdpO+LsXQzsLQ3 sCAYWuA1UVaqNizr7gcFq8VFKaUn3nmaIlOUJV//UrWrSKu/RH2iQbuzSNWV 8LW1LRcCI2pmcjnI+1q477lQTz4fD34vdy4vh8uRXpeyIzkLE7lr0/lasgW6 ngkN5YkQi0SnSkQWykQp1eLrdeJbNcJ7DeL7r8X2GwVPWoSPW8RPWuXBCOqp xy1/4z8n2J6OtPoy0+NCcdDlxujr3Ym3Bx5wjaRyTT7imcvgI+eI0V5IbuRL vmudONQoBZqVQLsG6NQFPfpvrRtAg1HH3qSLjUGniGlCk6kii1ly5CdyS0/f WreaL7JRILFbKH3w1jpZqB62ThO0G4J2M9BhAbqRUDcatg7048CgNXMIzxhC nwxaMIdRh4Pmy1Xiaw0yG42y66+lt5ru7LQq7HTf3etXPR66xxjRAWNGEMkc mkDBjIMpWDYCy7pZO/bSnz1MH+vJvSkWd2AKAyYRYNqCMYU8nsLvE60W24yX exCUAez6CGFzzGFnwmN3ype1UjcdfDDDyo/KHc2FwJ/7c4H7s6y7oXamQrfH IyjEB72jFYU9g4975jMHFh8PUFlLdsOr+VOrBWMrNVOrE3vH8wf0xYNj8sH+ 6t7O8vbmzOb62MbGKHVjgLpeT6O1LVKmZtc6n7+ucUiudslMj8lNr+iJr5mJ Zj1ltxYBA1W7El0Dh0VNWN071wK837pfQPeWu/9z6351YfKvuPtg3f8M6wIr VvyryEEli0nVVP+iGaWIcpXESuWw4usO2Z9jM7/EZX2BTv8clfYpJvVjmDvE A9i6L0wSPtYMP6vjq+cXaOKPtfQwRjgaW9oaIay1YOus7dXcPVWCAhTiwmQy 42UKMuUrcuSbc1V6C9WGS1Sn6tRHa/QCHb+zI9zA4cRNDM56uVyM8L0Ij7H+ XiJe7jy+ztfDXH/IDLv1Ku52bSp/22Ph3qdiw7mipDzhqQKhxUKhlUJ+aiH3 RjHPbrnAfiX/UQ0fs1GI2SJFb1EAI7iSIB5f3T8l2JwJw32W5vJdccDVxqhb 3YncA8k88Aw7mc47n8H/Y6/bKJDcLpLaK5VkDZ41EswGKQD3uibYuvugSw/0 GLy1rh8Fhh27Ei40BX8zmiIwmSq89Bi27g7c68hs6ygFIpvwLFwoc1gqc1wp w6yVBa+VWda1sa3r+oV1fSzrwBtraBDD6DFn9iFp1YqL+bw7dQo7NXJ7tXeO mu8etaocdd477r3HHNRgDusCoglEsmBZNwlbR4CtYx+q/cm6GQIMHTSBBOMI MGHJuptl0pg+YUKfwhwSUcutuusDiI0h5PYIfnfMfn/CfW/ab28aNi34xxzM vc3h2+9BrJc5TgZukYIoxJDZmYz+4brilr4XveOP38xkDFOeDK8XTdPyR5er pqj1s6sdS9TJ/ePZ/cOlvf35za3pzfWJDeoYlTZE2WimrLXMrfTPrQ4PzxVH PClxSsxLeJJWUhVX/SamdjGqhsp++ATudXBWYPTC6sgfrPtg3T/bOr+qFe+q ldDSxdQa6j3fItngQtXkGkH3nHO4tC8wsHKPvkCmfYF+9Akm9c9vrUv83Djh S82wi+ouhl7eqAAswtME6WyGsDNC2GgjrVRxBGVnZ5ngAKnkKJknSZLF6dI1 T2RbXsj35CuMlCrP1KrOvDaO875ih7toay1hoPO1o/VXkT5Xg91u+HsI+nrw +bveDnG+mBp8Mz+Gp/aBUNsj4f7HIm8eC4xl80xmc88/41l9ybf5SmC/RPi4 TIReKQxVC4HXoqBFmvFaAbzB1cUIeGv8S4Ld2TDMp6mOp4sC4F7H2ZPEP/iA fzSVfypdYD5TcCVHhPpMgtXriqTgXrdXIX5YLU6v/7nX/WgdPMOaQn2WoA8L hhzbos41h5yGrRt/KDifLrX0WHr5mQzLunzJtSKJzUIpuNf9Luv6cRDc7gaw oBcFuhEreSILz25vFIlvFIlsl4jtVUru10qftKpAPffBoDYYNgBEUzCOZA2w k9Ys61gPEv/aOjBuyXpieRz+k4ZgQp85qQfNWG4N6K51620PWuyNIA+I+KMp h6Np98MZ392ZgN3Z4L1Z9vXvsG/zwQdvZ9gQmLudab/NCe8tktcayZM8GbQ8 nt7dWVXYPfJ4ZD59ZPHZyFrB2FbeGKV0Zq1qbr12ntIwu9xLpk1t7c7v7sMz 7OTGKpG2OkTZ6iSvd63QmpepLQvkhvLWF3bhFYmpWRV5UVUdsTVzUTXkiFpq RC0l8q11yx+s+2Dde6wLKvnrdSXB/zF0K3D+1rrgcopP9apX5WJCDdX/8ZsL uqF6yQ0SocWXrDO+QaV9jk7/Fpv5LTrjS1T6Z6j0jy1TP7F48K15whmTuAu6 QTdVkObuDrgANNLTyMLFzNzR2MJOA2FzF4274+ggFh4gkR4r+/KBZHGqSM1j ydbnct25cm9K5CaqFOYbjR8FX7HHfOdoB/e6M9aIU5Fet0Pcrgd68gR48AW4 cIQ4XX7ox/Eyiq8qjrcxkbv9IVf/Q47RjNszObxLT/goz/m3C4QOigWPS4Xp 5UJQtSBoEANNcszXimAI25Ei7qvxL8m234UjP3nk8F1JwLXGKI7OBO7BB7xj qfzT6fzzmQLL2cKUp6Ks9bpXkvvF4kdl4ieV4owacdAgzbKu7T5rhmWt15ky YesGcMwh+9eBZ1tCvx95wEd6IDj7SGzxsfjyUynySykKbF2hxHaB5P4r6aNS GTrLujvg9V3QwrauE7YOAboxUDcG9GJAHwbqx8JhW4eGuiyXXwhSXghuFIju FkvulUgelEkeVckc1985alI86VBlDOhAI6YQCQNNWINxW9Yq3xTsmz3rahQW dLasfYopNBi3YENnwrbOAEwaMKZN1jvl9wZ0D4dNjomW9Ekcfcb2ZNrpcNZr B+YOnlVnA1lXB8wH77Gsg2fYEPgTbnrbU36b4x6b427rJA/qmBf8fZ6Y9rq/ O3tgNn10NneMmje09WqcXL6wUTq/Wbm0XgdzN73UMbcyubU/u7dPhHsdjTJC 3eyi0rpWaa2UraplSufI5EvfhPLYmNyKrKiyyti6sZjahchamC/YKEpULcu6 iFry+9frot6u0f2YX37/FXS/eo7lb/IL66LZ77/4ZWJ+CvuX71j3y/yzrHtP /iHrWNyV/TXvP0PBfu3sz/nDrPuVYO9pbu8pcsHvvvTw/dz9u40utJwSUkH1 rVn1q1x8VE+9i804fz/Q6GHjTbfnF61ffI9/8iU28ytM1tforK8RWacsMz8z f/iVadz3hqGXdfw5tZ14VNXNnRGEACTaw9DCycjMWd/M4a4lQQ6Dk3FzkIjy F0+PkspNkihJFa7JFG9+KtX5UmawSIZYLrfcZFyQcMsJc9rOXgSNuoox+SbK UyjCkzPUgzPA+XaQy+1Qp2uxrpcz/G7kB1+tib7Vnnh7IIWLmM49ky2w9FSQ +kJ4M09o75XAUYnQSbkws0oENIiDRnkmLEw/8s2Tu36af3oAW2f5Sartd8W+ V16H3eyI4+xP4h5Lg3sd/1wG33K20OpTkbVcse18ieNX0lCpLCiXBlXSAK5k jSpspnRAlzHoM4N6LEA/9qTPqs7vdGf45ZFEPlaveyQCW7f0RIL8XIqWJ0nL E9nJlzp6JXdSLMcslwPV8tBrVdCiBdqNQKc51A33NyzUjQU9aNCHYvaj4UB9 aKgHRW81WcjmWs8X3yqS3iuRPiqTpVfcYdYoMhoUT5rkD5rlj9rVGf3GzCEE NIJjPbgy5QQmHcCUAzT948YEaycXmkQwx83Y1pm+FW/S9GhEc71d6uiN+tGQ 5gnRhDGJZszYMGedTmbdD2d9Dmb9D2cDD+bgsKzbn2NBB/e6XVap82Rb57pB 8tgc890k4lYn3QZHC/N7hp8OLxaMUQverFVMr1YsrpcubFbMb9bMrzfM0xpm VhunVgaoW8ObW2PrW2O0jc51cg8N5m6zfonSs0guyXxZFBNeXv4gruhxYk17 fO1MZN1aZN1GVC0lqm4lqm45sm6V9b2W+nP+xr213y5yv//BvF/+sXdvz2Nf MPWLH6T+anvil/lnd7xf591zZ3+Xdb9M+N9R8/6w92v/97EutILqV7YSUbUS /Zx4ScKJUy9UI7bqvO3jK4SXZ3BPvsBlncJmn0JmnrFM/84s5axJ+CVjn1tG Lvz61mJ6SHFtVT1rDedQFM7TEOVmZOGsjXBUQFmL2RBkvZ2kov0l0iOkXsSI FCUJ1mSIN+VId7yQGSiSGyuTW2nWr38i6Yr7lmDDi8VdxxieinATjvbiCnfj iPQWCHC47mt1Nsj6dIr7tfwQjpqY2+0JnAMPuInpfNNZAotPhCjPRTbyhPcK hQ5KhI7LRRjVouC1BGhSYMJMdZnMFhn6a/8l2e5shOVnKVbfvvK8VB96s5Nl HQ97huWfTeddfCxAzhGmvRTdyhM7zJdklMhCZT9aJwca2Uy16YJOY6jHlNlt Dlt32I6o8T7VEXZpKI6LlCwwlya4mCVKzpGkPpVaz5NcyxPdzZc+fHXnpOQO s/wO2zoV0KwN2o3ZGxPon6yDex0a6kfDpY7ebQl1Ifaq781l3NrIk2At9xVL HZbJ0CvkGDUKUIMSo0mJ2arGaNemd+iddJvS+5DQEA6M2oFxRzDpAqac2dbB I60VNMWyDho3/Snwd+PNTrm9XuXDIfXjNzoMkiljEsWcsWXOOzPmPegL3icL Acdz/kezfodzAYeslzaysj8btD3ps0linaLdILmuwyG6rRPtyONWU5OJDQNt BQNL+W/I+SOUyum1yvk1uNqVz29UzW1Uza/XzK5VTlIqJpZeL9HebB8Nr2/3 rq32UCld5LWGBXLb3FJ1ae3L+KjKygcpr9ISSysf1o7HwANs7Xpk3e+37j1D 6x9hXfUH6/6HWxdWQQsuWclo2sT7lN3gt5U0jpEPLP6OwLLuS0z2p1aPP8Vl fo58eNoi/oJp5DVjN35TGxlztIK5rqKJmoyenIqFlGOIOcHTFOdpjnTRQNtL E+wlnOykPB0lInzEU8MkYOsKEwWr00QbsyXan0sOFMqOlUkvvL7XV67uZXfa yvqmNeEGQvdzfxvOWG+OCLebAfa3fK0v+2DOBOC+eeh2LTeQszqSqz2Be+AB 11g6L2zdQo4I5ZnIRq7IXqHwQanwcYUoo1oYgmfYxjvMhrugTZ9ajfXT/N9x uM9h6xJRX+S5XKgJvNoewzGQzDeSwj+ZJjD7iHcxk38lR+hn6+glMsxSKVAh CWpkQL0SaNIArTpQux6j04TRZQb68TuNJhUeH3eEXRmI4SAm8kyn8C+mC61m S9CeSG68lNzIFd3NkzoquHNcIvfvWYf6q3W97EbXj2HCg20naq1QavbRjU14 lC4Q3yuWPiyVY7Csk4ca7kKNylCrGtSmzWzXo3ea0ruRzC40vRvD6MNDo45g wgVM27H2KSYxYMKSdU3BpNmPAVMW9FG99Vbx40H1owF1xpgBNG7OZPU6tnUL 7sw5D8acN33O+2TO53je7xjmjvUybv+daZ+tSc9N0k/QkZzXSPZrRJfVccLK RODQQH7twGjR8HIukVw+Q62ZX6uCuZvfKJvbKp3dLp3ZLpnaLiBR8oiLdctb g1sHg1RKP3W1h0xtXaQ0zS01tHfnZz2sLkt6VpiYkvcipWIgsXYlqnbt514X VfcOdB+s+2DdH9/ryqkxFdTUypW7urG3Oa1FtULl/Iou2z6/Ssj9Fp/zMT7j E3zKKWTUGYuAy+YeQuY28pZIVaSumqW0irmwvKHkHWNBWz8DWx8La3dTG08t KycZO0dxF3tpN1vRIDfBlGCxFzFirxIFq9KEXj8W6XgmOlAoRSyXmq1TIjYa +rt8b2fPaWfHgdQ75Ym5HuN1K9D+gjf+hwDrq4E2lwJw38bancsN4KmK4G6L 5+5P5hx7xDuVKbCQLUx+IrT+Umi3QOSwWOS4TIRRKQTqxECDLNSgyGjW3m1z iDT5SxTiLzGoU3GIj186nKnyu9Aaeas3nnsoiYv0kHs6lWchg3/lsSD1uchm rugvrJNgW6fItk4XatdndBrTO8xBH377tXG525/aQy/2R90cS+CafsC3kMq/ kiFKzRZbfya29VJkL08atu6kRA6qkAdwMWMNwmzrOs3Z63VY0I1nf2JYNa8L BTqQoB29+kRoMYNzMxe2TgK27qjkDqMcnmHlAUxlE1wv74FWeBDWhzrNWDZ2 YZidOEY3ltlrxRi0YpJwYMoKTGDAuCU0AWtmCk2asKybsdgfuLfbrUAf1joe vA8RjcGEBWMKA1vHmHdizrtCsy7QLFu8WQ/6nNfxvPfhvN/+nM/2lOfWJGul bpPouj7mskZ0WiPZ0khutDGftZHA+eHklv7K4qHp4tn18jlK9exq9Ry1Ym69 eH67cG63YGrnJWnzOYn2fJzynLhSt7QGT7JDVPIAhdK1TG2cW64fGi58+bih PKW4JC7jeWZKUUtyzQI8NrJYgxtdHflXpe5X1v3NfsQfYF3kr95i9mGG/U+3 Lujv2V19z95EMOt86y/zG9aVrSbVrIUk98qIewnwO9xQ8ZX2fnXDLvcqIe+c 1dOv8VmncWnnLQM5LezFLBHKFgYaCF0N5L17FndULGTumstI6fLhPHSdA03s PDSdvTSc3GQdncVdHKVdbIT8nfiTAoSzI4ULEgQr0wUaHwt0vhAaeCUyXi42 UyM3026aEHjZ2eaKs50gzuiivfHpUPsf/AnfB9nC0F3xx533w5yKtbvwwoez Ioy7NZa7L4lr9BHPVCb/PDx+PhGErdvLFzkqEj0pFWOWi4BacVDPqmTMxvtH XehU3F8iLT+KQX8SZ/HRc/vvyt1/aA661ht5eziGcyqeZ/mByGqK6HqG+G6O 1P4TUXquBCiSBiVSgDXGyoNaVVCvCV7rgmZj0IaAOuDB03H7NabZ86uR4JsT Edxz8XwrDwSpaWJrjyQ2M0S3H4vuPhE9eC51kCd7UihHL4OLmRz0WhE0q8Ml k7U30WEJOrGgEw+6cCzxOjGgAwVaEcwmy7nU2yvZ/Bu5YrB1+0WyxyXybOsU QYMqaIahU//ROtBlDnUhWT8I/z3dONCDY/Zgj3sR9H4EIFqBcRZ3zHFj2Dow ZcaYNN7pVTnov0cf0WWOGbCuf5/GMaYJzFk7aM6efZrMFcy6Qeww593pix70 ea/jWa/9Sa/dcbctovMG0Xmd6My2zp5Gcl0b81of9SITo7p7c5qIb2oXdwpn 98oWNssXaGXzm0XzBwWzR8/H15+OL2aNLj4mbjwe28oeXWiirA3RaAMUcg/L upX64dGaRxmNCRFtL9Pz8h49KMpLqHkTW0+JrqNF11Oj2V9+Zd3f0Ef75WbE e//k7030b4f9VkfKu1n9Oe9eCP/TK25/yj+Ju9+65j3y3USwt1//3YS99+ao d19Hu/jLvMe99+9iwH/gj7Lu9xe539ybKCU/qN2w9agQ5LG/wmMlgogT9yq4 ZvvyGiHvktWTH9BpV1DxPCgfWTTuHlpfG3FPB6GmgVBVs1S5a3FX1UJBRkfE mKDmFmzg4q3q7qXi5ibp4izq4iTlZCvkYc8V5cubES6Qn8Bfmc7X+Ji/+7nI 4Cuh8VLRqTLJ5S6Ll4l8rtjTrtZC9pacaI0/B1idC7O/EmRzMdj2agjhii/q q3CrM9keN8pCuBsjbvXE3xx+yDGZzjX3mHflCd/6S/7dfMHDIqGTUmFGuSBU JwwaJEGdAjw8Qr3GOfafBhh8FIn8PML4k6eEKxUut1p9ed6EikxHS63Eyawl KmwmKGwnyOwlSO3FSx4n32E8UmU8usfMuM/M0aHnGJ48MT15ZnGSizrOxxwW 4ulVbpQsizqL04M2t4ftuaa8hOYDRcjhYpsJMrsPZA4fyZ1kytOf3GW+VGPm qdCL1ZiValCtGtSoAbUYQa3mUBsKtMNM4SCYKbjadWFAFxrm7rBGZyLpIvWp 8DrbuoMiuePSH61TAg1qoPk+aIXrpTZr2bDLgtmFguAfhLnrwrLSg4P6sPRu xHG3OTSMBBNYQDQDJNauxMmIzl6f+tEbXfqIPiD9+IpbG8aMHZN15bs960mV Wbe/Zt4dLLqBBbjjuR9Puh+MO+8QHTeIjutExzU4JPjTeWPMZXPUmToWMjWU /YbY2DY5Uz2/Vbm0Xzq/Wza/VzK3nz+znUMiZ4/P5xDJ2SNbT0Z3M4eXn09O 99PWBii03hVa8xK1dWyiN/VJq5tPc2RMXV56am5aUk1XXN2P1r3Nf2Tdu+Xt n2/d3+zt/uajLO/s2P4ntL731rx/+Ja897x6+3+GdXCSq9YUTB6e58KpoZLU vF/yeeRfs8+9bv3sBj71JiqMD+kljXW4i7NUR2trI9R0kPc0EWr3kKp3kXdV EEpKRrIalrIeQYbe/uo+Pspe7hJuziKuztIu9qIudpwhnjyPIoReJgiUp/I1 ZAp0PhXuzxUmFYpPFcustJhVPpJ0Q37mjOawt+BAqP2rD+b7cIerQTbng20u h9pc9cN8E4z95pHblaJgjrqIW+2x1waSb5BSb81kcC1n86695Nss4Nst4j0o 5T2q4KbX8kF1oqBWjl4tC3qMC9wv+6qfSsJwxRhcfmxxqxTN1WLD32PDO2DN MWZzm2TFMWnNMWdza9mBa9VWYN1WatdRec9J9cBV/chX/zjY/CAMeRCBP4y1 OUy033/ocPzYe8HfvEz2XIeOUI+ByJC52ChKZBzLP2vPv+IuQvUS3QqU3A+X P45VZTy4D7L0oBf6oMwM1CDAayxosgYtBNBqBdpwUBea2Y2gs561Q4I+DK1E fizxDO2ZyMYLke18iYNCuNfBM6w8VK3Mto5d6loNQKclPPMyu7BvrYPTjYM6 0cxO1l/C6DQ76TZiDpqCERMwZgaNme333D/o06CPGDLHTCCSKWwdNGv7FjpW 3rEOmoO5cwFzLsxpp5Mph4MJu91x2y2i3RrJgUZyppFc4GyMuuwR3Wl9npQ3 ydTpssmp5sHp/tdTizXT29Wze+Wz23kzq1mTS1njtJzRrRdDm7lvNnKGqU/f TDXNr/SvbfStbsDWdY5NDqY8H/QMaXD1KYsIfPUs80F+Y2INOQZWru5tPlj3 wbp/nnUhZatRlbTQvNmLCt6SJpHG/vkynrm3vQuvO+bewGdy4RPFcF53sDgV nOV9nIEGSk3H8q4OUl0TqaaOVFVBqqgilVTMFFQMxdwCDYNCtIP8Ff29JLxc hd2cxJztRZzsOAM8OJND+Z7ECRQ/EKhLF2zPFu19LjKWLzFbqDRbrtX2/K4X 8iNHi0t25rcQ9z5yM/863P5KiO2FUMLFUMLlQPx3AchTiQ7nX/hdqwq/0RJ3 rS/52ujD61OPbi9mcVGfcm++5Nwt4Nwr5Dks4Tqp5IUqxUGFAr1SGXSjW8Ik QuS/jVK97i/8dYLU6VylixUql16rX+7UvDKgfZVkxDNrLrSMFF7Hie9aSR8T FBg2ypC9GuSiCbwMQIA5CMeCKDsQ6woSPUCyF8iKIHugG8Q5BjRkxvQVJk0V Zy2VljB3V3CKZIwMFS+zaSe/baew76h86K567Kd2GKJ+kGxIz0ZC+VhQbgtq HEGjC2hxBK1YZrsls5MVuODNPxWcfHCZ+kx4/ZnIdp74fqHUcbEcs0weVKuA hnvsXqcJ2owAbBoLOivWCPxzr+vGQp0oZoc56LJkdBoet2kxew3AGJI5YLzT dveoX4s+bMCybtyM9aoL1n3IDj/l7Qz71roZF2jKkTllz5gkMKatjiZxexO4 rXECjeRIJTlTx2HrnDdGnffH3Dd63fbGovbnUjbnc8hzhW8m29qnphumqSUz 60+mVtInKJmk7SfDuy+GNnIH118ObeYPzZcMT7WT1weoO81LtNbBsZ6IjGmf 6DfuIdWuzoUx0TkvmpMrlmPqPlj3wbr/DOuCS8nx9Zv4hM4bWiG6fi/uuGcL eDy/5VN01fnlLes0fnykIt5O08pIx8pAF6+pg1LVRajpIjU0EffUkSp3UUqq aGU1cwV5bT5bT43QCL1Qf7lgX1FfDyF3ZxFHBxFHe14/d+64QN7MaNg60fp0 8fZsyb5nEmMvJCaeS5Neyo+VGoZbf+ls/p2D+U3k/S+stT+OsrsWbv1dmPX5 EKsfgq1+8Ed9E2V1NsvjYnHwlcbYa11JVweTL02m3pjPuL2azbWVw7v/XPAo T4xZIAZKZUCxKijQpL+4xyg1bXaSdD7z/7hf/Dffi5884P2u8A5HgypPpzr/ sJbQuJ7QrL7okpE42Vh83VxiFyF+hBanYyWY1jKQnTxwVQO+OiDIGApFQVE4 KNYGJDiCrKBZO61q4dN9qtxvNAUmjcTnLWXJKGUKUoWKVNvAqu1b3z+01qDb aTGctRleuswAw+NgE3oskpGEZDy0ZGRiGM9toRIHUGUL6gmgCQ9arEGz1WzS 7ZU0flqOyMYz0Z08SbZ1svAMC9Uo/7Rep8W2DsGuc3jWYl0He8muk81dJwLq sACdFlCH8Um7Hr1Nl9lrfNSlu992jz6ox7KOaApNWoAZHGC9xMfxpzi/M8PO OINpRzBlAyaxzGnk0RRybxK9TbJaI9pTSE6UcUcq0ZG1VTFgtzHgCs1FH8wG HixF7y2lUuZfTsy+bp0aLZpeyZmmZZE2HxO3c0a2n77ZePZmE7bu1dDS84HJ 2lnaIG2/dZnS0T/aF5I26Rgy5Ro24B2U7+73PL02o3IlrpYWxVqvo7LQ+2Dd B+v+PuJW3jr2zun+XwceXcMrqSFl5OSmHVXfMnH7TK2wAlm/50K+eRw+hVed n3AQoiXwXtq2WEMrXUO8jgFeQw99Xw+hoYvU1EbeV0cp30XL3UPL37e8o6jN bW4tFR6lHxogE+wv7O8t4uUm7uIo7mjH5+3EGePNmxUp+ipeuPqhaEuGRHu6 UF8G73i2yOQzqcVyk2yvCw4GHztb3iYYnEeo/Cna5loU4fsI6+9Drc4H4WDr vo/AXUh3vlLgd60u8mpH4pX+pCukxBsLqXzrmVLHWcogSw3KgCdHhZN4eUaE Gj1I/cBP6TBSbwiv7PmX/zv4+1ORl86n3r6cL8ldoyzUpio8cF9kTFt0Rldk yVCMYiy+ZS61j5Q9Rt+h45UhGxXgcA/A1c5bHwSYMcMwjGg8I8mGmWwPHvtN EJRKBT7qVr0+pHVr3Jh7BiG4jJVdxarQMOrrKNVtjMoeTu3QWvXY7h7kqgN8 jEAwEkQRQIwjFO/ETHKipzgx0hwZ6Y4nWQ70HBtQ7MIoJFCjxbceSGyliWzn iOy+lNgrkDgslqKXyzCq5KAGBdCswu51hqDdArSjQDsbunYMaEOzgwStpqDN BLSbwmG0GUKdpvR2g41quZMe3ZN+bcawIeswxQSKdREK+y2NrKW5BQ/WJzy3 skZXN+aME2PSHpoggAk0GDcC4/r0CePDCcTBOH6HaLs+TNgcd9ggOa6POq72 2+6O+zLno45nIg8XYg4W4/YXktaWskiLZc1Tw0Ujq8+G13JG17JG1tOHNx6N rue8WcsdImcOL+ePUAaW9kYom71t/cMh6fPOkXMO4SSXmBqHiNzgp69eTaXU 0MIbVqMayAm11Pjav3a8vyvvL4Tvye+3Lurdf/q+Y2j/6bu0f5R1v87vte4/ 2LH972Ad++G61fBKioJ3sWpokXJYvnRgrrBvHrd37k2XdD7bEDVHd307SwOC rgFsHU5LH6ujh9bWRmtpoeBep3APJaWBktYwk1I34De24A8L0wwJlgnyFwnw FfP1kHZ3knKxF/C05Yh05ckIFn0RLvAqkqs6gb/5IX9PugAxR2ziqfhKhWF1 PL+r8ccuSE47s+to1Y9D0Wfibc9H4M+EwdZhL/givgvDfP/I8Vqe+7Uqvytd ERwjcXxz8aKribIbCYqbgdLbXhJbruLbjqK7DmJHdgpMZy3IQxeEIJYcjMO+ +lPEmS8jz3798OLpPJFbtUrCLapCfRpibOtEWdaZiG5ZSO4jpI/RcnQrJchG FdirA2dt4GkC/JEgzIYRY09PdmI+cAHZISOIO8XcH3epcQ5o84wZCUxaii1i 5cg4JRpWZQNzdwd3d8/q7iFB5dhOFXLVfGtdJDwFu4N4D2aSJ5TizUz1Bik+ UIon/aEzeOS4Hnh/zp6P6iu6Hia0/1D66LHCyQsler4Ss1gZKldiLdm9vgc1 a7DW69rM31rHyrvWtZqANlNW2s1AD+L4tdZmhexhs8pBmwpzUB+MIlhXo7A2 I9hD6xwMnSeY9/iFdfD0SgCTODCBYB0uG9dljhudTJgfT2H2SbjtUezmqNUW yZ4yZLM67HC4GH44H32wELe3ELu7GLe3FLu9ErlOTpuZq2ofGijuXXg6TE0h Uh6MUVPHKFkjlKdDq1mjlNw3q11TG+PUrabqpq6QtGnv+FmHyCnHhE7HuHzH 5MKMvvQaWmjDSmTDSmItNaHmg3UfrPuDrYN/P6yC+mO1Cyxe0gypVokokQjP FQrIFfXJF/PL5XV9KOHkb+jpaGhvqk/Q07HW0bXS1sNr62A1tbDqmiil+whp LaSYDlJc30LS1EJMV/9SYJByWIhsoL9IoJ+Yn6e0m5OEu72Qtx1XqBNnvDvn I5+bL0I4yqJ4mpIEezJE3zwWI2aLLJVqdWXIeJt+4ozgtDe/jr73Fw/9T+Jt vgvDfsu27rwP8kwo8myqzdVCF84GL97BIAmir/iwI9cI7hYRc2sexbOGEd3F y57YKkOO94CDOrDXgJy0gK8Z1RkZc/bT8G8+jz799cNzX+cL3apTFGxREezX ECNq/WSdseiWueQ+UuYYJcfAKQOCCts6TeClx16ygwdYOyjZhZnsCrLC+w0k C25/2qkiOKAhMqYvPmkus4CRJ2PkaRjFDYzSNkZ5H6d0RLh7YqcCnOH/ABMQ hgYx9iDeFcDQPfCFHvpCqX4gzR889IGS3cFD9wW87IQRF4UgSXUU2fAS2w2R ZTy4Bx5rg2c64JUOKNMDNTrMem1GkyFotgRtWNCKZ33CyrWiQCsMHeId6zrM oTbjg2rV/WrFgzrF41ZVZrces98ceoMHE44s4uZ+rHOsT/bzdS5g3gW2jjGJ Z9+RYgGIhoBoABENTkjGJxMWx+OonVHE1hhmk2hHeUPYnvPbWwjfWYzZXYzd W4zbXYrfXYndWw7ZWwraWUghz1d1DQ+97CWmjSymjK2kjZJh654MkXOIlMIR WtM4tXdheYQ01ZGe1+waSnSPI9knDjonFVrFvoxrzKiFrVtmW0dJgBn5YN0H 6/5g61bgOgeXusiaNf+SJa2QSumwfMHoAoGQfFGfPHGvp1LeKWo+QSYeKAMH XR17Ay2CNhxNgvZ9/H0NnIoWVlEXLWOAFjfHiltgJC0RInq651ycBCLD5QP9 RIJ8xfw8ZDycJDzshT2tb/laXQ61vfTA49qLYO6yaP76BL72VJHBLDniY8mZ XIXpQq0Ywjk702suKC5r7S8dNf412uqrUMw3odhzQbgL3shvAy2/Scacy7e+ XmPF2Wh5s93g2oARD8lEYB4hQUFJbaPvHOHvMqxVmVYqwFYJwLUKpsbHdNvb Ku6Hr4K/+iz67Nmk779+yXejSk6w5S48w4oTtcRndSSWDSSoRhLbZjIHlneO kQpMnCqwvgfsNFlSecEzrAWIwII4W5DsynzgCh6H9uiKvOL4rOMuf/89kVFd iSlT2SX0nVW07BpKfhOtvINWPsAqHtuo0O3UgLMO8DMHkTgQ7wCS3UCKN5Tm w0zzAnCvS/MGDzxAgjMz2nYWKT1vJrZhpbxlrbRjq7jtILvnoXASfJeZcB9k 6oBcA2a5Cb3BhN5oCjUhQAsONFuzrGtHs6BrsQQtFmzrTN9a12bCeK21UypP b1BnNt1ntmkxOvToncYnXRb0fswx0YY5A4+x7uw1OlfmrDNz1gmad2bMOJxM YpgTZkySKXPMEIwZQGP6zDE9OsmQMWm6TzQ+GCdsjODXRu2OyZG78xF7S3EH i7FHC3HH8/EHs7GHi9EHy+E7CyFbi4nzs4VNg69f9pGyhinpI7THI9THw+Rn RErx6FrZ6GLzysr07jZ1Ybk3+3mLa/SwS8qQc2KFQ3xGWGlG7Vr465WoD9Z9 sO6Pti6UneByclglFbYuun7dPX9SNahYLryQPyxfJrL4hkPWeUyCrFeyrr+3 qbuhkZOWnqO+jg1snZY2QUsDr6aFUzTAy5nhpCzwIhi8GBojjkAIGhqcx+Ou xUWrBfuLhPiJBXpI+blKe9oLOKMuuiLP+mHPJbtxPAvkK4ngrYvjaknmHcyW nHwqMfVUYrlcP83tqp3JOTc0r63O93aq/18w+rNw3Klo7A9hyKthCM5Avauh qmfS1M7lqnxfpXKp4z7PsK7YlL74opEk2URy3Vx6Dy1/YqXEtFZg2t4B9vAI CVtncBBik3Tl28Cvvow4cz767DdPeG5UyAo0qwgPaMDWic7qiK0YSNAMJXbN ZFnWoRQYLOvUgZ0WcNYDXiYgAA0ibECcI3jgBqW4gachrRq8BZyfdt7lGVAT IOqKzppKr6BkqWjpdZTcNlpxD614iFVk2NyD7DQh+G/ws4Si8CDBHjx0A6le UJonSPMAae6swBNxouO+v/m4Af8SUnoDq7yDUTmyuX/ioE53v8/wUj/xVzsJ V2ck6zJzzKBiNKixZm9n2LCeXWmFR1fUT9bBMWf1OjgtxvDnUYXKdrE0aNEF zdpQuy6zw4h1sqzT8rgLudeHOBzGM8cdwAyLO2jaGZpxgmYdGTM2J5MI5oQJ RDJhEo1Yl4KO6kNEXQZRjzGhB3N3NEFYe4Pbm/I8Wgw7gGVbjDtcjD9eiGfM JTDmEw8W4rcWwjfn/DZnPDfnYhZmiur6Wp/2z2eNrGeNkB+PrL4gUvNH1/PG Fltoq1P7O3NU2uLs7OuMVw3Oyf1Oya9dH2YH5j+uZJU69nodJb72g3UfrPut /Po0xL935/A7gYdWOGGVa6GVa4HlrBcT270YUgl6pRhaLBFcJOD94hOzuM9N Y5V8Hhr5O1t4mJi7GBi76BnZ6ehbqRvi7xti7xpiZc3wUihrUYwVPxbPj0YK o1Ai5mbXTU1Oh4cqRobIRARIhnhI+DmIuFtzOSIvuCHPe6PPxTjcyPbhLgzl qI2+1fKAoz+TY/qZ4PQT0aVCjcIIPkfTj50srtnoXcEq/cXH8qsI7FeJiEux +lzhqsJu3Jedr3+fJMZVfOd2413ernuig/dFiZqiczriZH3xTVPpXYQMA3sH spZj2spB8BDqos30NmBEOqRdP+v72afhX1+IPP1tDs/NCmmBJkXBPlXBMU3B GR2RJUNxqrHEtoXUPkL2EHOHjleBCD9Z5wlbhwIRBCjekYXVQ3eQHVArf+kV 5186lTkH1PjGtUXnTSXJaBkKWnIdLbODUdjDyh/ilBkEdaa9NnA3BgFIKMoa JDgAuBOmukOP3FnWpbKtS4atc9501R3T5FhF39nAKuzglA5sVI/t1ehOGpCH NuRrAAWZQGFmULQlPQHJyMKDQjtQbQsasKARAeCO14wEzfCnBWg2BS0moBke cg2g13q7r2To1aqgUZvFXYcR+1iZJaMLSe9BnfShD+EM4OjDNhDpx6sDnFgX Q03hmRMW0IQRNGHIeuqYaMx6WxlJn0nUZ32ZtNwfQ2+NEhgLQSeLEUdLsYdL CUeLiXCOl+JPluL3FiM35gO3Zn12pz13JoM2ZtKGSaWv+rpzhmdyRhazRykv iWsvxjbziOQ3m1vLezsTZMrgMmV4htqQmF9vG9Pq9uiVz7OcYlL06+XIenJ8 LSXuvXsTsfVrv5WYfxTG379j+/sTVUN5z+Gyf/qO7d9s0f7D1r3/Ddq/lb/l 7r/Yuoq10Kq1wApKeC3N/uWQWmixckiJhG/hV4ikT8wTPzGKV/RKsQjytHAz M3cxNHHRN7LTNLBWNbJSNrNWRFjJoawk0HhBLJ4Hh+NBowSRCEE0ikdP9wsX J+7EaJUwP/EwLylfGwE3DIcr5oo7+qK75dkIwrUMD86CAI7qiBtNCRy9D7nH M3lns0WXX91//UjG3ux/OaK/c0BcR6l86qz3dQKOK1rrYoDUDw43z7hev+B9 63qSCH+eFFetPGfbXYE+NSGSpticriRZX2LDRGrHUvoELQdwspC1LLDRAA4G wMMIRDg85vjO488fRX19Ker0mWzO6xUSfM3y/D3KPCP3ead1hReNxFeNJTbN JfeQskcoeSZOhdXrbLSAk95PexPWINaRNYQ+9AKPfGslvy3m+rhdgaNfjZek A/c6yRW0DBkjScXKbOOUdrHyB3jlIzuNExc9yM8ShONAjC1IdAEPPUCKB5QK Q+fFykPWAAvPxStWyiP3b5IRMlSE1C5O6ZCgemKnznDUglwNgLcZCIT/7XgQ awsl2NCTsIepyJMnGKjECjRYgUa2eI0W4LU5aDJhnWJr0oe5O65SOyiWB691 mA2aUIsB1GHC6LSAoWN0oZg9GEYPltmLo/fhTvqwJ/045ogd66VmU7ass7Qk M/auhAHrk2TIJBqwY8gcM2KQzHdHEQcTTozFYPpS9NFy/NFy4uFS0uFS4tFS wuFizN5i+MZ8wOasz96M996k3/pE1OJcQeOb2mc97c9Gpp+OrOaTaAXE9ULS 8szR8cLW5gRlrXtpdXBxbbJ3qtTvYZ17ar7ns6fFE3H1K1F1q7B1sTXU96j1 wboP1v1d1r3dfq1cC6qghVTRIupo6KweldBipeCyK1Y53yLSvsNk/lk/UdIp FRMaaOmONHcxMXMzMrbXMLRRMibcQdnJYgiSGJwwDieIw/FhsfwYjDAaJYzB 8JmYnMNhLiVGqMQESAc5C/nZCXlZcXngb7ohL7ohzgfjrqe6cOf5cVeGcTbG 8ncnio6lic48Fp/LvfsmVz0Y85GtyecEw0sErUsualcClS473/jfnjdOe964 5n75qvsPV6K5uJ5I8lTL87YpC/apiRA1xWHrVvQl1o0kd8ylj5CyEO4OsJYH eDVgpw25GYBwx3yxm14f/zn6myvhp759dPNiqQR3/R2ezru8w+rcs1qCZD3R NdYMK3lgLsVA3AFoJYC9B6w0gaMui0p/BIiyAfFOrFL30BOketdInCrm+Uur IkfPPd5RPdFpc8kFtMwSVpKCk9mxUj7EKpzgVRi29yEnXeBlDkJxINoRJMAT qzd46A2lerOgS/GCJ2KQ4ATFOUwYCoxrc5MR0jSE9C5O+cha7cT2Ph3+L3cx Aj6WIAgHQgkg2gHEO0JJDswUO3qq3fEjAv0FBlQSQA0O1FiCWhPQYAReG4BG fTh7hTLHFUqgWR9q0AGtRlCHObMDwTqm0cU6mAb14EAvHuqzgvqsGb1WDFi/ fjQYxgIiBoyZApIBO4Zs9FiBSHBM6CQLuNcxlwKglQjGcszxcsLRUhKcg6XE g8V42Lrd+dCNGf/NGe/dGc/9SZ9Noh9lKnl6pqCyv+zZ4HDuG0rh+EbB6ErV 9CqZwZjfWCdS17sptM456sg8taW8Odc5Kc/7RVb+WFITLbJ2NbGeFgMrUbf2 wboP1v3x1lXTIuth63pVQssE3Qq+QaSfxWR+g8741DCFDx+PiwjH+thYulia uhmaON43tVc0c5DF2otjrYWxOAErrCAex4/FCmIxohi0EBbLh0RfszQ9HRl4 Jz5QLsiJP8CB38+G2wt/0xVxyRN1xR99Pdb2xhMvzuLAW3VRsHWyY6lSk5ni 08/kp/L10u2+c9f92sWA30aZw/LGl9Y//MXvxvdB16/5XubwOHfd88L18Fu3 M0U5y+S4mxR5uu8KDKsJT2uKL+lIrBlK75jJHCHkmDh5BkGBYa0GOWicuOuC aPtqZRG418Wcvhp+6pvEK2eei90ol7vdeo+/X5N/SltkRV+cZii+bSa9j5A7 xioyrFUgWw3IQQd4GDD9zBhhGCjBHkp2hR55Quk+zFTPUrEvi4S+bFS61Xmf b1hfdMpcch4DWye1hpU9xCozUQoMrDJkcx/Af4O7CQurKCeQAEPnB1J8oVRf kOLD6odJbiDe+SgQOXTv8pyxMNlcagMpt4uFe50KbB3DXpvpagh8LUAwBoRb s7dxnUCSM2s744En9NDt+KHNUSaW+coGlBNAhSWo1oVqNEGTAaNOY7dACtRr gAZN0KjDuiC0wxLqxLFO4MKf3VasCwd6rECPNSvwL1mnMJDMbnNoyJJ1inYM hk6fXe1+CjzPksyPxkzpM45gOQDA1q3EHq8kHC8nHi/D1iWwFu4WonfnQjZm /DanvXamvPYnvHdJ7usTAbS5lO6xvBf9va9GaK9GqblDM320XfIJfW5jbZS6 3k5da1tee72w1EWcLIl49twtJytvFLYuomY1/vVaVO3qhxn2g3W/x7rfepTu b60LraQFV9KCqsihtRRkZrdSSMVVwrNvEJmn0ZlfotJPmaZetwzBRcRY+Tig PNCmLkaWTpp4FzUrJxkbO0EbgqCVlSAeK2iFF8HBBQ8rgsUIYTC8WAynueFZ fxfhBD+5SFfhUEeeIBsuXzyHO+qaB/KqD+pqOO5SptutAr9b1WHcbYlCAw+E JtNEZzMkybm61V7cvnIf2Qt9j7hywfybM3Znvwu5civ44s3AH277nLvpdeFm 4NWrDwRuFErzNMhydSjwDN4VmFQXXtJlWbdtKn1kKUvHyBxbyzEI9yAHzRN3 TXgC7dJV9PvzR/Hf3oj86mzihTMvhG9UyfO3qYv160hO6UkvGcmSjWU2zGS3 kQr7OJVjm/tMB23IWZ/pZcwINGNEoJhxBOYDe2aaE8jyOnnokc/7RZHI6ddK PL3qguO6oivG0jRL6TX0nW2s4gHu7glemU5QYcDMehjQQ5GMODv20yYwcQHs wOL5s7yCrUt03fEyeqN+ZcFMjIKU3cTI777dwL3HcNCE3HSBnykIQbC3ce1Y RzaSXECyB0h0hwPFe9JjHY4T0SeZCFCAAqWGzDJtUK+7Uyq180oMNGiBeh2Y Ptazdp0oqBM2jZ1uAjs2LOjgX3bi2YcvkFCHMbPLEAwagjFj1gMn4/rQuB4Y 1wUkPTBheTJmfkTCALjULQbC1kHkWMZK/Ak54WQFbnfxBwvRh/MR27Mhm9OB m3C1m/TeGffYHXfdHHfbmgqancgs720qH91kbcISF+YOTpb39qc31kfXNrpp tKYlSuXyUsPKUmNJa4ZT+uNXY4mN1Pia9fj69Sh4jIXh+o28x7r3/BScf3gj 4x+1jn21+8+pfh9971yQ8s+x7j30/X7rfn9+dUEKnP9i6ypooVW0gMqVoBqy RUaPmHfhOVzOd9hsuNSdQqV/bZH6g4k3MjjMPsQd445CuhriXTTs3FTsHCXt CQKONkLWcLXDC+Hw4licCA4rjMUIwtbhUDxo06sE84uRbuIxLkJRznwh9tyB 1txe2NvuyJuu5heDUD+kOd966c1TGnD7dcSNwQTRyUSplRSF1VTNFkcBt/P/ l9O5r+1/4MGevmH/zaWQH26HX+IIPs/h9/0tn/O3fC/8EMdxqUCCp+EOb4cC 76CKwMR94UUdMaq+2JaJ5KGlDB0lzUTJAKwGsNGAnNVBCJ5koRX80b8lfnsz 4uuzKee+LxLgqZeXaFKR7tKWfWMgP2YiP2Zxh4SWJ1krTjiqzLpqLHhoLXnr LgUYLocZkWPMV5PRq49wy9nWtDyPuQynCJFPk+XOvbwvWKkr0mYsNmopNY2U nccqkAkqNFvVbYd7R84adA/d40Dzk1grKNkJsB6iYxMHB/6SFsB60C7eGbZr Ba84onaVbCm9jlbYwSrtoRWPCaps6zSAhy7wNwWhSBCNB/G2INkBJLO5S3AC sS4g2hvEeEPRdsfRZofxeszHeqDIlFGhT3sicFKlAtXC7hmyNizaLFiadeFB lzUrsHLdtqzA31nQ4VgPrnQg2C9zNIC69MCgMRhjrdpBE7rMcR24152QTA9G LKEFT2g5DA4gRwFyDLQSw1yJZS7HMZZijucjD2ZDd2aDtqYDtqcDNse9N0le rIvvJt23Jjyo04ntb2or3tCKiJu1s+SZvcPFvQPS5hZxa2tgjdXrypcXK9eW 2/vHH4e8fJQ/mtBISahZj6mhRTfQ4v4j0/6B/FdY94u817pfvdLif4R1v256 /02sC65dtUjv4rDPOYPK/A775GtM+peotK8ski8Yu+p6erhFeVt5muO9tO08 7jm4yDs6iDnZCjgQhGysBfF4YRxeDMteuMNi4WGWFw9XO8tbZhpfhDqKRjuL RDjyhjnwBRF4vXHcHihOZ5MffCx+SLLlyHHnKvXjaQ3iHQqXWUzQmPKTHXOU GnW4l3jjVMCF606nedFfXiJ8fjbw3M3wi7eCzt/0P8/hc+GW7/eXo6/efCnE Wy/H267IO6gqMK4uPK8pTNYW3jAQ27eQYiKkAUIWoNWBrRbT9T6ItJ4kmLj9 278EfHPZ+8z3fue/ieO9lqko8kxb5qWp7Cu0fKG1YoG9Qq7n3Xw/1fLg+zUR OnVR/z97dxkd15XmC//T+95119zunn476XQSs2SLmZnJYqbiKhUzl6rEzMxs MbNKVUJbhsRxwCyZRCax7ZilOuc9R3bPJN2TTE9PunvujNd61llSrJL9Ieu3 /s/Zez87Yqooeq4S/UUj8atWync9rCv9nEvDzG8nxRMdTKzPbxjhJ5Ix1iUU 50aWcxffZUjsoZScnIv3/zox6Hpy0J2EgJXEkEdpiJ084vMS5pua2N36hL3a BFVtAlCbBNanAZXS3SI+UCJYQJjdDjN6jHPainF7TvZ8QfZ6zYRznYofAkqj wRQ8mE0G85lgMRcs4wNlfLCUD6+S5PPBPDGYLQJyuHs59N0cwtv8qNdloXut iNftgcBIFCCPgF/incbB+1Ig0L6k7ue6n7AO8hDehxytuhC590W46lvEPndR qoUI1S3U0++iXt1igA9TgAcZ4KMc8GEuVMCDHOB+DvAgd/d+ztuVrFeL6c/v QdAl7d/FEwfXLdmTW3FPbske38367vaw/MrqwPzW9P31s8sPv3305Oazl5e3 tr/dWP/m0c7k6sPRxyvn7q42VY1Xdl0tm9koVG4WTkDWrf/i0H2w7oN1sHVj DzMnN5AVF07QGo5QTh3at+53hKpPCGVHUUIvJk2cE8tNQnMSAoQJPmKJs5hn LeZZCdg2bIYVk2FNY9hS6bZ0mhWNZkqlm9ApRiSMNtL/d2KCVkmcS77IIptv ls42SaIayUiGEqy2DHm0gKxZLzAYkBqej7P4Rmr/BdnkK7T5LYrHfTF2wMMq 8bND4gMG9APalF/9If4Px3LV9dIOa0LWJR4xSDykk6dm2mJkonDQO+du/I2X +bwfZJ3No1Cb7Si7FxjH3RgXAF6N9VPxQ1/EBz0tIF1NoeJ+/79xhw4hNQ8G 6f0e7arJi7RJILunsj2yxD65cb55qb55eUElhUFNxeGtlYiOalRXHaa3GTvS QZ7opZ0eZJ0fYZ+X0y5NC4faqcH+v8FhDFlU50ShN/TZkqSTFRk+1TkBTYUh nUXhA+VhyorIs5Wor6tj5hsZi82sB838tRbxkxbpi6a416cSdxtTd6vjgTLx 60za1WC9xSjzNazjNsH9GQHerPKW4aPiQHE0EpRiwFR4uwuYzwGLePBCRqkQ fmVXzAPz2KpMmiqTDmQxgXQmmMYCMkgvUyI2Ez13a5FgLwZUYsEJHDhDAM+S gfM04AJtf1zAH7n7kgVeYIDnafBBs3MkeG/eHBI8gwDORu+dC397IRy8igXn 0aoF5Kt5zLOreNX9BPBxFvgwG7buQSYIBbz72eD9DHA1Y281fW8l5fVi0vO7 Cc/uxD+9Hbu9INyeF8HR7lYixN3aHdnVO43jV+/Kl54rH6xPr2yMLzy68GDn ys6Ty+trV+5vz608Grq/qFxabR74srLneuXURuHkVuHkZtHUB+s+WPcLW5cl 38iUr6fKH+XObkWVntWgNx1ndX5Oa/2YXPdJTNlRfJ4GmuNKxAiz+KJUrCQ5 QJrkFSuxlwisYOs41lymNZthTWda0+g2DLoljWpCoRmRCLq4aDVCxGFC4G8L Yp0KJLa5AvN0jnEiw0BGMZAR9KUItUyUWj3LrJdrLo/RlYdrnQ41vor1vk3y uUv1/QLrH/f577hHtFgHdai//oP4o4NZ6nqpR/atO6yfcFAn87BpjZbeoMWJ WReji+6m17wt7wVZPwiz3Yx2+B7t8orkvs302BT4P5QF3s0IulaCOVvFCzL8 2EX3oL3lEUvbQ17+BlisA5vhIeF5J0v9M+ID8tICi7JDSwrCq8qiamuQDQ3o 5lOYjlb8YCdZ0UM9PcC8MMy6OEr9bkY41EoO8f4oBm/FZrjHiQOzEgML0vxK sv0r80LqS6KaKqNb6xCdzaj+Ntx4N3VugPXVEOdGH/dOr3C5R/ioU7zeLt05 FfukWvSmRrKeiP7K5/hilOUaznWH4Pk92fs13XeX6Q9wQ0ExAkwggOlU+CBt AR9ehC0V7JXtL0+UQNYxVTlEIJsAv81LJoLxVDCJ/ioWscZ2f5kR8boyYrcH ASpI4DQVPE1VnaMDXzD3e1jq/jxkJgh9e54OnqOB58jg2RjgDBber3ImGoSn iUbvno9SfY0Er2OBBfzza7g3t3ngo3TgYTbwKBvm7n4mXKsZ4EoKVMByErCc sLsc9+Ku5Pvb4me3RdsL/O0F8c58/M5C0g7cwwpv3C6euDY/uvRs/PGaYmVn 8ObWwPXlcw8eX9/ZuXx/6/zKo5H7i+MPHrbNXS/pu145uV4w8c6ln1uA+GDd /63W/fCkw89eG/EXjaH7mQj3Z5UxBt8dljm+njr2OHdqM7LsnDqj5RC7+xNa 6+fkGi18lgWSZ4uMcUIGsxNpCRmk+LTQuCQPqdQmVmAVy7MSca14bCs2y5LF tmaybRgMSyrZkEzQiUGfiEEepyLVcf6/TmGYFEvs83imGWyDBKa2lKYdi9eL j9LNDjco9DeodNfp8jQbDXA4G+bxNcp3AeOyjLdbpPkVaX3GOKDJP2TE/O0B 2v/5bfzBEylq2ukHtVMP6iYe0Ek4rFekqdVtqa10Nr7gaXnZx+ZmoM3tKNu7 aKcloscdtt+FhMDTWUFThYHKimh5A36in+fn/pmR0adWLibGDtru/iZorBOL 7iXieydI/dMSg3PSw4pyo0oKo6vKEfU1yOYGTFsTtqsVP9RNUfTRZ4aYZ0dY 54fpl8+IOuqxIf5H8HhbJtMlXhqSlhSSkx5YnBNcXhBeW4porEK01KPam5A9 HdjRPsrkCPPMOOuSnPvdGOfyKPfyCPfqEPPuMOdmG3WpU3ImOXA4RP063nGJ 6L5B8n5G8X1JD3rDCgYEUaAMB6ZSwCwmmMsGCwRgsQgoF++Wi1RlAqCAA+bR wVwKmEkAklFgIhJMRINx6Ke0k6/FYUAqbi8L97YACw+P6qODEzzVWSFwng+e Z70f/A6luwts8Bwdhg4eGoADzqDBM/D2POAMcu80AjiPen02RPUtEriOf3WN rLqfAj7IBqC+FbIOfmWXqbqfDqymAaspwEoSsCTdH/IpeLvIfXmb9+SWEL53 7JYMqq0F8eYCf+MW/958yfSNy/L7W+MP1oZuPx2Yf9t/Y7Pv6sLZtccXt57M PVpTPFgdu/+w9dJi4chCGXxiYqt4auPvk+v+cvf+Fqu0Pz6d8adX0P4drPvF l2j/rFZ/WFnDK/9Y6+AaX08ZewRZF1X2hRqz/TCn61N6oxq5xBgr9cQzvQkE p0hvHA+Rls9MSIuArIuX2cuE1rFcKwnXBo52bGsO25LJMKORDEhYbQpOh04w IEQdpaOP4wJ/y0YdKItzLOAZZ3OMkum6iRTdZIJFUpip1P5YrOGnRRY67c7W Iz5O0/4uX0Z43UQ6L2PtHrICuh2N+Qc0uMdMaB+pUX/1ccKhE5nHtLM/1cj+ TCflM63Eg9rFmnpd1sYKN5vzng5fezt+GWp7BmenZLj1S7y7UwN7c4L7ioK7 q4J6GlG9zbiJUV5IkIa61m+t3c2N7PU8/C3QWGfYOh5sXUpSSHZ6ZGFedGkh oqoc2VCNaqnHtDdiulvwQ12U8T7G9BBrbpT95Tj/u9PipvLIQB+1mBgHJtsx XhaWnhyWmxFSnBNeXhhZW4Fsqka31mM7TqH7OvDyftrMCHtunHNBwfpinPnl OOvLceZX4/RvFIwvBmiX+gT1sbYVdONesdsM3+smx3+NHfiUFfKCE7YrQcFp LYuxV8BRFXLBQijLScBiCVgkAvK5YA4DHh+aQQJTCEACCpBFgvGIXWHoU4qH ShoNJuHALApQyFCV01/WkF53MVVKMTgrBU/z4ZHIUOt6gQm7d5YKzkHQwYfL VBB08FZklGoWAczBU6HezIXtfhm++y1adZu/37TmAQ/zgUe5/2Ld3mqqajUR WJaBi0LwHld1l6ZaYr25x386z3t6K3ZnIXb7tmTrlmhjnrd9J+729brpGzcn 1p4Or6z2L2z133w9OL/Tc/3e8K2lc1tPTj9en7j/cHx5vfXb1SLlYsX0dsnk dsnEZvHPbiz5YN0H6/5660Yf5U5uoiq+PMFpO8JrO0ir1Cdn2BN4/jGUABLG BeXjhfdKLWCnZ6CSkk8mxjnGSWykfFsJ11bIteGxrLksCzpJn0bQo2I1aQRt JkGfhFAjI47RkSfQ/r/KExiXiIzz2AZZNKMsknlmtJ3Q7jhd/SOZoXaeuXGL vemAp920v/P5ULdr0a7LaKctXsRMoKvk08M8DVPyx2rM33wa98nR9M80sg7o Zh3QTz2gl3BAJ1tNq8HcuNXFpt3DujvQvploX8N1LpedzMsIKCgIbiwMaikL bKkJ6mhCdTRiZuQCEt5M/fiv7dwsjO313HzMo6IdqGQ3IfckZF0ynOsg697l up+wboR1dph7eU5aXRDk434Ai7WhsxxkscGpiSHZaYGFWcElBWHVZdGNkHV1 mI4mTH8ncXyANjvKPjPOPatknVMyzyuZFxTML5TMswrK3BhzrJOazNFLl9qW pJxsSvYbTA2ZTYu8lhx+LyHscWL0q7QYMJcJQQcU88ASMXxkA+IuTwBmscB0 sioFD6QQwCQ8KEODkghQGvGS5v2K5Q/EIYFEDJhJA4s4YLUQqBO8rme/amK9 7RGACik4KwHP8MA5NnieCZ6hgKcJwGkMMItUzSKhJ8QdMIOAxAPORKvORrw4 7f/6IgpcioPb1R9Zl6G6n7a3mqxajgeWRfv30jL27pJV96hv78LR7vmCcPuW YOuWcHNBtDkv2riVfO1K2+mbD8YffN+9fL/n9lrfwtN98R4N3HgwfX/7zNr2 5P11+b2N1m8elkwsl89sQtaVTm59sO6Ddb+0desZ8v0eFrJuaofccFmT33aU 23ycUWJJjvclMwJxiABCuFdMkBXCgZuMz80lpKYHJic4J8kcEoT2UK6L5dkI 2OZMij6DoAcRx8Tr0PHadJwmDX2cFH2EjtHGBP5OQvi4PNagkKVfSLXIQ1lI HXRpGgclurr8IzpZhiZN1gY9LlaTvo5ng5yvRnjci3Z+TPP/FhWQcuBgrJoJ 7zMt2q9/z/71RwmfayQf1k86aphwzEh2WId3TJ1vphl70kQWaRtPcUkQuSTH u6en+mZnhxTkh1YW+teV+zVV+bfVR7fWRU+NCcQ8F7Xj/2TpaGRop2vvZRwY ak3AO3LYnlKRf0Kcf0ZKSF5WeEFueHkJFM8QTbXI1gZE1ynMYAdprIc6MUCf HWHODbEun5MVZXl6OH+CwlrRWDYScUBSQnBmakB+ZmBJXmhVSXRDJbK5FgU5 2Q99cJA5PcY5reCcUTLPKBlzE0xYvAnm3Dh1dpx1qiGaw9WKT3DISPMuzAmq LIxqKkUOlSNmS6MvF6GX83E7+dS9AjZYIgTKJarKWLBcDAe8HCaYFgMkYoFE PJiAA6VoMDZKxQt4QXJViSNBCLpUEvyKr0gI71WulIG18UB93Osa7qsm9t6I BJyJBec44BwdPE1SzeL2phF7M5HAbBQwA1U0OIuACpiJ3J0Jfjnru3sJBywI weVU8AHUwObtv6/LUD1I3VtN2ltNUK3EwlPc79LBuxTwDlF1m7R7h/EWto6/ tcCFulfIuu1bsfdvJH13re3Cve2hxdct93ba76733VofWNgcnIe424C4m330 dPL+1vDdjfbLG6XTKyVQ9zq5UzK9VfR3eV/3wbr/OdZlQtDJ//i+bnqH03ZL W9Cuyas1YGY40dlBFExYTIg/3s+b7GeLccbygouKaJmZYSnJ7okyh0SxnUxg I+Fac+mGjBhNBl6HTdBl4XWY+0VDa1CQ6mTEcWLEYXro/yrl6ZYxzKrJzilu WiL9E1JdQ5GanuSoRYqmWYWJYZeDpdLLdtbf4VKY60K00wreY5GGLDpyRPa5 puywIfe3B2n/9M8Jh7SSDuuKj+kztY3wujrBJlpBXsaoSNsYghuNfVIoORkf 75OSGpSVBVkXWVIYXl0WUF8V2FKLaK2LVAwxU5KCDqv9HwNLDR0rDQtXfZ9g cxTOnsFwixX6JMb5pycH5maGQtaVFkfUlEc1VkWdqovuaEL3txOHuymKftr0 MGNuhPvN2di0JDsHp9+hCLZkhq1I6JcUF5ie7J+bGVCcE1xRHAlbV4faz3Xk sQH65BhrVsE6O848r2BcgHKdkvmFgnlBzpiVcyuKAxhcfVmCa0aab0FOUHVh ZFNpdFctcqQBc7addrGTfqWF/qCBswNlsxoRUCECy4WqYp4qj6lKjwGgRlWG gaETR4OSqFdUz9dUL1CGhK1Lp+yv20LWxYMVyWBFGliRClYn79ZI3jSw9no5 4AQPnGYDkyRgmrA3Hb07Ha6aCQdmQsGZMPiU2XQUMBXxQu77Zi4SvMravcbZ ux2nWsqAF14fZIFwqEuGoNtbkaqWBcASE7xHge+wuI2HSnWHvHuL+nKB9mSe tQ2LB4U6ydKN+Jt3Or6482D01vPOOy/bbz/pvb3Wv7AOWTewsNV+ZWlscW1i dXv43lbr5fWSqftFk5uQdcUfrPvvad3qX37U6y/H7d+zbv2PQ07WM6EeVr6e odzImtiS9i8ZiTpMeGWO3DgfLj6EERRJCgiK8fMn+XgQ3MIIrvn59KzMyNRU LyjaJcfayfhWAoYJh6LNJmmxCdqQdWy8Hhuvz8Tp0TFaNLQWOVqdFKlO9v1V Fk6jhu6eF2Aab6yWbmyZrG0Rp2YuO2onO2KZq2vaZmcx5mIx5W17Psz1KsJp CetynxHdqqsT97Fa3CFD6ee6pH/6SPS5hvSYPu2EToSJnqutnoWjjr2nUWCY Iw7vxaD6i7kBslj/hKSAlPSQ7Lyo/AJUaVlAVVVobS3qVEPkaB+5JB91TP1X OpZqmpYaRg46XkHmSKw9ne4qFvlADGanheRmhRbmhpcVQ7kuuqka0VKP6GjG DnSSR/toyiHG7ChzdoTz9XlprMTYwfmjKIINgWHLE3rFyfxTkvxy0v0Ls4PK iiLqK1AttZjOU/jBbqpikDE9Bq9NfCFnXRxjfTXGvjTOvjjGPDfImOrnZqa4 cHmWyVLPwiS/isyguoLw5tKojjpUXwtutJsyPkidGmWeGeF+18dbbeW/qOar yrhAIQvIpO2lknYTsapYBChBgKJIFSf4e7yjiu0Pvn9ZR4U3qJSJwFIZWJ4E lqeBZZlgOcRdAlgneltNfXuKCgzzATkdnCDtKVG7ynDVZBh8B+50APycDN8b D341EQFcZILXhHvXBW9uxL5dSAAW08DldHA1HYQXXuP2L9Hmgkt08B4ZvEsA b2PBWxjgNmbvNmb3DuH5PPvJgnDrluTRvPjxveTHjzqu3/tu5sbDsfmXPQuv e25t9y88Gpxf77+13nljtWd+Wb68OXx3q+YCBB1UW8VTT4qnN4vg2vqp+kXc +/NjFH/dEu1freLPTJH6mRXbv/402X/iZoqfq7/YOui//AOtyx6Hch38yi5L uZE9sZkqf2Qj7TTnFPpLksKEMWGMwAhKYAjJP4jkGxTjGYC0EcnCysspaakn U5Oc0xMcpRxzDlWPS9bikLQ5RF12jN6/WMfA6jCw2lSUJgWhSfT+TWzgoWqy b6KVRrqFcZqhTbKmdbyaVdxRy9hDxukn9E5ZGg05Gik8LM8EuVyOcIavvInx nfB0if/9MfFhPeZRrejPjoQdPoYwNAgxNfC0MrCxNzB20TVw03MKsArHuOEo J+lcX4HEVxbvn5oUmJMRXpATXVTsX14eVFUVfao+cqAD31RD09D8rY65mqa1 pp6TtlugaRTGjkJ3FYl8kxODstJD8rPDivIjK0qj6yoRjdXRcA/bgoPIGhtg KEdYs3L26XHupS9kfIG+vcdnkTG2kHUc4cnYuICkZL+szH3rCiPrK9Atddiu lpjhXkhI5gzU+cpZ5xSs83JYvC8V7PMjjOle2kgHTcY3kwrtU6Seecn+ZVkh NYURjZXRDadQ7Z344R7yRD91eoQxruQoFbzzQ7yFdu5GLftVIU2VFgMmxewl 4VSxSFAUDcYinpPcX0GhThIBJmDgBYsC1v5RMglYLtufNpAE57qKFPgQbm0s UMV7UYp/UYUFumngKIQeBpAjQGU4qAwBJwNBpT8wFfpy1F91gQxeFoBXBapr 4r1rsbvXJHs344DbieBSEriUAM9vX4JDHbBIBe/GgHcg6NDvrANg6/DPFxg7 C8L1eeHDecmL9YIX200PVk9fvPGd4ur9/tuvum49GVhYG5xf67t9v/fWw45r i4P3Hg/c3iqfWy6cfAgRVzy188G6D9b9ctatZY2tvc91cnhtIku5njWxmTmx 7pXcY8XM9uNLorjoCKZ/MCMwiOwXTPILJ/oERloSSA5lpZTczOD0JNc0mZOU bcYl6wjIujyyzh+t02ftQ0fDaNMwWlSkNinqBDnwCNPrWKqfdaqlaY65Y4a+ S4qWQ4K6RdxRY/EB3ZSjmtX62oN2BuOu5rO+Tt+Gud4IMb+Dcf8KHRqnrkM5 rhutoemrpWmrcczeysDB2dzSwdjA0UjXxUDbRdvGxzQA5RxN8iCyvdhib7HU NynBLwMKadmRhUUBJWWBlZVRp+oRva3Y3g6Bnt5HmiaHde10dR11HP3MwlB2 MRRXgdA3GV6HDYOsK963rqYS0VCDbG1Cd7XA8Wz0j9bNjLEunhMz2CccvQ5E kRzwDDs2bF1QUnJAdmZAYU5wWVFUXQW6uQ7b3Uoc7qNDn4Jy3elx1pyCfVbB PqfgnJWzpwcp8h5qU3mkkGmQLHVPT/DJTvUvzA2pKIpoqEJ01aOHWmIU3ZTp PtrsIHNmjKNQ8uQK3swo92I3a6GWspaDe5WC203Cg1IsKEQBvPAdjOMrug8Y h4TnJ2fR4Jmi76GLhQfuVUn250fFg1Wy/ckq3L1Cxtsi8ttyHNBGBfvJ4HA0 KI8EFeGgPAhUBu8pg15NhADfcMErIvCaWHVdoromAS5LVFcke9dEqpsi8K4U vCdR3WXv3qPs3sUDd9DgbSR8F888SnULDdXuHdzzBcrWDcYGFO0W015vlrx+ XPriYc/q8sTZ+Ut9tx723N0ZvLU9dGu79/aj7oW1tqvLfQsPu25sFM0sFU49 hhwrmdqBoCv8YN0H634h695dMAFbN76WOQ43sGnyNYg7ZLHSiZ0VLhKh+Mho TmAwMzSYGhhO9I3EeyGwDpFRBunpkeVF6OyUk2lSh1i2CaSckKIHcccn6vNj DDgEXQZeh449QYMKamMRWjERGvRwA5KjOlHjYJq5Xa6Bc56BV6qeS6KmteyY YexBzcRDx0vUjvSYa485m015On0V4DQfbncX53GFgRSbGIeoHws20nHW1zTU PmpopmVsb6jvbKjpApeOs66Nl1EQwhUR40lmnmQLfARSP2lSQHJGSHZOZEFR YMn7XIfsacEM90nt7Y8f0flE30FXx0Hb3tc4BGlLILvyRX5JSaHZaWEFOeEl BfA6bG01qrEW3d6M62mPGeqhjQ4yJ0ZZM+Nwrrt4PpZIOeLiezSa7IBn2bOE 3pB1iSmBkHVFuaFlJdH1VZiWelxvO3l0gDUxypmWs04r2XNKzpySCxXknnKQ ohzmlOR4i1imSTLPzGT/vMzg4sLwypKIxhpkXyN2pJU01kVRDFCnBxhzg+w5 6JeMcSfGuOPDrMku6sVa/K1C7Goq8iUU6riRL0g+z/BugCgKgKxLI4A5dHhE QHksWCGDJ6JUicAaEVArAWtk8Li8Ij6Qw1Jl0sFcxm429k0+EmgmgQNIcBAB jkaAIwGAPPC1PEB1kQRBB1wRQsqprsYCVyTgt2LgO0g8wd53XNVVDjDPVd1h 7N6J2b2LVd1BgLciwJsI8CZGtYDcv44H/fwWdWuetXlb9naz4s1a+d6DYtWD qp0HTddWxofvXum993Dg1k7/wvO+21s985stV+53XX/QfuVxycxKycwGpFzp 5HbxB+v+21r38If1d7NuP9StZ43DaxNZyk0IvbzpTUrN3ElhDlIiiBGjkZyQ YGZkKC0YQTqJxrniCU5otKlA4FpVjs9L90uVOsrYZmK6oYRmJCIbiIlGohhD Ll6bEaNOxR+l49RYaG1OlD43zJjsahytrR71yR/idKwKDNyK9DzT9Rzjta3i 1AykBzVkB49lHj1cb6zX62wz4eb4pY/TNxFOF0keM+IItr+5g8lBZxs9SysD HcMTmsZqxg6GBi5Gmi5GWs5G+o465u6GvmEO0Tj3GJoXW+AtkPnFJgckZYRl 5b6zLviddV3N2LFBkW+gzmeavzZw0dNz0rH3NghB2hFpHgJxQGJKeFZGJGRd aUF0ZTmq7r11hJ4O0mAPTT7Imh7nnZ7gzk0ILp3PwuI1Xf2PRVPt8GwHptBb EheUkByYmRVYkBdWUYxoqMa0NRL6OyjjA+ypMe7MOGd2gnNayT2j5M1N8GeV bMUQbaSfkRRnKeSbJyd6ZkMfzIU+GFVbHt1ci+hrwg23k0d6KGMD1IlhxhTU BQ9zpoe4k0OcsX7GcBdZ3oyfrMfOlEZdSw9fE4etEdxe0gIAGXo3Ef0mi/iq kKEq27euXArnuioJUCsGavYnIZeJgXwWkEODz2IkxYDJOFUq+nVO9F4bERyh gINR4FDgqwGv1zMI8LIQvCIEroqgBhayDrwMWwd+JwAv84FvOG/OE/a+pYB3 OKq75L27OBUc6qLBm2ioVPAR2si9BfSLBer6de6z1SzgSdObR8Wqh7lv7pc/ Wy3fXG2+dntieuHK8L213jvPe289672503z1YfONB1Vf3iuZXCmZ3YCUK536 963Lh5j6ifpvZN0P609PVfxL/Ye4y5E//Nf6hazLGflR/ax19/8WuP28de+2 1b1fhN3nDqps5UbBzI6w7UqwrAgn5eMECCQnIoQVHUELwZG8yCRXMtEJgzYl 4o3KClGFWSFpMsdkoW0Cx1LGMJGQDCQkQxHRgEfQ5MSos2PU6YhjfIRhbIQl 01kHrXkccVQT87m64JBBkZ5zqZ5Lhq5dvLZ5/DHDuAPakoMnkg4dK9bRa7Ox HXV3nPR3kiNduhnubcmh8cJAa/uD5nbapg6mx000j+oe0rfTM4BDnfG+dfrG TrrOfpahWHcc3ZMh8OVL/WVJgUmZEVm5UQVFwaUVIbVVUS316M4mrGJUjCSY HND63/rO+tr2Jyzcdf0jrfFUd64oICEhJDM9vCAvuqQourISU1+NbapFdzTH 9HSSYeuGmFNy3qySe3ZKeGG2IBKh4xagFk2zI3Ac6cKTIllQfEpgek5Qbn54 eQnU/OLbm4iD7TTFAHd6jD+j4J6Z4M1NQiWAakbBmRhh9LQRhDwDocg6KdUn PTOgID+iEgqEFcj2OlR/M364c9+6QZpimKkYgYozPsiU99FHoX9MC37gFG7g FKa3HjlehTiXGniNf/JJbPSuDLWXEvM6j/aqnP2mSqiClINCXbns3SRkuHvd D3VgLh2+0SyVACbiwXgsmIx/m4Z6nh+lgrgbIu52BrwaDISXJC4JwO/EwFUx FO0AqJOFoPtWBH7HA79lg19SgXO4N+cxe5eJ4G3a3h08cAuyDgXPCphHAwsR qoWIvQXs9zfpWwuyva3q3Y36t48KXz9Mf7Za/HS55MW90o3bXd/Mn1UsrfQt Pu27DVn3tOnKo7Zrq/kjX5Uql0tObxbPbJZN75TObBfO/CR0UOVNbfxU/bsT n/5C634pBv9K6/6Uvr/B4Lu/eIn2ZyTMGX2Q+4PK+dOY9yfWrf4XsS5LsZ43 tZ0yvBidUkmI5+P4SIwAGcqKjKT5kxgnGTRnMtEmhmCBRWknSN3LC6LTZS6Z Uudknk0cZB3VQEzSExF1BQQNPk6DgzouQOqLw82IFocx6p+TjmkSj+gSP9Vi /k49V8umzMA1W88uScciXt1Yesgw9rBe3GGtrBN6tebWpzwdG8Idq4nuBQKP oozQglyKs8txY0s1M0fz48aaB7U+07TU0ncy2rfOWM9RX99Bx+6kaSDKBUP3 ovN9ebB1ISkZERk5kXlFwSUVITXVyJYGfGsDamI8jsmz/1Tz/9G211azPmLq csInxBxNdGbyfKQJwRkZEUV5iNIiRHUltqEWf6oe19lK6u2iDfbQxwaZkyPs aTl7blp8ZjonOEzdNUgjgmqP5zoxIOvigiHr0nKC8gojysuQTbX4jlPEwU66 chgKdYJZJRQI90vJh2pKzp4YYzc3RLGY2pJYx5R0//TsoIKCiMoyREMVsqsR N9RKHOmkjPVQxgfp47B1LMUwa6SPPtRN628n9DSju0+hepow3Q3IvnpEW46P Mi/0Zj5mIxP/NpOiKmSrKgS71RJV1b51lbI/VhxYIgZymPDKBdTnJmHh5drE /UrGvkwIfpkbrGrBvm2P3pukgJeE4Fd88DsJ1MaqLgv3vhMC3wiBr4XgNxx4 yOdcDHgGtzuLfDEXsfsdFrwVAyxAie6ddUhgIRxYiNy9iX9yg/7qYe7eTsPr 9bo390terGTsLKZv38t+drdgc7Hh5r2J2Xs3Rxc3h+487Zl/1nJ1vXPmekGV omH6UcksZN16xdQH6z5Y9zfPdVDlTDwgFbVg4nkUWQxOjArjRCCY/hSWB51m T4JnDlsTsfoUgk5JblROkm+W1DVd6JDAtpDSDcQUbRFZSxSjLUTriaKNBIGG FGt1vPohylFN+iFdyud65E80aL85knLUpNjAJd/AKU3XLuGEhfSYWewxM9Ex I6GmQYKVRaKfXTzWKZ7vLZOdTE0NKipghEfYGlmpmzmY6ZgZHNU/pm58XNfB SMPZSNMJynWGkHVWHsY+US5IiieJ480W+YriAhJSQzKyw3MLg4vKgisrUZA/ TXWI0WFRamYgZJ2m7Ql12+MmblonQy2RRFemwF+aEJ6REQlZV1aMrK7E19XE NDUQ21spvV30wR7G2CBrcpQ7Pc45PS2ensz0CzzqEaIVQbXDcV1oQh9hXEh8 SlBadlBuUURZGbKxFt9+ijT03jrhjEIwo+TNKKASzCr4EHSKMW5ejiuLqSuL c0vJ8MuArCuMhBrnxmpMTwtxtJMq76GN9zMg4sZHOYpRtnyAMdxDG+ymdjZj 2xuRbQ3wedvmmugmKLKW+HU1oJVNMV/Xk1eqmU9reLtVIngxAspylX+0Dp7t KYOnB2QywBQCfNdtEh5KdDB0CVioAFnE6/iAZzlBqn42OCcBL/LAbwRQllN9 J9z9VgAVZJ3qawHwNQf8ggLfTjuDBWcxb2YiXp8NB65ggHkscB0Bv6+bfzfb E7U7T3x1RwBul+1u1b16XPPqfvkL+H6xhJ17qc/uZW0vFt1b7vny3tfKOw9H bu10Ljxtu7LW2Xq6Lqv/1OSjspnNkpn1yg/WfbDub29d5vhayZkNceMwKk5I lMYQxEisKJzA86NxXBkMWwrVkkAwopBN0FHHkmLdyrIjsmJdc8QuqTxrGVNX RFMXUtTFOF0pylQabkGxPIo+8in9mC7viAnzU33aAQPqZ7q0j9X5v1PL07Ev MXTN0bVP07RJULeIVbNknDBD6OqHWRkhA62IZMgfX4k0IEXqX5hDZnNDjK2O mDqY6FqZnDDVOKh7SNveQMvFBMp1uk5GuvZ6xi6GHhFOESRPLBOKdid5Ur/Y 5MDUrLDsgpCC0pDSClRNFa6xNrq/j1FZR/lM7/+o2R477qBh6KLtEWoRRXSj 8fxjE8LSMyIK8qNLS6AfjqmvI51qJHe20fq6960bYE+NcKflnHOzkvHRJA/v z73C9MOothiuM03kK4wLjksJTs0JyimMKC1HNtTh25tJQ90M5RDEo2hGAbex s++4U/KhhnR0hCcWG3G45nHxnilZgVm5oUXFUdUVmFO1uN5W8ngPQ9nPVA7B yinkPPkoe6ifCvXRfZ2k9iZUc0N0Q21UfU1UbWVYfq57bU1oZ0dMfwdJ0cc4 PcS/0it41Cx8WSfarZGo3t3gUyGDhxgXicFMDphKhS/OSMaCiXCuU0HpDmpj JWioXnP8tqR+e11C4Ewc+JUY/EoAXBLsfs3b/Zq79w66S3zwEhu8QAFP71s3 g1FNRb6ZDtn7Mgq8jt0fZRwOLoRAoU51E7d7kwE8St1bL3i9Xvn8QcXz1bLv V3OeLEt3FpOfLGXsLGU8XK69fG/u9K3l0fnNU9fXm75a6ioe6k7ta514CFlX PLMGWVf2wbr/edb9Urj9jHVZ+7vsoMpRbGSPQ/+3PE7v/xKflBojo5JFUSwh FJacOAJ7JsuGTrWi0iyoJGM8WouC14F6zPx431yJS5bANo6pE0s9KiGpx+OM 4yOtWFbaNHU1troO/7CJ4KAl54AF/aAZ5YAB8Q8apI+PpqqZlWg7FWs75Wk7 Jqpbso6bR+mbOZkZWDtZeoa4RhG8qSx/qSgwReyfmRaZkoG1cVY3sNEzsDfT tdb/XPeQnqORrquZtouJjpOxnoOhgaO+S7BDRIwvhulLE/jyZf6xSQHJsHVh +aURpRXY2hpiSwN2oJfe2i08bPq7A9aH1Zy09F00nQNNw3AuMWxfUXxoSnpY Xm5UWem+dfXkU02wdVAPO9BDH+1nTgyxp0ZZ507HDvaJHFx/5xVhGkKxRrLs KQKI1kBJckBSVmBOUURJGaK2BtfeTB7qYSqGedNyAWzdOAdKdNMK7syEUD7G b2sncwWmXIFDfHJAalZoVm54UVFUdSWmtY7Q30Yd72UqB1gTI1zlKE8xyhsd Yg720QZ6ad3tMS2N6OYGKDdG11REVJQG5+d4nmpA93SQRntoE8NspYI3rRB+ PShcbRO+aJC8rZfu1stU1bK9Cgl8V0UqDUwigokE+FhZPBpMQAOJaECGBkUo gId4yQh+lYZ52ch51S8CzySDFxKBL4R7F7nAJQ7wDrovufAYqLMk+M6yaQxU wGS0ShmqmgwCL6HAa2jwRhg4H7q3gH55k7S3GgduZO+t5b1eK3n+sOTJauHT laynK7InS4nbi6lPlmTbS9lLdwcvzl8bvfbg1PXHNWfnG1Jb+lN6u/etK5p+ /FdY90OI/g7W/VISFvy4fpa7tR/Pcv8lrNtfmf2p+ssZzP0z7v6l/kNrE38H 67Ll6znjcOUqNuCncr1Afj0mLTdGyqYKERy+h0DsIBDacTiODLodHZ5QZ0Yn m+KQ6glCp4qMsByxa47IPompF0/RSIjRj4s0YdueoJw4xlHX5x0zFBwy4x2w 4hyyYh6yoB4yJH6qRfjomPB3asVaDsX6rhn6jlxDm1ATCycrY2MbY1NnKzcv u+hQFwbZX8zxSxT7J8YH5uSTAqNsdC21TBwt9ewMDhkeVbfUMvawhNpYHfiV HcydpbdlINYbRfMlcr1ZEh9Rgm9iZkhmfnheaVRJJbaulnSqCdPREdPdH6vn 9PGn5p+qO+voOJ2ArAvBueBZJ4XxIUnpobm5kSVl6OoqQkMdubmJ1NFG7emi DvQwIOuUw+zJEcbctLink2Pn8ruTUebBZMsIujWe68YU+wgT/eLT/TLygwtK I6uqse2t5OFelmKIPzXKf5/rFIIpBU8p58rl4rKKyBiqDl/iHge/5QvPzoOs i66uwLY1EAc6aPI+pmKApRjhjo/y5CPcoUFGfy+1p5Pc0Yo/VY9qrEU0VCNq KyKLsr2qioL7WkijbZSZPtbZIc7pMe6UEm6TLw2J7nWLN1slT09JXtdJ9sqF YD4bTKPA0/DisGAcBr7dGyoo1EkxkHWv6MG7MixQyn/dIHjRzHvbLQTPZoDn 4lUX+MBFHvAFFzzPAc8ywDkqAN/PiIWtm8KASgR8m48iSHUmDLyCAq7Dd8i+ uo59uywBN/PAx9mqRzmvH2S/WM3dXsl6spL+bAUKdcnbi2k7S3FPltIf3W3/ +uZXozdWqi/d7b56f6BxoiWpo1vxoHR6o3Dm8V/xvu5/gHU/fZrs73Ipz19u 3Q/rz/ec/JeyLm9iq0hxi5xdQooTUoUogdRfKHIUCRy4HAcm0x62jmbKoJgQ MRo0jGZVdmRxvE+uwC6TZZKC18/E28Z6GlJPHOWq6fOOGAkOm/APG3MPm7IO mzMPmTIPGVE/1SZ/pMb81cGMY5ZZRm4iU6coW1tbRwtdZ2NNRxN9RzMHB+NQ X2tqjDeHdVIi8hGLvTKyCVROmJ6llqGdqZGzmbq59ueGx/ScTbRdjHWgaAeJ 52Bk4mHhEekWQTqJY3owhN7CeN/EjJCM/MjcUkRxJa62gdzQiG5qRAwOJ9j5 HP1n3f/vuLPuCYfjtr4mAWh7LMODJ4Vf8WXnhJeUICsr8LXVxIY6QlszuaeD PtDNGtm3TjnCPDMtbm6kWdv/88kIM/8Yi3C6NZbtSoOiXZx3XLp3Wl5Qbkl4 VQ22tZU80MscH+JOjPKnxnlT41C0400reWOj3LHx2NRsbxxVV5TgI00NSM0L y8wPLSlF1FVh2xqJgx200R66vJ85PsKVj/FGR7mD/cyebnJHG7GlCddQi6yr RtRVImrKovLS3OuKQgabiOPtlLk+zrlBDvRXTE3yZ5SCs+PCr0dFNwaFS53C zUbBiwrO23wGkE6BQx2EG5TlpFDfun/mQhT1ihP8XBAGX19bJdmDOt/G2DeN /FftXHAqCTyfAJ5lg+dY4Bk6OEMBZ4ngLAGYwcHQTWLACSSoiAQUoXszweBl NDiPe3sD/2qBCazngWuFwIMc1YPMt6tpz1eSt5cTdlZSny1nPFlK3VpM216C ol3G43t138yfHry6WH7+xti9zZkz16tyutpHl8umNyHryqe2oVxXNPNze04+ WPd/hXU5I6s/rv9a1hVMbueP36LmVDJSErgJlNiEYJHEUSJyFPBc2GwnJgtq Y42pFENyjC4m9EAyz7EmPaxQ5JzPtc2OsU0KshSY6Qg0jcRHLYQHzUWHzLiH jVjHDFmHTViHTFkHjRl/0KF/coLxm2OSj7RSDZzJti6eLnZGrubqbibHXE01 HU11HfXtfI0jcM4UpgcUKcUSr8SUyOR0mp27uY6lnrGzmY6N0QHD47qOJnqu JnouprrOJlpQG+tu4hTqEB7jiWecZIr9BAn+svSQ9JzwrMLIgnJ0ZTWhvgFd WxsxMpoUjLb5tcY/n3DSU7c5bu5pcDLKMprkxBD4xCYEpmcEFxRElZcRoDa2 oSamtYnc1Q5ZxxzuZyuGuIpR5rkZaWMdydbpI1+EpR/BMpJhi+e40QTe/Dif uHTftPx/ta6vizYCfWqErxzlTsi5U2OsiTHOyBC7t1/AEVkSWabStMDE7NDU vPDsorCqKkxTPbGrhTbUxRztZcoHmWND7JFh1tAwq6+X1tVJ7GglNjVgaquQ 1ZXIqvLoktyA4hzfU7VIKNeNdVJnBjhz8DoIb2aCf0bBO6fgz00Iz0wKLw3x F9rYq7X0J7mktyl4AEp0sQhQigSlKFAYDbJD99gB37P8dzNIYIUQPmFRGQdW xwP1spd1/NdtfGAyHjzLAc7QwBkaOEUCJgnAFNS6QsphQSUaLkU0FO3eTgSq vsXszRPf3GLAt4ytlew9LAJWssHVDNVK8qsV6ZMVyc5K0veL8EVj28sp28sZ TxezNu6VfzMvb7t0pfny0sTKM+U3d6qqR9pGlspmtgpn1sqmt8tntor/1brN P7q3/5yCq2ASluonrdvfnlcw/f6LD9b9o6zLHb3/4/oHW/fD93WwdcqdPPkK Oq2Blp4tSuPK4oNlUiep2EHE9+RCLRvHms4wJVMMY/BaqJA/UCMOV6eFVcZ7 lwg9csknhY76fF39OE0byeeWsQesRYfMoXTHOmrIPmzEOWjC/tyI+Qdt5iea rN9rUH5zhKVvG+nmauNhZ+hmqelmpu5ipuFsdtRRR8db3xNpg6G70XhuXLF7 Qmp4eg49KMpD31pP39FI3970oPEJdRsdfTdTXRcTqLSdjHRcjO2D7ILxnlim N0PkK4jzlyQHJGYGZxaE5ZUhSysxNbXYqqrI/sE4Kj/wn9R/peGkd8zyuKm7 vkuoWSjBnsL1FMp8k1P98/Iiysvw+9YRW5soXR30/p731o0PM8/Oymqq8LbO H/ujbAKI1hEMGzzHnS705sV7SzN8U/OC8oojKmvRba3Evi7qUC9DMcxVjnKg DypHWaODjOFBdms7jUDVZont4zNCkrLDUnLDoC67qgbX2kzr74SgY433M8YH 2aODrMFBZl8/o6eb0t4e09yEbaxH11WjqisQ5cVh2WnuJQUBbadwfZ2U0X6G cog9M8qdHeWelnMh684qhGcnRKcnRefGeBf62OdbyfOlmK0M9Nu4aFAcBYoj QFE4yA0GOaGvKCdf8oPBMi5YI95fuoWsSwJrE4G6+FdVvLen+KBcBCrZgJIM wLdXIMGJCFCJBJUYUIEBx6EnClCEvVb4AN+iXl4nv1lOBDdK9u7nvV3NhacE LKeoluPfLolfLYleLSU9X8x5spywvRL/ZCnv+3t5G0uFF6/3NJy7OLK0qVzZ Gbm+Wj3wRaNiuXxqs3h6HbZuersY7mG3i6bhmSfFMxsl0+9qu2Rqp2Rqex8r iLWN/P0qmIQr//23m/nT8DVkBftP+IufGJny97cOAq3wj1Xw11v3o53Gef+J rcU/Uz+z6/g/Y91fDdrP+PZ+COdP1I+21Y3/6zpslmI9d3wrZ2zDO7YDlVQi TBXLEsPjZM4ysZ2Y78Xnu3G41kyGOYWoj0cdj4k6HBPyaTrboTYlqEISkIPz FdgaygwtZUctZQcsZQetxYct+EdNOEcNuYcM+QeMeZ8bcf6gy/qDFuMzrYiP j3pp6np4uVp4O5p42um7Wmo5mWs6WqjZGWg767uEWEQRnckcT67IS5YcnJ5P jGEEGdpqQ9bpOZh9ZqT5kf4RfVdTHfiYmDFU2k6Glj5W/kgXJM2DwvXiSv0k KQEJmUEZBWFQG1taiauuwVZX49q7JImZyH/W/H/V7HWOWKobu+k7BZuE4h3I HA9hrHdyamBebmR5Ga6mivgv1vX90TrFCPPsmbjCokhrl4/8cfb+ZJv993Xu dJEPN8En9sfW9XfThgcY40McxQh3bJCuHIV+CXV0mF9ZjSBQtPnx7rK0oGQ4 14XkQ9bV4tta6ENdbHkve7wfynUc+SB3cJDT18fo6CS2tOBONWLqa1F11ejq iuiCXP+cTM/K8pD2ZvxgN320j6kY4kyNwcvEs3Le7LhgTiH+Qim5KBeeG+FN DDAHu4iTTdirpaj11Oi92EhQGAKy/UFO4Gu69wuGP5DDgI9UVMvAqji4ahIg 7oDqBKAiDiiWAtUCsE8EyBmAAgVOhoPKCFCB2FcOC45jYevGI3cngne/RL5e iAXWS8G1AtX9bGAlDVxKBJfigGWpakmsuidU3U18sZS1c1+4vRr3/b2iF/cK 11cK5652tVz8Tvno6eji45GFrZKJhaLxuxUzf7RuartkdrsYrq3SmfXSmbX9 50bpzE7p9BOoYKz+7KKxgncRbnoD/qMfVP70+r/J3d/Iup8qSGNYOeX7+k9Z 99Mx75fPeHA9yJH/25Urf5A39sN6+OP60Z9C3P3XsQ7eX6fczFXsuIo7AkRF 4uz0uARkgsw1PtY+VuQh4rvxObZsqikZq0XGaVEwJ4ihBxihh8pkPhXioPQw N5GVcYKBTfwxa9kha+kRa/ERc8EREyja8Q4ZCT4zFnxixP1Ej/GZHuKgpre6 poXGcVsna3tfF1MvO2N3G11nSw1HC3V7Uy0HA1tv0yC0PZ7uwRT4iOICkrPQ CWkkCwdNHVtdfUeLw+Z6H+sd0XTU13XZh27fOiN3Y/dQm0iiK57lzhJ7S5ID IevS8kOziiMKy6KralD1DeSO7tjiavIB4/911FrnhJ2ukau+U8g76zyFUr/k 1KC8nKj31tWR2pqpXR2099YNc8dHmOfOJmYXhNh5fx5Icg2g2YczrXE8N5rY l5foK830TckPzimNrKzDtLYR+7rhg2Djw5zxIbZ8iK4YZowM0EeGBEkprniq jiDeMzbFPykb+ueFFFUg6hqIne2soV6uvJ+rGGDLB9ljQ9whqOHtZba3E5ua MPV1yJrK6MoKRGlRWG6Wd2lRUFMDqrudNAJFR9hhzuQIZ3KMNT3GmRnnn1aK Tk+IZ+SCyWHOWA9tqDVmpAU/VYf+tgC5lhixxwnaI3vuUr23CW5vU8j7xMn2 Kx6u6gR4HEplPFgSDxbLgGI2UMcEB7mgnAiO7Y8IGI8Gx5CgHCoUOI6E2tg3 E5EvvyCCa7ngVtH+gLtUcCUeWBSDixIQforAReHuovTFctrOSsKTlaSX9wqe L2Y/Xi2fvDQ6dmd16tET+dL60K3turMrJZPLFVNQclsvnd4qm94qmVkvnnlc PPuo+PRD6FkCc7dZOrMNcVcysw03szMbMGs/5AuefbdZtH9XBVTFk+vvvthX 8b+Gdcr1H9YH6/6RuQ6qyc3sqScusX0urEJhVl5yKjVR5pUsc4yTuEr4bkKW FYdsSCdo03AaNPRxNkojxvejFLJ1Qxwqw9c20coyWd8uXt1GdtRGfMRadNQS amOFh4x5B42Fn5vwPzcmHzJEnDD20NC11NM5rqNubG7g6OFo5uVo5GGv72yl 5Wx9wsFc087I1N3UJ8IWSXKnsH34sQGxiaFZ+XSPIDNNG009R0t1K5M/GB09 ZqVp4GSi52ik6WSo4WSk62xo52cWhHXE0F1pAk9BvF9cRkhabnh2UXhBaVhV DbKhkdjSzq5rZmrafHzE4riOk7Ghq4FTiGkIwZHM8RbGBianhOTlIN73sHVE yLpuuIdlDQ+wx6F4Nso8eyElOSfQPkDNl+wSwHSM4NriBe70uAB+ckBctn9q YWheOaK2idDSRurpoUK5Tj4MqcWSDzFHBhmDA/TeXhZHYEblW/ISPIVJJ+Oy /NMKIOuQ9Q3ErnbmQC9nbIAL/fzoAGtogNk3wOjqobe0UhobYmqq0RXl0aWl 4QV5wYW5/tWVUa2N2J5O4kg/XT7EgjidGObsrxRzp6GAN86fUAjHRvmjQ+yh LtJwK76/ndDZgh2tRn+bEbnGD3zLCNzBuT7lR4IVibBs77nbtw76tiJ+f++x BMwXgkXct3kxe5Ux4CAf6MeDQ0hwFLJu//LZsQhwNFI1hnimRO4uxINbxcDj HPBhGrCSCCxLgEU+uCgA95/AEu/NquD7+4lPV3KfL6e/XMx4tpSyulQt/+LM zKOns+tP5YuPh29t1194UDq1Ujm9uQ/afs2ulc4+LJ15AHMHuTe7VTS7UzS7 XQR/sVE0s1Y083j/uf6uINBg1t77tgZVyQfrPlj3s7kuVbGWNrnjnzllTS0g xmdkZwtSE/1T4p3iJU4ygZOYacEjG3KIenSsBgN1nIM6wY5Q44adqOAEFfm7 pJlZpxo4JGjYxqpbitWsoIo9ZC45aCw4YMw/YMI8ZByuaWxvZGhhbqRurn3Y UkddT93S1tzK29nY3d7Q1VbXxUbD2UrD1lTfwcjJ3zoM40pgeDOE/sK44OR0 LJbmo2l7QsfWXNPe/KCZxjELDUMnE+gnNR0NjzsanrDXNfc08o62iya7ELnu LMnJ2JTA1Jx31oVW1kbXNOLqmsndQ1JrTzU1k6OGjsZGLgaOIabBMU4xXB++ NCA5NSw3D1lWhq+uItbXk9paaZ1wDwvJA1s3Osqcu5AqSnZ3CDnuR3cL4jpF 8e0JYk9mfKAwLTA+LyijJLywClXfTGrrpPT2UgcHGSND7OFB5vAgfXiIMTDI bjhFwNF06BIntsxNkHRSlumXVhhSXIVuaIxpb6f3dTGH+ljDg4yBAUZvP6Oz j9baSW1sJtfVx1RVY8oqECWlUcXFEaXFYY11qI4WfF8PeWiAMTbEhDKnYoQN lXKUM7F/1GJ8lDc6yO7vo/d2kXo7SF2tpJbmmPYGrLwYdTkl6iHdd53mt1sg AqtSYe4q4+DjFe+sq0yAT9EWSsBcIZgjALNZb9MJrzKi9mpIQDcVHMKBIxB3 4aA8BBwLhax7O4p4dYYOLueo1gr2HmbsrSaqluHRduASG1hiQU+oVMvM1/dZ 3z+Ie7ZY+nIp+/sl2eZy/M0bNaNfXBy8vTH5+Il8eX34zpPaLx4UT62WzW7C x8Tgk2IbxbOQb2vFs9AXT4pnnxXOfl8w+6xgdqfg9Gbh6bXC2cdQFcE/s77/ MxuF+9zlT0Lt6uPC6bX9Wi+YgRrY94sU+xOP/wHWFUz8oD5Y91/Ius10xVr2 1LOwggtW9IpQQVpGUVJmGiolzhXqZGV8RzHTjE824hD1mXgNJpzrTgiQOhTf z5OjLSoCT2ZbOmabeCZrOUpPWInVLSTHLGMPWsg+NxUeMKEfNkEdN/YwMDa2 MNSzNjpupaduo3dET03LWNvay9nUw97IzU7Xdd86BwttO2Nzd2vvSK9osg+J 58uODY5PRkoSkYZux/Vc9DUdTI5a6n+mdxSCTtsBUs5A3c5Q3VbPyN3QM8I+ guwKLxmIvUSJfinZYVmFYVCuK6+JqmnC1reSu0YkXiG6B7V/b+JsYuCk7xBi 7o+zx3JOcqUB8SkhmbnRxaXYquoYyLrWFmpnJ723hwlZJ4dzHevMXBJX6uAc rBVE9wzlOiNEDkTpSU5CoCg9MDE/OLMsqrgGXddMbO2kdPdS+weZQ8OcQaig UDfIGB4RFZZFIogaLJknQ+oiSPKSZfim5wWXVqEaTpEg67o66f299MF+Rv8A s6uf3tpNaWwj150iVtXjKqsxxdAvL40qLYuqqIxubMB0tJMG+iFCmWNQmzwC Wbdfo1zlGA/6Qj7IGe5l9ndBuZTS1k5tb6G111M7a4htZZj+wuhptv3DdDRY m7QPXSLcscLWxamq4oB35yygRJfNBzN4YDoTSCe+TUK+TUeCTQxwEOIODVkH jPjDK7DDEW+UVPDbjL3rmXuLGarVlN1FmWpJBF9CscgClhjgIh1YpO8tU9+s 0J6vir+/l//iXubOkmz5bvbFK8P9lxZarj2WP9yRr273396GrMufXIGIK3pv 3TvutoqhjnX6+5Lpl4VTL4pnnhfN7ECsFc0+zp9+nDe1lje5njcBrwW8VwXq Xqe3is/sFJ3ZKZjdzp15kjW9nTOznTezBXFXDN/X86fWvVvU+I/Wnwe2n6rC yY3iifdVBHP3N39f98N1il9uqeKXsu6vX5v4d1da/xW3f+uaiT+zbjN3YitH sVFw+iWq/JIlo9KTFi/MlGXlktMTvFITTsoELiK6uYBqzCMbsQnaHJwmF63F idTghGpyPI9nu9iWuQUUWfln6v//7N33V1vnnj/6P+DeO9/5zuTk5CROYpve u4SEJEQ3vffeJNQrAiEhehVqCCSKRJXoRWBM7+ASx0kcO+42LrhjMOAOSPtu OTmZnJxJbuZ858zMncla77WXQoBl/+DXen/2s59nexWZwPONYZyjztzPYZxD EMrnjklGdv5WdhCoHTiimsFszZ1tjaCWR+1MPrMysHWFOfu62XohLbwRph5w czdnE6S9hSvELdwvNN0vhRJAyo0oKE4oq8nyTYaboI+YutkZQO3+YP65AdTU wtXOCGltgLQzRNpYu9t6RCAiMr1SaMdweceyi4MKqyIqRVEgMvLGeEVrmlKV 1Xc8JwGD/MTsH+1cbazdrBERToHpqGSaHyHXL6cgoLgqXCCOl+m3WmS06esW rq+PMDxIngC70zh1Yb6ASIW6h5gEY9zDKajEHNfMfB9yUQirIrRQFFEli5Mq kkGdOvtwfUP4oVGKZpyuOUEbHqMMakjDx3N4Zf5JeHsix5dS4JdbBv7ZQqvF UfLmtLYOXFcXsacX39+PGxgg9g+SuvsJbT1ZzSpMY3uaTJEia0qurU8QiKOk sjhla6pandk/gBsewo2MkMfHaBMnGD9mapwxPkrTDJGG+3Aa8C/bkdWpwne0 43sUxG4ZRiVPq+cHTIpDHvewXrSwD/RneOb/2Tr9Jgv9YVASEDo6UE4DiklA IUZbmKErTtMWJBzwk4E+gr7anYgBJqPeHY96M56qO1MMnK/Rflv29hLv4Fa+ 7m6Bdi0HuM0A1qjAGkV3m6xbIx/cJoDcvbmb/fJ2+Yu1yid3Ki5da1n69szg hfst5x/23Xh8Yn174PrzxjMPhXP3wW4mXNgQLT6T/DCx7kjmt+sWXtTP79bP bDXMbMin1ptm1lrmbyrnL7cvXFMt3exZWetbvdO3crtvea1z5lrrie/qxq5I p+/VgRMuqOLKtnBxUwBWuzkQuk3p7ObPqt3flp9x9yvfWTv3TDr7LxHP/OUP zvxF/lb3/g4n3f26dT9dhB1/KJx48Ev5mXWgfv91rOPPPONPPRUvvs5SXITg ZZ44Do5D4QuyqkuCKwqCeQwPNtEpB++QjbOlZZjT083oyea0WDNmjA3dz4zn 4ihxD6pDRYjsfKvNXUtNXPKN4CwDOO0oNNHYwd/KHulob46wP4y2N3axNYPZ mDhbGziaH7IyMIHYOB9D2x9ztfJBWXq7mLtBTJGOxkhHmL+bX6JPdJYfITuM XRhRWJWUxgwzdzMwRzsYwhwO2Rp/ZPmpBcrOBGVriLIzRtpaudm5BMMC09zj yN5ZeX6s4pCi6qhyUayoLk7WmNDUktHUltF/gkNmh3xs/g/mMBNzlKVzmINP MiyW5Ilh+tA5PtySoEpBtKQ+qbEpTdmS3qnO6u8njQzre93UBH1luYJEc/GN tonAe0XR0Am5SKzeumBmWWiBIKxSGi1pSlS0pXd2Y3qG8AOj5MHj1CHwOkoc HCX1jzCpObAMKgzP9WGWhnArw8oEkcK6+EZFOjioqrrxXT24nt6s3n5cTz9B 1YtXdGXJ2zLkLWmSxsRaeYJYllBREyJvTlZ34fsHiBqwNI5RRo5Tjo9SJsAu N5k9qQ/zxHHa6BC5f5AA/qqhtsw+Jfi3yGhSYloVOIU8WVoV3CwOPnuCdne6 4GFv7k4be1/B1W+bbdYf/aSTsYHaHEBAB6pp+j1lPCyQn6l/gw8vWZsX/ZYb pmvHAkMZutGYvfHo3dHog1Ns4NtqMLoLJW+/zn57gQnc4mlv5R6sMd6/SJGi +yEk3R3iu7uMF2sl23eq79xo/PK78ZmLFwcu3W86/1B5/vbonZ2+q9uyUw9r l9+PnKB1S89ES5uixW3xwm7twqZs4WnjwgPl9M2eueuDs9+NL363+uWlr777 8vqtC9eufnv75uXH62sb67c3Htx9cPvmnWuXz3xzpW/hW+XkOdn4t3UzN+oW H0rmv59qN8V/fljlX71393exbvZ36/5rWqe/X1c9tSGYf8FUXXelKoPoZelM THl1hqg6sro4jMf0yKdC8wiOLJwNM9MStI6RYsGIs6RFWNH8LDOPfsizQzR4 xDc4hUltfCpMXHjGSLqhC8YYeszWyQnm5AB3skI4mSOdTOB2xs62Js42Rk5W h21MDe3MHTxcnP097P3QVt4IczRUbx3CwdoT7hbpFZrum0L2pef5ccsiKQXJ jsfMLdxtTVGQP9mY/sn8qCnC1gQsdSg7U5R+NRYS4OST5BZJ9EhnHaMWBnMr IktrokXSOKk8oVGZ3gj+8x/NLa5JO2T+f5lAjhohzGHhjv4ZqCS6H5kbllcS Vs6PFtelNSmw7R0EVRexu480OEgbHc0eP8GcnMheXqnG4B394+wiicdimO6p +e7kspDcqpgCQVxlXYKkKaWxNbNVhVF1Z3X3Z3UPZPUO4vuHSX3DuMERSntX FpZiQ8x1oxYG5lSEF/LB4TpOIk9qAn+kM6uzB6/uyeruzerpx6v7CK3qrIb2 DKkyRdqUIpIniGQJ/NpoviSypQPb1UvqHyZrxmgnxuljJ2hjx6nfV7uZ6dzJ 8ezREapmkNTbR+jqxvW2YnqaU1sVKQ3NqfWNyXXyGFGFz9QA8euTnHNzjFsz +fcH2budHJ2SAyg4+lM9pUxdDVV/HEoFESjCAtwMgJ0K5CYAOXE6VsQeO2RP mgwMYA+G416ORLxbJgHfVuqtu1Ch/Sb/4Bzz3VnSwSWWDrTuFkML9rpb5D+H AqyR3t0l79wueHan+vLVvuUL301eetBz6YHiuycN526N3HmlvrgjXX4gXvrB OvF768SL+l2xjfMPW+ZvdM5+q5k/t3z2wskvzn5z9vTtS18+vLn66sk3j64t Pr6+/OrR+f1nl3Tb13Wb+uzvPNjeenL97t3Zry63Tn0hmboiXVqXLj0G251g YUsP3U8eVvmx5gl/+ZHj363772fd96/XAXsdf3anSLPuk9sWncdPpqRmc2Kk omR+SXRRtnchA5FPcc7F2zOzrOgZJtmp5rlJDvQI+0zop4l//F+Ej03E8NAW VFyDnZ/A3D3PFIW3QMZZw5ydncxQTjYIPXeOMCcLqJ2JM1jtQPFsDB3BSdbM DGYPC/Bw8Hez8nYxQ0PNXJ1MUY5gnP1RAYmesVg3QrYHk+eXV5XhFmFvADe0 QMM/d7D6xMbwCMTMzNXBxNXBDO1ghrK29bFGxziHYN2SGd5ETmBOSVhxdRRf EiuRxcn1FmWoBujiBpKhwz8aOxtZediiYuDhJG8MO4xVElfMj6upTZQ2YBSt hE41uauP0ttHGRjSWzdxIntqKndxqTI21eRYjFUEySuK6Z7McSeVBrOrY4vF CfymtIYObHs3Ud0D1irK0Ch1cJQyqC915IFh/JCGIqkPzySYU9juYKnj1MSW iOOr6xLrmtMU7VhQsI5uXGcPTt2b1d2D61BhFa0Zdc1J4uZEoSxBUB8vlMaW C0LrmpJVXaRu/R+JMnycMjJKPjHBALvcxAQDrHZgxkZpw0Ok/l4cCJ2qC9vR ltGuSG5rSpaBtVAeWyXw62pP+Xqx+MvlnDPLzG+WODfnix4P5b9tZ2tb8oCm PKCWCVSQgWIcOLrquOna3BQdKxHIjgOY0QAz8h0jaLckFOjFvdMkv5lNBy6W 6c5XgTn4pnTvS9b+WZr2LGnvK5LuJku7Rteu6X0DbpH015sgd8S9O5Sdu/n3 rpV+denE7HePRi5vqa88VHz3sO6LtYGbr1u+fi5ZeFS7+AyETrj4tHYJnGE3 ZAsbytkHndNX+mbODE3PLJ9evgq2ua+Wrnw5+eDK0tO7p19tXXq4tvpo7dSr Zxf3X9zUvrmzv3tzf+eG7sUt4PUD7d72i7cvbm486z99XTr5nXTurmhhkz+/ LZrdfP8A3sb7jrclmQWvm/pnkv/qab1/F+skP4EOdO/nP/i7db8Zt19fgPjr xYif5a+tq5p5Vj39tGZmt3piI6SoPYZbnJ6Nw5BjBHyysDSthOVTnI0spCM4 JCdWliULY5KbYp4fB6G726YbHcV+Zo75JwOmCVzmGa2wC5BaH6Pau0VAUT7O MKgLxBoFAa2zcXG0gjtaOtubwuxNXOxNYLaWcEdjJ+sj9mb2XggHP7S1N9LS 3dncFWKGcjRC2tl4OXlFIaPSUekkVxrHm8uPiSN6miKOWLu7GMEcPrE1+pOd ibkb1MTVyRhtb4q2tva0gIc5+KUikuheOLZ/dlHY97snwDG2rikJ7HXtvdQW NcfG9RMDyFErT0dkDCIQg0pm+NILogr5cZXCOGF9srw5U9mOb1cTunvJoHWa EebYGHNqJnd6riQi8cixGMsQnFsEEx3HdsUV+OdURhWJ4qrkKbI2TJua2NNH GdLQR8aYIycYo+PM0QnmwDBpfJwtFAUT6fa5hf45ZaF51dElorgaWZKsJa25 PV2pzmzvxnX04FW9OHVXVlt7ZlNLam1jorAxkV8fW1MXV1ETWloVKG/JUPVQ QOv6h8igdcfHqOPj9InJ7InJnIlJ1tgJhmaEOthP7OnGq9TYDlVGc1tKoyKh QZ5YL4+vEvhLagOXZ/K/Xiw6v8T5apX7xTL3/CLv6kT+o768l21sXVMuUEsH KgggdAA3XZeXqmUn6XISAUY8QI8CGFEHzLA3+WH7rZkvRzK15zm6i2UAaN3X FQfnit59wXp3Gg+cI++dxOguEIEbROAmQXcLA9zO1L899joe/Mrbu4zNtbxb 35Z9eWHpxOXt7usvVFceKy7drz673nL5lez0M9n8U7l+L9hTyeIT6cKjxpUn rdO31KNfamZO92qGxmc1X305defKyuWvpi59ObZ+fXXz4Tevd64/e/jNk/Vz 2xvfvXp25eD1g3cv7r7ZvnXw8p729eODN9tvXzzR7j9/+eL111futE9/Wzt1 Xzz/Sji7qz+nffEJSJxkdhu0DgxonWDhX38u5f88kj/nX5mUZ5/+UkQzT/4y /w67yX6Wf6+1iX+Ldf+GtYm/q3U/zLDTYLXbkc7vpImHorg8HJeWgo9hsZJk YkoZJ6CEhS5kInlUGJtgl4cxz00w5YZCcFaG2MOmpMN22A+M0/9gVgkNaIWF i+19yS4+vgiUCxzqiITaISG2CCdQNgswMHtTF3tThIO5i4MFzMHC2e6ovbkJ 3N72GMr6GMrGC2GBhpqjIIYoB3O0DTzQKTgBmYRF4ZlezNIgRkmck58FOLpa uDp/bG/yBxsjQ1dHY1cncIw1c7MxdzNzCLByi4dEkdCZOcdoBcGcstDS9wdp 1jYkgr2utZvUoylDB1t+anfI3NMJEgEJyESlMPxo+eHc8siymsgaSVxtQ1pz CwasW+peot66UebICHVyOmd0nBuWcMQ7xtwvAx5Cd43Pc8cXBrDKw/NrIitl ifVtWa1qYt8gbXiUoTlOAzN8gg4WPJCm/gFKQZEHi+vGqwjnVkUVCGPLJHF8 WbysNbW5M621C9PRje/Qc5fVrgJbZXp9c6KoIYFfD3a/2Kra6JLKQGFdbHN7 VmcvaB1Jb90o+fgJGtjrJsBeN8nSWzemt66/j6BWYdtVma0d6Q0tSfVN8XUN CSJJeGWFh2aA8MVi0bnFgvPLBV8v884t8c4t5n8zy70yxl7vZu3Iae9EJF0l ESjEApx0IC9Nf7QdaB0zDoQOoEVomWEvc4P2FBkHy5yD8zztN4XAVxXaLwoP znD2v8jRfkECzhC0J3H7ZzJ1V/HALdC6DOBOum4tC7iBA24Sd2/SH12mbdyU fHd5buLyg57rO51Xnii+u8//4r7825d1pzbrF5/V6/fAPq1beKRYeSSfvlnb szpwfGl6YVXdo5qfH7v09ey96yevfTt75ZvJB7fO7Gxc2n99Z/fZpZdbV/Ze 3d1/dV/37smbF+uvt9ffvXq09+qp7u0L3d6udm9D+2577+DN5Ucb6sWrDXPr dYsgOO+3UYAFT2/dc8ks2OueChae/J2s+7X8bt1/qnV8sNpN7tTO79BaZkLz 8jO4pAxmcjo2oLoKKy6PKctxK2a6FtBg+STHgkzboiQnGtoSY2hAPGpNOmRN /sQG80dz6p9slchoCSIsw8XTx8Md5oGyQ0HskRA7BMTGBWKFgFjCncwQ+liA gTnYwB0NHSwO2ZpYujnbv3+u2ModZopyMkDaG6JsrT1svSJhMemuaSR3Atuf U5XhE4s4DDGw8oQdgVp/aGNyBG5v7AoxQoFXa2O0uZWPOTLGPgyHTGX4UPID 2SUhRdXhVZJokSyhQZmu6MD3j5QFJUA/sPjA1N3BJsjeOx2uv1+XF8YGB96q 0GpRVK0cbETpirZMVTdoF314hDk8QpuYYfdpWMci/+QRa+GVDgmmIuJy3cFe l10WyqkOr6iPr2/F6q0boA1r6ODQOjRCGTpOG9BQBkfobaosCguSne/NqYgo FMZVNaRLlOkSRbK8LUWhBntdRiuoXA++owfXos5sbEkRNyTWNMRXSqMraqNK BWCpC2pqw7aqCJ295K5+Uv8gaWiEPApaN84c10OXMz6RMzJKHxwm9/Tg2jsz W9ozlO2pckViXUNcrTy2pMytVRl/ZqVkZYZ9dpl7bon79RJY8ArOLfDOzuef msn9Zoh5Q0l6KiW8q9S/dkfHSdPlJgOshPfQRQOMSIAW/o4csJXtox3KAc5V HZxl687lA6d5ulN5utPZwBkGcJoIrJKBVcr+yUztBRw4tOpugaUuXXsLq7uh /8+ta4zNa+zXD+pv3xxauHJh8NqG6tJG4/kHwjP35V/tSlY2xAsbdSvPxQvP 5EtPlAt3ilpmxK2jEzMrYxOT/X2qlYUTV76ZX79x5ubF+WvfTD28/cXuxiXt m3s7zy5vb1w5ePMQALYB4Ln2AMy2VgteXwLaPa32rQ54sX+w8Wbv8Wvdzp2N DfXs2aaZq01zG5JpkLgdfanTj5kbIv2tvE2w6f1u3f8c6/RjLNjrJrZrZ7d4 fSdjikpS80kZ7LQ0UnB2boSUn1TD8SxnogtpzjyCU2GafXE0hOBgmHXEjHLE kXzIhv6pY9YnNtj/ZVxjfUzsE5fi7uPu7+3k727lCrFDQW0REGsXqCUCauEC MUdAzBAQCz19UAu4g7GT1UdWBoZwO6ifm72Pq7WHi946hP0RFytTlBU8wCEo AZmY5ZaV7ccsSUplRJu5mZm725mhnT62N//MydoIATVydTJC2xqiLCz01jmF 4NAp2b6EvEBmcVB+ZWi5SH++k6QhSabM6B4uisW6fmD5D4dR1lZB9p4pkBiy NyE3JLc4pKAqrEoUUytLa1RglR1ZHV2E7kH64ChjSMMYm85v6yWhQ//gmWDt nQEJoaFiczyyCv2zy0PBXlchi69rxbSqCT391IFhPXH9GsqAhto7ROrXMET1 8TiGM53nx62OLaxNrGxKqe/MVIC+9eNUg4S2HgxIXGu3nrsWNRYse8KmpCp5 Qpk0qlQUVlQZIJBGt6gILWq8qo/UrX8ohTikIY2MUUeO04+PMcbGskfHmP0a cnc/OAWDozdW0ZEmb06qk8dL5YnC2gixOHBmKueL1cLVuZxTC6wvF/O+Ahvd HO+ruYKTi/mzc7mzo5QzXaSrCvwzfuZBYdpBfqouOw6gReunV2akjhkJ0CPe 4nzfViYAJwqAFZ7ui1ztqWzdKTZwKlt/ut1pku4kCVihA0tUYBWn/Rqru0kA 1jJ1euswwE3cm2v4Zzc47+7zX92punej8fSN1aGrDzsuPpWevSdcWa87/Uy4 /ES0+FTy/rm42rn1wtaF3Bp1Y/vQxPT01MzkUJ9qefr4+TMT926cXru8euWb qUdrX+w+uaB9fefl9rXdzSsHbx8Bul2dbvfgYGdvf0er29Xq3h1otQe6Ay3w SgdsaXWP97WPte+eX7l1s332rHLmUf3MG/HMrmT2qXT+sWTuqXBuSzj3/Hfr /uOt+/UjSn7rAsT4v4Lbb7DuWcXEVvXEtmTmiXD6Uiq/Nq2YlcZJw2VHkil+ VUUxstKoimy3UopzMQ5aloLMP+ZIsjClGdhlH3VmfA6hf+qA+8ia/Acr5gdW pajQjOAwl2Afh0BPKzeYPiioJdLZAulshoSaggG5gztZIiDGzrZGEOvP7E0/ d7K090Y6eKOsPeCmaIgB0hG0zhBhaetu7R0Fi8xwTaP5kAqissszEaEQE6SZ pYfjYajVx3ZmRkiICcrRFG1n6Gpm5mmGjIaHYH2SmYHYvGAyLyi3PKREFFVV F8uXx4ubk1RDuVjWsY9t/vdnLuYWgbauSZAIoheWFcQsDM2vCKkQRwtlKXIF RtmBa+smdA3R+keYgyOM8dnCxk4iMuwj9wQbL4xLCN09LtcT7HWMilCOILJM llDbhlH2kLoGqf0aMKB11B4NRTWAUw9SuKX+WQwkvTAwrzKySJpQDTY6VYay B9s5gFcP4nv1D9SRO3rwCnVmswoj68wUKpIq5bEVsphiIVhKA5rbMB09pLZu vLof/P2kvmHiwAgRrHbvAxZI6sAIFTRQ1ZvV3oVt7cQ0tqVLG5MksgSxNLqq ym9okHz6VOnqQu7p5ZyT8/QvF/LOLnDOLOaD0M0vcManGMdHyXMD5NMqwi1J 5sti0LpkIDsaoIYC9HAdPUzHin5NCHzLjtXVk94pCQeTPO0qV7uaA+hDAU6S gZMU3SpZt0IBlsi6Zfz+2UzgBmgdRns9VXc96+A6Yfcy4dWdyv37wpc3C57e qLxwfXj0u6st5x+KT6+LFu7XLeqXXwVLzySr27LFDZ7qDEc6XCHtalCqp2cm FhZm+npVy7MTNy+duX/r3O0rKzfOTz+5e+bV5kXg7e23u9dfPr+s23sMHLzW aV8fHLw4OHip1b4GrdPqvrfunZ473Q6g3dTubR4c7F68s952/HrD5I5kbkc8 /7h2/pF4/oloflM4v/Wfb91Plyr+3ej7xQON/zPWJv4LWVc9s8mfflEzvSOY uN+4tE5rHEgr5WJ4GcTs0JzsoAJmuKwsTcQNqKAiqnEIQZIvBwWnm9qyjWDs z+HMQ3rrKH+0o3xgQ/wHU6IxLCkiyjUyCBbk4+DjZumOMEeB3MGsXGHmIHQo qKkLxATmZAx3NHaxN4HbGTjbHLI3M3Gxd/RC2eifKAarmsNRhJWBi4U5yhoZ DAlOd40juWPZwazK9AiMr5mrsbmb7WGYxcf2pkZwBzOkk5mbgwHKwhBtDg2B +yZ7xZAC0nNDcdxARklwgSC8XBrLb0gQKRJbB/Ccqog/2f3jEZSVqb8tMtEp HO+ZmR3MLArnVoSXi+Jq6pNlzRnKTlxbF6FrkDYwwhoYzR6fL63rICHCP3FL dPDBooPpHnG5PtjCQHpFaJ4gslSeIGnHgtaph6jdQ+QecJzUUDsHSKoBgrIL R2a74VjujKKA3Mrg4vpYQUtKfUeGohsD6qTuwfb04fvAnxqmtvXiG9QYQVNc TWNctTymoi6yuCZQIItR9VJUvURVP1E9QOwZJvZpCAMa0uAIeXAEvFL6h0mq /qz2boyyG9PUmS5vTZUqkmvBBtuYUlkd0NqSvLpcsrrIO7mYd2o559Riztk5 9pk5zvwSd3Ihd2KWBc7CoyOU8UHKZA/hy2b8g4rUd9wk/fRKD9GSfHW0kJd4 vx1quE6aDchob+ppb9R5wEIFsMQFlrP15xWDo+syS7dK0q1kAUtE3RJu72Sa 7hoBuJUFXMXorhL3rlDe3OLq1qXvbte8uc19tZZ/40rD5IXTzV+tC1Yf1C48 kS3oj6cTLG7UrW7WjlzPk4xXyIdrajuUraoTE6PzizPjEyOa0YHB/o6G2sLx IfnDG8sPb8y+3vwWeHtr78W1V1sXgb2HwMErQPsGvGoP3uijfauvdYBWC+xr dXs6HTjMvjoAdrXA1ssXG6vn1ltO3JeB0+vCE8l76/Sbyxb+Deuw/7+y7hdr 3v9k696vw25Wz+zwp7cEkw9kC+tlfcuphYUYXjo5N5DN9GdTAivYEY3V8Xym ezXZrTrei25nw7JwZn7uzDmCZH0GZR5yYHzsSP/QjvahbewfzcL9/I7FRaIC fZwDvCw8XMzQMHM03MwdrodObx3UBAYxhjkZIhyM3ucTB7NDNsa27nB7L5SF B8zY3dEQZWuIsDNysXPwsfeJR0biPBLpPqTC2Cx2vBnK0BRlbuBiecjB/JCD pSUarIJORq62R1GWNr6O6GhkCOZYCiMYwwkiFvmzq4OLxVFV8nihMkHRi6lu zvyD9T9+hjAz9rd3SYCEEDzTWMG0woi8yuhyUaKgPqVOkaFQ4Vu7CepBWv8o a3A0Z2KxolqBgQR/7JHs7IfzDGUeS8zzzSoKplVF5ImiyxqTpCqcso+iGqar h8iqQVLnALGtj6AepklbM1KpEAzLjVEcyKoMKpLFClvS6vQzLK6zHwdap+4F h1NCRz+xpY/Q0IWVtqULmxJq6mPKRCFl4tDGTn2pU/UTQD/BEtg9hO/XEL+3 bkBDBqFT9+GVXemNncny9pS61mSpMlnSDFqXIBCHS6QRS0ulp0+VrC5xTq7k nVxmn17MPT3PWZnnzM3lTkwxj4PQHaeMaKiaAbKmlzzTQbwozNzigL0uUcuI 1DJCXuC8n5MDddJc/WPGdcwDee6rpmztUD6wUAgsgUMrHlgmAyss3QrY63Cg dcBS1t5qmvYyDrhN1t3A718l79/MO3jI31uXvLxR9XKtcPcW5/Y1+YlvF2Vn b1csgchsyZae6zeFrYD/ou9yG2YLpGMVDYNVdR1yZUf/YP/yykJ+ESc8KiQj I5ZJSexoLLp9aerhjbkXT7/Svri6v3Pl5ca3unfrgHZXnwPw+lKnF++tDiQO 2AcALXjV6dvdSx2wu7+/8fbVk0fPXqqnr8pn7kt/OPQJ/GM8FurR+w/n7nfr /jOte1Y9u1UzvSGYflQ3/1A8dhFfJSGW4rN5gblMbw49KJfkLS4NlxQFVjK8 KxN9GI52OZYw1hEXzlFX9mfQnE8dsw85MT92on3iGPeZDdTG2j0iKCAq3MXP y+4YGlTOzA1p6oY0cYWbIWFmCJiZi7Opi7MxwsnYxckAZnsEYnXIysgIagP2 OktPuLE7xMjV0RgBM3GBWrnaI0NhIenuMWSPdFYAsyQFHQ4xghtaoByOQqz/ aGNu5go3QIA22hsgrc09bF3C4f5pnrEU37QcvyyeL7MiOF8UUVofK1QmN3Zl NnTRDBF/+MTZ5HNvW2gcJAjvkcwMphREciqiy4SJNbJ0qQLbpCK09hDBXtc3 AlqXO7lUXVaf7hx22CsT5Uf0Ds/2S+YG4MtCGfyoPElseXNKnQqvHKCoNPQu DQWcW1WD1PYBaqeGVVYXl0yF4PJ8aGVB2TWhxQ1xgtaU+k6MohfX3q9fe+3s xYPQtfYTGrpxsq6shi5CbWuasDGuVBQokMe095HbunFdA6Q/Wwf2OnLf+xm5 e5ii6sO1dWY2tKdIWxIlikRhU7ygMV7YmCABR2C+3/Aw9cyp8lOrvJOr7JOr eSdXuSeXOMvz+YuznJlx1okxumaUMqw/U4UyOEAZ6qMOd5FXFaTbJWmvsxN1 9KiXGJ8tvO++mKnfOSsCuWMDUu672pwDZTZwIg+YpwLzWN0cBkRPu6yfXoFF gm4h8+1yyv4F0DrGm8uY11ep2vuVb9dFr++JX6xV7d6u3LlRsHa9bvT8lPjk 9cqlbdHiS+nSbt3iZv3y49K+cwV1o2UNo5WNAwJFr6SxTd3ddebsaQIVB3Nx pFIzuGxsvSjn8lcjdy5NbN07tbd1cX/76u6TC/uv7wLaDTDaffD6XKd9q9Pu 60dYnVYfvXVv9dbpdrQHT/derr/d350+d7n2+Hd1+oOOn0vmN8SLD8UL9/Xo /W7d/wzrvl+bAMdYwcwz4cxjyczDhrm77IZuQimeWxHKZR9jMwOzaT68HPe6 qkhBTkBVwrFsB4c8KyTXxI19BJn7vXWfOGUfgpA+so/83NrCwtTWHREaHekZ GuAc5GPjjTZ3R5l6II1d4aZIuBkCbuYCM3WBmSCgRi4OR6DWBlDrz+3MPrEy skRD9da5QUzd4GYopBnCxRScbX0gx+JREaBLdG9maRwmN8YMaWqBsrNxg39k bXEE6miIgBgg7Y1QdsZoG0gQ1CfFI4Lok8D0weT7MStDuKLIEmmMoCVJrsps GWRBg4586HTEwNcJFu8ciEMnMwKJBVF5lTHloqTq+oxaRVZj53vrhuhgrxsY zZla5JfUprlEGgfiPQOox6LYgckFwYSKiBxhbH5dYlVLpryb1DbEUI8wu0eo 3RqaeojePkBTaXJpxV5JDGdKSQi9OixXElnWnCRsT61XYZt7cC29Wa09WPCq 6Mc39mdJuzDiznSBMkWsTNGrJY9RdOOaujLburO6B0DoCF1DBFC596H2aWhd g6SObqyiLUWmSBA2xPIbYyplURV1UVWy6OJq75b25NOnKk+u8M6cyjt9Mvf0 KljteMuLvIUF7vw0e/I4Y1QPJrF3mNAD/tpB0lA/ua+HPN5J/YqfvpmXdoAL 303z2a8kAYpCrSxfV8vT8Vm6GvZ+TfaekKDrZQALTO0sdh/kbpmqWyaB0yuw iNctZLxdStFeJO5fo7y+Sjh4ULD3oObFPemLdcnzuzVbdwTbN0vu3KgdOz8m WblaufBCsPhGsvxCvrwlnlpjNU2UNWoqm4aqmvr4yj6BXNncolxYXpA31Xt4 ogj4ZDo5sZSX8e2Z/ruXJ7fWzwBv1nSv13YenX/3Yk27dx/QPT7Yf3QAige8 1mrB0XX/vXLgJLuv1b7R6nb3tdva/Sf7L27s7d2/8viecupC/eymZG5Xv3Vi 8aFk8e7v1v0HWPfbcasaf/rT/Nw60Lcf89uVm3paPaXfGvZ+g9gzcIAFe937 O5mPG+e3y7pOYksI7MrAQl4YhxXJyvHLZrpUFwU0lsTXxPsWOCPyLdFcUzT7 KDzvMCT3kCPzkBPtc+fkzx3dzGxMHW0+tjVz8/MJjouGBftBAnzNPdCmHihj NMIUiTBDIkwRcBMXmBHcyRDudNTZwQAKimf3ByvTz5xsrdyRZm4Ic3ekqSvK BOFiBHc0c7V1CXEOSEXFU7zw+cH5QpJrBPIw1MjSDfahteUhJxtDJOQI0sEQ 5WDgam8X4OyR6BaM9Yihe4HWMSpDOcLIYr11yfWdmZ2jHO8E+z84HjYKgDsn OPvj3RKZQcTCaHZlXIneuvQfrOsldWuYA8fZoHWTS3yuMAERbRxE8Aik+ERz AlMKg4kVkTmiOF59UnVrZkMPuX2YqRphqt9bBxZC1RCjbSg7k4NMYbuTKyOY omhufWwF2L5A69SZjT04ZS9e2Ydr7sPV92BE6rTqjsRKZUKNMrWmOam8Nqyh I71rmKbsxrT34VX9RNUgQT1E7B2h9GpovRp6zxBF3U9sU2EblEl1zQkieUyN PLZcElopCS0XB/ElAfNLBWfOlK+s5p0+lXv6ZM6pk5yTq7ylRd7sPHd6Kld/ 6JMG7Irg78zqHsL1DRL7+4hdw5SebuIpQdoGK/FZqv9+NQ1oLNDVs3XyAp0o T1fFBCqY2krqXmXW20YcMM3SzhL25rJ0S2TdElG3mKVdxB8sZOydytCdJ2qv ULV3cg8eFb56ULJ7X7C9Xrt5T/jobtmzm0V3r0uPn9NIFy7VLu2Kll+Jl7eb VzdqNN/myjUVzYOVTX1VTT18RTe/QSlXNA+PDB8/rgkM9ElMCGczsdzspNXp 9lsXxtevTK9dnLh5fnLn4Tdvd67q3t4FrXv77v6+7qlWf1/uNRjd+6sWePVe v52Dg23dwVPd29sHb+9tb65Nrl6sHX8gmXspmd0ULjySLNzVP8n8y2/z+Zvz b7DuN+ev6PuX/Hwx4l9bm/jzKSj6jRV/Dgjaw1/O37gO+0P+Juuq378K58f8 lgdLfpN1PzxFrLeuZmq3Zgbk7qlg+plk5oVk/B5FXMwoDykpii/kJLDy/Fkc NJMCqc2PkmdFF8Ndiyw9C0w88466cD53zD3kwPgUgjsMDTV2dHSwN4E7fOJo aWxr7RcR5hYVBgn0szrmZeKONkGjzFxRZkikCRJh7AIzgIEDLGidIxhDmNOH 1ub/bGFq5Yay83a39HQ1cUMYIpwNXaAGCFsbb3v3GJcInGcay5denhJPizJF W5i7Qj6DOH1gY37YxeEw0ukwyv6Iq6O5t5NLNMI/wyOWcQzDC6BVhuUJIwuk MTXK5Lr2tM4RdlgW6n/bfvq5L8QxzvFYFjKe7k/Ij2KWR+fzYyskSaKGTHkr XtFNVA3R+kdz9Nat8JmVkS5RhiEkzwCyd0Sef3JRCKEykiWKK6hPErRgGnup rZrszlFmxwi5exTsdVT1aI6kIyuR5ZxZ7E/mR+VI4oqbk6pakyUdabJubGMP vqkHBza6pr4sqTq9RpVc2hpfqkgsb04sr48ul4a1gONtP1E9SFaDrA1ROgdI oHXdGkrPMK17kKrqI7V1ZTW3p9W1JAkaY/kN0dV10RW14dXikIpq3yEN9cuz /NOrhadOc06dzDmpD2d1tWB+kTc1nXfiBEN/up2+zuG7B4lgegaJXX16eNvU 2CVhynVswOsSItBUDNSydCKmVsgCA/BZQCUDKKfoKvEva5K1/VRglrk/g9cu 4HXg9DqP25vJOFjFvjmZqr1AAtbygHXu/nre6/u8F/crt9fFz+4J798tfHyd dfuyZPjUhGxurXllt3ZlR7K4qVx+WN17mtekqVQMVDX3Vjf2CJrUNXKlWFbf 3KKYm5vB4tKCg33ppIxcarKshlmaE1XCCM/FHVPLOa+eXHj97ILu1U3d3vqb N3f295/ogG0tsAMGAHYBYEcHgFPttk77HBxv91/ff7V79eDFnf2n352/eK1+ /I54blc8syWcfyyZfyBZ2PhvYd3jX8tPNo4JJ3+2m+zBr+S/qXUvaqaf14DF eGazZmKrfu5ZQVsXsyKrpDyphBfL5QSy8tAEnBUHh2ymJ5e5epba+pRZ+hca oosOO3E/daQegSYbOB0zd7BzcjRxdjBysjM0N4O4oX3jo1GRoY6B/iaebsZu KHNXlDkKZYZAGbvADeEQMD+K97mT3T9bmhq5QB18PKy93EzQLkZIZwMXyFFn e1O0nUsYLCjVLYHinZUfRS3F2ByzMkPZGCEh/2Rt8ieI1VGU02Gkw1FXJyMP R7sgJ9909xi6bzrXn1IWklsTkS+JrmhMkLSld2jYGeyQ/8fyoz+521lF2Hik QyLI3pm5IdSiCHZldIkwoaY+tRbkS4Vr7yd3DzN7NczJ5WpSUbBzhGEgyd2P 6hGZF/hn6+KLZMnCNmxDL6V1mNk5QgetU4/RO4ZoXSc4RfWxsdnQrMpQmjg+ X55SrkwTd2bWdWHlfbjGXr11jT1ZDV2Z4s7Uipb4wubogoaYUlksTxAgaIxT dme19eL0uI3Q+48ze4/Te0YoqkEiqJx6gNLRS1B0ZMhaU0XKpHJ5VIksvKQu rKI2rJTv19aB+eIU/9RKyemVojOneSsrrNWVnJVVzvISb26eOzmVOzJKGxoi Dw6SeweIvX2krn4imM4ufENbclt7+kBZyFpFJqAo0dVyACFTV0PT8en6VDCA MhpQQgbKsa/KE9+14IGxHN0EGZjBaacw2rksYJX8cil992QKcCMHuJMP3Ms/ uMd5d6/g1b2yF+uVm/dKH97mPrhGuX5R2jN/Wr6wJV99Wbu0I13YaF58UNg6 W9Q0Uq0c5Df31TR2CeQqcVObUCqrb5AvLMyVlBZ4e7qnJcYR02MquPjsTL98 UlghNUItZ7949MXbja+1L68Ab269e3XrYP+B/t6dbksfALxuArpnur1H2nf6 r7/avjHWI9hYOwO8unljba1xeu39volngoUN8RxY6n637n+odYLZTf7kczHY 8DVn2YKSUn5qWWF4KTc0l42mUJwoqY41mHBRcDgfGsq3Dq408646Cis47Ew8 Cgk3cUI5OFs6Oxs7OZja2VnY2Rvb2aOCAvyTE5xDgix8PU090GZokDtX0++t c4Hqaxv8B+uMEc6fOdp9ZGNh7e5q6eFqCg68ri4m+hUKiCnKztEP4hXrGonz Ss8NopenH0tCH0UYH3Wx+aO92UeOFkdRkMNIx8MoRwNPJ9tgqGeKWzjVJznP n1ASxuBHcUQxZfIkoTKtdYjFEWf8k+3HH6FsLcPs3NLsw4ieaTmhFL11MUWi hCpZ2vfWdfRRuoeyu4azxxerMXnHnGNM/chu/jSvCG5wcnEwriqcWRtX1JAi 6sA19lGUQ7S2YWrHCKVjhNoyRG0dYZPK/ZK47rjqcLo4vrApvbodI1Fj5CBx /cTGPkJTL6Gh+32pa0suUcTnN8fky2KK6mMKJWF1HZkt3VmdfTg1OFeOUAfH WZop9sAYE6x5nX2U9l5SK0hTe5qkNaWqJamwKZrXGFEsiyjiB4hqI1eWKlcX y5bmeadPFp1czV9ZZS+vsBeXuXPzedMzuWMnmCOjjBFN9tAgo7eP3NtP7eol t6vxTcrUZmWKXBo5psA+HSp/WZ/z/oBiBsCn6wM2ulI6UEwFColACfZdWepr SZqujwGcoAPjeGASq53Dvl3K2lpK2buaDdzjAbfz9a/XucM9uMt7d7fgxW3u s7XcB9ezH15hXPiqpWPqYv3yi9qVbfHS87qlZ/VTt/KbJkubR/jK/prmXkFD l0DWLmpoaWztEEqlmCxMckoiGu0RHRmNTYuv5NG45Ph8YmwRNapDyti6u/jy 0Ypu91vdyytvti8dvL2jfXtft/dYt/8Y2H8E7D3ce30XOLivfXsbeHvn1qWZ ZgFtdqB2f/vCnfs3mmaufH8OSY1+08TW3wO63637deuqxn8xv2JdJfgN71+A +H3+Nuv4U8+Eky8EU6B1G9Wzm1WzW+C1efFRkbytWIipLA2r4oVx8tzpdGg2 EcGORUhiohv8kqROkSJLP4EhsvAoHGMI9bOCOLnAjREwQ4gjCJ2Vg8NRa2tT GNQzOhIREeoQEmDh7WXxfpI1QoLz6Y/WQQz+XPCM4NAPrcwMYI6gdebuSHM0 3AINN0PD9Wd4ulu7hDoHpLlHkrxwBTGpOdGfIz81QFl8ArH40N7iMMIR5O4I EmLoAbUNdkEnuAfjveJzfLOKQ6mV4TlCsP/oH+Vt6CeXNZE+cDj0J5StVbgD OtUxnOgFWkcqimBVx/DEieXydFErRq7GtfVRuoaZ3RrWieWqBJYnJN4iiO4d yPCJzg9OLgsl8KOyJbHFTcniLlzTEFUxTGsZoXUcp7VqyI1DZGk/NYmDSCv1 zawKAkksVqYLVJm1XdiGfkLjILlxgAR+kPVkiVXpVe2Jxcp4TiNIVhxXGlnV nCRXYRU9+I5+fNcwuW+ENnAiG0z/KKN/hAn2zPZuYkNrmkSRwFcklCjjuc0x 3Kaoovrwomr/42Ock8tVczP5y0sFS4v5S0vcxWX24gp7bilvcoY1Ns4cGaFp Rugjo8zBIUbPAF3VQ23vIjcpM+rkSSJhkLo19cJpyY2x0l0lWyf4XjkaOLfq Gx1oXSEVKCADRYSDkszdkpgDFRU4zgTG9NaBM+zOdPKbCwzgfonuLge4ywXu cHS3OQe3ue9uc7dvsp5ep61fJq9fKji5OtA6tVa7/Fy0uiFZft64siUZu1rU MlPdfpzf0itQ9Aib1HxZq6SpPa+g3A4Ct7a1iYmL8fIJCggIS0mM4zAJPEY6 ExtdnpOqEJIfXxt/tja59/SU9vn5N5tf74Mj6qtbutd3ta/WgLdrwN6ds4uq r1a7gL3bwLu18d6q/tay/uaCnfWF+0+uK+Yu1s49lM495S88F85u61/RuLD5 m/Iz0H71O/+LWffkx/t1P7Xu/Rcf/DT/Affr/hq0X8lf8PWX/+vXufsl62om Qet2hVO7gunNqrknFfOPK2aeyxZeifvOsPiMSn5iTWFUIds7h+6cTbJnJlqX xbnVRYXWo8Oktn5iUzTPFJlkDfd0RlijkEYouAHUyczBycIRYurg9JmNjaW7 u1tsrHNEqE2Ar6Un2tQNZYRC/mjdjzGAQ8EB9gjU9kMbEyMExMLTxcxN/9od I6STIdLOAGlh46s/iykI45vIjMQVJdgHGX6OOvQpwuqf7MwM0JAjKOhRV5ih h7NVgAs8Gu2H8Yxi+KTzAomlwQx+OK8+rkKZJlJj+B3Uz93MPkRaWYY5oJJc QwkBKexQfHEEkx/DkSSWNmQI2rD1XfiWAUqnJrt7jD00UxrKQCHSnXyp7v5M n0heUGJZML4mIrs2trg5SdyV1TBEVgxT2kYZ7WOMllG6ciSbr8LG5kCxFYFZ 1UGs+viy1vSazgxpN2gdvnmI3DxErR8gSbpxfFVGWXsSTxELWsdtiGYK/UWd GLDXNXfh2gdI6mFy7yijbzS7d5TZO6L/0K1hdPaRmzrSxU1xVc1xxU1xnIYo XmMMVxjYos5aWa2em+MtLuQvLnAWFrgLi5zFpby5xdyJGeaJcab+OJRR2vAw bXCY0TOU3dmf3dbLbGzHyZvT+MKw5qboL0+XnwYzV7TelfNWTAFqqEAFBSih AEVgo/veOgrAI+oKsa8KYvcascAoDTiRpZvCvJlIfXOSANwp0b5/WyKgf/EE aF3uwQ3m/hr7+a3cR1eY65dpV7+VahZO6V//uvJccvKZeGlLvrIlnbhW1DIt UI3xW7oFSrWwuYMva5Y2thEZ7MMmFpb2EE8/v8DgWJiLd2x0NDkrhZdLIKSG s0lxdeW4rXsr2p2vgTff6XbPaze/Onh+/uDlpYPdSwevrwJvru08/GJMXdop Jp2dar57abKrntWrKJ7X1O1tfLH+8FrL/AXp3D3p7BP9Oe1zO/p30f7wosb/ j/yMu1/75oWtX+t4v3kd9t+Jvie/vHHskXDq4Y8RTD382TrsLwVUUTT58McI J39tWRbMfyXrNgVTO4Kp7ZqZ59WzG5VzjytmtyQzu8qZ2/kNUl5FpqA4vpDl l0dFsoj2ORk23Hin6gjvev9wKcRXZOWeZ42Oc0QhUWgrd1dDFPwI2NAgEFMo 1BwCNXR0+sTBARIc7JYQ6xgaZHHM3dgNYYCCf7/u8BdBOBu4QI862/3B2vgz qK2ND9rKE2Gmf52igwHS3gBhZeRm4Rjs5JvqE04OwZcmBeHcjqA/NXa3+8DB 7GNnawNX6FEU7AgaYuoDg4ajfNK8wijHkvICsEUhlMowdm1sSXOaQI1t0PBs wqAfuJhahDgiEtyCicHJnDBcSQSdH5Mn1ltX05Yl7SY0D1DbNayeE5yh2dIg JsolE+JDcwtg+UUVBqdUhBCEEcx6sLClinpw8mFyMzi6Hme2nWA0gZ9Hc9h1 UXEcOLYqkCSO4CpSK1WZwu5MaR+mfgDXOExu0tCkQ2RhT1a1Or2kPREcYDlN 0XRxYL4sQqLGybsJij6ysp/QOQxiS1MNU8EP4FU1RO3opyp6iIouvLQ1ka+I L5XHFMkieeJgoSJ+8WTVwkLh9HTO/CJnbiFvfpG7sMQFP0xMM0YmaCNj9NHj zGENdWCY2jvEUA8xlT10eSepTplRxveXyiLPnKn68kzZ8lL+4hz3uob9vIm+ LyQDVaB1JKCACOQTAS4R4OAAtv7I4nfcmHe1KcAwQTeB2ZvIeDuD0V3kAtfz wS73Hro8MLrbrIPrlINb9I0beeuXOGsXS1dWejtnb9QubdetbNWv7EqWdhtO PpeOXy1snRCoj9e0qIWtaoGiXdDQwpc01DUpAyKiPzE0haLQgWFJMKRvUEhY VkZSLh2DSQxhE+P4vMyJPuG5+ZYr57q3b8/tb3wBvPgWePUd8OrS3vZ54NW1 71ZUfXJWf0POeEfpVGf5oCK/tZZ54/z4wfNv7j240blyrW5uXTr/uHrxWc38 tnjhN0H3u3X/PawDZ1jB9BYY0LqamS3+7NOquWfC6efNc49rBma51XlVJWnF 7HAe1ZNHROQQ7HNSHAoj0KKQkHr3UIGTD8vBLQKCckK7WnigzZFIQxjUAAY1 hsOMoTBTZ/ifbO0/sndwi4tGRIbZ+fuYeboauoJtDWaMcP4x3w+zR2GOhyE2 H9tbfOxgaeGBtPZBmbnDjFyhhsjvnxa2tPSxc4t3D8L7pXIj03kx5sdMjDxs P4HZfuBgcRipr3afopwOox2tA2GuCW7+OM/YnABMUSilMipXHFfSmF6jymoZ L0Uluf0j1NAqBAqPcw8hhiVxInGlkTR+HFuSVNKQwW/Pqu0mNg0w2kZyeyeL BmbLfSlwGBbiTXMPzA2IKgpOrgzDiyKZsrjiljRRL16uAX2jKY8zWo8zFKMM +Ug2tvxYDA+ZWR1EqYvOb0mpUGeKerDSfkzdIE42SJINUyWDJEHvD9YVgjNs UwxdFFDZlirpwcl68I39JOUguWWY2jJEaR0ktQ4SWwaIij5iUw+xXoWTtmPq VekiZWJ5XUS5NLxCEjQ2k79yunJxkbe0zJtb5M7Os0HrwA/jMyzNOG3wOGVw lDo0Sh/QUHo1VPUwrW2A3tBFFrdk8Ouj+JKg5ZMVp0+VnpznnFrgzU3lro4w brTTdiTkg2qythgPcDEABwuwMQA7Ux9u+jt25J44QTeY9UoT/3YWpzvD0p5j AFfy9Cuwt3OAOywwB2vZBzfw+7cID66yb1+qPP+FYmR2VbH4VHJys35lq3Hp tXTppXx1SzZ1vbBlvLpjSA+dspPf0CqSt1SJ5YJaGZtXZGbvZGBj6+YX6eoV 4gxHpCZGMynp6bG+xOTg0lwMNdkXG2ZfQfW/+82gdvPU/tap53dnth8sAQe3 Xm+cG1cVt1bjBhrzlgZrNU0FPfUscIx9t3nx1YOT99bX2hdu1c09qpt/wl96 WvP+JRe/W/c/x7qq6aeVs88qZ7dqZrdE09uiKXCSfVoz/Vw8+aRueq1a2VRV kVXMji1hBJSS3BkUezrOLj/OtdjfvS4grM4jnAk/ForytPNyM/Nyt0OhzeEu RnA4GENnuDHU5aij8z+bW1p4uqNjo2BhgbZ+nkbuCGOks5mLfg+FiYuzKRJu DDY6mKMBzMEA7mDg4vixg8VRuL2VF9LcHWaKhulLINLZAGFv5GoDCXXxSXeP ovviyhLdklyOupobuUM+sLM4BLM3cIUcQjh+hrKz8HdyiXM9hvWKZgViS6Lo 1fFccUJJQ1pFe0bTaFEYOfJ/OxlbBTs7x3kE4EMS2GEZxRHESnCKjOfVp1W0 YAUqfH0vpWU4p3eqWD1e6JblAMU4edM9/mxdOF4Uky1LKG7NEPUSZCPkpuO0 5lG6YoSuGMsV9FHieOiYIo8MUShNFstrSa1QY4S9oHVY6QB4JdT2EwQ92Cp1 emlHclFbAk8RnyOP4DXHi7px0l5CfR9BASqnoTYPU5oGyU2DhOZBggz88a7M 2k6ssC1TpAKbZ3K1Ik7YFFstCVH34pZWSucWOIvLnJWThXPL+bMLebMLeuhG JuhDYzQQugENfVBD79WQ1cNUZR9ZrsbXdWArZdGlIr+5lZKzX9UsLrBPL3BP zeZPjTNOTDDO9VCfSkn7VSRdMdjl0vVHsrPTgJwkIDcJYCfts8L3xYkHfZh3 kxnaL3OAszn7X1B132UDN3P1r9e5QwPuUA/WqLqbmLfXMu5dYl85z19dHBpY vFR76j7/7GP56vPmxTeylVfylc2m+TWw15W39tWpemtb1fw6hVCmFNU1FVfy +WJpWGzCR4Zm1lBvT98oJygsyM+DSkgmpocnh7uX5hLzyWlZEa417JhnN2b2 Hy8BL79YGCzqlhLuXNRcXGlRVme080lTHZUTnRW90tzuOubTe0vvNr7evbN8 8+ZN5dRN2fxm3TwI3ROB/g2Mz3637u9t3U8fD/6ZZj9fnvjJ6sNfa/Zr/+sv t0j8/ItT/yJe5cwzMDUzm8LpHdH0Fn8GtG6revyJFGz4moUSQV4xL7mMEVhB 9mXRoNkEu6JkJMXZlmUJUwam8Hyiorz97LzQZl5oW3c3awRSz50LyJ2LERRu 4AT91MHxT47gJBvgFhsJDfY393QzQyPNXRFmKBczVxdDuP5mnaH+fh3Y8fT3 8T53sv7E1swCDbP1RJiA1iHh4GhsgIIeRdpbHYO4J6L9sa7pvMgEVpixh4W5 F+yf7S3+CLU9ioLqrUM7mPmBnQ19DOsdzQzCFEXTquLzhPGFstQSRWrDMDej KOn/hvzRIgQCi/PwywqOZgSn8kKySsNo1VF5tYnFjWnVbZlgtWvso3dPFLaO clCZts5YZy+w17H9I4uDkirDcMLobFliUXumsA+0jto4Qms6Tm8ArZtkF7Zn hOXC0yqDibVR2Q0Jhe2ZlV1YUW+WHjq9dThxX1ZlV0ZZR0pRSwJPGV/UksSQ hlR0ZtQOkOsHyA39JIWGBqZpmNI4SGoYINb3ZUm6MoSdaYK29KqW1DJlYpki trI5pro+vK0rc2GxcHYub3GJu7TMmV1kz63kT4Oj60zO6ARjGIRuhKrfajFI A6PSMFoHGQ1qsBlmVMtB6AKnlopOnauaWQR7IHtxhnVyMnd2kjUwRZ/WUNca iW+r8AfFWXv56XuchAM9dClaajiQG/uWHfpWmqgdJwNf5h6cZerOZu+dpu5/ RQFuMIE7FOA2FbhF096kaK+nv7mSePMCb/FU0/GFr1UrjySnHwrPgNZtNS+C 0L0ArVMu3ilomSxV9Db2DNS1dwkbWwT1jdWSunKBqEIkLqsRmjkiPjWDwdyC vXwC3FDOmNSIbFJSYoh3Lj6NS8rEhKGlxam76wt7G4vvNuYHG0kNJfGDDbSB RnpjaWJffQ4IXYeAOiDLG1eV3flu5N368ut7p789f1k+frN+aadef8rKQ+Hy o9qlTeni81/KXyP2L/k1GDcl7w83+CH6x1p+krmnP81/yFLF9w8Vf//50Xvi fszDn3H3S/k/se7Xmtvf+lTJv826n5zVCSr352z9NPzpzdq525Xqfl4JqTon tIrqx6W7FRLg5bEIkq015iPrCsdAQVxW1DF/lwBfU18PK0+0HRplg0RZIJGm SISRs/MRR8cjUMghiMNRGAwVHuYSGmzve8zay9NKv06BMHNDHgZHVxA6JPL9 +uz/y959R7WV3/nD/+c5Z59nf5tspsUdY+NuMKarN3oTTSBRJBAgCaHekGii dxDqEh1EVaP3IkAS2J6eSTIpmzKbZJoH0+zYM248V3gm8WQ3k7bZ3xaf8z73 XCShP1/n/bnfe7+Cng4KOBtw/bjnxTP+3n4hqCtIMDDzAvFAQs4iwOcxAZBk REgmGC+IoJSnBiQGnUNdPwa+/s++nqcRoFPowJNIX4/wgAA8IoQSmsCOzC7B sWvwokZ8mYpU0UZSGHlCRdY/Bv2DR4xXAAEVRolK4mFJJVhaZTy3IblInlGh z2ropaiGGJoR9uBMaddYISzHG5wHxXAQsUWRSRVYUt0z6zIA61rMTNUYRzPO 1U/ydVOCjoVSrio5QQzOa07ka1KLu8jVA/TGEbrMQle6oKMqLHkyl3U51f3k 8h5SWXeGWIeX6JObh+kKM1Nn5Rwu6Yo6J4RtYzy9laUx5yuGKQB09X2Ztd2Z VR2k0jZCVXtKtTaxWZe4sCpdd5QvLhUAcytQ7RbXihZWC+dXCmcWxeOz/NFJ jnmCNTzKGjKyBk28HrNEO8hR9mTLOzIalPHjc+Jb78pszpKldcnMsusHLGwz gvkZgXmRNzrDe7OXuVtP/6KMtluedU+a/qQo+zE37Skn+aEw8bY44osR1sEb FY/fKnz8pujxLeGjDd79G3mPf8J7+q+Cp//CPvgJ4+GP8u7/KPPOD8hvvNFo sa/32Ld19s91jj2d847OsaOz31U77mrtW332jxqHneV6Y2vvkKZvSN7RUyOT 1chaGhTyRpU6MT3rvC/EwxflcRUSFZsQEoxITYwo5GSTEiIE2WQpm5oZF6Cs ID342P50/+YH7w32NGX1t7Ime0r1lSR9ZeZkV5mhhWNo5tiMsvGeKvtk65Pf LN37xcby6uuqxX+Vr+9qbK4f15bZP/nLrPtzs+W6RfmP5f+Cdc/noz/w7c/M /3jrgLQufaKd+75U1lJVkt4gwlTywuqYsdUpIdzr3qILgazjPqXRafnpWdCY CK+Y0Cth6GvBSB8U2guFvIxAXACBPQICzgYFugUFHvfzuYJGguOxkASsT0SY 6yY6NAwYTg8DAaC7cLg+6x4UcMbf57Sf16uXPbyQQLVDnkMccocAA9a5Qf28 IkHBJHgUFZZdSojMjToJuXwGGfAtnyvHof5u6KCTSP8zwT7XkyDILExMfhhJ EpdfnsSvTS6VZ5RpMhr68yp7WN+G/X/HMOd8kuCYzDAsOzy9MJrqsi6lUJ5R DljXQ1UOMbVG7uCMVGvkQbOvQWgQNBsRI4nAlWOJ9Yl5rfgCPanSQGsyM2UW hnKcDXCnneCrJ0RZVSGJEmhOHbagLauil1o7TG82MeVWhtKapzTTlGZ68wit djC3oo8EWCftyuDK4+qHqEA/lFuYujFu5zi/a1LYOS5oG+VqLUylKa9lEBi9 SVVdGRUdxBJtWok2uVyfVK7C9o8xVzdqV9aKF1fECyuShZXCuRXJrCtF04vi sRm+ZYJtHGMNWlj9Jk6vma8ZYCl7aYouUm1r1MRcwZvvta44pQB0cyuCyQXe 9BxvYZo3Ny0YmxeOzvJWBxkfttC+KMn5bWnmFyVpT8WZT3muLYu32aH3tbkH azVPN4oe3xA8vMl76GA/djAfOCmPvs87+Kn4yY/zn/6U9OAnuO2fZP3k7bIF +8iw/Sft9m2t/e6X1jm3NS7r7qnXtvs3ttqmf1jVPtHSNdLS0afp7ZXrNfWK lmaNisYTvOp2wd0L5AkOc7/k5wdGYKMjIzFgYT4xGxfHJmZUCZkZMQE9Ct4X Wze/+GzDPlGnKk0Z7SgdUPIbRLgBhcCqK2mrypvpqVsekpu0pTZz3eNP13/+ 3op58V2l7aNW+2fq1Tvy9a0W+23F+vYL615Y92UWt/W2rZbBpSJpfkNJcC0H LWPhKxNjRdfBpZdhPPcgkrufMJ2SSEj1x0ZcjQ29EIG+HIzxxKCuwGCXIJDz QYHnAgPPgcGn/Hxf8/byi4oA2h0IG3MtDAOUuvNw0Hk4+DwcCkAHcHcWDDoL CgKsuwDyOeJ5wd3v2vUQ1OVg+LNqB+QMDOyB9AtMDAjPRqRw43KKc70ig05B vV8L8gba3Skk+CQy0A3j5xkHgWSgQnOD8fzo3OIEXnWya4zVkCo6shuHRCdD vvsS7KRXIhRODI1mRRDEUTllCcxavFCWUaIl1XZT5ENstYnfN1/RPMiGZV6D 5YAwTAT20LoMwDqg1+lJFQZao4nRbMlvtTKVYxzthLBxhEUoQaQUY2iNSQVt mUDxqx9hHHpIV1qBageUt/wmI616MLe4K72sN0vShi/pzJBZmDIjQzXK1gGj 6wQfmIjbxnm6UY7KwmweotYC025PemlXRnFbmlhNEKuTC+Wxrb2khY3qxVXp 4opk0Va0aCueX5HMLBXMLBfOLBdNLEis0wLzOHfQzOwzMTtMbPUwo6Unu6k9 vao1anRW8MZ7rfZblcv2onmbeGpRMDbHn5jjT80IZ6eEU9Mi8xRvzMz4gYJy v4j8WJL5WJD0hJv+VJR9lxV7v5l8sFB3sF7+1FHw1Cl4DGSd9XSN+vka+dHb 7IP3+Y++R3z0Pu7uj5N+8754ebV/ePnNXse2Zm1X77z3O+t09ntq+32Nfb9z 7bPelX9t6ltp7baqDSZZu75F19qilVU01bPFhRd9QMcv+VzwR1zyBZ+96BUT HRuOgrNyU1jkdHJifI2ES4wFTRgaf7v99m8/vTHYmt9eTZ3uqZUVZmgqqNN9 9bpyqlFRZDOpehr4U13lt38wtv3z5dffutG3+kHz2set9o/Utl3F6m6zy7oX ve6FdV+mZXlXubLbufzLeq28pjRSURAqy0+SxsQXXgstPg0r8IBRTvqRriEo aaSwlCTfpJhL2LDz4ZgrGPRVOOIiDHYBBvEAAYKB3EGB3/W+dszPJyg2BolL 8o0O9QRGVAzctQsKCn4RDr8Ah3mAgjzAIPcAX6DXufl6fvfK+SsIsGcY+iIG fh71jDuYG/T6pRAvJBEZlRdBLaeG58a5o3yOw/3+OeDyKRToJCrwOML3YlRg AAGOJKET2VGZklhGRaKwPkWqJpXqSEpLybWUy9+CHruaBINmhkaxolIkMYdj bBKnKbVAmVbVlds6zFKZBb2LlVU9FDDJC54DDWEDM2wErhJLakzKlxPE7VlV A3lNJmaTmS5z1TaWZkJY2pONK4ETK6N4KmJBO7HCkFs3RG8w5jdb81rNNJmR 2mTMqx6mlhuyizozJO1pIm1K3QDVZZ2VrQZ8AwbhST5QETWTHPU4F2iD9SOU 8n5SUXeqqB0v1KXwlTiBPL6mI3V8rWJ2rWx6WQIMrQurRYurxbO2wskl0fiC cGJBZJ0VmsbZQ1Zm7wi9c5ihHKZXdZPq2tMq5NHDk9yb78hWb0gXHZI5m3Bq mT82x7VMs83T7NEp3sQYb3JcYJ4SDIwzNzQ5+xLSYxb+MSP2KSdjLydun5d4 MFp5sN74ZK3kyUbBgZ134BA/XWMd2HK+sJEfvwlYR3/yHu7Be8nb79He3mjt m1jptX3cZv9Ca3+gtf9W53xm3Y7O8Vu1/YEGeGXl9qD9U53ljcY2a7O+v1mv adQ2NKmb6uSyypYWrqT4tJf/0cveniC4x1WfgCBYdGh4chyqgJFDScFVihj5 6WFtjYKuFtbCSE1HTa5JI+2s41VzcBZ9RXc9u7ueuW6SDbVyBmXcD9+x3P/F xM/eXl64+b585VeNGx+22n+tWbmrsN1ttm+96HX/paz7hnXYv8i6ZxubNC1u AQFO/txet7TbvLSvWd/VTdyoqua1FmMV3JiK+KgS77CK82jxabDoNCj72HVS UHA2MTM4JfEqNvxSdKhPaMgVJPI8EhhLoR4Q8FkI6DQo8FiA38vXPIFBFYlL DIiN8gzFXA1BX8IgPRDQszDoGSjEDRx4GhzoDvY/DfL1gAYc8bl61M/rKjAX R2DOoaGn4UHuyCA3uJ8bwssvARqaHYYXJmcWZp8L9TsO9Xk50OsELPAUHJhk /U+hrwEjKjwdhWVEpAujaNJ4fj2hWJlRqs9UWksRFND/G/DKxXgwLCs0khWR UhiTUYKlVCZymggiRWpFZ7ZsiKUwcg0LVRXtWQHEq2AaLJSLii2KTK6OzWxO YigJko6cyn7Auvwmi8s615Q6xmMo4mMlIHJ9jECXXtydWT1AqRmi1o/kNRgp jcbchuHcumFq1RCtsDuzoCNd3J7qsm44rwWYVcd5qgmeZpKnnuRpJjiqCbZi nAUoWjVCLTIQxT3pPH0yW53AVyZIFAldk/xpR9X4kmTaVji/WjwHZK102lYy tiw2zwtMczzjFG9wjGUw0TuHaLpBekNfTkV7enFzZP8Y69b3VcubZXNrglkb d2aFN7nIHZ1hmadYxmm2cZwzNsobtwqNE6LOKdZ8F+XTwvSn7NSn9Nj72dH3 haTHSu5Dg/BgtfapU/rYefgzE+u8gzXGwRrtyWrW49dzD36Y9uTduP136T96 XTY4bW2de1/v2NE47us2vlA5djUbW1qXdbtAr9M4Hugc93TrO13AKws/a+5d TqaXUUXSPtNQtawph8WpVSibNG1kJu+1C5fdr/n6wTGnznhFRMbGRsK5ecTc 1MhSfhqTiFbXMMo4cV3NzPZqukVXWcNJHWgt6mnk6ipzV0YajCq2RZP/qzcH 9n4+9uF7lrfeeb/b9nOZ4zctzk+Uq1u6lV3l6k7Tn7Lur2Xw69a5dsz73bLs 1n+Udd/g3p94jOL3+cO1iT8//9Wte461v8S6rYbl7Ybl3S7bbVWvpaGaLJdE VSQEl/qF1HhFlF9Al54CiU6Css8EZIZjcVkZYELidWy0f0ioVwjmfDDgGMwD Bj0Lh54KCjge6H8KFPCK59VLaCQcj/OJjvAMD70cjAagc4NCTkPBp8ABQE5D A9yhAWfhIDdowCs+nudQ0OtRIRdC4G6IQDdEwGmkC7SLYYGwdHRkXnhmUSYk NewY/NqrIO/XAr3cEYGnUP7Hkde8YqEgPDKKFkEQxVKkibz69AJZarEuU2kp TpJE/T8BL11MgIIzQ2K5MThJDFEaR63GcZpTRaqMio7clmFWq5EDWCdRp/qm X4blIcIEIbHFkSk18eQWHEudVtRJrumnNpkA6IDky0eZzRZGejUytgRElSUU tKWVdhOr+nNrBim1wBw6Qq0HrBsBoMstMZBFXRmizgyhNqXCkFM3TG+2slRT QuUkR+Wyjque5CjHmM0mGuBkaX+mpI8o6kkXtBNYCiy7KVI1nDe2VmFeKpxc KZxZEc/YCmdtRTOrxWPLhZZFkXGWNzTJAVpZrzW/25Sv7ae2dmfVd5EKGsO7 zYzNd5XzjrKlTenUimB6hTezIphc4o/OMM0z7JEZ7tA4y2LhmM38XiO7fYy9 2Mf8qJj4OSvlQXbYAxb+oEnyWM75XM84mC8/cEqfODlP1jgHq4wDG/XAlvto Oe2LjfQDoNS9Gfeb1yVTc30tYzdb7Z+oN3c1zn2t857GeUez8Zn2y163p3He U2/su04cu53OLdnIm+ki1VU0nswSy9u73X0CIvHEOrm+Sd1OpLNOefpeuB7k ftUfBA+OiwkVcXOK+ISWqmxFdc6QrljfwOhu5nQ2crQV+dpyhlEtba+izfRV mnUcsy7vJxu6nZ9bP3ir+19+sDq29mPV6kcy52/k659pV/Z0KzuKta0m+2eK 9b8GuhfW/c+zrmVpW7b0afPSp8Ak27Zyt2/xJ026+prC5PqMeCk0uuRKcOVl TPVZePFJEMsDFH7ROwqXEEnJhOGToRGRVzEojxCkBwp+Fg47A1gHDjwRFABY d9TH56ifDyQxHpGc5Bcb6RUReg74DAJ6Bg45DdQ/CMgdFgjkDBwE5Fig97Eg nyuHN7ScQYNdvQ4BPg2HuWPAfsnwYAomWZicyEk7hfb+LsTr276XTyECjsCu uWH8LkWCfBNhwTmhyUJsjjSJVU3gt7hG1BZjAb2J9A9BL13GwcBZobF8bII4 KkMan1udzGwiCIDu15ndOMiQmXg9SzWMlkSf1AtoOjJSGBZXGp1Sm5DdksJW pxf35FQP0prN9FYro9mUpxrnAjTFFfkTakPZmlSRPq2sN7Nm0GWdK0NAo8up HcqV9pEF7WnCTiJPRxDpCQ0j+U0mlnyc58oEt3WCIx/nKMZYrSZa3VBOpYFc 1JNRaCAJOvAFbQROK7a6mzi8WGpaLLQuSsaWJeNLItfcuiweWxKPzhdYZkXG Sf7QOLdnlNFuomkHKcq+LHl3ZlFjmHYgx/5Gy4Kzcn5dOmMrmlqRTCwXTCyL xhdFlhmOaYYzNM3pG2MOjDD6jNxeE6/byFrUZN8uzfqMHHaPnXzQVPKkRnTQ JHik5Tyxig/sJY/X2U/WmAc2ztMlysFi2sOFlEfOrIdv429vJPzkVk2Xdaxp +ueazT315p52Y1+zsafZ2HZBt7GtP4x2Yxt4xTXV2vc7nfu9ax/lVA37xrO8 QvGhKTmQSNzRK0HQcFxhVXOtXHfOD+rhE+QZhLx8PSguPo6UhpUWZMqqSLqm 3AF9wbBeYmor7pMLq7lJg8qituq8+cE6a5to2iCeNgidUzW/fnfogx9MrG6u 96z8i3x9S+a4rV6/o7PtaWzbcvtWi2PrhXUvrHvOujuypS3Z4n7Lwj3t2lbH 9EZDdVkdiVSGjC8Hx5V4YsovIErcodxz0HjvIC9QUHBmejQlBx4Z7RMWdj4M fR4YUQHrgOYGCQS4A6bUM+CgY37XgZoHSsCCE+M9I8MuBiMvohEX0ICKrgbo Dge5A+MqPOgMPOgk2P9ln6tA07sMfFUI/AwKcgICcUegT2Ngl6ICEVmoGBYW x8/wxIJPoLz/ye/KEajPcYTvSeR1j7AAzzgwMiskjhtDLEmkV6UKZRlCBaHa wC5sZ7+CPuYR7Q3PDovhYxMlMenPrGskCBRpxfrM2j6azMjrWa6lN8YFpF8O ZQVjJVG4yviMBhytNY2nI5X2UWuH82UWBmBdi5mumxYVdqZFiX2yZfF8PVHi ulhHPrSOCkyyVQO51UOU6sHcoi6SQJ/GayfSZPGlPVn1I/mNZpd1MiundYzb YuW0jLKBibhphFIzQJb2Egt7iQXdGQJtskiNK1anGGaLx1YrjXPi0aWiUaDI zQvH5vjW+QLzrNA8I7ROCU3jwoFRXoeZoRqiKvrJ8p6Mypaw9l6SfbN+ySmd WhaPL4pnVkonF4vH5sXj8xLgaJniDU+y+saZneb8ruF8vZHVNcLtHci3y3P/ hRKxL8l43Mh73FB4UFt0UCd81JL/eIBzsCB6usp8ssp8ahM8XaQ8mY9/tJD0 9Ebe7g38rzbTvv9mq2p6qd62pbtxX7O5r93Y025ua5w7wIluY8dl3eZn2s0t 7SbQ8fb1Gw809t2eG/uaxQ/QeQ3eSQzv8IygMHxgCP7c9RBoWHIMnuzm5XcV hPQMgF/1gcDhwbi4iCJBWl1JorYhXVOb2SXLNyhZQzp+n4LbI+NZO0vM7cLZ wTJTm8AgZ7231vcvNy2bq9YR25ua1U+bHbsyxx3d6o7etqda32l1bMu/cWHi hXX/M6x7dsnuy32Jv9k6193Fey0Le03L9xtXtjvXPuvpt9VSCioj04qh0aJr IcWXUJKzMMYlWKwvxAsKPYdBhWdlRRDS/aIjr0aFnUMhLqCQgGBu0KDTQCBB 7qDA06DAV655nkFAoEmJvtioS8GoixjkBTTiOeu+zGlY0Ku+nkcCrp8Phl8J R5/FwN1g8DNI1Ak45DjC2zspEE5CEURZYZSkI/ArL4M8v+V/+STS7yjM+zTG /3IMCEpEx7AiUyVxtMpUQStJoEqXduVV9UvcojyOhl6AkkNjuNgkCfaw16Uw GlL58tQiHbG2j948AljXQG2IA2VdjxZEJhRjU6qTsloIDDVR1JFd1k+rNzJa LAyZmQ6Ip52WsOTxCaXgfG1qQTe5tDerZuBZqaNVDeRVDriO5X054vZ0YVt6 njyRpcJVD9EbTIzWMV6LlQ1ENsppsbKANFvy64cpFQZSUU96YR+Jq8cL9QSB LEE5yBhbqbEuSS2LRdblIuui2DzHN89wjTO84Snu8CR3ZJw3bOX3mbjqoXx5 f25jT0ZZa4S+N+3G6w12Z/n0knB6RTy+IB5zEefK+Hzh2FyhdRqogqyu0fxO M6NrhKU2ctuGeUMd9LWilDuF5MdN3IfNgsf14oP64oNa0cN62qOufNeGTsuM gxX6wRLz8Qzx4VT0/bmEe47cX6+nfPAGdeOmrHl+qfnWPc3GA+3GXZd1riIH HO/pNnb1G1v6jU+1m7cPrdvTOe+74tjtfX1fufBT3+zy6/H5qHgKJJwICU/3 x+CuwyM8IRgfeNj56+ATHt7XrkOSsBFVJdmGNt5gp2CoXTioY3Y0kLqaqUZd 4UR3pbVdMmMQD2lpAyrOrbneN20TG/Njc/PLnSs/U6zvt9j3FY5d3aorQJ2T OVw3/f6Xs+4/4hmK/zTrZF+lZe7D3+VPWtc0//v8wRMQf751f4Dbv2vdl8/A Lm4959udb1qHBbhbdu1+07wCZEe+tNe7+Jum2t4qQk49OqLKJ7LuYnjpBXSO JxzhC/KGo074BVwJC42mUSGE5Gsx0Zcjws6i4O4I6Ck46CQsCBDvDCToLDjo NDDPBvl7R4WDkxOAancBqHYY5HmUizvgw89yGg5xg4GPBPm/4ud9Cga6GIbx wCDOIBHuCMRJGOQIzO9smF8gARmVn4wvoJ4O9Qes+z++l44j/L8L9XZD+1+O DoKko8NooYmC2GxpMrs5Hahthe2UhmHphaSrblFXkOQILDsuRRxHLE10WVeP B6wr1BGr+ugNI7zulWZCWaQP0TNKEIktikmpTCQ14vNUGeIuSvkAvQ6wbjRf NkaTj7FVVjG1Mo5UE8XoJAr6yaWD5NrB7Prh3JoRStUgrWKAVt5PL+7OEbWl 8bSpmfWhwjZ8zTC9zpTfPMpqtDCBNJgZzVZmk5VVO0KrHs4tNZDEXRnCzjR+ WxpHgStrJ5kWqkYXy8ZXysZsZYfWFRhn+SMzvAHXBTq2wcrqtbK6Dx+bVRio 9R3pleoEjYG0vlnn3KhaWCkArBubB0qgwDjDN80ID9ErME/zLdOuS3zdo5zu EU5vP6djWKg38MYrM35TxTxoKXpUw3lSyzuoL3haW3BQI3hUR/9cTz2Y5B/M 0g/mKQcLxIPp5IfjCdsL6b9yZP/yLeZPv1e4aOvoXvmRbuPBYW3bO8yudmP3 sOMBJzuHcY2xgHV6512dY79t46569c7g25+3LPwaktN4LYoOxzECYzKgsfjQ BOJ1ZNSVoJBcdiE4PPGs33Uej7798fdftw9o5eJxi2J2TGLUkDrqWd0NRTMd dbNdxRZ1zqqR9+6Sen2qd3Zmdnzp7UHbB1qgv63vKu37KvuuZm1Hs7qrXN9W 2LdUf0Ov+yb6Vr9xW7yvL8vKv/xds8O4fqx2+6vc+fMb4Desyf4l9P3FK7bN /96OT/+Wu/8u1h3edvK7AOjtd63d0fTZ6tjF9bFJdSBs87WYimtROb6hwYgw bxTmMhJ9EgzyxsZE03JB+CSfuOhzLqAO7UJA3OGQMxAQYB2QMyBgqg3yxUYH JGAvhwUDkyxQ8ADunrcOyEkY+BU/n9cCfT3QiPMhqDNo+BkEDKDvONz/BNL7 WiIcSoogSGjg9KjXIJ4vBXm+Brl+BOp7CuV/KRIETkOhs9ExzHBCYRylNpnd ShBpMuuGin2Jfq+i3WHEYCw7Fi+JI0mTDq0jcFsJYk16eQ+1foTftdyMK4nw I14P50UcPiCWQGxMoSvSJV3UisH8OhOzZZzZPMZQTRfWjYgyKhPzdLmMQQbb mC8y0cpNlGoTucZIrhoiVw7kVvbRSrtyRPpUhjKJKosu7SXXjtDrzfl1xrxa Y16diV4zQms4/LNiMFvckybsIgjbCVxtMk+TIlIlG+bLrctVo8vSCVvFuK3M vCgxzxeMzAoGZ4T9E7zeUXaniakz5qkHaa292U2dxCpVvLqXuH6rcc1Zvbpe NrtYYJnlWueEljmBaVYAlEDTtNA4LRgcZw+Oc/vGuO1mdls/q6eHqeykNeuy bmi5j9TSx5XcJ9Wcg1ruAXCsYB9UMB9V5T5QZh+McQ+maAeTwEnyo/G4OxPY T1eIH99i/eztgjdv1k0tzXWv/kbn3PkKOld0rkt2rmifi+6rdzWOHaDaqda2 u27db53+eSxbeS2OHZhIhyblhOLJkBjcFQg6IZMajIsXltP72ht/8vrEB+8a 1dXpA65qlznfyxjWCtXV9BFdSa+cZ59WrIwr9KqqYfPoyOKb3bZf6tduq9d3 v8qO+suF123V+pbqb+h1f3/rthXLn72w7j/ZuufEA6y7p7Vtd0//sLGuo5rM bApNavSPKfeLywZFI5HhVzCYK8Ho83DYK77efnGxsTQKQJlnZCjA3Wkk7AwK YAp6FgbxcO3BDvaAgF71cRU2EC7eLy7aMyzkcjD6AqAZEvY77p6Jdwwc+B2f a25wsOtd4EuQsJMu6wKOw31OYa4HpQVjWfgkLvFcWNDLQVdfCvQ6gQw4hvQ/ G+7vj0cjyMGRrLAUcXxuVQpThudrSPXDRWg66jvwI8CEG82ITi7AZpQkZlfi 8mpTWE14oSpN2pVbO8RrX2hMLAz1y7wWwsZESyK/Zt0Qo87MarTmVxlpzTMl jE56RGUiZVhMmSzJnyvlzhYWjLEl5txiU2aZkVQxSCo3ZBV3ZYrbiXRZvECf Wj2UVzPiSuUgtWqQWj1EqxnOqx7OKxugFvSSOJ3J7Ha8oA3PVyUVKJP04wVG W+XIUolluXjMJjUvFZkXJKb5woEZUd+UsHuC12ZhqkbyFQP59Z3kpu6sakWs vCPZBijnrFhely6ulU4tFY7OFVjmRKYZwcg0f2CcMzDJP0SS0zfO7zBzdUPs 9gG2QpHWpEsbmRa/P1Jyr4n/pJb/uIL5tJp1UMk+kNIPSmlPSslfyLIOLJyD ccqT0fSD0ZStfthH05G7b+R/cpP//k3pur3bvPJ+m31LfeP24cT6jdYBxe+w +2ntAIy7hxXrTtfmXrvtY1rjWEBqsXcCK5IshCdmQePxx7z9Iogp/SOqjpaq 5b7Wz96yDtRnWboLhzRsk5w/pK+slmbXlNNqasQVtRUJadklMoNh+ceda/8q X/tI6dgB6twfWueCbvswL6x7Yd2/Yx0wybYsPwBG2s6VD5SG+caiBi2B3AKP KwMnZUGSECHYq9EhZ5BBnmiYG8j3Je8rqDRCODnzOjb6UhgGmGTPPrMODj0H de2F4gEGHwv0eyXA52pkGDgpPiA2+lII5lww8iwAIwrmDtjoQg/2jLsjgX5H QP7uKNjvrUMEHoX6fhd+1TMeiiSFEYto0LToV8BewBjrhgG/CvM5jvH1SoLD sjARrAhcQTypPCmvCcdsTa3sFyWKY74FeQWSgY6kRyUK4tIKEzLLknKrcPS6 RL6CUKjPqu7naKarI/mIoBy/EA4mWhyVXJWQ2ZCS/8y6gfwqACtzfqWFUz0j TdGSQ2WkFHMpfraGtFxPX63jL5UVzBYUTLAkFkrRUGZxb0ZBRzpfl0Zrji7v p9QO06uGKJXDFMC6CoC7YRpwUmagFvXlsLvT87vw9PZkrg5XoEps6aeOrtUO LBQalwtNyxLzsti0KB6Zl4zMiw3Tws4Jvn6UrRzJbxnKr++l1nTlFsnjZR34 FWelbb1odb1oZb10eqVkbKHwWakbmeL1A0VunGuYFPVOCDtGOZ1Wns7EU4/w 5O3ZSlWqdb543i79voH1WxnncQ3nUQXzcSXzaSn9QJJ7IM55Ikp/WJt6MMx8 Ysz8fAS33xfx6SDi4dvk7bdoP7Oz3rJXza7MD6x+ot7YU92486d73aF1bZv7 7cB4a3cRpHXuKlZ39I7f9m7s1Vt+kCDuxBClwXhhcCrDJyohlcvpMnV1qprm u+p/NtPZW0nvVop71GJVFa+iTEKlZ2eQM6FR+IDY/FLt0pBzt3NtW71+R+bY BqJyff/OV9btuOrcC+v+S1r3zfuc/Of2uu2Wld+2rOxqVj/ULrxfK+/Vclit cSlVoam5qBREWOzl2LALkZgLKJhr0xIE9GiQHyqdgEkn+GFjLoViAPGAOdQd BnGtQUAh7hDQKUjgUVDAdwP9r8dEwpNxVyNCPUKQZ4KRpzEIdzTcHQUH0DsN tDskcIS85O9zFBJwFo1wg0NOwIKOwwOPwQHrvNxDffyTkXGstDhmxnG49//x PX8KFfQq1O8E2u9qPBRERIbSQxIEWHxxArkmntaIK+5kZdcQvw19NTAVHpkf HS+ITZFg00riyJUJ1LpEZnMiX50m7WXIJyowLDAoNzCMGxYjicZV/s46irQf 6GCUikFatZlXbJWEyojRnYKEiVrcsgy33ExYbMhdbaKvN3BXq7nTIp4xT9BH 5rWlcVQ4kSa5cSS/dohaNQSUQ2o58CUDFOBYbCAX9mYJuoj0dgKlIyWvLYna GiXtSDMulw/Oi41LRablYtNKoWmxwDjHH5oVGGYFPdP8tnGOwsxoBmphb3ZZ Zza/Jb5CkzLvqNx8vXp1Tbi0zJ9bKhhfKjTPC82zPNe9JZOs3nFO2yire8L1 1K3WyGw3c7rMwiZNprqNvLhUOWOTWufpb5sZt2XURzXMx+X5j8ryDoooB6Ks A27aY07Co0r8wRDjgSH5kw7UtjXmyRuZX7yb8fFG1vsO6ZKt17z2/W7ntuLG DhDdIXHPon3u/Pdxlbr9wxWKPb1zTw1wZN/ROu+qVvc1azuDbz7ovbktN3+P UTkSSamGEDgBuJxyrbbDoDPpy+w9FYN1HGWDqL6Ry+FlI+Lx1yJJUZRSgWJi YP2zkTceal0ba+9q7Dut9jtK+x2VHXBv+1mpO+x1dw5r5N/Tum/azv0brPvs kLsvo1jeUizf+TIr37Ra8TdY9/Efz3+Ydc/j9gf5k78c8X/ROtnKnsy222r7 RG7/TfngXGO5UEbNqUlIZ0UlhEZGecXHnouOuBQWehEZ7BmMOQUJOgkFRWdn wvHJV8JDLkWGuGqbq5i5VivcYWA3cOBJWNBLPl5A34OkJPrEx5wNx5wJQZ4N RrpjEG5oOJBTKNhJJPQkAvIayP+lQJ9TKOgpJPQ4HLAOqHbAGOt7CuXjFQeH pIcmcjO8sPBv+Z8HDAQ+cAoFuhgDCUxDYighsZzYZHE8qQJLaYgXaHN5cuaJ 0LPeyaAQWngsNzaxAEsojsuqSKLU4vKbcTxVamkPo3m0DMkIDMz2D+eFPbte B1jHUGS4rBvIK+3PLR+g1ph5TAMX2khKMNbh5lrxy/KUxVbCiiJ9XYV3yEn2 lryVesa0lDnCoekIbC2+cYTZMECpG6RUDlHKgS43kCvtzykxkMU9JFFXBqs9 LVudlKNPyVHH57VG6aZEw8ulw0CLWygyLkqADM8VDM+K+mf43VN83ThbaXHt hlfdlyltT+O3YKs7SZOO2vU36pfXxSs2weISf3peaF0UmhYFI7PcwWl2/wSr fZShNjG1Fq7ayNKM5LcbGY0KXHtbzvxcxcxcyeSsaHKZszZB/0BNeViV/1hK f1IMNDryAS/9gJP4OSfiSWPaQwP5k47gHWvMg3dy772bcPeN+A+c+WsrimHn zW7nxx3OXc3mHfXmtmZjV/NVnfvdpTn9s7n138ZF364rjh2t4/DEvtO2sW95 677l5o5y4kdFnWuUmmGiRCWWdcib6+faqld6m8sLxXg6C88RUWu7yoff6trc GXnvUc+Nu1rXbgPbmvU7z2Rz4eb4/fmhdd+QvwN9X8vXrfv6Fk//xr3fdzz5 8h350n/4suxfvw77v8O6ncPcbrJ9pFp8v6lZIeMLmzJz+AlYbFx0QFLiVWzC 5ajYKyEAd4irocEv+3h7IGFhmUQ4IdkzJvxCKPpSWPC5YNThUgX0NBQMTKOn YODjgf6Xw4MDCUkXYsLOhKM9APGCkWeAYRYNB6A7gYCcQIAB3P7J1+uVID+g +wF/HgYQL+AY7LpHSKBvEiqcmhhBTXkNduUVkNcpZNBJZNC5SPB1HByWiY5g xCQAs2pJTE5dLEueIVRzzsVe8UwMQGYHR7GjDq1LzKxMzq3D5bckc9TppX3M 2pHCoFzvwNyAMH5YbFGMy7rGFKYyo7CbCvQ6wLqyfkqVmZ/VQUPKc1MnlalL avxyK35JDliXZtcQHJpUu5q4oiRM1WdapRQDgz/MLjUyy4cpFSOUsuHcsiGq dJBSMpBT2Jcp7ExntxFoWhxZlZCliCPLoutG8gdWK3vmCoaWioYWCgdmxYOz BYOzYsOMsGuKrx/nKq3M5mHX5gCVvUSRMr5UmzS+XrvyRsu8s2LBUTS7Ipha 5I7O84wLwuF54eA0p3+K3T3O0lvZShOraYCqGmaoh6i16viO/pzZpcqxiQLL hGBivmBsQbA8xf2Zmv64Iv+gjHogIR/wAehSH/Pi9gTBj9Xpn2hCtyzYg7fy 915P3n4jdutm6pu2ogn7WM/mDzscdzocdzucd9o27vx11mld1u0AJ23OvXbn vnblTuf6bv+Ne4O37prfutdj+7Vm6n19x/SQXL4xY5pbfV0/9T3rW3dM7+6P vP20w/FQuQzUuR0dYN36luZ53ADr7HdeWPfCur+4163sylbuNC59pl37RDNs ayitlnOZVZQ0Ai4SlZzsFYu/FI27FBXiGRl8HoW8gMEcC/C/GIqJzMkCJSd4 RUdciw6/GII+i0KeQSFPI+Cn4XB3OOIkFHwcFnQ5Jtw3GXspLvJcVOjZENSX 1rlMAwE97QQc9Eqg37d8vdwx8DPBiEMAgYCOwXzdUNe9YsDwtMgkdubVKOg/ Xj/zGuT6SVTQMZTf1TgYOAONoURGc2KSCsKJlRGUBhzQ664kXD8f4xVCi4jm RCeK4gjFuMwKPKU+hSFL4apSS3oZFf3CwGxPGB0aLoqIL4nD1ySRmwlMNbGw i1pqoJUasgGmpCZukjozpodPXNDiAeuWWl29bllBXNdmOtvS13XJS8rI6caw ESluUFJsaxFPFQtN+UUu6yhlQzTpIK2kP1fYRQSgy9fhczWJFHUSuTFS3EE0 rNW0z4r7lov6FyV9swXdM6KeaUHflLBzEoCOpxrlNBvzagZyavuzC1SxEnWc Za1y+WbL9FrltB1I6ZhNYF5kj8xxBmY5/bM8wzS3d4KrH+WoLdyGflrLEL2l j1wqj+4bZ0+ulJmmhJbpAuusxDwtNk8WTI6JfqBkPCqhHBSQD1hpB/nJD/Pj dhkhu2WRt5vR+1bc4+8x77+Rev+NxN3XCT/dFM/YBgecb3dtftAJQOf4LWCd /s+y7u5hvrTuyyt7z9qdc/fZh7WOu+r1ffW663W9807H5u3hd+4pDCv1ZZU/ fu+W8/u/GNi83eH4TLH+G4XtjtZ2X79+t82+q12/o1n7mnUu6P4d65659MK6 F9Z9Q68DrNtrAY7LdzqXftHS0t4iYDRxiIycxKjUFBAu51IswSMGczU2BADt LAJ5AY36znXP88FIFNH1g2J+cdGXQjFnUSjAOnck4gwSEA9xBgE/Cg54GeTn kxBzLSn2fFSIRyjqLAYJWPcMumc5BgsCqt1rYP8L4Ri3w8EWePcUIugEzPNC qG9AIgZLTwslJwHWvRJ07Tgi8LsIn3ORQf4EFIIcFs6IjBOG4EsxWdVxBRq2 Hz7wYuy1sLxILA+bVBCfVoIjlRNyAeta8WwlobSPVT7A98u6HMxBxxZF4SsT iQ0pVHkqV59Z1AsA5TKqqJ8sGKRHtKalTVSmL6lTF5Vpi/LUw16XtaYmr6nS l+WJ8y3h0w0BA6XxYw0Ch67A1lC8KpWOs6XAADucLx3KK+rL4bWn5quTqIok sjKJ2BSV3xirmRD3LEj106K+paKuWWHnjCtd0wW6UbZ2lKMa4zeYWK51DUNO sR5XrEsYsklnNuumlqXzzuqx1WLzsshsE5iWef1zrL5ppmGK230IndLMah5m Ng3nV3USS5VxgH7TjirjnHBkimewMvvHhcaZUqO12GSVvKNgPJJkH3BIB9Tk g9z4B3nRH9MRv5ZA9nvjHq2TH7xL3HkL+3Aj7lNHxuqactj+fpfjw27HJ93r 9zsdD/Qb25obW9qvoPvSOuez/AXWaTf3Fc49IMrNXdWNbeXmVsvqnZ537hfr x09f8IbCMb2jm33rW9qV264n0exb7fbbbet3tGsAdECvA2bYZ+sRO89Pr/+d rHNx95x1f8mPLf4p6z79Kv/NrPszcfuD/HHr/sRddl/NsDsu7pb2tKt3FJYb xeWVjSWMci6JlpcFT0m+mJDgmZR0JjLcPRRzDoN2h0DdIOBX/f0uR4RACcmB uMSrUZFngdfRqDNIl3iugodEHodDXgMHnsAgruPir2AjL0SGuoegTiIRRxEw IMfhsBNw2DE45Ag08NuB108Fw0+HII7DwW6uy3fgE3B/N1TAlSgYLDU6lp5+ JjjgpQDPY1C/Y3Dfs2H+vslwBCkkPC8cyw1LKYwmlicKVAxEDuhc9Jnw/PBY fmyiJIkgTcmoTCE3pOS1Ehiq9BIDt7CbC8rxjuGH4oqiSVVJVKDUKdME7ZlF fdTSgbxiQ27JCIvSlx+my8qcbyYsqVIXFcQlReaKGr+mSXKoM1bkaQst2Kl6 yIgUMlSa4+im2nV0Ryt7s7nI2Vg4UyyysIpGqJJeEleXkqeIz26NJ7fGZzVG 1RrondOl+smCjhlJ+7TA9XsWwHGa3z4p1IxxWk3MFjOncpgpHaBLOtLEmniL vWz2zWqTTTi1XjxmKxpZEo4s800rwpEVgWGO3eO6RsfRWdhqK6ehn9o4kFeo TilV40YWpePrVf1TPNeD/2PsIQtvwCwYNEqM5tIJq/QdBf1zcfoBM/FxeugD csKvyOHfo17b6Up4MIp7PI99cjNu72biHSfhhzbR5NKUARhdnXc77Tvd6w+6 7A8A0zSb28/fcwK80uH4Mu2H4gE6PZffL87qgf9yfBkt8D3OfeXGXRUAJnC+ sa903ut8+wFFNfcPp0I8oxgGx4dta1u61W2t/R4gm9a+BTQ6l3L2HY19T2Pf fxa1fVe5vvPH8qes+ysZ/IanKr7pV7Nt/3ap4nfv/gWPUTzLH+lywOuffZXb f2PN+3KH9vmv7fgkm//aE2RA/vtbtwNUOyDa9Q9r+8ZKygrqRfkiMhGfkQwj 4DyTcFcSEs9FRZwPCb6ARrvDgCkV8nKAz5XoCCQxwz8xwRsbczEs1AON8UCh PNCuancCAQc0ew0KOhMR4ofHnY8KPx2COoFCHkMigBwHPgCDn0DCj6Mg3wH5 fgfi7xaMOImCuiGgz1YugNZ3GhNwOQqKyowPJIT9k9/570J8jyF83DA+3glQ SAYqhIKJYYcnibAZUhxTRgvnhrrHXcAwYmP4CQQxNrM0gVwRT62LZ8qSOPLU 8l52cQcDTfHBFUSmlyTkVOPzG9O4ynRxO1naRy3rz5MaKGUDnNw2ZvIAj7jQ gl+RE5ZasxYVWcsqwpomzqEmrCjx862xEw2QgZKo8TrKRle2Q5vtVOQ45Qyn krvayJ0u5BkZrC4iXUegqlNomrTUmjCuJqVjrrRrpkQ7AcjG1bj2eOeox1nq MabCmq+wsmRmVvXhgxhCfXqBDje8VrbwTr11XTixIbGsFgwvCQeW+ANLvIEF bv88t3eW1z7G0prZGjNPNsBo6qUWtMSWa/EmW7VltbJ/WjgwIzRM8PqtvCEz 32QSmo1C42jR2JDozWryXXba/bSI++lRP0+GvJ1xba8t9elY2p4l+KEt+tFG yu5ayo/X+OvrBuvau52u9Yj7bc69rvV7AHftjn3989Bt7LU7/mzrnL+3Tm/f 0znuapx3ta7HK+66Nvx07mmBD2zuVE38tGHhFx23djXrd3T2fZ39rnbddU/y l7Hv/g66Q+v2/rta9zX3/kOs+/Q56J7l0799pP3fYJ2Lu9U91dpnPSs/qZTp 68SFJQQSD0/MyaJAEhN9EwDQ4i5FRFwMCTkXjHZDwE8hoK8EBlyNjgrPyfFP BNpd1Fl0sAcm+BwG445CAtYB5e0IHPIyDHw1LsY7Hns6BHMSjTyBRLiCgJ8E vgGFOIIAHYGDvhV4HThxB7hDQE4hAejAx+GBR2GuB/99EzAoUtyrEK/vBHie hPkfg3l5x0NBqShkFjqcHhrLj04uTsxrpiYU4c/h/KH5cVG8lLSC+KySuNyK pLyaBHZzErcFX9nFlGhooZRAQkFcVmkKrSaD3pDOUxBLOqnV/fSqfnr1AL28 h0GR51IsUuJSM25VjrfJM5fl2cuKjDVVskOdvKyMn2qKnWyEDJaQ1tpzHJ3Z Dn2OU0Nxqil2JW25mTZTTTWLs/uZBB0xU0ckNMTktmBbx0W6mULdVIHCylFY 2QBuCgur1ZrfbKE3m/MajYy6obyqfpq4Pb1Qjzcslcy80Ti2UTZ1U2pZEw0v CwaWBH0LnN5ZVu8Mq2+G1zXJ04/ytGaecojd2s8UNsTUdWaO2RtMy+WGaVH/ tMAwJegZL+gbLRgcLTRahCMmdu8o29yV9/1i8lZm6qdZae9Eg94het7vIh4M ZjwdiNi3wnc2Uj+6mffLJaZjucvieKt34zeqm/uKW7u6jZ0uO2Dd/Y6/j3Va x77O4bpHRWX7pOvWdtdNoMJ9ordv69YPrbO/sO6FdX9P62y7zWt7jSs7Xevb utGbTZWtilyOBJNYkEAiE8moRFxQXKJ3bJxHeNjZsGA3NBIw7QwC9UoAyD8J hyJm+iUmXQyL8ggJPRcS4o7GnEAB4yr8OBJ5BAF7BQLyiou9EBV+Cg2Ut8Mg EaeAdoeEHUFBjqOgL0MD/hns57ojxVXqwMdgQUehAa+BfV4Be18Mg6DSsedD IN/2uXQS6ncCds0rBgx2WYcBrItihSaIosm1pPTyDM8UfxQ1OpabklKYml5K yK0mUmvw+Q0EZnNGSTuP05oXRkelFyWTywh5dURmC1GoJZf00CoG88v78yoG 6AWdNEo7gzpXm7oqS7QrUtZbM1ZlmbaWzLXW1DVF0qIseqIebZKGj9bQb/Zn rrflOPW5G9rcDU2WXZ0635o8VpdiqSYYpYk9zFglPqUpqnmU2zlfIp/gKib4 LaPsZtdWAMxGC6PBTK81uba/qzDQyvvyRPo0gSp+eK1i6W3ZuKN8fKPSZC8Z son6Aejm+b2z3O5pVscUq32Co7NylcMc1Qivui1L1BTX2k+32uoMkxLDlKhv kt87wekd5xjGeP2j/D6LsNvE1Q3mqfpyx5WUH7EzPs4krcbAblEQnw+yD4Yy nvZinwxg7llht9dSf2gX2Ze6Latvd2x+qrq5J7+1p7p15+9tnev8EDSdfUu9 9onO8aneseW6vWR9T7u+/8K6F9b9Xa1rXtluXN2Wrd9X2vYNjtvtfXOtbGl9 JFEMiRUmk0mkXDQuxQ+bcC460i0iGChpF0JDLgSHHANDXwaDA5JT0KRMn/iE q9HRF8LCzgQDFc7V306ikEdR8O9Ag86GhwDVzh2odhjkKQwSkPDEoXVHkZAj AG5IyEtg/6Nw0GkU3HXzCRx0BBL4GvAK1O8o1NsnDg3Bx3w36NpRsM9J+PUL oX5+yQgEOSyCHhmVH4LjR2RXpORVpwWlXMGkB8aSofHkgFQ6mCLE0Atg7CI4 txhd3pzKKokMJZzFsyAZQlR2cSilPIReH8VX4Yq6M0sMOeWDeZSObKK1MGut Bb8ux63Jk1dlGbbmrFUZaU1GWGuNX2iOnaj37xWl27QUZxfZ3pa90Zbt1GU5 NamrqpgZedhoS7ipMXSoKtEoTunOKbSwdDMF2gle6wS7aZTVOMqqH2XWWvKr zXk15ryKoezivsziPipfT+Rr8L3LpZM36yacZePO8qHVwiF7cf9qUfeioGuW 1znNa5tk6yY5ugm+xsqXDTLLNcTC5gS9kW9dqjWMSQxjwoFJYe84F7CuZ5xl MNMNw/SOYRYw5FYb8hu0OVO1tB/lEGz+V9apYffHRY+Gsp924w4MifcNiD0T 6OM5vGNWNrT+dvvGlubGXeXNfeWtbe2NO22O/S77fSCHlP211m24iHsWoMVp nfvPWQfAtau2b2scd7SOLY3ztgY4unB7JtveIXHPsvf163UvrPvdYsTtr0P3 t16v+3tb9024LfxR3L6+cdOfzJ8/w263ru3L1/aUa7vdyx+1yi1lGfTKMHwB PJONpZEyciFxiZewsefjYs9EhAPD7EU0xg2BcK1BoOAgfDIqg+iFxV6KjnQP DXYLRrlhUCfQgHWII0jYPwb6n4uJuBofeyoUfQyDfCbeSQz8BBp6HAU5igS/ BgO9EuQH9Lqj4AB3JOwkFHIUFHgcEnAUfM0DE4hIjT+NBL/k53UGHXAu1Pd6 ahgoJy6EEhNPj0rOQxOZwQxxTCz+XEbO9fLSCEMrbnGIsTElen1e+MNlyU9X Sn6+UbdipE8acldmJMvzhbbF4rkZ4STQggaylW2EUllUpTqZ2Jaeslyde0OV ZVPmrKhzFpW5K5qsdX2qXRtvk8fMNSKGS8Ks1bnOTpJDn73RDiTLqcfbWmPm WtCTreDxVrC5CTFYGdrHoJqZOkeVaoKjsDCbrPl1lrwaC7N6lFFmppWbaGVD OYU9GZIukqCNxNakdy5XTr7ebFwvsThKTGvFA2uSntXCbltx57ywfUaonxao xjlKK1c7JpKPsIsVKZV6omFaOjRT3mMVdZl53RZuzyinewyAjgsc24ap+n6a po9d38OtbOfKNTwjJX7e/9x7MaB7iryHZsIXBuxBX8rD7rg7vchfjcW/NdM4 bnN2vn5bu3m3ffNe+43d9ps7HZv7Hc77nY7PO5wPdJt3tZvP3Wfyp6z72tNk h/eZfBnnvtqxp3bsPpcdIFrntn4DOALiHW507HSpqHF9cv+r7P3BP6rsX8tz WwHs/qevw37z42Nf2wzq6z+i/U3PTfzuIbJ/77kJ4MWtr/KZbOn2c/R9+tda 9/E3/GPr4idfy/8U61pdz1Dsylf3Wlf35GtbPas/k0qapTGUegSDCU4nJ2Wl 5OT5Ewge8diL2NjLYSGXgjGnUS64jgHTKASESE9DkIjX4rDnwkPdQtGnQ9Fn woOPByOPIKEvQUH/BPK/HBt9GRvtdsgdkBOH1gE5hgADBe8VsB/Q5QDuTkCD TkKhJyGw45CgYxDfYxBvv/jIwMTYl/yuuKN8L4b7++GQ0FR0CCEwMd0/mxJU URI73MPtaE1bNIvft9X/64r0Y0fFJ46y2zdK99+oePS9hoNftH9kL/3QWXb/ h+rPf6h58tP2g593P/2l4fNfGj7+Qedb9nrzAK2mO0u8WEmfkTJsTXTXZKoi O3UZdi1hVZW4IIsar77ezU+zqTPXdWRnOxmAbqM9za6JX2gKn6yFjjcEWRrh psYQQym2l14yJ2me58tG8+Wj7CYLs8ZErzDSpCZqqZlaYswt6E4VdRCYynhG a0LXSo31Dblpo2oYUM4mNqxIupcLupbFHUuFbXMS/YxIPc6XW1hKC6e+N7dI kdzYnWNaqh6clXaNCTrM3DYjxxUzu83C7hjl6kwslZHRNEyv7qA3aLjNrfx6 UvSg39WPUmLu0mK/qIl7OhB9MBj3RQ9utzPtp/3kNxaUM7Ybgzc+7Lu12+Xc 7dkAst2zsdft/ByArtNxv23znv7GPd3GXdcdJn+5dUCF0zyXQ7J2/iAa57Yr h5sba5y7h3keumfZff5f/ndb99lz1m0dWve33273v9o6xdpe4+qWzP6JYfaH 0tyG6hBeSTAlFZmQkpEbkZd3NQV3JR7rG4P1Cgk7h8acQqM9woJfBgWeQiLQ mcTAFNxVbPS56Aj3MIx7OOZEMOoVGPgoGvF/gvxehoM9E7AXYiJPhri4OxEM tDvYYa+DAGPsMTjopUAf1412MPAJCOQkFH4cAj4J8T8Bun4hGIbAJ5yC+RwB XToX7BUYeSUq0SsvD9lamzrWx785WfbT9aaV7swbg9QfTAh/PMb7xZzk1ysl nziKtzZL771d/+TH+h/PcH+9XrL/Vv39N6sev1v/5PvNT77f+vg91cP3Ow5+ Zd7/seHjnxt/dmd58V+M6lsqwVIleakqa70l16FMX5ClzsshQ0Vocxlts5Ps aMsBSp2jLdPelrKsiJttCJuohlmrYab60MFqbKeYP1ZUN1tQa6HVmqhNVnaj lVU1QqsYzpMa6VJzHq+bwG3DsVRYVmts22yx9VbLyGb18EZF71pR97K4a0nc Pi/oWhR1LIi1MyLFOE9uYbaaGJUd6VJtinI4f2C2tHdS3DNe0GkVAMrpTWyd ka0ZYWmM7MM1C2atgS7poFZp6ZpKWllUkAEZtJ1NPshOvk+BPayLOOjBPumJ 2+oiv6vOs5s7xtbf6d38dceNu/0b9/qcOz0bQLa7N+72OB92Ou+3b+62b2x3 bNxrd/72z59h/3Lrns8L615Y959tHTDGKux35Wv7batbfUNvlaVJK6JonKis 0LD44OxsFJ3mm5wciE0IiIy9gAk7jcG4Y1y31f2zr89xOBRBTPdLTryaEOsR GXY6LPhUCPo1BAzoda/Cwd8GBXhEhQJvnYsMdwvFnApGugXDjx1aB+QEEvJd kP9xUMAZBOwEGHIMDDkOBtALOgnydYcGQnExnmGQf/I66gY/h0sH1ZcmD2no M535a32MjYH8H01JnO0pb/dl/HKS+8Gk4KOFotvLxdv2ov0bpQ/ern3yI+XP 5jif3ijff7vu3vdqvvhR/eMfNT55v/nJD+UP3ml5+OP2T9+SP/hw7Om9td/e Xd/9/Oa7H06231KJZivzZuuIQKmbrLveK0xdkj+zLtvZlu3Qp65o4mdbYqbq QkfLUaayMGN1ZGcxube4Zkpaa8qvGaZUGqkVI/TKobyKYWrZCL1ohMruSed0 4PNVMbSWUPWkwLJZP7xebgSgWy/pXJd02gr0C3zdLK9jVtg2U6CaFCjGuI1D lIqOtIq2FMOceHixpHtC0Dsl6hoT6sxs9QhDPcJUjrBkw6zW4f+fvfsOa/Je +wB+3jPec3p6ztvlqlsU9xbZe++VQMggIXuQhCz23psQdgIZTHHgVhSRDQnD 2lqtWrdtrZORhD3yPgGLgJVj7TiL6/peuR6w9p/SD/f93L9BTy+jxBWhI3ik EC47iAOJ3Luy2tZQHkAbRUOGoGbPsbtHue4qvquywO1KDq6hNPtUbUdR2xO+ TFEoGwZqOXGLQtgqL2rrFgJtbJsyXyrPlz0RSB8LWxRAjVcwA7Ff2rre17Jg 3b+0dSkATTPy7tadf5U51k1djzidX8S69Nqeqcy1Dijt6vp4tQrgs7jhRb6o OQgS4O9G9ASj9jq76mJQ5r4kLU/P3Q5OO2zsN1lYapqZrVGfpm68SEd7jbmZ GdJbG+q50cF+PWCatdkyc+MP9HU+NND5yFAXKO00nWy3ujoBDAId7ioL42Wm BstM1G3sCiO9lUb6y7S11hkarjEyWm5otNRA71N9nVUG2qv192821dlvZ7jb fI8zyiEiFCqIh1akI45xPWvzEa0S/LVjATIh/HKJ98NTft+coD0/x+6pZfc1 cgZaA0a7IlRXk7+pJvW0hcovxSqvJA1dB3zLGL+RPnE9c+x6dv9XuY8uZ448 OzneXTP6/MJ4d71qQDYwdOnSd+cyG7IRh8MsDoeYHI7ESYu8mwvQzYX41iJk Q557dYbjyVSbY4kmhyItD0XYlQR6FrEDD0REV7JiKogRJbioClJoKSFEgo2p pISWExhiBKnQg1zgTuLZcU/6HZYml9WFl9aFlTVGlraEFzX4511g5pxl5p5i 5Z3gZB1j846zkiqIIXmgBBGi7HzQobpw0XF68UmW6ASDX8XMOcTmlTPSy2ip paSUcmJiGTVUQGJn45mJdC+UA8N882dQm4kgohLrNuzj2Avb38MyHMuBKbLR X2YQzxdxz9Z3lsu+5atlGxZJB0XS3iL1y7p+gawHCF/Wly/tK5A9K2x7KmyR C1sGZgqm3tza/DL8ubsn5lg3uWz4h8wha/JL9QLjycziLuenvK/LbpyR2dZl qZl6lV/MuvpX+UfWvcpc6y4+fVPmtW6Ku6k8zbgwy7f0OTn//XQy5s981n0/ K+cezeJr9vlOc890mmfn1/n5hq0/Bbf5rJtxLvGPl3lT4gHJmDQwt0nBb+nP yD5FhjEgXkQrL+QOFxctNXdkbYjHLgd7LQfHzZaW683Uq4g3WJgvM9DfZGdj 6oPaDQZvcnJcY2f1qZXJYjOjj0wMPjTWf19v/0cm+puc7TY52a21tlhubrrU xGjZ5GI8oGNdZWDwqY7OCqCcMzZaYmiwwsxolZHhSt39K/Zv36i709PHg8bC U3zhMRyQIAp8IBV+Khtew0c2i/FXTwS1SzCdIu9vznC+Oen35Dz7xUV2bzNH 3hYw3Bk+9nn8wzNERUfEwKX4kS9Sx69xJ77iqr7iTlzLUH2d132F9/S6QNVX q+qpV/U2qHoaxrsbxnpbRoYuPR/5oqRd4JKHhFYnoNv53lI+skWAaigAn8tw PplsdyzJ6nCK8YEY64pQ50Ia60BQeBkzUIIPKsEFF+NCxPjQEmKQBBdeQeSI kb4CL5oQhuXZ8s5yDrWnii4ESerCJBfDJXXh4voQQS0nt5rBO+mXeZSRcYTD PeqffJDKyQXHFfuU1ISVnQ8uOcMpOe1feJSWe4SSe4TNqwxML/NPkFBjRPhY CSmogMjK9vMMRu6HGJOwNu1BKBXVcxxnO+Rjp4CYPIbsHohwesb16UgLPicu Ptv4tajtmUDWL5YOCKVycVufuHWwCICuXT6VwnZ5kRSo8V6msFUOmPYOyW/9 4XXcy8xTvPW9zuCbMse6ecaymQ3d0+H9jDJvViFX/2bc5s1c6940oq37B3vE Zu0XuzALurQ3583l308uCP8zrbvYM/nPAP+Zeg40fBPPO+yI9HdE0o1B3lou 7uZotBUepw2D7AG7bXd21LSyAKDbYGmuYW3xobbWehsrQxRyrwd4vaPtciuz Ty1Nl1mYLDY3Bp7/ZqCz3NxkF8h1jdo6kynrlhkZLDPQW6Sr/amB/lI9nRUA caaGq8wM1hoZrDfQ3WWm74nyYLBIAf5EIsYtlgPmR3lUpMJOZcEv8JH1RejP jzDbizHtRfDvzgZ+e5rxrIbdXcvpafSXtwYNdUYNXoq9f4Y0cClu6HLS+Jep AHQT13mq6xmAdRNf5z/9LKPnbqlK0TDRfRGAbjJNqu6Wke7mwf4OxejlA03c sJoo/PlQXGuad1uO07lk51MJdscSLA/Hm1cmWpZFOks4qGJW6OHgEAkpQIhh CdHsIh//IjRbiA4tJ7KE3iyxt2+BB47nlFkdUNwcJ6oPE9cHF14IENeFCS+G FtYE5p9lZ59mZBylpR72zahiRZUSWXkeKYeohdXBglNs8dkA4WmO8BQ7/7hf 9hEq7xAzpYKSAJSOQkIgn87O49DSqM4kK1PQHmoI8kxBzDeBhFGY4xjSWeFp 3udm8gJh/yyB2phIq66srGu/c6D1Gb9VyW/qL20blLT1CYFIBwH6XlknewXd z7GuoKXn5dBh1ujhbRrVBesWrPutrZtcY9yTUdude+GRpOEhI6PKDOZvA/c1 90TsdXHdAwEbEbF6GOQOD7etzg4aNlZrrcyBrDA1WqSvt8nR0RCJ3OLmtMrG Yrml6RR3wMMSC+MlxgarLM3W21kDn8vMjJeaGi0xMVhmbLjYQG+pkf4ig/1L jXXXmRusMNi31UTfGuwCw3qjcDAiAebPwDAJnrEscF6kZ0UyXG1dgdq6zgO0 zjJiGx/y6FwQYN2T86znF9g9DZy+lsDBjqj+juj7p8lDlxNHgaLuaobqK57a uq/SVdd54zdyn1xKG3p8VCWvU01b19008aJxHPjsaep9cOzp3YP3Hxw4II3j nPf3POvvURNrfyzW5nCs+YFYs/I4e3EwoogZcjQytIIRJsYFCNGMQiSDj2AX ohgCpF8RiiH0YRR5U3M8cs6GVMpSxfUR/NoAYWOQqDG4sDYg7yw75zQQf94J dlIlOamSGFnsHcD35J5gCmpC89UtLT3vOJ0PQHeCzauiplaSkiuo0cW4wHx4 SIEvPZMJDsXtBWvZeesl86glxeFnYgjf4jwGvVyUIKdnLnYP7W0fklmN0fHV x88c7XxQfKknX6bMlw6IW4bKWwaLJ60TLFi3YN1/vXXc+l71crtGeWZdb9aF J4K6B7jEMlMftiEUaQCD7gF7aEG9TAloXSx8h6fbZlentfbW62wsV1maAs3p EmOTTQ6Oet6wzW6O6xxsVttarrAyA7gD0PvExPD/DHVW21hq2FoBpd0yM5NP zYyXmZssMTFeZKS7xFhnqaHWSoN9u61MXFFePiQsEgNH+oBJBKgfycufDIli gHKiIOWT1tUUeDcI0a0lpPYSQksB5Pua0O9O057VsF7UsrobmH3NnKGuSEV7 +MNq35Evksaupk18lTmuJo6nupGhusEbvJLefTVnoufM+Ivzqt56dRvb0whw N/GiYUz9fLH7Cl9+lS+/k9d9X3zpemFCdSD0MMP2SJTloVjz8mjj0hi3ogBm SWDEwaDocmqYBBMgVltH5cNpfDiFDyfkQ0l8BK0Amn0mpLIlVVwbWVwfKWwM LahnFzaw82oYmSep3KMM7jFO2iFGfDk5VASPKkWKGyMLaoJyzrDzzjCyjlHU W2hPMLlHmUkHybHl2KgyYmgRxY9HwSeSzQjW+yBacH+3TElofnFAfibuYoT3 fazLYy+nbmf3e45uLSjC6VT+6fovK7seF3Z2Z3cNcNsHcjv6xS2KysbB4ta+ Iqkiv32woF35q1j3I2PWeaybmQXr/g2sS5pz0Po8uE0NW6fzZuh+QeteF29O Zo5lX26pAL5fN8yrH86ue17Y+C0quUQHTdFFYY2x2L1Qjy1uDoYYb6C62+Lu ssHJfr29rYZ6zGq5xtJyqZHRdjdnbZjXZhcHTUfb1XaWQA+7BLDOzOhjM6NP TAwA6wAbl1uYLLMw/dTC4hNjE6DkW2lq8NHuLTssDDFUIhKPgqMhPhgIButJ xHuSsCA63j2c4cGL9CpJhJzkwWoKEBcF3k0irKwYX58FAnrYR9X0p+cZ3ReZ gHW9zezhrgi5NOjbGsr4ldQJoKi7zpu4kTVxM3viRqbqRpby8wz5jUKVomai txaQbbKua1Z1t47Jm8eVDQPfHui5kjZ+i9v/deLAl6njd8q+v3tYcjENVEi3 OBBkdiDMpiCAJubEHfCLKqFEl5AiJFiO0IcuQNEECF8+nMSH4ws8sVnumWfD Drdnic5FFdfGiOsii+qDAevyLjKzztIyTtBTj9BTDjGAv84pgMRXEA60xQtq OVmnadmn/LJO0DKPUtS3zR5jJx9hxVbQg0WkwGI6M4eC4EB0XXTsvI0j0nDp xYExIkZ0ETUlHXua6X4Xan7Xzfy6o9s5Z8yZ7EOHO7/nf95X1A6UcEqBbFDQ McyXKcXtCrG0t0jWJ2hXFnQMFcr61e/optOmmBlBq/xNmY+72XdS/NgAYmbk r80j3irzuMebkcldFb/E4PVdrZud53N8e/sLtd/euplzil/Purct5Obd+fWv YN3LAq+uL/3CUE79RHot8Nv5eXbTQ48U4S6snzaaoO+N2Aty3wZy0UEhAPq2 g9y3urpsdHRca2291spqtbnFMlNjgDt9b9gWF0cNe2uAu6U2ZsssTRebGX9g qLfE1HCDg616ybGl+RIzs09NzFaaGC3V3q3naO0Oh6BxSAwegcZBMHgwBgfC 48BEIBi3QDo4MxJWnAg7zoXV5MNrBPC6InR7Cbkmw+XBaf8nF/yeX6B31zG7 G5k9TczhzyL6pAHfniOrrqarrmWqrmeN38we/zp3/Gau6mb+i670wW8PqxS1 Y70AdHWTDWzLeI90sKdhVFn35KucgetpE7eSh24mjNzMGLqWP3S9vP+bmmPN Qlg+3lVAIgjYCRWc5DJ8UikxsYSYUEKOKPdlFqH9+N5AdYfPBmOynBNPcsTN yaVNScX1ceLaKElDVEFtEO8cg3uGnnqCEltJSDxIDxVhgot8eKeDCi9G5J5l 5p9jZp2mZxynpB6hpB2hpR/lxFeyYg/4BxbS2Hl0PJdphLXQst9ICYTkFkem 8xkhPFxwPjksn5wS5V1PgtxytWp1tC4Hwy4IT52VPSvoGsrpHC6R9pe3Kkrb FBKZUtTZz+/oK+joLlB/KvmdA0VSpbBNPp051gGl3Zsyb2k3aznKa9bNHEb8 Kta9toPsv8i6n+jbgnUvrePV9eZc6M+60A88JJz/ntv6PLPtO0TWQS00yxSB N4DAdoLdd4LBugi4NYm4FwoBuFtvZ7fG2lrD3m6VldnHRvp7PcH6SLiGg/UG J7vldlaAdUvNTRaZG//NQHu1tcVGB9tVluarLMzXW5kv2rfL0NXOh4rzISGd QHZEsjca647GuGLxICweDHBHwLmxKC7p4dDyFOTxTNj5fNgFPqxWgGwvp5xJ tn9wxv9FI+v5RXpPA2AdvaeJPnQprKeV830NVXWdO3GNO2ldzvitvInbBaM3 +d9LU8dfnBvrrRvtbZjobVKnp1n9pk7eoPjm8NOr2aO3c8duZEx8zRu9lTt0 UzDwtWTw9qHBb2ubm3JDUyCpFQFJpbT0MiK3gppRRk0vo0eWUkJKCIEiDAvg Lg+afIIjaUspqI2QtMQDEdRFFFwMyz4fkHaKmXKMFldJiSjFs3IhUSW4/HNh +edDs88EZJ32zznDAeq95COUhIOUuApq7AGgovMPFNB9MwnuwaDNICMdiEls HievMiReSAnNo7LSsGEZxPgUYhkbVQ92q/OACuHEysKjF7qelbb0FLYMidrH SqUD5a29pW3dkvaews4efkcvv0NeoI4CCFDLLVi3YN2CdeqXdYB4F3uAh8wG eWp9T1aLIq/tCT7zkCGaYYGj7IN57fIEbwe5aSPhZkTcDk+Pja4uG5wdV9la r7K1WGxh9pGJ8S6Q+344dAcItNrBbqW1FVDILbUw/chYf5mJoaat1XobyzVm Jou1dpt5OCMpGAQBhvNFQZHO3j5ORLIHCuOMwbvj8GAC3oOId6fhHZKCPEqT vU/y4OfyoAB3tQJUe5nvyQTbG0eofa2Bz2upL+r9ntfTuhupI5+FPa2nP21k qW7mTHzJm7ieo7qVP347f+JOofJqzvMv8lR99cO9jUN9baN9raN9TaN9DaN9 tarec8++zB24VTRyK39U/VcKJ74uGr0l6L8jkAPfvFkq/7zo4ZciQRkhqcg7 q4KaXUHjlVIzS+mJZZTIYkIQHxUmxvNOBEkaEwpqw/Jqg/Maw/ht0TkNIUmn /dJOseKP+CUcYgQV4f2yvSJL8QU1obnVQZmnWNxTbO5J/9TjrOQqekwlWX2G p5gYVkwPKWKiYqD7EVo7PPYgItA5B9N5peER+QR2Do6cQaAm4UJicQn+yAoM qALkko6jlvLPnvxMUSwdKGkblsiGJe39kna5qF0hae8rlvWVyOTidqWgs38S OnlBe8+CdQvWLVin7mHruzPqX3DruzPr+nh18qz6gcy6/pzG3qLW78k5h/eh aVoolJY3QgsG3+4B3uftbUwk7oBCN4LcNFwc1zhar7Cz+sTcZJmVGWDdfm/Y BlentQ52a2xtllqYAdypZ7JmJptsrFYb6e61MQUqOm8CzBsDwpFhGKKHK9iI QvXA4l2xODd1UYf3IOFBVLRtPNOpOAl+jAc7lQ0+lw+9WIhqKSGcTXX6QoJS NLOe15J66mk9Deq6bvhyxNM66uOLfqqb2UBRp7qRPfF1/ujXuap7oheXuP33 D6oUzcN9zYNy2Uhv20hf40hf3Zjy4tC3B3sv545+LRy9UaC6LZ64JRm5LRq8 UzRyh6+6W6T4LKP3Wq6q99TjB2WHjvrxhBieBJddSsssYyaX0xJKKTHFxIwq jvhibNGFyPwLIdkXAtMvsHkNQem1/vEnaLFH6JEVVGYuyjcTkXQ4gH8uOutM QOYZv9QT1JQTjLhDtJhKalQFObSEGFxCDZIwWbm+VmSTtVbLbUlWEYKQjMOR sQJ6ZJZvWD6TmEbwTsYTEgicIHQcAcpFglJpJL7oyJmWF3ktA1kdI7mXhvO6 lIVd3cKO3gKgV20fLJEOVrYOlrYNFnYM8oEGFijw2l8USXt/cesKWuT5M5LX 0jud16zrXbDuV7DuTccC/Czr5gft3XBLvfCTNkf8A9x+knI/EoC7BsA6oLqT Z16U8xoU6mKvvlsoHWAJG/WInH0okrY3focHYgsIvh2K0ieQ96F9NoDd1jrb L7WxXGJlscjS7FNry31wqDYSsdbedpWNNVDarbQyW25mvExfb72J0S4LUw8s HElCovCeWKInhuCBI0MgcDs4ygFPAFpXEAELIuLAZLyHP84uGKVfFAc7nI04 nudxXgA7VwC/KMZVZ0I6C2CjrSEv6pnPmoIe1/rfv+D/9FLyk6bIXmmi6q5k 4Gbh2N2S8ftlE/fLx+9UPJXxRr47o+ptGe2TjfRIJ3qbx57XAm3seF+N/IZo 5GrFxO3K8Tv8iTulqluSsTvi4bvCsfui/ms5fVd4qm8PjD+sUD2uGnt2uuFc RArXjVtCTSxjJpbSEksovGOBeWeD886F8GvDc2qC08+wk08xMs4HJp9mx1X5 xR5m+uZA6TmI5COBGSdCk6s4GaeDUk74xlcRoyuJkeVAKIEiPKuAyC5gQ8KR 21337XXfx0glZR6ITJD4hRYQQ3JIwVwKLdUXm0RDJfjBAvF4X1QEiRjqF8oV HD/Z/qii9ZmgpVd4aUjQNVDY1S/sVIg6lUWd/UUdA6L2AbEMiFIkUwplisnI Zw0mpLPmsDMGsr2v5yeMZZtfHWeX/9q+sB82UMhf30nx+s6y2VvGumfkjSNa 3uyx7Pzhqn+z/3gy6p5Ph1v3/F3nsPMl4+LTN6b2afqFJ9OZs29idp68+Wi7 d7cu7dx3//nW1fVw63+o9C6q95FlNci5F3vymgbF7f0xh9vNaIlaSF9dFHY7 BLLGxWUbDGFIpO5BYTTBHhtcnVfa2XxqbbXI0nyZjdV2CHinJ2idg92nFmYr LE3XWpqtMTZapbPfxMUJSyd4Y6EYHASDc8cQwEBdhyV5esDtiGQIDuNOAKAj eJLUpZ07Fe2cFog7lsk4k4k4l+9VL8I1FXOO5nAKk/y+ajt2+nBumSSjVJjO F6eUHOUXFqacPCo6d+5g8RHJ4ZMV1acKv7l2auzRuZ6v8sefnph4XjfRI5vo 7pp43jLR1zDRUz/8baXiywLVnWNjt4on7mWN3xOM3RGN3RaO35UM3yx8filj +JZQ9bBcda9s4l7Z2LeHh5+ePlThG5vlFSemJBdTc44ECM5G5J4OyT4bknk2 KOUUO+GoX9wRetrpwPQzQSFleFo+lFXok3YyJONUYGIVNekkNfEEJeoQOfwA NbiYGihm+BexAos4xBSMNnLXVjdNRBgk81BCRmVkaC42MAfJ4uHJGT7IFCQ0 jgINY0IoWBTJy4/qHUCjZuYfOtr23cHWRxXtPWWdSmHHpG+TEQLpUE5HpJ7D vorwt7Vu8gaKeazrW7DuZ1s3/+l2C9a92boZLS23rufltln1PjKgqu8Vtigz Tt10CkzfhyTsQcJ3wCEbwB7r3L30iFR9HHETyGODi9s6B8eVtrafmJstsjDf 5Qne5QHe4OiwxtZaw8pK08xMQ0/HHgJGEn2wZBQW54VBuxEpXgB0OJKnl7c9 EuVEVE8lwCSCBx7rjiV54ImgYBLoaDqjLpdcJ2BVZIdHR4eHczNRQeHxRVUx ZafDi6sjJDXBpTVMyVlq5kFO7tFgyTmcqA4vPMcuKE4S5x85Lnhw7Zhq9IpK 0TH2vH68WzrW3T4mbxzrvdh7LW/0hlB19+DYLeHEvbyJ+4Kxu0BBWDR+t7jv i+yB6/yJ+yWq+6Wq++VARoGS75sjd64UJqS6JAmwuYc5krOx+afDck6FZJ4O STnhH3PYL/ogLb6KCViXUOVHKwCHHSBwz4UmnWTHVtFiq8gxVdiIw5iQCmqA mO6X7+cvCGPkhFvT3LaAt1v47g8pImadjIwtZ7GyfPyz8fR0FDEO4x2P9oz2 cWPhPfAEMgYXyiLQyD7pOYVnOx5WtH1fIXt2oLNPLO0VTRE3nbe37sfoW7Bu wbr/Nuumizr1cyPw3J9ZoxA09PLr7qKSCvegiPsxuB1w5AYPyHp3sDYKrYPB bgR5rndxX25rt8rBfrGV9VIrSy04dBvITdPZaZO97XojQ10HGxgRA0Z64ChI HBGGxgGgeWJJEKC0QxNAYE9LAgZExnoQsSD1AxFEIdtQ0VriFOyRnJD4mGRE GN8+9oBNfDkut4opqaZV1DGPd7AOd5AOtuErm4KPdTHLW0ilDd4HWtGHpNjS 876lZ+FJOdF8wYWOi4+6vxxTXRscaB/ubVbJ64e/Od17pVD1oEJ1txSo3IBP dfF2VzR6u1BxNUf5Vb7qQZkaunslqocVE/fLxm+Jx26VqF6crz4dxuWjC46w 84+HcKvYmScD0o8HJFSxgY41voqVfJwTUUkOLEHFVlFSz/rHHKNFHiEEVfgE lGJCDlDDDzI4Eiydj2XkspDR1I3uprvgFr6ZfmlH45KPBgSL0JwCH3Y+GZeI xsQRvCPIyEAaEk/0cndlIKEJvr4sIjm7qPJ013elLU/K2uUlsp6S9r7STqUY MK1zKv2iBesWrFuw7idaN/nck92omNpVkVmvyG4Y4l3sLWrtEUuf+BUc18UH 7kFRNkOgm8Bu693d9vn46GHxG8GeG9zd1jg7L7O1/cDEeLG1xS4YZDvYdZuj /RZLU0ckzIeKg2G8EFgPAgWOxYEwWDcCUNfhwSQKFI5wgIAtqCQIFuVCAWoZ rBuL7kTy3uNHcA0IT3KOOqSfXKudVmuYcA6ZW4/gnzFKOeBWXOdV2gI/0ISp aqRVtdCPNGMqLpAr6okldcQDTT7FjdQjXfjSWmRumb9EUtJ8/kHfDZXqq3Fl y+PPi4fuHVV9fwjoUifuV03cPTl69+D4/fL+a7l9X/AmHpSM35OooQNKuwdl E3cl418LAe4GH5TdvyqQlGDTirx5lYykcnrSQXZshV/cYXby8YCoSlpIGSH6 sG9mbUjiaXrEEXzoIR9OqbefCMEpJvtL2GxhAENAB9pSPZzRZvBuj3BU3IGE pEOxwUXUoCI8Jw9LSEaiolDIcIInB+dC9EFC8BRLb7aVUzTUPYZCLSw5WtX1 fbFMLmkfAhATAdx19ks6FCIgk2/qXlrXDhD3MkKZQjRtnUwxH3S/hXUzuXt9 1fGCdW9p3dTB7NOZad0vM5uY37p/uCHiFW4/7aSmn+DbL93DqonjNconoZNP ngEl/4G+XolMnnD0siUjaY83fjcCuskTsh7succbqYPB7YJ5a7i5r3NxXmFn +3czsyW21nthkB1uTjvtzD2JKG8SEkNBwjHuCIw7hgAh4NwJOFcSAajiPEl4 ENjdEPiSgHMjEcBeGDsc2dYHZmjvbIsIzTKJrtJPuaCbfEEvqc4uowlRJNVK OKHLrTFMrzPNrLHLOosWtmCKpRBxI1bShC9qxIubUEX1mFIpSNzoLqhzyTxt Gl6KTRbVSy/2917quXd87Gnt6DeHJ4A8ODf+4OTog6KRO6Luz7ljd4QT9yUT 98Sq+8WqB6UTd4vHbgsnHh4YuSV6/lnKwDeSlosh6Ty3VBExUkQNKSSHiciR FfSwUnKAEB19yDfjfFDiSb+wQ4TgSqx/ubefEEkXEsl5JCY/kMwLMPcDrwHt tmXbBon84g8Ghop9AwQkVj6BlI7CxxNQISSoHwaEhTuBQWBrkK8ZLMQCFeyI TGZHVB1pOvPFE/GlXnHniLhrZOrVnLijX9Sh/pwVmVLyQ4TtiiLZqwjnzWzx +t7NujnJn72rIq+1dzrvbN08Q9ifY91M335j67izx7JzrEu/MHPw+uS1Qu6X n8P+d1r3Q4DnHm5DTyZAX6Myq2Ewu0EpblOknPjcgR2vjSHsRWI2Q+HrwGD1 tIJM2Y1CrwOpuVs2yd1KOxstiKu2qx2cikPTsEi8F44Cg6Fd4T5uBAKYiHMj E8AkPJhG8UIhbGBQcyrFA4Gw8kIZw9CGXhgjNNU5KC3CKSjDOumsVkrTtrRm g/R6TMFls6QGw9QWk2SpeUqrWUINKL3ZIanOOOG8fvIpw+ST+jFVtmlnLZNO 6UQf0o4+vjPkxP6oOn2/Uqw/N4ubdPF4Rt/9uonHF0YeHh3/tnr8m4Pj32S/ uJysvM5XfVsxcVekeiBWPSwF0Bu7C6BXMnhLIr+SO3KL339b8P2NwoJCeEQW JFRACi4iR0h82YXqPRRxR5hpZwJjj9Mjqqj+5QT/EgJLhCfloQnZBGoeCxSG 2QE30SUZ0/J9k6tiw0s4LAGRnoul55CIab6YBJpbKNCxYx0Q3m6OULgphGPi HWiCpNoQUmJLjzV8c/rzAZHsRWGXsrhzUNIxOGXdVCE3rRxQyInbX0Gn3joh UxS2v8o/2zqAuJ7pLFj3TtbNKeR+Ui23YN3bW9fNbejlNigyG/p5jUMZF/oE zS9STly2YSeb0tg7UD5boN7r3MCaHp6GJIo2FrvRA7zK2WmFs/1ye6tNjjbm cA8fJhlNw6Ap3kQ6EkOGwpBOBDyYTAARce5EdYHnRKOC4DBTJMICi7YlESx9 fa1RPtoY5O70FB88He4ckmaUcnZ/6nmzxGPYfJlV8kXjlHqThAbzlEbL5DrP LJlN4kWDhJp9yTV7k6r3xJwxTa7Tizu/P+a0TtzZneEndoSftIo7xsw85gFn Hy3NKUzCfXExR/WiZuBe+cjtA8qv8rsvcye+qRi7V6wu6h4ARV3JVHU3ekek vJavXsdyiz/8dd7A/fIjh/1CMsDhRZQAPoGZ7xNcTEo5EZxwlB1RSQo/RAo6 QGaVUPyKyMRcIj6T4hmDNKZZ7kXrIZOwGacTko9GM/Jp+HQ8OgXvk4RDxJLA YWRLms9+AkIbCbF1gqDMERwLAssER7WjF+RUn+ocLO4YK5QNFnaqiSuVKYsn B69zrZut3IJ1C9YtWPdO1qkPMeY2TKU3o7Eno0Ge1aTMrH0hbOnNOHPLOTzZ gEbXwZF3IlDrQR6bwJ56WKwuGrMJDF7r5rIB5LLa2nynnSWOQ8Uz8FhfFM4X gafC8WQYEuFAxHsA1R0e54bHOlLIjhBPHTubTUw6iOhrR6RZ+nhvJ6B2JEaB 4iPBWLqrV0ioXWi+Q2wVIq/FIOGsbtJ5k5QG/dS6/Yk1DrxW46TavYk12ol1 ++Iv7k9p1E5v3hBzfmPMuW3Rp7VjTu70P+iVXWcbIMT7p8l7r97oKkxm2dUd iB57dGHi/smn7SljQCH3TfnoHaHqnnDibpG6k71fMnJbKL+WM3KnePy2ePx6 7uAX3IGbkvqa6NB0MCfbxz8fG13BiKvyDy33DS4mBJViAkox9CI0RUD0zfdD JJP0KU5b4Hoe0eD4I4Fpp4ICxL7kbDw6iQCNIUOjGeAwqjkdtR8H2Qix3+Th oANycnYAkS0QdEOkPymx8uSXZ7qGSqWj4o4xkbqcUxa3y4ulfZJ2ubBT+bp1 U+/lFqz7b7Lu7YcRP8+6Nx+l/rpv73qy+j/Vuslz2ieXnfRN3TvGnRRvssxT S5jdpODV9RZJB7jnrzuGZRrSQs3orL0o1BYPLw1n931wtAGauB3mrQFy2+7u vM3KFELyIXMoWCoaS/YmUOC+NAQBC0J6u+HwUDTZE4m1wqJ0fSkGMLgmmahF oOiSqDo47DYfn41sllE215vFMKSznAhsDCw4BJ1VAeIeMY6tMksGarlaoHKz y2nRSjq7Of7ktsSaLYm1u9IaN6XUrYipXhV1akNY1daAMuu4Y6isc9o+oQGR gU/vlE/0nOy5e/5wblC1KPBRO3/s0ZmxJyeH75eP3ZOMfZ0/drsQqPGG70gU X+WPPiwbvVc2fks0fi1L2ZU6cF10sSbCP8EuoogUc4CVVBUYJGH6CYgcEYkl wtIEGHwOEcfztWa7b0OYmDKcwyuieOeSg0sI1HxPIg+JSECCQvCuAX5A2aqH w26AglaBnIFfByaeEAc3mKMtAu7GyMo4cVT25OAlpahFXtw+rF4V3Kku50pk CoA79TCiQymafFknmmxd1QFkk05OImTK6agFa3+Vn2HdPPlJ7+vecjfZnA1l vW9vHW/yZKepzMGNNzv/WtbNyLzWzZm9/sR3dK8y36aJudbNewzdnPwM3N7W unlwe2frfjQziz1eQ19Ok5JX31Mkk2deuOsaWWDOCDOjcfb7YPZAEVvBkF1Q OPC8Fea1H+q5z8kOQkTjGCQcHUuiYci+SCoNwaT7oFEeKDQISXZC4gw4NKPQ AL2wkP1B/vsZtF1sphaJuImI12Qz98bH2ibGOnJYxoFBNgSGqW883Dct0C04 AhQtcIiS2EeXQTKrLeNP6sWc2h19dl98jV5K3ebos5vDTupGndALLjNk55Gz q+zZCfvcXOPifPrvFQ7cLxt9dGqsu/Vul+RMHvyrppzxF/XD3x4evlUE9KoT twtH70qUNwsB7lSPKofvlgx+VTByhdt/KVX5VVFbQ1xSATyjKjiqnMER4qgF ZCC+OURKPpmcRwXHwrVJxiZ0G2oBm3smNaIyiJyD806EwOIgnhEIBw7UhAjd DfPc5uGx1tl5tQd4LcRzNwxhBcZZWPoQKanFx744/YV6Z2uhtE885ViHcqp4 A0o7AD01dLOHrb9ApIrZK4rnWNfz5szH3bzWzbPm5PWD71796fx7xGbRN9u6 OSrOM4edk9/CuhlbyV6zblZ+jUJuwbq3sE49mQWqu5QLTwrauvMaH8KSyw1p UdbMQFMqfZMXRAPssg3htRvlrQ2D6Lo5e9NJOBYZR8NR/LBkGopCg1GpCF9f BBZjh/TRCQo0jw02CuNsjQzYkZPiHMraF0DfyiBq+OHXRHL2hLN3C7Ig/n77 AgPMAwJ0gkM3R6c4oOlWSA4S5k/x5HCwcemQsEynAJ61f7ZdON8trtjQP8uE wzP3jTdFs9BB4fTwQCuooz1MvzDHZ+yBcPj+oZGHFf13S1SPTzztzOAy9x4T oCYenxy5K564mT9+q2DgqzyAO9W3B0ZvC5XXBf1X80a+5Cq6khVX+e3Nscl8 aJSYwuYT/PLR5HwMKZ9IzaPDk7AGNGs9qgWOR0o/lRJ9MIySh4fFQ8ER3h7h ODumjxEevgcO2ujusMHNfpO741YPdw2o13ov750eaHOof1zmmbMtj0+2d5fJ usWyvpmgTWV6BrFg3YJ1C9b95tYpeUBp16zgNnTnNvfxm3uIudU65DBDWpAl J2AvHrPZG7oFDtFDIowgnjAqkRbCJjAIRBra18+HSoeTyO5sBoyCM4OBl8aF 6cQGaEZzlgWSPsxLsE4J0vLHLgolrwjAfRzH0oxmbMhLtkwM1w1g7okK1o8P 1MlK82BxjGkBFiS2LZ7pxI5Bo1ggD7oLhAWBBaKg/kg3ugeIDnEhOcLI9hHR aKyPDspH2xOqebLYR/UwZ+RuydjD0uEH5f03hKoHoidXheEkjYM8h4knRwav 8kau8cbuiVUPS0ZvFgx9ldt/I1/xZZaiK+FFS7T8al5LfVBYmlVYEZ4pIJGz ceQ8XyyPbBPoYs5yRKTg44+mRh9KQKdiQZFgjwioe4i3ORViiPPe7uGx3sV9 raPrBme3rR6Q3RD4Hhhyoxda04PiHc4Xn71Tc3nsqFRRLFUfxFT0GnRvyoJ1 C9YtWPcb9LBT1mU0AJ8D3Hp5Vl2fpGMgrLJdxzdBixxsxg7WptC2IhG7YV5m SBiYgqWFsqkBNAqLQKGjaAwkjQmnUVwYBAM/n+XxnPVJQaviOR9F0xenBuwq iDWM9l0WhvsoEPVeEmNNAmsNN3J3YYZtCHNTRIB2BNuMl4HyD7Ghhpj7Bhiy g0wiktyoQZYEf3MMU58RYoNj6mNpukSWGYSwNyoJEeDvQoDrkH10fTwXNx9C q77NHLtXOHqvdOz+4Yl7FaO3clVPjz6/UZwbsuvriyGjtwWDX/FUdwvHbuSM XMscusoduJYl/zxN0RHXLY3p/TKn4QInKNmck4vxzSPjeGTHCB8dqq19CCi0 LDzpRAouk2ob5OEUhHAI8LakwvchXPYhPTa5O2s4O691cNno6rULgt4JwW1y xWwEkU3oiYlHu05dHjjcMVzeNlTcoh465HYpi9T121RegfafZd087+tev1Hx 1cntC9b9Bta9PW6/nHW/AG6/rHUvU987XdplAmlSZjYoMhv7shvkvIs9IpmC e+G+bbhwDynKLCDWghO8D43eDHHRx3hgQ/yYYSxmCI3GQhN9vXyZ3lSSPQO1 PcV3UzptTSJtVQj6/UTqmgjc4vxw3SjsYrr7H4l2v48nr+QFbU1gLBelm6WE 74wM3MpkbktKcw6JsaEGmzGCdAIC90bHO/myzfF+lhS2RXC4E56iQ6Ia4Em6 dJZVYjLOx0cPhzYhoLXIXu9dP0dS3Uob+Tp35F7ZxN3yiZtC1Z2isTsi1TcV g/dLvzhJ7b2aOXQ9a/CzpJEvU8eupg99kdJ/KUXeHq/ojHvRHvfk85zKCio1 0skvyw8cizVkONuGoOiCcEou2zMebhfkYc6AmdLhRmToXoTHFrDrJpCLppvj elcrTXdrTVfXXVCfLe4YDUeUPimeJm4puyw/dG2oUPpCKFWq1wmrN3kpRJfk ok7FzBXCv0ZdN+8JALOsmyeCX2st8axrKbIb5S/T1DcHtDnTh3mse7dtFJn1 L+bcG/uLWDcTN27dm/dQALnwir6MH7mQ4ul05t1NNm8WrHsL616K1yjPmgxA X05jf06jvFA2ILmkIBfW7/dL1qVHWHDCdMnkrTCQPRHJig5mhDFZoVQKw4dE QzB8Xemem8PcPo6HfBQNXRTg8l4k9MMglz+nEtYnYzf42f6ObvWHCK9P0iir k3yX5UXukqSbxAeuiQpclxqvmxhrzGJsC+JsDfXfmhhjyWYb0OiGbH8b/yA7 IlGHSjMmELXSM6A0+j4MdivCW5OA3eCPXvykNVZ1rWDsZvHwnZKJe3zV7RzV zULV7fLRrwtUjw/cOMesStHrv8JTtMcPf5488nnqQFeCojOhpy2mVxb7bUvM wy8E3GycbwwKGku0C8dgszmEHKZ1MMSQ6m5Ch+kSYLtR0C1Q8AY3Vw0Xt3Uu rmudAetAWzzcN4BcNFw9Vjh4GeDDggTnSqRPD32lEncN5rX0Fl8aklwaFHUO TC4jUYg65WK1dcr/LOvedc1Jk/yVdeofs94F6xas+2dZl/WDddlNau5ymwdz m5Xcxu6ijoHkmtsOscJdxDDrgDgLTog+Ao5g0dlxYfRQv6AoFp2DpeIdAiE6 KaCtqS6rkl2X5SJ3JjivSHRelei8vJRmHm7+txDj95Lc1yZDF2UQlucw1h7L tsoOWZ3EWpwTvT0/ySiSqREfsCWWsyk92iiMvTuAsSssxJjD1Gb7aZHwm+Ni bGKidMiExTTKcl/iCpLPh7G+a/sv5aouC8avlg7flozdzVbdTlN9zVfdLJu4 njlxKxuo3LjETx7Uh45dzezvilN2xHa3hMnbY/pkMY+bwr/rzJDVZ9BCwchw vFuELziOoe/nsRFhthFutQfjst3bRdPDayMIs8YV8qmD4zo3Jw13T00wUhOE XO4IXe2CNKVFBUqqS9q+O3VttKJzoKBJLu4YLrk0JuwcFHYMTG3hB+o6IGJ1 ft33df8s63KnsmDdgnX/ztapuWsGWtq+jKYeXot61XG2tLeg47mvqFabmmBA i3RhBdrjsfgQf3ZsMCOcwQonBTKgVPON4brLUoxWJBgvE8P0M+02Jxp9Gq+/ rBhulGC40nf5/0TpLM7yXMeFfZwM+6MoeO2RDK1E+ge88M3CVIsoxsbYwM1x IRvS4vaGB2oEB62PidoZxNFg0paHBW3PSrdi+X7CoX3qi3vP328l3ut/Mznb xq/wVJfTxq4UDN8qUlt3M3Xiq7SJr3iq68kjl6PHr2YUcra0lfmovs590Rj8 oin0RXOoQhbT3Rz+qDHifntmdibKlehoRkbsJ3qvh9ttQdhpeLqu93TdAndb 4Wqx2tVpvTt0rZvHarD7Ji/IOjBspau3BphgxU6Kr2o9dFl+/NpoeZe8WNpd 2iGXTJombFfjJursE3X2CtVTiX6gKha1A+mfduk/ybqclm4gcy5YXLDu39S6 32Dx8D/Dup5Xqe/5YUWxOrzGvulkNPSkN3XzmnuyWnsyW3pT65+lNz0t7OxJ qL5uEyE0JIU7UAM9/YOpcVH06GBmpF9cGI2kq0la8ofgpX8MW/rH2PUf5xls D1j8v7T3fx+7cUmu4W7c73/HXPL7OJOlmZ7rUyAfJsDeP5igm85ekcJaKU4z TQzcHBu4Mi50ZUr81rCQFaGhy6PDV4X5LwphfJSbrh8ZsMoPUI60mINbFEhY hjb9Q0WQmeqLpInPoiaucMe+Fqhu50/cSJu4Fj9xJWri89BhGUd1ndsosL9U CVd0xPZKo160RT5vjexujXpUF3GvKe1oWaALXGcP2HY7HLIR5rkF6bkGZL/c 0Xm1q9unjs5r3F00PJw2w0AboNCVLrDljujtyEBInIh75srRL3qOfjlQ2jEo alOUyOQVl/qL23tEHT3izj5hR6+oE3juE3eob4sQyfqF0n9p6wStfW+6ThHA bWZee1k3ZZ1asNfquh9Nzw/v616FN/uexLmrhWf+6U+xbta/B/Ct7mUAwX7k hPbpvKt13MmRxHR+c+tmriv+Pv38oxn5Lu3c979OIfe2WyHe2bf5cXtr93oy 6rqBcOtfJrOhZzrcGclsVNMHfGY29/Ka+wDu0ptecBueF8jkwA8/U9Ji65+j Rwj1ioj3S0v2DWVEh7M5ztb4VR8Hr/gg5O+/D/zb/yRprMzYtsn/vT8w3v8z V2+f3/IPSB//ibL6z2H7l2U4bkwDrSwgb8lnboiE/l4Suzc7aEU6ezEvYGV+ 9I4E9vKM8C2pIesjfP+WFrS+lGcZTPxbKOFjFuQvLLe/cpz/Ttn+O1mC50Rn 3HhXpOpKmuq6QHU9Z+LLuPHLYarO4HEZc0TKGP4s8u4pzK0TaEVnzLPmsOfS 6O5Lad81xl86FnKyPNITY7fbxWqLB0QTAlsL9lzp6rbc2XWxvcsaN8gqV08N d68d3igND+91IJwNMzVQXF/U9PjEV6rDl0ckbX0Sqby0XVHe2V/WoSjrUALP IgC36cj6xVIgysnPVxPYn97Dyt+cH7Pux44pnte6KdbkUylo7ZsZ9RWxMzLb ujmLTH7aNRPTxze9G1//ALfZBWFOQ3dO/ctkv/lain94M8V8c9jaZ/PlDdYB ecubKX7SWBYo5GbkUVr1kwXr3sY6boP6bE8gvCYgciBq9xrU7uW2yIUdfenV N6HxJcakCK+Q2FBuXEg0h0PwNl/+MWbnZtza5aglf/X55H8TjHaGbvjU6y+/ Ixlsw5rvtlz8R8zGRb5Lfh+/4f0sg2U5LstPhFnGu/2lkKaZgVucAPl9ts9H RX5bkpAf5zC3ppJWRHv/X3GUSQZ1I8P193T3/yXb/ZFm9VeG5cccnd/dLEBP yKLHL4WpvkxWfZmnusId6QgcaqKMtzFHW6ijbYzBjqA7J5A3D0P7ZTEvmiOf SRPv1cc2HQk+cyiWSnfeZ6+/zc1pvRtopQtohbP7CkeXTx2cVrmDNL3gW2A+ mp4oDTBmDzooQFh99HL32evDhz8flMj6StoB3PpL1Z9KdYAHmaKkfQZ0QDMr 7Z+Zt4Tun2Sd/D/cuvrumfkvs+77BevezbrsZiW3oS+rWZnbNpDVLM9p6hFK 5aKWp+ElbY7+me6BUZzU9LDEBFMTff0d692M99jtXOWwYwlo3/JgRxNHjUXG 2qt9cE47NT+w276StHGV/8d/il7y+8h1fyiF7xEjtuZ6rCzz3ZXg+KcU8CfZ 6I3hLn9LRq2LcvwrD7q6KsQu1vbvwVbvke3eo9p94Gv0d+8tf/Lb+cfvKnxV XdETn4eorsSprmROdMYPNvuOt/mONZNHm30Hm6gDssDmXIP7p/DDl9KfNCfJ Dvsf55NLJDGUENJue/0dIJf1INByR5dVzu6r3T00PCCboIht3uhNcMw6D+JO VCCBe6S4+dHZG2OHLvVLWrtLZX2l7cqyrv4ydTk3yd0kdAvWLVi3YN1/jnWN QFGnmIIuSy2egtfUn9WkyG7s4zf1lkkVhY2PsQXVNsE8QnwmOThozY7lW3U+ 1bXZvst0k6buKlurvSBb3eVr/uiBtNW12Llh0ycgve0EzWWBi/+X8/7vItb8 5YDnPp7Z8grU7mSr97OhmnysVrrXxlTY5mjHJRKqaQFOJ8zig2DTD3z3/i9u w//glv8P7M+/C9D8e/epgLE2/4nLrLHPwlSXU0fbQofqCROtxMFaVF81QnGR 8M1pVLvQWtGZeO1E8IkcXHkuXZwfhuaQVjnabYJAlru4LXF003CHboEhtyMx O30wG6Cole7YHdggRNohQcM3p66pyqVDpa2AbEMVXUMHugYB5cq7Bso7B4Dq rkSmbmOnUvJyF//LTHev/6rW9f0Q+fzWvZLt39a67BnQZf+3WPfoh/yIdXMG EO86jPi3ta6+J/OHCcUb6joAN4Uat5Z+bgPQyaq/zAS+o14Jr8gH/k+RDggu TSRU30enlJFiuSAKabWu5kq9jdvt9TQsdn605UNHT4t9Ruu0DFbC0DYfb/qb vuk2Z+1NiC2raBuX0P/vdzwdTZ7OWr75uuA1f47atSTDcn2cwaow3SVJ9uv5 SEP/fYuIa/+MWPw77yV/hn3wJ8zHf8b/+fd5llsGG4MGW0iqS34TUo5KGjZ0 kTzeQhytR/Ucde87AXtxEnv/OPnOqYDmMr9SLjEvlZmYFg6jkzSdnNZDoBoQ 2DpPxFowarc3YReSoAEhLgaTdvjGeqdWFdQ/OH195AjQsbYpS2Uj5R1D5V0A ccrSjr6yDsA3eZn6TR3wJUDctHWKyQHEyzGEaPK89Fd5Z+va5a/yC1k3cxgx Zx4x07epecS0e6/NJv51rQPUmnN1bHb9y8wD3dw5xU8ZVXBrn82TuUey1z6Z zq9j3fdp5578EMC67+dA9zOmq7+8de8M2ttbN63cZHpmrjx5Q103/b5OntWs mKruAOiyWuTZrYqsVmVu62BO01ChdLCiS55wpDOAfxQVkfixjsFaE919dvor 9q9ep7vaxsNg4+6/o/BWO43XaO5bYmS+w9B4q632OsSWRfS9y9Md9qSarWcs +UPA8veSdi/lLPt9/I4lqfvXp+ttw/7ld6j3/4D6+H2XTz920lhsv+KvmK2f ngxyHaijDzb6TEgJqmaGqok1fBEz0oR5dszt+VFY7ynyvUrCl4f8qwuovGjv 1PSgyJQoSxxmtQtkCwK7Be6zCYrdCCVu9iJtAuHWuGKMmCmU4ouCjmcnrqmq vhgrbpOXSAHZBoGKrrQDKOQA3ORlnX3qqK3rU1+F0yEv7pCruetQSGT9M6wb eK0km+XSW9M3a94hbJ8Xt7e1blbTOkncq11j+bM71jll3pxh67+UdXN2gc1s WuduLnvrvPsSlFkj2mdvmslyX7tE+7Wx7BvzZusmoav+IWruvluw7t2sm4pa uclktwCVniKnVZHfrBQ0Kwua5HnN8qKOkeymp8knPoNG5XyiZ7FGT0fL0eTT /Wt07PdZumqZOmz3RFqu2v737aaaW223bjRbbWS21nDXe0wv7XSirbfGnyib Pow33xK8Y1Hojk+zrPTYGksRH/3F69MPQWtWWG5eo7N5kf72D9D2m48lgQca GMPN2PFmtKqNM1xL6q/1eXoadO+g8/enqTerWC0SalkaNiUSlZQWTIkMNkFj N3thNyD9VsF8V0EoS5wJy119dYhx8Fhx/OG2iktPTtwYqLgkF7X1V3SMACkH 0jlc1jFQAvStHf3qMcQUdx2AdXIAOiAlau4UQCTtc6xT/ptYJ59tXe9/gHVZ s63L+m+zrvrJrJx7tGDdL2LddGmX2yLPb+zLberLaR3IbBnOkQ4VtnVLWh/R so+8r+O4SFd7j4vRcq1VRk779Wy3g3D2GvrL1xus2mO9bYPRqo2mK7bqfmhp vSY1Cg3SX+aps5TlqYuz3EQw02S4Gxqt/7vx9tVaW9Zp7di0Y/OGbZqLIQ47 MZZbzqV7j7YFDDUgVS3Y8Xrqs0OgZyfAdyptH55EXanAVvOp/CRCdCQxNj2K EhVqgiNugSDXQwnLPHCfgHxXI8LtI8RhlV2i1idHvug/+oWyvLOnpL27RNZb 3jlwoHOoonMIaF3V60k6lSWdyjLAuvYB4BmwrrxDDmTSPXlJp3wSOrl4wboF 6xas+3ey7vX3deoldlOr7CZHsX1vsi67VZ7T0pcFpE2RLe3PaQVqvO7C1hdV 14aohXXLbb3WW5lusdTRNNhs5GlsjLHWdt+/Zu9iY9Mdevobdhqv1TJZvnHr /7BY7lDn3eY7/xpIdLTWXU0mO2/QXbpmz5INWhvW7t++fNemlVs0dmttxEFN 3DYv+/pI5Ghb0FC9z9AF6ItKF+Up5LeVzleL7a4dRh9OdsxJJqWkBYWlRbux /TXdoJvdUZqehI1wml1YBkNyIbv+4eFrQ5WfD5d2DohlCrGst7i9p7xTWd4u B3rwii7lgUnW1LJ1KUq6FAB0pe3q2WvZJHTl6jV16ta15GVRJ588h3P6MJP+ f58eVl7Q0lvQ0jOVOdbNWUv8W1k3PSZ71x62/kW2+pXdy8zpYXlvzm9jHbf2 ZTJ/Seum8zit+vEM6x6rJxS/DG4/wbrfYAAxN5MDiB/NbOt+PC/HsrMGtdOj CvmPlHmt6uRIlTltypxWeX6bIr9Vnt3cI+waTj35tRs9fY+Z60rdfUus91kS nFwJdou0ly3XW7fLVHOX0TJj4yXaWu85gXcSKK62Rpvj6a4w6226bvv+tufj zftXb967fq3WrpV7tq7fsdQb4uBssZUF3tLXlNxXQ1XUEOXVPk+PuN8UmH1R 4HDlIONcEbM4JyAgIQQZFroDhvrYxXs7OcopUuRf0pLb8G1Jl7Lyi5GSS/2F 0h5BW7dQfYqmXH0+sFQukfaVTS0jmZyrlnUqyrum+lb1M5DSSfFK25WTn/3F MuV01JdTv3lTw6xlxj8yZXiVd95G8Q/FK2p7Kd58w9Y3azZ/3kG5H8vL6wBm XgL1pvyjn963PeKJO3kw+1Qy3/mIp7qnb8qcLWO8C0+zfgjwPMe6We69mT7A t7Tzj15F/eXT6aSe+35m1OOJBet+aesmqztFbqsyt02ZJ+0HPqeS1dwn/mxY WP8tOihLxw35ibG+tvVuepD3cvMtf9XR3GS5S8Nk1X6zTev1l+iZLpUIYyID 4cEMJwfQ1jW6i1YYbli7e+OGPdtW7N+zdu8GI6MlPmBtd9PFR7leT2v8e85T lPX+X5dDj4durU6zbSgLFKX5h4cG+oUk2JNCTIgR0KSSmOOXcpsfll+WV10b Lbk0ALRsgtZeQVsvAIu485VC4nb17Q/FQHM6tUK4c/Lzh151irsp4qYz0zrJ v611M1fQ/bOt65u5L/vnWJdR/2I681s38zaK38C6rF/FuiezrXu8YN1vad2s SJUZLT3q27Lq7nNyjrlQQ7T19+DwYCsU+K+7Ni3X26FhqrXFYNuane+nUi1O JSHOSPxLD0Qv3vvhRoM163Q1NuzfvWrvno92rt9tsNrTbQ0WtjOcoNVxgPj4 IvvhGWpVjEmij2Ym26EwJzIsPowTw+VwjwUKmrgnrpfKuo9+OVr5+WhxR39R aze/8WmRFCjkeiYzCcsMggDrJO3qhvSldS/FUyxYt2DdgnUL1r2tdW392a3K 7JZ+fqtSJHsRUVpr4uwJcXWKiI5cp7tthd7adfprdff8XzTFSuJnUYDb//m5 nMw0P0YAeMfODzU3vb95y+qlG1Zp7F1qbfmRn58+K8C2NBv3ZTWzudgll6kJ NX7Pnw7PFggzSk7wqz8XNn5XKFOWXFGVXpoQNPcXNCkLmhT8ZsCxQZG0r1Da XSR7XgRY194net26SbUWrFuw7t/AuppHM7Jg3c+yLrO+hzd1a/bkl8DzVGZZ 1zxrSDG1/iS7bfJ93Q9R97OtyoJWZV7LQE7LUH57v+iz7rSjrVhqJI3ACAul mbnvtIZoMVFWPJwNdv/7FbGeQShDmLP+/c6zdeJIsMmGLSv/j+oLNTNfioCt jUnwgiF28bOIkmxIUoAB3GGjj497dumJ0oY7lZcGSjqHBa0KfusA4Gpu8wC/ FfhysLBtUNg2IGxT369aJOudhK4XsG6yrpux02Hy+ulJ6xSv0jl/D6uYzk+0 buafzrFOMSM/37q+ybyyDujfXz+65G2mD7+SdbzGmefq9L78ffoyb4Rufusy gJ9egKbJcP8Rd7+Odc9mBTDth/Bq1cS9zJuh+wfWzbh4ceruxfTzT6bza76v +xcdvM61btb35/tRmfpZAljLevXj15OlPteub/LMk1fJalEXcoBvs8SbrO6m o67rWpX5rT0FLfL85pHc1gFe6zPh53Jx4+PYOEFZRhw33IdGdDbetdVnv1Y8 VP8Ej8KNo1fXVl9taP6+7tiza3WXm45980VNqK8plqRDZNgkx1B4OUHMKJwr wpMZnHiw5ssjQFUmG8lvG85vGyhs6xe2yEXA/+BSBV+qFEj7i2T9RcBn27QG U5sR+kSz56Fi2UvrphbO/XjmWtc3HclrJdmszLSuQ/Fa5fbGXWBvX+P9aEU3 Vcj9wN1L6/LevGA47ze37seGEa8PZH+idTNc4l788YtifzTzWzcfg3Ogm8Eg r/bZzFpu1ulPP8W6mYPX9NnDCPU9s6/msGrc5nK3YN1vZR1Q6fFkL3La5AVN 40VNQ/mtT9KavxVK+87V3pTEhMf52HhbbYPaaPvaWcYivc5UiA7VnM+rOmVl Yc2E2zUfLyxKYPKD0eXJvuLCmCxRWmp2PjsxkZWZyT/bUv1l76HOHkGLPK9t tEDaX9gOlG3dRW3PgRRKXxTIXghkvYUyoHUF6FNnZiklmq3TgnX/DOt6Zzet fa8tNXmnHnZ2Dcb9V7IOQGye9XVvbd2sphWo5ebsEVuw7p9lHdDJZsh6sgBt GodFTQN50hfpbc8qWp8eLatJYQZUSspTU3Ni/LGl0fiuCyWp0X4cKpSMtqKi rcLDsGychZfFdmGM/+nc2KLU8My83Ji8w4XVnx+78vTA590F0p68lj6+bIgv HS5s6xW2PZ1Urgf4foEMSPdPsa5fIhtYsG7BugXrFqx79x62TZklHeS3KMSN vfym3nRpf5Z0oPrCjdL/b+/Ow6Oq7j6ARyBAgOyE7CHJZIOEVdnE1/2lr74u VYtaFTdUFFEUWq1aqkHBIknI7Ft2iAgKtGqLImSZuffOhIRVobS00vr0rZJk 1jszGFHznnvvLOfemXvnJkxIwPM83yfPZLLxx8yHc87vnN9Zt2Hvnpbthx3y P/3lrUr5vm3q5t+vfWh+8q4N9x7dsfrMRy9i7z721gvzX3z2vi2bNla/9Fxz RbmxDd9lOPM+YWnCzyqxXnVXn6bjnMbobMDJRtxeh1trCTB1Paem4gEjPTCH 1dMBU1cgQFjrGsJY50LWXbB1NrrvOhOH4Bz2MrRuy1BYx+67HlHrIoDbQHyz VvKH880hm5kM1Dq4NiH1LRH7axNwh3bwWpUZnCByJkYmpAILRIVTtQkV5tYb ydp28NZzyzDPu4f75Jo/6jeqD3R1b2q3fvRV/+/0O0slUx9bXFj3zE0uw4b+ 4+/0n6xwH9l89L1ndlasaq5Rr3j8wVd//Zxc1dDw5+PvmiyNuFNHNQkn9YSr zuSqM9rrMGcdTtbiLj21aufRmTzUYh3hoRfrQFzU+50SLxgKwIi7zhvqEESj L030yQh/6CdJf4Bv/tR3kMEisU5AQBUHsYJ1kHD1JKjViQj66NqEr32TXYfZ tFTjdNb+4aGwTrjwKqUvI6YTthghcFBCIKwdwhFbr2vt5QunNkH75g14TNUj fKmGz02AZw54E2wdsy7HG6gYQT/ztT+bL23rLHwZOuu2tIb4X5UZ7AWHuSeF uexYaSSVWCAqqjDh0uEuhdElI84rib5ag72+5UvFe/j2T07t7rTuOmx//LWq grnzVj96x+7yZXtfuvY/2x46t3/F953r+k9o+k9t7W7b/J700fW/uf/VNc/e /8tVq95ufPeIU9PuqCc8QDkwkAOIgY/e4N4HNfyp5XJHWecPDYtvIwp9BMyf etbwjJ0w1vEmnHXwGbFBWBc4I6ajb8GmzoINq3XSdrG7Si7EOvG+ibYOmNbD FzZ0rI0lMgi0YNYErKvcxyq2cgqvVZ8GwvlOZN1wWaek2gKQGqNdirnfNvZV G13b8LM1H3buaPvn+4ft1TuxW5bce/s111asfaLppaWy21P3ryxwNt3d99HS bz+894f9L53vUvT/U+86XX3ogzUfbHzqt88+vrvlcKPpbA12rp74LkBcUAZt Hdwyrq7D2QDlMrBOO8zW2aXcTXTIOmTd5WIdVSQlVUaryuTUHznfSFj0H3ap d7b/seur21eVz1pw08uP3Lf9jZUVjy6sfKBEfU+ycc2M7/cs//GzZd9/uqzv z8+SbS+5j2788cu6/tPN3YYtu965c+8u6cemU00EqTO4h8Q61m43ZB2yDlmH rAtvnQp3gjeC3GjRm+361q82NLXtNJyq3rr3jc21C2+6ZcH8WW+vXaF75Yl1 d5f9+tbU2heu0SxLx8uvdf3hifMtK37seu3HEzISf9XWsd5yqrHv5Hvff7Ht 2+O6P6keeOeNx5r2HWo86NFjjkhb50LWDYF1gWKElHvA/7Kwjq0Z64D/JWbd RcZN0Dr27xS+AXZw5yZCvuqYOixfYOso7ijlSPCap0t+9urWb3afcD/5QuU1 C/9XuWP31T+/b0FR7qYV9+x45+ny++ev/8XC8mULyu+drnq8pP6plM7NVzt3 P+X57DfdB8r/83nDuZNNPaYN2PZlrtO67zoV54/u6P/Xh3/d+1b5Ky80Yf+u Nbn0BKlnEMOdNRgUIe7Yh6fogoW3bGFyCljnFc/sDZsgIXkG4Bu/dZy6hgBu wvfDcqwTSETqsHIjU7V3+sJ8avdmANaJrsMy5QkRByU4kbZyb4+FYmH71gtL CAZvcl+CB3IC1oWuwNKF10r24QjuXmL+IOsusnUgCqNdDd5ZZnvdIfK5zU1L f/nk/BllCxeU3HDz7C0v/GLP6w/JHl9UfkeO+slF5XflvHxTXMOqBbj0zn9+ sLz/pO78qUb7Yd3/mRX2o2rPF1LLKbntRMW3h37vObbj/JlP+//a9Nnu2rrP TteY3VowmWW4G7x1gSDrhsA6JwQdE1sgl4V1csg6EG5ZFll3uVqHORVgUAdm r9QdsjYVYZEZ//P861VL777lmqtyXn34WunaJevuKahdvUSzfPHme6bWPF1W 8WDWpgen7dn4KNGw9vPdG86Yat1Wot/dRZ5qdp/UeU7KPV/Wf/tNs63rdfvn DV93bXUdlH/R1dqId+sIpy6i1tFx1AT2HgdkA0HWIeuQdcg6v3XU8X8AHXin GO0Kg0Vlsq7/+NTMa+/+xc8WVay9q+aZxcpHZry9rGzz09dtfmhO46rFO9Zd v+23N2pevm39k7dfX5JVmpKwIH3i0qtK2nepfuhuc554t7ez2n5Se2jvWvJY taOz4vSBDd8dqd/b8pm6g7ryD1mHrLsg6w4EEhHrZJeYdWJxC+ubSOsEdgsH FSOsrFCg8YUXuqGzTm709WPHwVvAqjLa9Add6z8+fcuyNWseun3LiuuanplX 80iR8qmFG5dfu3pJ3p7KFR/XPLfx+RtvnZNWkDgmbdKosqLE4vSJ8zJSZseP VZQ/1uc63m/FbSe3nTErHMe07kO/7/tii81c92fDEZXZpaMO+HtDjfGgqwD1 rAiVKuD1OuZ4RWBKC5iCQndrD3xKNUUP9EXnTn7hCJrG3+KpI7gIEthaXGMO 34Pdv4uYZR3mgMNptC5gncJog8L45l+44D0uITMw+8+dvghVHCIV8X2JKawO +NIGrBNIrz/Sll75AW9k4GNLj+KAN7KWHikn/NZxWgH42phQqeA2Mzlbua/b l7OXsnW8lVaudYKCic8QWUdfP0HKcCAeeC9Y1eCtZLTVdzpeebN6+c+urFlz y7YX57y+JKpiabpq5a1Vq+/f8sYTD9w1r0wyMTtx1EzJhBl5MSXpYxaVxt88 P+3qafE5E6Ievm3Rl8d39/9w+nw3bj2mJw9VfNdZ/uU+1Z/aTtSYXBoT6Y+a cPqjIQZknYsdlnWiE2QdXEINOvw1WOsCEWedPTg6o0MPRYPxXgIraB0MHa91 8G4TJtL2IYdO2Dr42+RtVvgWHjkbNIHIW3r9uIHIW3sVvoDHgDs4fNbB58W8 V8dC12Szx3UAuh5/KvZ1I+uG3TpmXEdfPAEmL5R1ypae5i7Hi6vXrbp5VuWy stqVkj3rF9b95obtbz9dsebhG68sTo+LmlkYW5g1rjBj4tWzM0pzx8/KH1eU MbowdczM3Njc+KhFWbHNFS9+7zj8g6Xd2aXpO6T4S8t7u9v/psadyLpBWKcf Huv85yaGeVwXEesUbOsUQ25dN2xdJbJuBFhH1yZIKU5uIRzVmE1hcKjbeprN 3c8se/JXN5duf/Wu7a//bH/9qubKlSvvub4sIzYnaUxpYVxpQUxJTowkfdys goQZBfE5KaPz0mKyJ48rzpk4uzBpoSRmblzUc3dd/+9/7O33fOE4tuMYtq+5 5Ut9Z5+aQNaNaOtCnRFD1iHrLm3rZCD0K1xpdIBxXSVOVmJOaTt4Z/XKPjp+ 6w3Xv3b3vO0bnqzbuPzp+66elZ2cPXF8dvL44tyYGUXjp00dN7soHnCXmTQ6 J21sbkbs7NLswtykKQnjSnJSZ2dMWpw1dmbyFXdeOWVv7cZ+99/O/P3vtS1n lGaPBprGIuvEzmGxAHTgsda3cKfFxFhn9+UStg6+JDEAHXWTrJB18lYokHXy IZzDnvWlmz2HHXHrdeKLrVzTOL8qEtaFq1uJtY7pdsIM5OSGQKh+7Bh4hdtU mFWJOyqMzkriW6nBuc1s1354+Hevvby18tdVry5fMq8gY9LorITE0rz86fmT ywqiZxaNKZPE5KWOmpo8Ki81OjslujAntjg3ebokRZIVnzB+dHFK9OKpMddP mzAnN6pgYvSq5fcRx/5Ra/xGYXJqiUA0QtaxIlii5dYmQtQ6Q3+VYx3JDrda AZUtxFoHH9QFEYIuIJ4DDmMdME3ni/ex0RvhKxRDFSNCW+cnTkoneBorMkPB oLzNpvBF1maTQwmyjlWbAGM5pS8Ubi1QImRdla8wUcVwx/INDrJuyK1j2tkF rPO91MEDKeasxh0yjLJODYZ2hKeS6Ktqd2wlLLoPTOVvvvngvTfNLEnMzRhV kBuXlR6Xn508QzJ5tiS2NCc6L2VUftrowqyxswrj55SkTM+PA7PXtNgxUyeP KyvOKpsaNzNt4vTMicUlyYmp2ePi0hTvG7YdcioI+8i2jq9/XZBg4q2DvirO ujB362gx9nyWPY1lW8cZyDnp0R2nLOuNr3eTlxf+y3SEMhTWgYGcss3mD8Ud /Ee51gX2nChaLUrIOmAaZ8gXEevghnWVn/Xwj+WQdcNsnRSnxnVqo1UDXvCY Z1ObS467mgjr468okrMKJsaNSc+eUDAtLit/TGpWVFb6qPwp44snxxYkxuTE XyFJH1WUFT09N6ZMMglMZrOTx2QmRBVljpfkpmdPSZqRm582OXdUTGLhop9v av50m+nr2k6LirBQ71Zk3cizTnhcd/lZF6lxnWjrBPNpUJB1kbZOBlknM7ik pm+Bdfr2b5KLb0tIzZVkTc5Ji0ufEpOVFVNQEDM1e3Re6oSiyYml6clzihJm FsQWZkaDmWzulCuyJ0dJMsHEduwMyYTM1PiUpKSkhMIpGdc8+CtpY2d30wm3 jLCrTFYtYdHiaFw3oq27kCDrBmldcIbBOvY2YKHaBO924oER1xrIoK3bQofu SGwXss63Xqc22DXgGYNbbu6TGqj+5KVLnps0KX1BSf4cSX5eSlpOUmrm5Ohi yaTC7ARJyqSC1InT8+LKCmPzM0bnp15Rmhs9pyRm7rRJc0rjpxXHJmdmRSfl 33THs7o9x/74xTm12VlhJivNfUqzU4tbNTRrGjZ0jHWc7cSsbcZDZB2r8R1r va7+YIhztUzCWAev7EXOOv/OYfBYBy/fCa3XBS/QcbYWc0O1WzfY6Kbrg7RO CtUROAnHmsUfKRRq2Q3ABQX+i/I2CztWfxStViXgzhfKtDYofuhaeuRs6ASs 8+8lDnRl338WxLdeJ1yPOAslrHUDAC0i1gkN3iJUbOWoVdXGGwHftrDj/X4q 1KfUGM+3yUQO/S8v91pnV4MYnArcU2UgZUZq377OaL3u7ucT4jMzckryC0tT U1JyUydI0mKLshOLJWl5krTUrNikxDF5GaPnFkRfNzt5fnHitKIpKWkJUTHx mdc88Lzyk91HHe8fcdThPVrMpTZ5VCaPmnCpCVbtNTiwhPDKni7MMC/kwbEQ ga2rE6yZNh0kt3aEToNweYI/gvCGPDIWsA4GbSDnJuDYBML5qQsc4IVMOOh6 /ZFD4y45t7rKOhSmoEZ9ImOBx3JM/KyJte6A9xAZa3R3AK7GdvsSDF03lHDc Iesiah1zaAL8d0+dlcBIJeGuMjiASNIDvVqTZ/tR22OvKyaklEZPypxRVjo3 L1GSEFWYPqEgOzE/Oz47fVxBTsz0nOjizFFzp6dK8nPGxSbHppXcv/otfdtX O49/p8W6a/AejbFbh7m0hJuGjvkoZB2cYbSuvsPJBx1I46Cgi6B14s/DCvs2 Mq2TtgWJdClZFwiybkRZx0xtVBR3pNxIqszn5AanmtqRYq/CeptPnavY1THt v34ZPTYrKyVpbllmQdqEqcmjcuOj5uaOX1SaUpATn5qaGJOQfkXqrJn//Ujl +9gfPrfXEb0aY6+esKuMFh2Yc1FjORJ81NIfkXUj3zoQTuvO4Iotsg5Zdyla p8SYXp1uWbtThZEakxuIV024NrWdre2y7zhmW7pWGlN09cTkLElR/lXFiYsL Js3KGJebmZSQmR8Vl5d51V0r39m587B16xGPzGjTmEil0aE1uYBsdPNPxjqm GIGsQ9Yh64bQukEXXgdwOILzs5GwTnxtYksQdwxx/kayAeuo7cQOOtR2Yl8P dto6jFQYHEr6yJgSd8nb7Uoj+PEe9UHX1r/88NYfjl9556qxyZKS3Kkzp6Zk p2eOnZQ1Jn7m/6zYpG391/vHPRqjRWawK819KrNHZXLJgXIYIIsSj4IOp1bR qTV2eHWO3U5cYO1OvHXiz01wrYMLE2Ze6Cjr+LcZc3cdC/ZgH1BtIuI9ncKp KNShXWQGYp3VX19gtgHDnwoUIJTtVlW7xR/x1vlLEsIdicNax9ylyNpOHLCO E2Rd5K0L3nMCWxf2bh0gHjXYA5NZ+k4xmYGsbnM0dnmaO3pWbXy3cN49Y+PK xk6eP2fJM+tqW5sP2uvMTmmbRUWdV3KqcVJFuEE0hIs66U+NyoBydi1O3XM6 IOvgXCzr/Ldsu8JYx1/UENydgqzjg47lkpy9sQTGjRMlBN2ArOMbwg3IOv/V 2L49JxzruvmDrBsZ1lElWpcM88hwj9Lo0hidWvDib/mmBuv54PO+euzs75rM b2wzN5osOz//AbwspeDtgDtVvjBlCGCdllqjc1LQEVYmGsKOrEPWIeuQdSPE OhA5RluHuYF1aiOpMdrUGJDKASYUarO74cj5hiPfqQiqjCvH3QrCpSSYC8gY 7lwgGpyErdPhFj1u0RI2ZB2ybqDWKdqtfEHWIesu0DqV0ak2OsFHFeZUAPdw t5JwK+i7xuQGm7TVAn6tDMhmclHE+UZ0dI0DPADfBiawkHW4zWsdLmSdhr1G N4zWgQjvr6sXFzC7h4OsE2mdgn3AX9A6qwrKT9A6AdyGyrrB4iY+Ak3+Q9Ym QgIobQvRxS64OKv0hl64o7oWU9UKFQEYpN5NACIV9Qxg0E6t0RGBCWxgJusb p2kDS3Z2gcEbpwChYyfMfRP8ddiBFEm911Uw9DUeJBsPOps6mZBNnS4Q+knK ukazqDSYWAn5F6FEwLohoy+QwblHx+qPzEAx5Y9KMGqDTW2whgz9DXZfbGEL r/4IXB0b3IOd7wxFiBwI0AenKgx9yLpIWuc7OCbKOrjtj2+0Jj7M3v4QW0c0 /LPU4POwrGt38ItvnZPPusbBWlePrPNFEc43tnW8gaCjMuzWSZF1yLqfpHWc IOtEWkcP5OAg65B1yDpkHbIOWYesQ9Yh60aWdXBZAVk3OOvE4xbWNwHrxIM2 vNYJfLW6zVHdHoh46zgZgHV0VSJkbYLTzETwvgmOdSTffROcE1hBt0jw9q/j WNfQ4QBp9KHHxPuk4AkygTQI/WMic0bsIlg36BJtUA0CZgrAZfHFqjHaNEY7 FGtwfJtMbOwM0jrOGTGBDKxUQbtH34WNrEPWIet+EtYpaNB4rLPR1vX6YmFD h6xD1l2C1hEOL3FmF4jOROqIQJB1P1Xr7FRnbMzijVHIOnreCm8eRtYh60a0 dToAHbIOWYesu9jWhe6yftlbJ6XKE9QtsXJjiAT2FUfEOsIBovNFD2asQLwL sg6OkHUNZjikP/XsCw1rzQ4qHULWeQsWB8mtUJo6nHAaqUNk3jTBOUgGnSAj qXA6Pl0C1nHatnNiCxkFNVG1sa2z8VjHsGaDImCd1XedojUoQtbJgG9QmLYn IcO1rqWbit86Oky3E04iaF1EBnKcuyG4P3vRi61C/ev4QRNfh+WM66QGJxyZ MRAFxj04xjpEFs46n3jeExMUcdQb2VGD2/3R00/6E+ZwxADDWNfAroTCo6wm waOs7DqsN1u7SBDOk4yK/tTT9VYmnIsqQv6hGvOIqMMK/6DIJnh0ldYaMgrB LcF0PUJsfBVYyjqFtwmA94YddmcAIevER8Ye9fmHgsxhsZDt7LwnyCJXh0XW XXrW4RfVujoz2ShgneARfmQdsg5Zh6yLlHXUe9ns9IcllUnEMXlk3cizji9K 9lR0QAnaU8fMXntBFIC7dqu8nXNzIuNeBKBD1iHrBmednvgJW8fzh5B1yLpg 64am0soF7SLjxs1A4OIHjR2mE7s3Yq3jL86Kqk2EtA58rIEDRCL4Ywok5Fpc +K5NIaxz+dPUwS0WRMQ62Ld6Tk+njhARc25Cyz5jMpKtY81boWssVFjobXIX ap23JbvXOqoeAUUpOiKtk7awiKMC1Saq9ndX7j8bCFWS8CfYOt7rYjd/+vVP zbpBHwRj/yDXt+G0jh0h6NiJnHVuf5o6XENtHfBN3xGIwNk0ZF1ErBN9z074 a3dEWcfec0JZF4m7dTZ/gqy77KwzkXVwCKc/yDpk3UCsszI38iDrkHUj07p6 E9lgdvkDPoWDrOOzTrx7w7tex/r9F2CdQB1W6eskIA9qboysQ9Yh65B1yLoR bt3/A+dN+Mc= "], {{0, 280.}, {420., 0}}, {0, 255}, ColorFunction->RGBColor, ImageResolution->72], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable->False], DefaultBaseStyle->"ImageGraphics", ImageSizeRaw->{420., 280.}, PlotRange->{{0, 420.}, {0, 280.}}]\)] |
One of the main technical issues in handling video is dealing with the large amount of data in a typical video. In Version 12.2 there’s now finer control over where that data is stored. The option GeneratedAssetLocation (with default $GeneratedAssetLocation) lets you pick between different files, directories, local object stores, etc.
But there’s also a new function in Version 12.2 for handling “lightweight video”, in the form of AnimatedImage. AnimatedImage simply takes a list of images and produces an animation that immediately plays in your notebook—and has everything directly stored in your notebook:
✕
AnimatedImage[ Table[Rasterize[Rotate[Style["W", 40], \[Theta]]], {\[Theta], 0, 2 Pi, .1}]] |
Big Computations? Send Them to a Cloud Provider!
It comes up quite frequently for me—especially given our Physics Project. I’ve got a big computation I’d like to do, but I don’t want to (or can’t) do it on my computer. And instead what I’d like to do is run it as a batch job in the cloud.
This has been possible in principle for as long as cloud computation providers have been around. But it’s been very involved and difficult. Well, now, in Version 12.2 it’s finally easy. Given any piece of Wolfram Language code, you can just use RemoteBatchSubmit to send it to be run as a batch job in the cloud.
There’s a little bit of setup required on the batch computation provider side. First, you have to have an account with an appropriate provider—and initially we’re supporting AWS Batch and Charity Engine. Then you have to configure things with that provider (and we’ve got workflows that describe how to do that). But as soon as that’s done, you’ll get a remote batch submission environment that’s basically all you need to start submitting batch jobs:
✕
env = RemoteBatchSubmissionEnvironment[ "AWSBatch", <|"JobQueue" -> "arn:aws:batch:us-east-1:123456789012:job-queue/MyQueue", "JobDefinition" -> "arn:aws:batch:us-east-1:123456789012:job-definition/MyDefinition:\ 1", "IOBucket" -> "my-job-bucket"|>] |
OK, so what would be involved, say, in submitting a neural net training? Here’s how I would run it locally on my machine (and, yes, this is a very simple example):
✕
NetTrain[NetModel["LeNet"], "MNIST"] |
And here’s the minimal way I would send it to run on AWS Batch:
✕
job = RemoteBatchSubmit[env, NetTrain[NetModel["LeNet"], "MNIST"]] |
I get back an object that represents my remote batch job—that I can query to find out what’s happened with my job. At first it’ll just tell me that my job is “runnable”:
✕
job["JobStatus"] |
Later on, it’ll say that it’s “starting”, then “running”, then (if all goes well) “succeeded”. And once the job is finished, you can get back the result like this:
✕
job["EvaluationResult"] |
There’s lots of detail you can retrieve about what actually happened. Like here’s the beginning of the raw job log:
✕
job["JobLog"] |
But the real point of running your computations remotely in a cloud is that they can potentially be bigger and crunchier than the ones you can run on your own machines. Here’s how we could run the same computation as above, but now requesting the use of a GPU:
✕
RemoteBatchSubmit[env, NetTrain[NetModel["LeNet"], "MNIST", TargetDevice -> "GPU"], RemoteProviderSettings -> <|"GPUCount" -> 1|>] |
RemoteBatchSubmit can also handle parallel computations. If you request a multicore machine, you can immediately run ParallelMap etc. across its cores. But you can go even further with RemoteBatchMapSubmit—which automatically distributes your computation across a whole collection of separate machines in the cloud.
Here’s an example:
✕
job = RemoteBatchMapSubmit[env, ImageIdentify, WebImageSearch["happy", 100]] |
While it’s running, we can get a dynamic display of the status of each part of the job:
✕
job["DynamicStatusVisualization"] |
About 5 minutes later, the job is finished:
✕
job["JobStatus"] |
And here are our results:
✕
ReverseSort[Counts[job["EvaluationResults"]]] |
RemoteBatchSubmit and RemoteBatchMapSubmit give you high-level access to cloud compute services for general batch computation. But in Version 12.2 there is also a direct lower-level interface available, for example for AWS.
Connect to AWS:
✕
aws = ServiceConnect["AWS"] |
Once you’ve authenticated, you can see all the services that are available:
✕
aws["Services"] |
This gives a handle to the Amazon Translate service:
✕
aws["GetService", "Name" -> "Translate"] |
Now you can use this to call the service:
✕
%["TranslateText", "Text" -> "今日は良い一日だった", "SourceLanguageCode" -> "auto", "TargetLanguageCode" -> "en" ] |
Of course, you can always do language translation directly through the Wolfram Language too:
✕
TextTranslation["今日は良い一日だった"] |
Can You Make a 10-Dimensional Plot?
It’s straightforward to plot data that involves one, two or three dimensions. For a few dimensions above that, you can use colors or other styling. But by the time you’re dealing with ten dimensions, that breaks down. And if you’ve got a lot of data in 10D, for example, then you’re probably going to have to use something like DimensionReduce to try to tease out “interesting features”.
But if you’re just dealing with a few “data points”, there are other ways to visualize things like 10-dimensional data. And in Version 12.2 we’re introducing several functions for doing this.
As a first example, let’s look at ParallelAxisPlot. The idea here is that every “dimension” is plotted on a “separate axis”. For a single point it’s not that exciting:
✕
ParallelAxisPlot[{{10, 17, 19, 8, 7, 5, 17, 4, 8, 2}}, PlotRange -> {0, 20}] |
Here’s what happens if we plot three random “10D data points”:
✕
ParallelAxisPlot[RandomInteger[20, {3, 10}], PlotRange -> {0, 20}] |
But one of the important features of ParallelAxisPlot is that by default it automatically determines the scale on each axis, so there’s no need for the axes to be representing similar kinds of things. So, for example, here are 7 completely different quantities plotted for all the chemical elements:
✕
ParallelAxisPlot[ EntityValue[ "Element", {EntityProperty["Element", "AtomicMass"], EntityProperty["Element", "AtomicRadius"], EntityProperty["Element", "BoilingPoint"], EntityProperty["Element", "ElectricalConductivity"], EntityProperty["Element", "MeltingPoint"], EntityProperty["Element", "NeutronCrossSection"], EntityProperty["Element", "ThermalConductivity"]}]] |
Different kinds of high-dimensional data do best on different kinds of plots. Another new type of plot in Version 12.2 is RadialAxisPlot. (This type of plot also goes by names like radar plot, spider plot and star plot.)
RadialAxisPlot plots each dimension in a different direction:
✕
RadialAxisPlot[ EntityValue[ "Element", {EntityProperty["Element", "AtomicMass"], EntityProperty["Element", "AtomicRadius"], EntityProperty["Element", "BoilingPoint"], EntityProperty["Element", "ElectricalConductivity"], EntityProperty["Element", "MeltingPoint"], EntityProperty["Element", "NeutronCrossSection"], EntityProperty["Element", "ThermalConductivity"]}]] |
It’s typically most informative when there aren’t too many data points:
✕
RadialAxisPlot[ EntityValue[{Entity["City", {"Chicago", "Illinois", "UnitedStates"}], Entity["City", {"Dallas", "Texas", "UnitedStates"}], Entity["City", {"NewYork", "NewYork", "UnitedStates"}], Entity["City", {"LosAngeles", "California", "UnitedStates"}]}, {EntityProperty["City", "MedianHomeSalePrice"], EntityProperty["City", "TotalSalesTaxRate"], EntityProperty["City", "MedianHouseholdIncome"], EntityProperty["City", "Population"], EntityProperty["City", "Area"]}, "EntityAssociation"], PlotLegends -> Automatic] |
3D Array Plots
Back in 1984 I used a Cray supercomputer to make 3D pictures of 2D cellular automata evolving in time (yes, captured on 35 mm slides):
I’ve been waiting for 36 years to have a really streamlined way to reproduce these. And now finally in Version 12.2 we have it: ArrayPlot3D. Already in 2012 we introduced Image3D to represent and display 3D images composed of 3D voxels with specified colors and opacities. But its emphasis is on “radiology-style” work, in which there’s a certain assumption of continuity between voxels. And if you’ve really got a discrete array of discrete data (as in cellular automata) that won’t lead to crisp results.
And here it is, for a slightly more elaborate case of a 3D cellular automaton:
✕
Table[ArrayPlot3D[ CellularAutomaton[{14, {2, 1}, {1, 1, 1}}, {{{{1}}}, 0}, {{{t}}}]], {t, 20, 40, 10}] |
Another new ArrayPlot-family function in 12.2 is ComplexArrayPlot, here applied to an array of values from Newton’s method:
✕
Table[ArrayPlot3D[ CellularAutomaton[{14, {2, 1}, {1, 1, 1}}, {{{{1}}}, 0}, {{{t}}}], PlotTheme -> "Web"], {t, 10, 40, 10}] |
Advancing the Computational Aesthetics of Visualization
One of our objectives in Wolfram Language is to have visualizations that just “automatically look good”—because they’ve got algorithms and heuristics that effectively implement good computational aesthetics. In Version 12.2 we’ve tuned up the computational aesthetics for a variety of types of visualization. For example, in 12.1 this is what a SliceVectorPlot3D looked like by default:
✕
SliceVectorPlot3D[{y + x, z, -y}, {x, -2, 2}, {y, -2, 2}, {z, -2, 2}] |
Now it looks like this:
Since Version 10, we’ve also been making increasing use of our PlotTheme option, to “bank switch” detailed options to make visualizations that are suitable for different purposes, and meet different aesthetic goals. So for example in Version 12.2 we’ve added plot themes to GeoRegionValuePlot. Here’s an example of the default (which has been updated, by the way):
✕
GeoRegionValuePlot[\!\(\* NamespaceBox["LinguisticAssistant", DynamicModuleBox[{Typeset`query$$ = "europe", Typeset`boxes$$ = TemplateBox[{"\"Europe\"", RowBox[{"EntityClass", "[", RowBox[{"\"Country\"", ",", "\"Europe\""}], "]"}], "\"EntityClass[\\\"Country\\\", \\\"Europe\\\"]\"", "\"countries\""}, "EntityClass"], Typeset`allassumptions$$ = {{ "type" -> "Clash", "word" -> "europe", "template" -> "Assuming \"${word}\" is ${desc1}. Use as ${desc2} instead", "count" -> "3", "Values" -> {{ "name" -> "CountryClass", "desc" -> "a class of countries", "input" -> "*C.europe-_*CountryClass-"}, { "name" -> "GeographicRegion", "desc" -> "a continent", "input" -> "*C.europe-_*GeographicRegion-"}, { "name" -> "Word", "desc" -> "a word", "input" -> "*C.europe-_*Word-"}}}, { "type" -> "SubCategory", "word" -> "europe", "template" -> "Assuming ${desc1}. Use ${desc2} instead", "count" -> "4", "Values" -> {{ "name" -> "Europe", "desc" -> "Europe", "input" -> "*DPClash.CountryEC.europe-_*Europe-"}, { "name" -> "EuropeSovereign", "desc" -> "sovereign states in Europe", "input" -> "*DPClash.CountryEC.europe-_*EuropeSovereign-"}, { "name" -> "EuropeExtended", "desc" -> "Europe with Russia and Turkey", "input" -> "*DPClash.CountryEC.europe-_*EuropeExtended-"}, { "name" -> "EuropeRussia", "desc" -> "Europe with Russia", "input" -> "*DPClash.CountryEC.europe-_*EuropeRussia-"}}}}, Typeset`assumptions$$ = {"*C.europe-_*CountryClass-"}, Typeset`open$$ = {1, 2}, Typeset`querystate$$ = { "Online" -> True, "Allowed" -> True, "mparse.jsp" -> 0.622991`6.246026766192753, "Messages" -> {}}}, DynamicBox[ToBoxes[ AlphaIntegration`LinguisticAssistantBoxes["", 4, Automatic, Dynamic[Typeset`query$$], Dynamic[Typeset`boxes$$], Dynamic[Typeset`allassumptions$$], Dynamic[Typeset`assumptions$$], Dynamic[Typeset`open$$], Dynamic[Typeset`querystate$$]], StandardForm], ImageSizeCache->{164., {7., 18.}}, TrackedSymbols:>{ Typeset`query$$, Typeset`boxes$$, Typeset`allassumptions$$, Typeset`assumptions$$, Typeset`open$$, Typeset`querystate$$}], DynamicModuleValues:>{}, UndoTrackedVariables:>{Typeset`open$$}], BaseStyle->{"Deploy"}, DeleteWithContents->True, Editable->False, SelectWithContents->True]\) -> "GDP"] |
And here it is with the "Marketing" plot theme:
✕
GeoRegionValuePlot[\!\(\* NamespaceBox["LinguisticAssistant", DynamicModuleBox[{Typeset`query$$ = "europe", Typeset`boxes$$ = TemplateBox[{"\"Europe\"", RowBox[{"EntityClass", "[", RowBox[{"\"Country\"", ",", "\"Europe\""}], "]"}], "\"EntityClass[\\\"Country\\\", \\\"Europe\\\"]\"", "\"countries\""}, "EntityClass"], Typeset`allassumptions$$ = {{ "type" -> "Clash", "word" -> "europe", "template" -> "Assuming \"${word}\" is ${desc1}. Use as ${desc2} instead", "count" -> "3", "Values" -> {{ "name" -> "CountryClass", "desc" -> "a class of countries", "input" -> "*C.europe-_*CountryClass-"}, { "name" -> "GeographicRegion", "desc" -> "a continent", "input" -> "*C.europe-_*GeographicRegion-"}, { "name" -> "Word", "desc" -> "a word", "input" -> "*C.europe-_*Word-"}}}, { "type" -> "SubCategory", "word" -> "europe", "template" -> "Assuming ${desc1}. Use ${desc2} instead", "count" -> "4", "Values" -> {{ "name" -> "Europe", "desc" -> "Europe", "input" -> "*DPClash.CountryEC.europe-_*Europe-"}, { "name" -> "EuropeSovereign", "desc" -> "sovereign states in Europe", "input" -> "*DPClash.CountryEC.europe-_*EuropeSovereign-"}, { "name" -> "EuropeExtended", "desc" -> "Europe with Russia and Turkey", "input" -> "*DPClash.CountryEC.europe-_*EuropeExtended-"}, { "name" -> "EuropeRussia", "desc" -> "Europe with Russia", "input" -> "*DPClash.CountryEC.europe-_*EuropeRussia-"}}}}, Typeset`assumptions$$ = {"*C.europe-_*CountryClass-"}, Typeset`open$$ = {1, 2}, Typeset`querystate$$ = { "Online" -> True, "Allowed" -> True, "mparse.jsp" -> 0.622991`6.246026766192753, "Messages" -> {}}}, DynamicBox[ToBoxes[ AlphaIntegration`LinguisticAssistantBoxes["", 4, Automatic, Dynamic[Typeset`query$$], Dynamic[Typeset`boxes$$], Dynamic[Typeset`allassumptions$$], Dynamic[Typeset`assumptions$$], Dynamic[Typeset`open$$], Dynamic[Typeset`querystate$$]], StandardForm], ImageSizeCache->{164., {7., 18.}}, TrackedSymbols:>{ Typeset`query$$, Typeset`boxes$$, Typeset`allassumptions$$, Typeset`assumptions$$, Typeset`open$$, Typeset`querystate$$}], DynamicModuleValues:>{}, UndoTrackedVariables:>{Typeset`open$$}], BaseStyle->{"Deploy"}, DeleteWithContents->True, Editable->False, SelectWithContents->True]\) -> "GDP", PlotTheme -> "Marketing"] |
Another thing in Version 12.2 is the addition of new primitives and new “raw material” for creating aesthetic visual effects. In Version 12.1 we introduced things like HatchFilling for cross-hatching. In Version 12.2 we now also have LinearGradientFilling:
✕
Graphics[Style[Disk[], LinearGradientFilling[{RGBColor[1., 0.71, 0.75], RGBColor[0.64, Rational[182, 255], Rational[244, 255]]}]]] |
And we can now add this kind of effect to the filling in a plot:
✕
Plot[2 Sin[x] + x, {x, 0, 15}, FillingStyle -> LinearGradientFilling[{RGBColor[0.64, Rational[182, 255], Rational[244, 255]], RGBColor[1., 0.71, 0.75]}, Top], Filling -> Bottom] |
To be even more stylish, one can plot random points using the new ConicGradientFilling:
✕
Graphics[Table[ Style[Disk[RandomReal[20, 2]], ConicGradientFilling[RandomColor[3]]], 100]] |
Making Code Just a Bit More Beautiful
A core goal of the Wolfram Language is to define a coherent computational language that can readily be understood by both computers and humans. We (and I in particular!) put a lot of effort into the design of the language, and into things like picking the right names for functions. But in making the language as easy to read as possible, it’s also important to streamline its “non-verbal” or syntactic aspects. For function names, we’re basically leveraging people’s understanding of words in natural language. For syntactic structure, we want to leverage people’s “ambient understanding”, for example, from areas like math.
More than a decade ago we introduced as a way to specify Function functions, so instead of writing
✕
Function[x, x^2] |
(or #2&) you could write:
✕
x |-> x^2 |
But to enter you had to type \[Function] or at least fn , which tended to feel “a bit difficult”.
Well, in Version 12.2, we’re “mainstreaming” by making it possible to type just as |->
✕
x | - > x^2 |
You can also do things like
✕
{x, y} |-> x + y |
as well as things like:
✕
SameTest -> ({x, y} |-> Mod[x - y, 2] == 0) |
In Version 12.2, there’s also another new piece of “short syntax”: //=
Imagine you’ve got a result, say called res. Now you want to apply a function to res, and then “update res”. The new function ApplyTo (written //=) makes it easy to do that:
✕
res = 10 |
✕
res //= f |
✕
res |
We’re always on the lookout for repeated “lumps of computation” that we can “package” into functions with “easy-to-understand names”. And in Version 12.2 we have a couple of new such functions: FoldWhile and FoldWhileList. FoldList normally just takes a list and “folds” each successive element into the result it’s building up—until it gets to the end of the list:
✕
FoldList[f, {1, 2, 3, 4}] |
But what if you want to “stop early”? FoldWhileList lets you do that. So here we’re successively dividing by 1, 2, 3, …, stopping when the result isn’t an integer anymore:
✕
FoldWhileList[Divide, 5!, Range[10], IntegerQ] |
More Array Gymnastics: Column Operations and Their Generalizations
Let’s say you’ve got an array, like:
✕
{{a, b, c, d}, {x, y, z, w}} // MatrixForm |
Map lets you map a function over the “rows” of this array:
✕
Map[f, {{a, b, c, d}, {x, y, z, w}}] |
But what if you want to operate on the “columns” of the array, effectively “reducing out” the first dimension of the array? In Version 12.2 the function ArrayReduce lets you do this:
✕
ArrayReduce[f, {{a, b, c, d}, {x, y, z, w}}, 1] |
Here’s what happens if instead we tell ArrayReduce to “reduce out” the second dimension of the array:
✕
ArrayReduce[f, {{a, b, c, d}, {x, y, z, w}}, 2] |
What’s really going on here? The array has dimensions 2×4:
✕
Dimensions[{{a, b, c, d}, {x, y, z, w}}] |
ArrayReduce[f, ..., 1] “reduces out” the first dimension, leaving an array with dimensions {4}. ArrayReduce[f, ..., 2] reduces out the second dimension, leaving an array with dimensions {2}.
Let’s look at a slightly bigger case—a 2×3×4 array:
✕
array = ArrayReshape[Range[24], {2, 3, 4}] |
This now eliminates the “first dimension”, leaving a 3×4 array:
✕
ArrayReduce[f, array, 1] |
✕
Dimensions[%] |
This, on the other hand, eliminates the “second dimension”, leaving a 2×4 array:
✕
ArrayReduce[f, array, 2] |
✕
Dimensions[%] |
Why is this useful? One example is when you have arrays of data where different dimensions correspond to different attributes, and then you want to “ignore” a particular attribute, and aggregate the data with respect to it. Let’s say that the attribute you want to ignore is at level n in your array. Then all you do to “ignore” it is to use ArrayReduce[f, ..., n], where f is the function that aggregates values (often something like Total or Mean).
You can achieve the same results as ArrayReduce by appropriate sequences of Transpose, Apply, etc. But it’s quite messy, and ArrayReduce provides an elegant “packaging” of these kinds of array operations.
ArrayReduce is quite general; it lets you not only “reduce out” single dimensions, but whole collections of dimensions:
✕
ArrayReduce[f, array, {2, 3}] |
✕
ArrayReduce[f, array, {{2}, {3}}] |
At the simplest level, ArrayReduce is a convenient way to apply functions “columnwise” on arrays. But in full generality it’s a way to apply functions to subarrays with arbitrary indices. And if you’re thinking in terms of tensors, ArrayReduce is a generalization of contraction, in which more than two indices can be involved, and elements can be “flattened” before the operation (which doesn’t have to be summation) is applied.
Watch Your Code Run: More in the Echo Family
It’s an old adage in debugging code: “put in a print statement”. But it’s more elegant in the Wolfram Language, thanks particularly to Echo. It’s a simple idea: Echo[expr] “echoes” (i.e. prints) the value of expr, but then returns that value. So the result is that you can put Echo anywhere into your code (often as Echo@…) without affecting what your code does.
In Version 12.2 there are some new functions that follow the “Echo” pattern. A first example is EchoLabel, which just adds a label to what’s echoed:
✕
EchoLabel["a"]@5! + EchoLabel["b"]@10! |
Aficionados might wonder why EchoLabel is needed. After all, Echo itself allows a second argument that can specify a label. The answer—and yes, it’s a mildly subtle piece of language design—is that if one’s going to just insert Echo as a function to apply (say with @), then it can only have one argument, so no label. EchoLabel is set up to have the operator form EchoLabel[label] so that EchoLabel[label][expr] is equivalent to Echo[expr,label].
Another new “echo function” in 12.2 is EchoTiming, which displays the timing (in seconds) of whatever it evaluates:
✕
Table[Length[EchoTiming[Permutations[Range[n]]]], {n, 8, 10}] |
It’s often helpful to use both Echo and EchoTiming:
✕
Length[EchoTiming[Permutations[Range[Echo@10]]]] |
And, by the way, if you always want to print evaluation time (just like Mathematica 1.0 did by default 32 years ago) you can always globally set $Pre=EchoTiming.
Another new “echo function” in 12.2 is EchoEvaluation which echoes the “before” and “after” for an evaluation:
✕
EchoEvaluation[2 + 2] |
You might wonder what happens with nested EchoEvaluation’s. Here’s an example:
✕
EchoEvaluation[ Accumulate[EchoEvaluation[Reverse[EchoEvaluation[Range[10]]]]]] |
By the way, it’s quite common to want to use both EchoTiming and EchoEvaluation:
✕
Table[EchoTiming@EchoEvaluation@FactorInteger[2^(50 n) - 1], {n, 2}] |
Finally, if you want to leave echo functions in your code, but want your code to “run quiet”, you can use the new QuietEcho to “quiet” all the echoes (like Quiet “quiets” messages):
✕
QuietEcho@ Table[EchoTiming@EchoEvaluation@FactorInteger[2^(50 n) - 1], {n, 2}] |
Confirm/Enclose: Symbolic Exception Handling
Did something go wrong inside your program? And if so, what should the program do? It can be possible to write very elegant code if one ignores such things. But as soon as one starts to put in checks, and has logic for unwinding things if something goes wrong, it’s common for the code to get vastly more complicated, and vastly less readable.
What can one do about this? Well, in Version 12.2 we’ve developed a high-level symbolic mechanism for handling things going wrong in code. Basically the idea is that you insert Confirm (or related functions)—a bit like you might insert Echo—to “confirm” that something in your program is doing what it should. If the confirmation works, then your program just keeps going. But if it fails, then the program stops–and exits to the nearest enclosing Enclose. In a sense, Enclose “encloses” regions of your program, not letting anything that goes wrong inside immediately propagate out.
Let’s see how this works in a simple case. Here the Confirm successfully “confirms” y, just returning it, and the Enclose doesn’t really do anything:
✕
Enclose[f[x, Confirm[y], z]] |
But now let’s put $Failed in place of y. $Failed is something that Confirm by default considers to be a problem. So when it sees $Failed, it stops, exiting to the Enclose—which in turn yields a Failure object:
✕
Enclose[f[x, Confirm[$Failed], z]] |
If we put in some echoes, we’ll see that x is successfully reached, but z is not; as soon as the Confirm fails, it stops everything:
✕
Enclose[f[Echo[x], Confirm[$Failed], Echo[z]]] |
A very common thing is to want to use Confirm/Enclose when you define a function:
✕
addtwo[x_] := Enclose[Confirm[x] + 2] |
Use argument 5 and everything just works:
✕
addtwo[5] |
But if we instead use Missing[]—which Confirm by default considers to be a problem—we get back a Failure object:
✕
addtwo[Missing[]] |
We could achieve the same thing with If, Return, etc. But even in this very simple case, it wouldn’t look as nice.
Confirm has a certain default set of things that it considers “wrong” ($Failed, Failure[...], Missing[...] are examples). But there are related functions that allow you to specify particular tests. For example, ConfirmBy applies a function to test if an expression should be confirmed.
Here, ConfirmBy confirms that 2 is a number:
✕
Enclose[f[1, ConfirmBy[2, NumberQ], 3]] |
But x is not considered so by NumberQ:
✕
Enclose[f[1, ConfirmBy[x, NumberQ], 3]] |
OK, so let’s put these pieces together. Let’s define a function that’s supposed to operate on strings:
✕
world[x_] := Enclose[ConfirmBy[x, StringQ] <> " world!"] |
If we give it a string, all is well:
✕
world["hello"] |
But if we give it a number instead, the ConfirmBy fails:
✕
world[4] |
But here’s where really nice things start to happen. Let’s say we want to map world over a list, always confirming that it gets a good result. Here everything is OK:
✕
Enclose[Confirm[world[#]] & /@ {"a", "b", "c"}] |
But now something has gone wrong:
✕
Enclose[Confirm[world[#]] & /@ {"a", "b", 3}] |
The ConfirmBy inside the definition of world failed, causing its enclosing Enclose to produce a Failure object. Then this Failure object caused the Confirm inside the Map to fail, and the enclosing Enclose gave a Failure object for the whole thing. Once again, we could have achieved the same thing with If, Throw, Catch, etc. But Confirm/Enclose do it more robustly, and more elegantly.
These are all very small examples. But where Confirm/Enclose really show their value is in large programs, and in providing a clear, high-level framework for handling errors and exceptions, and defining their scope.
In addition to Confirm and ConfirmBy, there’s also ConfirmMatch, which confirms that an expression matches a specified pattern. Then there’s ConfirmQuiet, which confirms that the evaluation of an expression doesn’t generate any messages (or, at least, none that you told it to test for). There’s also ConfirmAssert, which simply takes an “assertion” (like p>0) and confirms that it’s true.
When a confirmation fails, the program always exits to the nearest enclosing Enclose, delivering to the Enclose a Failure object with information about the failure that occurred. When you set up the Enclose, you can tell it how to handle failure objects it receives—either just returning them (perhaps to enclosing Confirm’s and Enclose’s), or applying functions to their contents.
Confirm and Enclose provide an elegant mechanism for handling errors, that are easy and clean to insert into programs. But—needless to say—there are definitely some tricky issues around them. Let me mention just one. The question is: which Confirm’s does a given Enclose really enclose? If you’ve written a piece of code that explicitly contains Enclose and Confirm, it’s pretty obvious. But what if there’s a Confirm that’s somehow generated—perhaps dynamically—deep inside some stack of functions? It’s similar to the situation with named variables. Module just looks for the variables directly (“lexically”) inside its body. Block looks for variables (“dynamically”) wherever they may occur. Well, Enclose by default works like Module, “lexically” looking for Confirm’s to enclose. But if you include tags in Confirm and Enclose, you can set them up to “find each other” even if they’re not explicitly “visible” in the same piece of code.
Function Robustification
Confirm/Enclose provide a good high-level way to handle the “flow” of things going wrong inside a program or a function. But what if there’s something wrong right at the get-go? In our built-in Wolfram Language functions, there’s a standard set of checks we apply. Are there the correct number of arguments? If there are options, are they allowed options, and are they in the correct place? In Version 12.2 we’ve added two functions that can perform these standard checks for functions you write.
This says that f should have two arguments, which here it doesn’t:
✕
CheckArguments[f[x, y, z], 2] |
Here’s a way to make CheckArguments part of the basic definition of a function:
✕
f[args___] := Null /; CheckArguments[f[args], 2] |
Give it the wrong number of arguments, and it’ll generate a message, and then return unevaluated, just like lots of built-in Wolfram Language functions do:
✕
f[7] |
ArgumentsOptions is another new function in Version 12.2—that separates “positional arguments” from options in a function. Set up options for a function:
✕
Options[f] = {opt -> Automatic}; |
This expects one positional argument, which it finds:
✕
ArgumentsOptions[f[x, opt -> 7], 1] |
If it doesn’t find exactly one positional argument, it generates a message:
✕
ArgumentsOptions[f[x, y], 1] |
Cleaning Up After Your Code
You run a piece of code and it does what it does—and typically you don’t want it to leave anything behind. Often you can use scoping constructs like Module, Block, BlockRandom, etc. to achieve this. But sometimes there’ll be something you set up that needs to be explicitly “cleaned up” when your code finishes.
For example, you might create a file in your piece of code, and want the file removed when that particular piece of code finishes. In Version 12.2 there’s a convenient new function for managing things like this: WithCleanup.
WithCleanup[expr, cleanup] evaluates expr, then cleanup—but returns the result from expr. Here’s a trivial example (which could really be achieved better with Block). You’re assigning a value to x, getting its square—then clearing x before returning the square:
✕
WithCleanup[x = 7; x^2, Clear[x]] |
It’s already convenient just to have a construct that does cleanup while still returning the main expression you were evaluating. But an important detail of WithCleanup is that it also handles the situation where you abort the main evaluation you were doing. Normally, issuing an abort would cause everything to stop. But WithCleanup is set up to make sure that the cleanup happens even if there’s an abort. So if the cleanup involves, for example, deleting a file, the file gets deleted, even if the main operation is aborted.
WithCleanup also allows an initialization to be given. So here the initialization is done, as is the cleanup, but the main evaluation is aborted:
✕
WithCleanup[Echo[1], Abort[]; Echo[2], Echo[3]] |
By the way, WithCleanup can also be used with Confirm/Enclose to ensure that even if a confirmation fails, certain cleanup will be done.
Dates—with 37 New Calendars
It’s December 16, 2020, today—at least according to the standard Gregorian calendar that’s usually used in the US. But there are many other calendar systems in use for various purposes around the world, and even more that have been used at one time or another historically.
In earlier versions of Wolfram Language we supported a few common calendar systems. But in Version 12.2 we’ve added very broad support for calendar systems—altogether 41 of them. One can think of calendar systems as being a bit like projections in geodesy or coordinate systems in geometry. You have a certain time: now you have to know how it is represented in whatever system you’re using. And much like GeoProjectionData, there’s now CalendarData which can give you a list of available calendar systems:
✕
CalendarData["DateCalendar"] |
So here’s the representation of “now” converted to different calendars:
✕
CalendarConvert[Now, #] & /@ CalendarData["DateCalendar"] |
There are many subtleties here. Some calendars are purely “arithmetic”; others rely on astronomical computations. And then there’s the matter of “leap variants”. With the Gregorian calendar, we’re used to just adding a February 29. But the Chinese calendar, for example, can add whole “leap months” within a year (so that, for example, there can be two “fourth months”). In the Wolfram Language, we now have a symbolic representation for such things, using LeapVariant:
✕
DateObject[{72, 25, LeapVariant[4], 20}, CalendarType -> "Chinese"] |
One reason to deal with different calendar systems is that they’re used to determine holidays and festivals in different cultures. (Another reason, particularly relevant to someone like me who studies history quite a bit, is in the conversion of historical dates: Newton’s birthday was originally recorded as December 25, 1642, but converting it to a Gregorian date it’s January 4, 1643.)
Given a calendar, something one often wants to do is to select dates that satisfy a particular criterion. And in Version 12.2 we’ve introduced the function DateSelect to do this. So, for example, we can select dates within a particular interval that satisfy the criterion that they are Wednesdays:
✕
DateSelect[DateInterval[{{{2020, 4, 1}, {2020, 4, 30}}}, "Day", "Gregorian", -5.], #DayName == Wednesday &] |
As a more complicated example, we can convert the current algorithm for selecting dates of US presidential elections to computable form, and then use it to determine dates for the next 50 years:
✕
DateSelect[DateInterval[{{2020}, {2070}}, "Day"], Divisible[#Year, 4] && #Month == 11 && #DayName == Tuesday && Or[#DayNameInstanceInMonth == 1 && #Day =!= 1, #DayNameInstanceInMonth == 2 && #Day == 8] &] |
New in Geo
By now, the Wolfram Language has strong capabilities in geo computation and geo visualization. But we’re continuing to expand our geo functionality. In Version 12.2 an important addition is spatial statistics (mentioned above)—which is fully integrated with geo. But there are also a couple of new geo primitives. One is GeoBoundary, which computes boundaries of things:
✕
GeoBoundary[\!\(\* NamespaceBox["LinguisticAssistant", DynamicModuleBox[{Typeset`query$$ = "US", Typeset`boxes$$ = TemplateBox[{"\"United States\"", RowBox[{"Entity", "[", RowBox[{"\"Country\"", ",", "\"UnitedStates\""}], "]"}], "\"Entity[\\\"Country\\\", \\\"UnitedStates\\\"]\"", "\"country\""}, "Entity"], Typeset`allassumptions$$ = {{ "type" -> "Clash", "word" -> "US", "template" -> "Assuming \"${word}\" is ${desc1}. Use as ${desc2} instead", "count" -> "3", "Values" -> {{ "name" -> "Country", "desc" -> "a country", "input" -> "*C.US-_*Country-"}, { "name" -> "Character", "desc" -> "a character", "input" -> "*C.US-_*Character-"}, { "name" -> "ComputationalComplexityClass", "desc" -> " referring to computational complexity", "input" -> "*C.US-_*ComputationalComplexityClass-"}}}}, Typeset`assumptions$$ = {}, Typeset`open$$ = {1, 2}, Typeset`querystate$$ = { "Online" -> True, "Allowed" -> True, "mparse.jsp" -> 0.494765`6.145943963263699, "Messages" -> {}}}, DynamicBox[ToBoxes[ AlphaIntegration`LinguisticAssistantBoxes["", 4, Automatic, Dynamic[Typeset`query$$], Dynamic[Typeset`boxes$$], Dynamic[Typeset`allassumptions$$], Dynamic[Typeset`assumptions$$], Dynamic[Typeset`open$$], Dynamic[Typeset`querystate$$]], StandardForm], ImageSizeCache->{187., {7., 18.}}, TrackedSymbols:>{ Typeset`query$$, Typeset`boxes$$, Typeset`allassumptions$$, Typeset`assumptions$$, Typeset`open$$, Typeset`querystate$$}], DynamicModuleValues:>{}, UndoTrackedVariables:>{Typeset`open$$}], BaseStyle->{"Deploy"}, DeleteWithContents->True, Editable->False, SelectWithContents->True]\)] |
There’s also GeoPolygon, which is a full geo generalization of ordinary polygons. One of the tricky issues GeoPolygon has to handle is what counts as the “interior” of a polygon on the Earth. Here it’s picking the larger area (i.e. the one that wraps around the globe):
✕
GeoGraphics[ GeoPolygon[{{-50, 70}, {30, -90}, {70, 50}}, "LargerArea"]] |
GeoPolygon can also—like Polygon—handle holes, or in fact arbitrary levels of nesting:
✕
GeoGraphics[ GeoPolygon[ Entity["AdministrativeDivision", {"Illinois", "UnitedStates"}] -> Entity["AdministrativeDivision", {"ChampaignCounty", "Illinois", "UnitedStates"}]]] |
But the biggest “coming attraction” of geo is completely new rendering of geo graphics and maps. It’s still preliminary (and unfinished) in Version 12.2, but there’s at least experimental support for vector-based map rendering. The most obvious payoff from this is maps that look much crisper and sharper at all scales. But another payoff is our ability to introduce new styling for maps, and in Version 12.2 we’re including eight new map styles.
Here’s our “old-style”map:
✕
GeoGraphics[Entity["Building", "EiffelTower::5h9w8"], GeoRange -> Quantity[400, "Meters"]] |
Here’s the new, vector version of this “classic” style:
✕
GeoGraphics[Entity["Building", "EiffelTower::5h9w8"], GeoBackground -> "VectorClassic", GeoRange -> Quantity[400, "Meters"]] |
Here’s a new (vector) style, intended for the web:
✕
GeoGraphics[Entity["Building", "EiffelTower::5h9w8"], GeoBackground -> "VectorWeb", GeoRange -> Quantity[400, "Meters"]] |
And here’s a “dark” style, suitable for having information overlaid on it:
✕
GeoGraphics[Entity["Building", "EiffelTower::5h9w8"], GeoBackground -> "VectorDark", GeoRange -> Quantity[400, "Meters"]] |
Importing PDF
Want to analyze a document that’s in PDF? We’ve been able to extract basic content from PDF files for well over a decade. But PDF is a highly complex (and evolving) format, and many documents “in the wild” have complicated structures. In Version 12.2, however, we’ve dramatically expanded our PDF import capabilities, so that it becomes realistic to, for example, take a random paper from arXiv, and import it:
✕
Import["https://arxiv.org/pdf/2011.12174.pdf"] |
By default, what you’ll get is a high-resolution image for each page (in this particular case, all 100 pages).
If you want the text, you can import that with "Plaintext":
✕
Import["https://arxiv.org/pdf/2011.12174.pdf", "Plaintext"] |
Now you can immediately make a word cloud of the words in the paper:
✕
WordCloud[%] |
This picks out all the images from the paper, and makes a collage of them:
✕
ImageCollage[Import["https://arxiv.org/pdf/2011.12174.pdf", "Images"]] |
You can get the URLs from each page:
✕
Import["https://arxiv.org/pdf/2011.12174.pdf", "URLs"] |
Now pick off the last two, and get images of those webpages:
✕
WebImage /@ Take[Flatten[Values[%]], -2] |
Depending on how they’re produced, PDFs can have all sorts of structure. "ContentsGraph" gives a graph representing the overall structure detected for a document:
✕
Import["https://arxiv.org/pdf/2011.12174.pdf", "ContentsGraph"] |
And, yes, it really is a graph:
✕
Graph[EdgeList[%]] |
For PDFs that are fillable forms, there’s more structure to import. Here I grabbed a random unfilled government form from the web. Import gives an association whose keys are the names of the fields—and if the form had been filled in, it would have given their values too, so you could immediately do analysis on them:
✕
Import["https://www.fws.gov/forms/3-200-41.pdf", "FormFieldRules"] |
The Latest in Industrial-Strength Convex Optimization
Starting in Version 12.0, we’ve been adding state-of-the-art capabilities for solving large-scale optimization problems. In Version 12.2 we’ve continued to round out these capabilities.
One new thing is the superfunction ConvexOptimization, which automatically handles the full spectrum of linear, linear-fractional, quadratic, semidefinite and conic optimization—giving both optimal solutions and their dual properties. In 12.1 we added support for integer variables (i.e. combinatorial optimization); in 12.2 we’re also adding support for complex variables.
But the biggest new things for optimization in 12.2 are the introduction of robust optimization and of parametric optimization. Robust optimization lets you find an optimum that’s valid across a whole range of values of some of the variables. Parametric optimization lets you get a parametric function that gives the optimum for any possible value of particular parameters. So for example this finds the optimum for x, y for any (positive) value of α:
✕
ParametricConvexOptimization[(x - 1)^2 + Abs[y], {(x + \[Alpha])^2 <= 1, x + y >= \[Alpha]}, {x, y}, {\[Alpha]}] |
Now evaluate the parametric function for a particular α:
✕
%[.76] |
As with everything in the Wolfram Language, we’ve put a lot of effort into making sure that convex optimization integrates seamlessly into the rest of the system—so you can set up models symbolically, and flow their results into other functions. We’ve also included some very powerful convex optimization solvers. But particularly if you’re doing mixed (i.e. real+integer) optimization, or you’re dealing with really huge (e.g. 10 million variables) problems, we’re also giving access to other, external solvers. So, for example, you can set up your problem using Wolfram Language as your “algebraic modeling language”, then (assuming you have the appropriate external licenses) just by setting Method to, say, “Gurobi” or “Mosek” you can immediately run your problem with an external solver. (And, by the way, we now have an open framework for adding more solvers.)
Supporting Combinators and Other Formal Building Blocks
One can say that the whole idea of symbolic expressions (and their transformations) on which we rely so much in the Wolfram Language originated with combinators—which just celebrated their centenary on December 7, 2020. The version of symbolic expressions that we have in Wolfram Language is in many ways vastly more advanced and usable than raw combinators. But in Version 12.2—partly by way of celebrating combinators—we wanted to add a framework for raw combinators.
So now for example we have CombinatorS, CombinatorK, etc., rendered appropriately:
✕
CombinatorS[CombinatorK] |
But how should we represent the application of one combinator to another? Today we write something like:
✕
f@g@h@x |
But in the early days of mathematical logic there was a different convention—that involved left-associative application, in which one expected “combinator style” to generate “functions” not “values” from applying functions to things. So in Version 12.2 we’re introducing a new “application operator” Application, displayed as (and entered as \[Application] or ap ):
✕
Application[f, Application[g, Application[h, x]]] |
✕
Application[Application[Application[f, g], h], x] |
And, by the way, I fully expect Application—as a new, basic “constructor”—to have a variety of uses (not to mention “applications”) in setting up general structures in the Wolfram Language.
The rules for combinators are trivial to specify using pattern transformations in the Wolfram Language:
✕
{CombinatorS\[Application]x_\[Application]y_\[Application]z_ :> x\[Application]z\[Application](y\[Application]z), CombinatorK\[Application]x_\[Application]y_ :> x} |
But one can also think about combinators more “algebraically” as defining relations between expressions—and there’s now a theory in AxiomaticTheory for that.
And in 12.2 a few more other theories have been added to AxiomaticTheory, as well as several new properties.
Euclidean Geometry Goes Interactive
One of the major advances in Version 12.0 was the introduction of a symbolic representation for Euclidean geometry: you specify a symbolic GeometricScene, giving a variety of objects and constraints, and the Wolfram Language can “solve” it, and draw a diagram of a random instance that satisfies the constraints. In Version 12.2 we’ve made this interactive, so you can move the points in the diagram around, and everything will (if possible) interactively be rearranged so as to maintain the constraints.
Here’s a random instance of a simple geometric scene:
✕
RandomInstance[ GeometricScene[{a, b, c, d}, {CircleThrough[{a, b, c}, d], Triangle[{a, b, c}], d == Midpoint[{a, c}]}]] |
If you move one of the points, the other points will interactively be rearranged so as to maintain the constraints defined in the symbolic representation of the geometric scene:
✕
RandomInstance[ GeometricScene[{a, b, c, d}, {CircleThrough[{a, b, c}, d], Triangle[{a, b, c}], d == Midpoint[{a, c}]}]] |
What’s really going on inside here? Basically, the geometry is getting converted to algebra. And if you want, you can get the algebraic formulation:
✕
%["AlgebraicFormulation"] |
And, needless to say, you can manipulate this using the many powerful algebraic computation capabilities of the Wolfram Language.
In addition to interactivity, another major new feature in 12.2 is the ability to handle not just complete geometric scenes, but also geometric constructions that involve building up a scene in multiple steps. Here’s an example—that happens to be taken directly from Euclid:
✕
RandomInstance[GeometricScene[ {{\[FormalCapitalA], \[FormalCapitalB], \[FormalCapitalC], \ \[FormalCapitalD], \[FormalCapitalE], \[FormalCapitalF]}, {}}, { GeometricStep[{Line[{\[FormalCapitalA], \[FormalCapitalB]}], Line[{\[FormalCapitalA], \[FormalCapitalC]}]}, "Define an arbitrary angle BAC."], GeometricStep[{\[FormalCapitalD] \[Element] Line[{\[FormalCapitalA], \[FormalCapitalB]}], \[FormalCapitalE] \ \[Element] Line[{\[FormalCapitalA], \[FormalCapitalC]}], EuclideanDistance[\[FormalCapitalA], \[FormalCapitalD]] == EuclideanDistance[\[FormalCapitalA], \[FormalCapitalE]]}, "Put D and E on AB and AC equidistant from A."], GeometricStep[{Line[{\[FormalCapitalD], \[FormalCapitalE]}], GeometricAssertion[{\[FormalCapitalA], \[FormalCapitalF]}, \ {"OppositeSides", Line[{\[FormalCapitalD], \[FormalCapitalE]}]}], GeometricAssertion[ Triangle[{\[FormalCapitalE], \[FormalCapitalF], \ \[FormalCapitalD]}], "Equilateral"], Line[{\[FormalCapitalA], \[FormalCapitalF]}]}, "Construct an equilateral triangle on DE."] } ]] |
The first image you get is basically the result of the construction. And—like all other geometric scenes—it’s now interactive. But if you mouse over it, you’ll get controls that allow you to move to earlier steps:
✕
|
Move a point at an earlier step, and you’ll see what consequences that has for later steps in the construction.
Euclid’s geometry is the very first axiomatic system for mathematics that we know about. So—2000+ years later—it’s exciting that we can finally make it computable. (And, yes, it will eventually connect up with AxiomaticTheory, FindEquationalProof, etc.)
But in recognition of the significance of Euclid’s original formulation of geometry, we’ve added computable versions of his propositions (as well as a bunch of other “famous geometric theorems”). The example above turns out to be proposition 9 in Euclid’s book 1. And now, for example, we can get his original statement of it in Greek:
✕
Entity["GeometricScene", "EuclidBook1Proposition9"]["GreekStatement"] |
And here it is in modern Wolfram Language—in a form that can be understood by both computers and humans:
✕
Entity["GeometricScene", "EuclidBook1Proposition9"]["Scene"] |
Yet More Kinds of Knowledge for the Knowledgebase
An important part of the story of Wolfram Language as a full-scale computational language is its access to our vast knowledgebase of data about the world. The knowledgebase is continually being updated and expanded, and indeed in the time since Version 12.1 essentially all domains have had data (and often a substantial amount) updated, or entities added or modified.
But as examples of what’s been done, let me mention a few additions. One area that’s received a lot of attention is food. By now we have data about more than half a million foods (by comparison, a typical large grocery store stocks perhaps 30,000 types of items). Pick a random food:
✕
RandomEntity["Food"] |
Now generate a nutrition label:
✕
%["NutritionLabel"] |
As another example, a new type of entity that’s been added is physical effects. Here are some random ones:
✕
RandomEntity["PhysicalEffect", 10] |
And as an example of something that can be done with all the data in this domain, here’s a histogram of the dates when these effects were discovered:
✕
DateHistogram[EntityValue["PhysicalEffect", "DiscoveryDate"], "Year", PlotRange -> {{DateObject[{1700}, "Year", "Gregorian", -5.`], DateObject[{2000}, "Year", "Gregorian", -5.`]}, Automatic}] |
As another sample of what we’ve been up to, there’s also now what one might (tongue-in-cheek) call a “heavy-lifting” domain—weight-training exercises:
✕
Entity["WeightTrainingExercise", "BenchPress"]["Dataset"] |
An important feature of the Wolfram Knowledgebase is that it contains symbolic objects, which can represent not only “plain data”—like numbers or strings—but full computational content. And as an example of this, Version 12.2 allows one to access the Wolfram Demonstrations Project—with all its active Wolfram Language code and notebooks—directly in the knowledgebase. Here are some random Demonstrations:
✕
RandomEntity["WolframDemonstration", 5] |
The values of properties can be dynamic interactive objects:
✕
Entity["WolframDemonstration", "MooreSpiegelAttractor"]["Manipulate"] |
And because everything is computable, one can for example immediately make an image collage of all Demonstrations on a particular topic:
✕
ImageCollage[ EntityValue[ EntityClass["WolframDemonstration", "ChemicalEngineering"], "Thumbnail"]] |
The Continuing Story of Machine Learning
It’s been nearly 7 years since we first introduced Classify and Predict, and began the process of fully integrating neural networks into the Wolfram Language. There’ve been two major directions: the first is to develop “superfunctions”, like Classify and Predict, that—as automatically as possible—perform machine-learning-based operations. The second direction is to provide a powerful symbolic framework to take advantage of the latest advances with neural nets (notably through the Wolfram Neural Net Repository) and to allow flexible continued development and experimentation.
Version 12.2 has progress in both these areas. An example of a new superfunction is FaceRecognize. Give it a small number of tagged examples of faces, and it will try to identify them in images, videos, etc. Let’s get some training data from web searches (and, yes, it’s somewhat noisy):
✕
faces = Image[#, ImageSize -> 30] & /@ AssociationMap[Flatten[ FindFaces[#, "Image"] & /@ WebImageSearch["star trek " <> #]] &, {"Jean-Luc Picard", "William Riker", "Phillipa Louvois", "Data"}] |
Now create a face recognizer with this training data:
✕
recognizer = FaceRecognize[faces] |
Now we can use this to find out who’s on screen in each frame of a video:
✕
VideoMapList[recognizer[FindFaces[#Image, "Image"]] &, Video[URLDownload["https://ia802900.us.archive.org/7/items/2000-promo-for-star-trek-the-next-generation/2000%20promo%20for%20Star%20Trek%20-%20The%20Next%20Generation.ia.mp4"]]] /. m_Missing \[RuleDelayed] "Other" |
Now plot the results:
✕
ListPlot[Catenate[ MapIndexed[{First[#2], #1} &, ArrayComponents[%], {2}]], Sequence[ ColorFunction -> ColorData["Rainbow"], Ticks -> {None, Thread[{ Range[ Max[ ArrayComponents[rec]]], DeleteDuplicates[ Flatten[rec]]}]}]] |
In the Wolfram Neural Net Repository there’s a regular stream of new networks being added. Since Version 12.1 about 20 new kinds of networks have been added—including many new transformer nets, as well as EfficientNet and for example feature extractors like BioBERT and SciBERT specifically trained on text from scientific papers.
In each case, the networks are immediately accessible—and usable—through NetModel. Something that’s updated in Version 12.2 is the visual display of networks:
✕
NetModel["ELMo Contextual Word Representations Trained on 1B Word \ Benchmark"] |
There are lots of new icons, but there’s also now a clear convention that circles represent fixed elements of a net, while squares represent trainable ones. In addition, when there’s a thick border in an icon, it means there’s an additional network inside, that you can see by clicking.
Whether it’s a network that comes from NetModel or your construct yourself (or a combination of those two), it’s often convenient to extract the “summary graphic” for the network, for example so you can put it in documentation or a publication. Information provides several levels of summary graphics:
✕
Information[ NetModel["CapsNet Trained on MNIST Data"], "SummaryGraphic"] |
There are several important additions to our core neural net framework that broaden the range of neural net functionality we can access. The first is that in Version 12.2 we have native encoders for graphs and for time series. So, here, for example, we’re making a feature space plot of 20 random named graphs:
✕
FeatureSpacePlot[GraphData /@ RandomSample[GraphData[], 20]] |
Another enhancement to the framework has to do with diagnostics for models. We introduced PredictorMeasurements and ClassifierMeasurements many years ago to provide a symbolic representation for the performance of models. In Version 12.2—in response to many requests—we’ve made it possible to feed final predictions, rather than a model, to create a PredictorMeasurements object, and we’ve streamlined the appearance and operation of PredictorMeasurements objects:
✕
PredictorMeasurements[{3.2, 3.5, 4.6, 5}, {3, 4, 5, 6}] |
An important new feature of ClassifierMeasurements is the ability to compute a calibration curve that compares the actual probabilities observed from sampling a test set with the predictions from the classifier. But what’s even more important is that Classify automatically calibrates its probabilities, in effect trying to “sculpt” the calibration curve:
✕
Row[{ First@ClassifierMeasurements[ Classify[training, Method -> "RandomForest", "Calibration" -> False], test, "CalibrationCurve"], " \[LongRightArrow] ", First@ClassifierMeasurements[ Classify[training, Method -> "RandomForest", "Calibration" -> True], test, "CalibrationCurve"] }] |
Version 12.2 also has the beginning of a major update to the way neural networks can be constructed. The fundamental setup has always been to put together a certain collection of layers that expose what amount to array indices that are connected by explicit edges in a graph. Version 12.2 now introduces FunctionLayer, which allows you to give something much closer to ordinary Wolfram Language code. As an example, here’s a particular function layer:
✕
FunctionLayer[ 2*(#v . #m . {0.25, 0.75}) . NetArray[<|"Array" -> {0.1, 0.9}|>] & ] |
And here’s the representation of this function layer as an explicit NetGraph:
✕
NetGraph[%] |
v and m are named “input ports”. The NetArray—indicated by the square icons in the net graph—is a learnable array, here containing just two elements.
There are cases where it’s easier to use the “block-based” (or “graphical”) programming approach of just connecting together layers (and we’ve worked hard to ensure that the connections can be made as automatically as possible). But there are also cases where it’s easier to use the “functional” programming approach of FunctionLayer. For now, FunctionLayer supports only a subset of the constructs available in the Wolfram Language—though this already includes many standard array and functional programming operations, and more will be added in the future.
An important feature of FunctionLayer is that the neural net it produces will be as efficient as any other neural net, and can run on GPUs etc. But what can you do about Wolfram Language constructs that are not yet natively supported by FunctionLayer? In Version 12.2 we’re adding another new experimental function—CompiledLayer—that extends the range of Wolfram Language code that can be handled efficiently.
It’s perhaps worth explaining a bit about what’s happening inside. Our main neural net framework is essentially a symbolic layer that organizes things for optimized low-level implementation, currently using MXNet. FunctionLayer is effectively translating certain Wolfram Language constructs directly to MXNet. CompiledLayer is translating Wolfram Language to LLVM and then to machine code, and inserting this into the execution process within MXNet. CompiledLayer makes use of the new Wolfram Language compiler, and its extensive type inference and type declaration mechanisms.
OK, so let’s say one’s built a magnificent neural net in our Wolfram Language framework. Everything is set up so that the network can immediately be used in a whole range of Wolfram Language superfunctions (Classify, FeatureSpacePlot, AnomalyDetection, FindClusters, …). But what if one wants to use the network “standalone” in an external environment? In Version 12.2 we’re introducing the capability to export essentially any network in the recently developed ONNX standard representation.
And once one has a network in ONNX form, one can use the whole ecosystem of external tools to deploy it in a wide variety of environments. A notable example—that’s now a fairly streamlined process—is to take a full Wolfram Language–created neural net and run it in CoreML on an iPhone, so that it can for example directly be included in a mobile app.
Form Notebooks
What’s the best way to collect structured material? If you just want to get a few items, an ordinary form created with FormFunction (and for example deployed in the cloud) can work well. But what if you’re trying to collect longer, richer material?
For example, let’s say you’re creating a quiz where you want students to enter a whole sequence of complex responses. Or let’s say you’re creating a template for people to fill in documentation for something. What you need in these cases is a new concept that we’re introducing in Version 12.2: form notebooks.
A form notebook is basically a notebook that is set up to be used as a complex “form”, where the inputs in the form can be all the kinds of things that you’re used to having in a notebook.
The basic workflow for form notebooks is the following. First you author a form notebook, defining the various “form elements” (or areas) that you want the user of the form notebook to fill in. As part of the authoring process, you define what you want to have happen to the material the user of the form notebook enters when they use the form notebook (e.g. put the material in a Wolfram Data Drop databin, send the material to a cloud API, send the material as a symbolic expression by email, etc.).
After you’ve authored the form notebook, you then generate an active version that can be sent to whoever will be using the form notebook. Once someone has filled in their material in their copy of the deployed form notebook, they press a button, typically “Submit”, and their material is then sent as a structured symbolic expression to whatever destination the author of the form notebook specified.
It’s perhaps worth mentioning how form notebooks relate to something that sounds similar: template notebooks. In a sense, a template notebook is doing the reverse of a form notebook. A form notebook is about having a user enter material that will then be processed. A template notebook, on the other hand, is about having the computer generate material which will then be used to populate a notebook whose structure is defined by the template notebook.
OK, so how do you get started with form notebooks? Just go to File > New > Programmatic Notebook > Form Notebook Authoring:
This is just a notebook, where you can enter whatever content you want—say an explanation of what you want people to do when they “fill out” the form notebook. But then there are special cells or sequences of cells in the form notebook that we call “form elements” and “editable notebook areas”. These are what the user of the form notebook “fills out” to enter their “responses”, and the material they provide is what gets sent when they press the “Submit” button (or whatever final action has been defined).
In the authoring notebook, the toolbar gives you a menu of possible form elements that you can insert:
Let’s pick Input Field as an example:
What does all this mean? Basically a form element is represented by a very flexible symbolic Wolfram Language expression, and this is giving you a way to specify the expression you want. You can give a label and a hint to put in the input field. But it’s with the Interpreter that you start to see the power of Wolfram Language. Because the Interpreter is what takes whatever the user of the form notebook enters in this input field, and interprets it as a computable object. The default is just to treat it as a string. But it could for example be a “Country” or a “MathExpression”. And with these choices, the material will automatically be interpreted as a country, math expression, etc., with the user typically being prompted if their input can’t be interpreted as specified.
There are lots of options about the details of how even an input field can work. Some of them are provided in the Add Action menu:
But so what actually “is” this form element? Press the CODE tab on the left to see:
What would a user of the form notebook see here? Press the PREVIEW tab to find out:
Beyond input fields, there are lots of other possible form elements. There are things like checkboxes, radio buttons and sliders. And in general it’s possible to use any of the rich symbolic user interface constructs that exist in the Wolfram Language.
Once you’ve finishing authoring, you press Generate to generate a form notebook that is ready to be provided to users to be filled in. The Settings define things like how the “submit” action should be specified, and what should be done when the form notebook is submitted:
So what is the “result” of a submitted form notebook? Basically it’s an association that says what was filled into each area of the form notebook. (The areas are identified by keys in the association that were specified when the areas were first defined in the authoring notebook.)
Let’s see how this works in a simple case. Here’s the authoring notebook for a form notebook:
Here’s the generated form notebook, ready to be filled in (assuming you have 12.2):
Here’s a sample of how the form notebook might be filled in:
And this is what “comes back” when Submit is pressed:
For testing, you can just have this association placed interactively in a notebook. But in practice it’s more common to send the association to a databin, store it in a cloud object, or generally put it in a more “centralized” location.
Notice that at the end of this example we have an editable notebook area—where you can enter free-form notebook content (with cells, headings, code, output, etc.) that will all be captured when the form notebook is submitted.
Form notebooks are very powerful idea, and you’ll see them used all over the place. As a first example, the various submission notebooks for the Wolfram Function Repository, Wolfram Demonstrations Project, etc. are becoming form notebooks. We’re also expecting a lot of use of form notebooks in educational settings. And as part of that, we’re building a system that leverages Wolfram Language for assessing responses in form notebooks (and elsewhere).
You can see the beginnings of this in Version 12.2 with the experimental function AssessmentFunction—which can be hooked into form notebooks somewhat like Interpreter. But even without the full capabilities planned for AssessmentFunction there’s still an incredible amount that can be done—in educational settings and otherwise—using form notebooks.
It’s worth understanding, by the way, that form notebooks are ultimately very simple to use in any particular case. Yes, they have a lot of depth that allows them to do a very wide range of things. And they’re basically only possible because of the whole symbolic structure of the Wolfram Language, and the fact that Wolfram Notebooks are ultimately represented as symbolic expressions. But when it comes to using them for a particular purpose they’re very streamlined and straightforward, and it’s completely realistic to create a useful form notebook in just a few minutes.
Yet More Notebookery
We invented notebooks—with all their basic features of hierarchical cells, etc.—back in 1987. But for a third of a century, we’ve been progressively polishing and streamlining how they work. And in Version 12.2 there are all sorts of useful and convenient new notebook features.
Click to Copy
It’s a very simple feature, but it’s very useful. You see something in a notebook, and all you really want to be able to do with it is copy it (or perhaps copy something related to it). Well, then just use ClickToCopy:
✕
ClickToCopy[10!] |
If you want to click-to-copy something unevaluated, use Defer:
✕
ClickToCopy[Plot[Sin[x], {x, 0, 10}], Defer[Plot[Sin[x], {x, 0, 10}]]] |
Streamlined Hyperlinking (and Hyperlink Editing)
++h has inserted a hyperlink in a Wolfram Notebook since 1996. But in Version 12.2 there are two important new things with hyperlinks. First, automatic hyperlinking that handles a wide range of different situations. And second, a modernized and streamlined mechanism for hyperlink creation and editing.
Attached Cells
In Version 12.2 we’re exposing something that we’ve had internally for a while: the ability to attach a floating fully functional cell to any given cell (or box, or whole notebook). Accessing this feature needs symbolic notebook programming, but it lets you do very powerful things—particularly in introducing contextual and “just-in-time” interfaces. Here’s an example that puts a dynamic counter that counts in primes on the right-bottom part of the cell bracket:
✕
obj=AttachCell[EvaluationCell[],Panel[Dynamic[i]],{"CellBracket",Bottom},0,{Right,Bottom}]; Do[PrimeQ[i],{i,10^7}]; NotebookDelete[obj] |
Template Box Infrastructure
Sometimes it’s useful for what you see not to be what you have. For example, you might want to display something in a notebook as J0(x) but have it really be BesselJ[0, x]. For many years, we’ve had Interpretation as a way to set this up for specific expressions. But we’ve also had a more general mechanism—TemplateBox—that lets you take expressions, and separately specify how they should be displayed, and interpreted.
In Version 12.2 we’ve further generalized—and streamlined—TemplateBox, allowing it to incorporate arbitrary user interface elements, as well as allowing it to specify things like copy behavior. Our new TEX input mechanism, for example, is basically just an application of the new TemplateBox.
In this case, "TeXAssistantTemplate" refers to a piece of functionality defined in the notebook stylesheet—whose parameters are specified by the association given in the TemplateBox:
✕
RawBoxes[TemplateBox[<| "boxes" -> FormBox[FractionBox["1", "2"], TraditionalForm], "errors" -> {}, "input" -> "\\frac{1}{2}", "state" -> "Boxes"|>, "TeXAssistantTemplate"]] |
The Desktop Interface to the Cloud
An important feature of Wolfram Notebooks is that they’re set up to operate both on the desktop and in the cloud. And even between versions of Wolfram Language there’s lots of continued enhancement in the way notebooks work in the cloud. But in Version 12.2 there’s been some particular streamlining of the interface for notebooks between desktop and cloud.
A particularly nice mechanism already available for a couple of years in any desktop notebook is the File > Publish to Cloud menu item, which allows you to take the notebook and immediately make it available as a published cloud notebook that can be accessed by anyone with a web browser. In Version 12.2 we’ve streamlined the process of notebook publishing.
When I’m giving a presentation I’ll usually be creating a desktop notebook as I go (or perhaps using one that already exists). And at the end of the presentation, it’s become my practice to publish it to the cloud, so anyone in the audience can interact with it. But how can I give everyone the URL for the notebook? In a virtual setting, you can just use chat. But in an actual physical presentation, that’s not an option. And in Version 12.2 we’ve provided a convenient alternative: the result of Publish to Cloud includes a QR code that people can capture with their phones, then immediately go to the URL and interact with the notebook on their phones.
There’s one other notable new item visible in the result of Publish to Cloud: “Direct JavaScript Embedding”. This is a link to the Wolfram Notebook Embedder which allows cloud notebooks to be directly embedded through JavaScript onto webpages.
It’s always easy to use an iframe to embed one webpage on another. But iframes have many limitations, such as requiring their sizes to be defined in advance. The Wolfram Notebook Embedder allows full-function fluid embedding of cloud notebooks—as well as scriptable control of the notebooks from other elements of a webpage. And since the Wolfram Notebook Embedder is set up to use the oEmbed embedding standard, it can immediately be used in basically all standard web content management systems.
We’ve talked about sending notebooks from the desktop to the cloud. But another thing that’s new in Version 12.2 is faster and easier browsing of your cloud file system from the desktop—as accessed from File > Open from Cloud and File > Save to Cloud.
Cryptography & Security
One of the things we want to do with Wolfram Language is to make it as easy as possible to connect with pretty much any external system. And in modern times an important part of that is being able to conveniently handle cryptographic protocols. And ever since we started introducing cryptography directly into the Wolfram Language five years ago, I’ve been surprised at just how much the symbolic character of the Wolfram Language has allowed us to clarify and streamline things to do with cryptography.
A particularly dramatic example of this has been how we’ve been able to integrate blockchains into Wolfram Language (and Version 12.2 adds bloxberg with several more on the way). And in successive versions we’re handling different applications of cryptography. In Version 12.2 a major emphasis is symbolic capabilities for key management. Version 12.1 already introduced SystemCredential for dealing with local “keychain” key management (supporting, for example, “remember me” in authentication dialogs). In 12.2 we’re also dealing with PEM files.
If we import a PEM file containing a private key we get a nice, symbolic representation of the private key:
✕
private = First[Import["ExampleData/privatesecp256k1.pem"]] |
Now we can derive a public key:
✕
public = PublicKey[%] |
If we generate a digital signature for a message using the private key
✕
GenerateDigitalSignature["Hello there", private] |
then this verifies the signature using the public key we’ve derived:
✕
VerifyDigitalSignature[{"Hello there", %}, public] |
An important part of modern security infrastructure is the concept of a security certificate—a digital construct that allows a third party to attest to the authenticity of a particular public key. In Version 12.2 we now have a symbolic representation for security certificates—providing what’s needed for programs to establish secure communication channels with outside entities in the same kind of way that https does:
✕
Import["ExampleData/client.pem"] |
Just Type SQL
In Version 12.0 we introduced powerful functionality for querying relational databases symbolically within the Wolfram Language. Here’s how we connect to a database:
✕
db = DatabaseReference[ FindFile["ExampleData/ecommerce-database.sqlite"]] |
Here’s how we connect the database so that its tables can be treated just like entity types from the built-in Wolfram Knowledgebase:
✕
EntityRegister[EntityStore[RelationalDatabase[db]]] |
Now we can for example ask for a list of entities of a given type:
✕
EntityList["offices"] |
What’s new in 12.2 is that we can conveniently go “under” this layer, to directly execute SQL queries against the underlying database, getting the complete database table as a Dataset expression:
✕
ExternalEvaluate[db, "SELECT * FROM offices"] |
These queries can not only read from the database, but also write to it. And to make things even more convenient, we can effectively treat SQL just like any other “external language” in a notebook.
First we have to register our database, to say what we want our SQL to be run against:
✕
RegisterExternalEvaluator["SQL", db] |
And now we can just type SQL as input—and get back Wolfram Language output, directly in the notebook:
Microcontroller Support Goes 32-Bit
You’ve developed a control system or signal processing in Wolfram Language. Now how do you deploy it to a piece of standalone electronics? In Version 12.0 we introduced the Microcontroller Kit for compiling from symbolic Wolfram Language structures directly to microcontroller code.
We’ve had lots of feedback on this, asking us to expand the range of microcontrollers that we support. So in Version 12.2 I’m happy to say that we’re adding support for 36 new microcontrollers, particularly 32-bit ones:
Here’s an example in which we deploy a symbolically defined digital filter to a particular kind of microcontroller, showing the simplified C source code generated for that particular microcontroller:
✕
Needs["MicrocontrollerKit`"] |
✕
ToDiscreteTimeModel[ButterworthFilterModel[{3, 2}], 0.6] // Chop |
✕
MicrocontrollerEmbedCode[%, <|"Target" -> "AdafruitGrandCentralM4", "Inputs" -> 0 -> "Serial", "Outputs" -> 1 -> "Serial"|>, "/dev/cu.usbmodem14101"]["SourceCode"] |
WSTPServer: A New Deployment of Wolfram Engine
Our long-term goal is to make the Wolfram Language and the computational intelligence it provides as ubiquitous as possible. And part of doing this is to set up the Wolfram Engine which implements the language so that it can be deployed in as broad a range of computational infrastructure settings as possible.
Wolfram Desktop—as well as classic Mathematica—primarily provides a notebook interface to the Wolfram Engine, running on a local desktop system. It’s also possible to run Wolfram Engine directly—as a command-line program (e.g. through WolframScript)—on a local computer system. And, of course, one can run the Wolfram Engine in the cloud, either through the full Wolfram Cloud (public or private), or through more lightweight cloud and server offerings (both existing and forthcoming).
But with Version 12.2 there’s a new deployment of the Wolfram Engine: WSTPServer. If you use Wolfram Engine in the cloud, you’re typically communicating with it through http or related protocols. But for more than thirty years, the Wolfram Language has had its own dedicated protocol for transferring symbolic expressions and everything around them. Originally we called it MathLink, but in more recent years, as it’s progressively been extended, we’ve called it WSTP: the Wolfram Symbolic Transfer Protocol. What WSTPServer does, as its name suggests, is to give you a lightweight server that delivers Wolfram Engines and lets you communicate with them directly in native WSTP.
Why is this important? Basically because it gives you a way to manage pools of persistent Wolfram Language sessions that can operate as services for other applications. For example, normally each time you call WolframScript you get a new, fresh Wolfram Engine. But by using wolframscript -wstpserver with a particular “WSTP profile name” you can keep getting the same Wolfram Engine every time you call WolframScript. You can do this directly on your local machine—or on remote machines.
And an important use of WSTPServer is to expose pools of Wolfram Engines that can be accessed through the new RemoteEvaluate function in Version 12.2. It’s also possible to use WSTPServer to expose Wolfram Engines for use by ParallelMap, etc. And finally, since WSTP has (for nearly 30 years!) been the way the notebook front end communicates with the Wolfram Engine kernel, it’s now possible to use WSTPServer to set up a centralized kernel pool to which you can connect the notebook front end, allowing you, for example, to keep running a particular session (or even a particular computation) in the kernel even as you switch to a different notebook front end, on a different computer.
RemoteEvaluate: Compute Someplace Else…
Along the lines of “use Wolfram Language everywhere” another new function in Version 12.2 is RemoteEvaluate. We’ve got CloudEvaluate which does a computation in the Wolfram Cloud, or an Enterprise Private Cloud. We’ve got ParallelEvaluate which does computations on a predefined collection of parallel subkernels. And in Version 12.2 we’ve got RemoteBatchSubmit which submits batch computations to cloud computation providers.
RemoteEvaluate is a general, lightweight “evaluate now” function that lets you do a computation on any specified remote machine that has an accessible Wolfram Engine. You can connect to the remote machine using ssh or wstp (or http with a Wolfram Cloud endpoint).
✕
RemoteEvaluate["ssh://byblis67.wolfram.com", Labeled[Framed[$MachineName], Now]] |
Sometimes you’ll want to use RemoteEvaluate to do things like system administration across a range of machines. Sometimes you might want to collect or send data to remote devices. For example, you might have a network of Raspberry Pi computers which all have Wolfram Engine—and then you can use RemoteEvaluate to do something like retrieve data from these machines. By the way, you can also use ParallelEvaluate from within RemoteEvaluate, so you’re having a remote machine be the master for a collection of parallel subkernels.
Sometimes you’ll want RemoteEvaluate to start a fresh instance of Wolfram Engine whenever you do an evaluation. But with WSTPServer you can also have it use a persistent Wolfram Language session. RemoteEvaluate and WSTPServer are the beginning of a general symbolic framework for representing running Wolfram Engine processes. Version 12.2 already has RemoteKernelObject and $DefaultRemoteKernel which provide symbolic ways to represent remote Wolfram Language instances.
And Yet More (AKA “None of the Above”)
I’ve at least touched on many of the bigger new features of Version 12.2. But there’s a lot more. Additional functions, enhancements, fixes and general rounding out and polishing.
Like in computational geometry, ConvexHullRegion now deals with regions, not just points. And there are functions like CollinearPoints and CoplanarPoints that test for collinearity and coplanarity, or give conditions for achieving them.
There are more import and export formats. Like there’s now support for the archive formats: “7z”, “ISO”, “RAR”, “ZSTD”. There’s also FileFormatQ and ByteArrayFormatQ for testing whether things correspond to particular formats.
In terms of core language, there are things like updates to the complicated-to-define ValueQ. There’s also RandomGeneratorState that gives a symbolic representation of random generator states.
In the desktop package (i.e. .wl file) editor, there’s a new (somewhat experimental) Format Cell button, that reformats code—with a control on how “airy” it should be (i.e. how dense it should be in newlines).
In Wolfram|Alpha-Mode Notebooks (as used by default in Wolfram|Alpha Notebook Edition) there are other new features, like function documentation targeted for particular function usage.
There’s also more in TableView, as well as a large suite of new paclet authoring tools that are included on an experimental basis.
To me it’s rather amazing how much we’ve been able to bring together in Version 12.2, and, as always, I’m excited that it’s now out and available to everyone to use….